LCP152SD [ETC]

PROGRAMMABLE TRANSIENT VOLTAGE SUPPRESSOR FOR SLIC PROTECTION ; 可编程瞬态电压抑制器SLIC保护\n
LCP152SD
型号: LCP152SD
厂家: ETC    ETC
描述:

PROGRAMMABLE TRANSIENT VOLTAGE SUPPRESSOR FOR SLIC PROTECTION
可编程瞬态电压抑制器SLIC保护\n

文件: 总9页 (文件大小:144K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
LCP1521S/LCP152DEE  
PROGRAMMABLE TRANSIENT VOLTAGE  
SUPPRESSOR FOR SLIC PROTECTION  
PRELIMINAY DATASHEET  
A.S.D.™  
FEATURES  
Dual programmable transient suppressor  
Wide negative firing voltage range:  
VMGL = -150 V max.  
Low dynamic switching voltages: VFP and VDGL  
Low gate triggering current: IGT = 5 mA max  
Peak pulse current: IPP = 30 A (10/1000 µs)  
Holding current: IH = 150 mA min  
QFN 3x3  
LCP152DEE  
Low space consuming package  
SO-8  
LCP1521S  
DESCRIPTION  
These devices have been especially designed to  
protect new high voltage, as well as classical  
SLICs, against transient overvoltages.  
FUNCTIONAL DIAGRAM (LCP1521S)  
Positive overvoltages are clamped by 2 diodes.  
Negative surges are suppressed by 2 thyristors,  
their breakdown voltage being referenced to -VBAT  
through the gate.  
TIP  
GATE  
NC  
1
TIP  
These components present a very low gate  
triggering current (IGT) in order to reduce the cur-  
rent consumption on printed circuit board during  
the firing phase.  
GND  
GND  
RING  
A particular attention has been given to the internal  
wire bonding. The Kelvin method configuration en-  
sures reliable protection, reducing the overvoltage  
introduced by the parasitic inductances of the wiring,  
especially for very fast transients.  
RING  
FUNCTIONAL DIAGRAM (LCP152DEE)  
BENEFITS  
Trisils are not subject to ageing and provide a fail  
safe mode in short circuit for a better protection.  
Trisils are used to help equipment to meet various  
standards such as UL1950, IEC950 / CSA C22.2,  
UL1459 and FCC part68. Trisils have UL94 V0  
resin approved (Trisils are UL497B approved (file:  
E136224)).  
TIP  
GATE  
RING  
TIP  
GND  
NC  
RING  
TM: ASD is a trademark of STMicroelectronics  
January 2003 - Ed: 1A  
1/9  
LCP1521S/LCP152DEE  
IN COMPLIANCES WITH THE FOLLOWING STANDARDS  
Peak Surge  
Voltage  
Required  
peak current  
(A)  
Minimum serial  
resistor to meet  
standard ()  
Current  
Waveform  
STANDARD  
Voltage  
(V)  
Waveform  
GR-1089 Core  
First level  
2500  
1000  
2/10µs  
10/1000µs  
500  
100  
2/10µs  
10/1000µs  
10  
24  
GR-1089 Core  
Second level  
5000  
2/10µs  
500  
2/10µs  
2/10µs  
5/310µs  
20  
GR-1089 Core  
Intra-building  
1500  
2/10µs  
100  
0
6000  
1500  
10/700µs  
1/60 ns  
150  
37.5  
110  
0
ITU-T-K20/K21  
ITU-T-K20  
(IEC61000-4-2)  
8000  
15000  
ESD contact discharge  
ESD air discharge  
0
0
4000  
2000  
10/700µs  
1.2/50µs  
100  
50  
5/310µs  
60  
10  
VDE0433  
VDE0878  
4000  
2000  
100  
50  
1/20µs  
0
0
4000  
4000  
10/700µs  
1.2/50µs  
100  
100  
5/310µs  
8/20µs  
60  
0
IEC61000-4-5  
FCC Part 68, lightning  
surge type A  
1500  
800  
10/160µs  
10/560µs  
200  
100  
10/160µs  
10/560µs  
22.5  
15  
FCC Part 68, lightning  
surge type B  
1000  
9/720µs  
25  
5/320µs  
0
THERMAL RESISTANCE  
Symbol  
Parameter  
Value  
Unit  
Rth (j-a)  
Junction to ambient  
SO-8  
QFN 3x3  
130  
170  
°C/W  
ELECTRICAL CHARACTERISTICS (Tamb = 25°C)  
Symbol  
IGT  
Parameter  
I
Gate triggering current  
IH  
Holding current  
IRM  
Reverse leakage current LINE / GND  
Reverse leakage current GATE / LINE  
Reverse voltage LINE / GND  
Gate triggering voltage  
IRG  
VRM  
VGT  
VF  
VR  
VRM  
VF  
V
IRM  
IR  
Forward drop voltage LINE / GND  
Peak forward voltage LINE / GND  
VFP  
IH  
VDGL Dynamic switching voltage GATE / LINE  
VGATE GATE / GND voltage  
IPP  
VRG  
C
Reverse voltage GATE / LINE  
Capacitance LINE / GND  
2/9  
LCP1521S/LCP152DEE  
ABSOLUTE RATINGS (Tamb = 25°C, unless otherwise specified).  
Symbol  
Parameter  
Peak pulse current (see note1)  
Value  
Unit  
IPP  
10/1000µs  
8/20µs  
10/560µs  
5/310µs  
10/160µs  
1/20µs  
30  
100  
35  
40  
50  
100  
170  
A
2/10µs  
ITSM  
Non repetitive surge peak on-state  
current  
(50Hz sinusoidal)  
t = 10ms  
t = 1s  
10  
3
A
IGSM  
Maximum gate current  
(50Hz sinusoidal)  
t = 10ms  
2
A
V
VMLG  
VMGL  
Maximum voltage LINE/GND  
Maximum voltage GATE/LINE  
-40°C < Tamb < +85°C  
-40°C < Tamb < +85°C  
-150  
-150  
Tstg  
Tj  
Storage temperature range  
Maximum junction temperature  
- 55 to + 150  
150  
°C  
°C  
TL  
Maximum lead temperature for soldering during 10s  
260  
Repetitive peak pulse current  
% I  
PP  
100  
tr: rise time (µs)  
tp: pulse duration (µs)  
ex: Pulse waveform 10/1000µs  
50  
0
tr = 10µs tp = 1000µs  
t
t
t
r
p
1- PARAMETERS RELATED TO THE DIODE LINE / GND (Tamb = 25°C)  
Symbol  
Test conditions  
Max  
Unit  
V
VF  
IF = 5A  
t = 500µs  
RS = 10Ω  
RS = 10Ω  
RS = 62Ω  
2
VFP  
(note 1)  
10/700µs  
1.2/50µs  
2/10µs  
1.5kV  
1.5kV  
2.5kV  
5
9
30  
V
Note 1: see test circuit for V ; R is the protection resistor located on the line card.  
FP  
S
3/9  
LCP1521S/LCP152DEE  
2 - PARAMETERS RELATED TO THE PROTECTION THYRISTOR (Tamb = 25°C unless otherwise specified)  
Symbol  
IGT  
Test conditions  
Min  
0.1  
Max  
Unit  
mA  
mA  
V
VGND / LINE = -48V  
5
IH  
VGATE = -48V (note 2)  
at IGT  
150  
VGT  
IRG  
2.5  
VRG = -150V  
Tc=25°C  
Tc=85°C  
5
50  
µA  
VRG = -150V  
VDGL  
VGATE = -48V (note 3)  
10/700µs  
1.2/50µs  
2/10µs  
1.5kV  
1.5kV  
2.5kV  
RS = 10Ω  
RS = 10Ω  
RS = 62Ω  
IPP = 30A  
IPP = 30A  
IPP = 38A  
7
10  
25  
V
Note 2: see functional holding current (I ) test circuit  
H
Note 3: see test circuit for V  
DGL  
The oscillations with a time duration lower than 50ns are not taken into account  
3 - PARAMETERS RELATED TO DIODE AND PROTECTION THYRISTOR (Tamb = 25°C, unless other-  
wise specified)  
Symbol  
Test conditions  
Typ.  
Max.  
Unit  
IRM  
VGATE / LINE = -1V VRM = -150V  
Tc=25°C  
Tc=85°C  
5
50  
µA  
VGATE / LINE = -1V VRM = -150V  
C
VR = 50V bias, VRMS = 1V, F = 1MHz  
VR = 2V bias, VRMS = 1V, F = 1MHz  
15  
35  
pF  
4/9  
LCP1521S/LCP152DEE  
FUNCTIONAL HOLDING CURRENT (IH) TEST CIRCUIT : GO-NO GO TEST  
R
Surge generator  
V
= - 100V  
BAT  
D.U.T  
This is a GO-NO GO test which allows to confirm the holding current (IH) level in a functional test circuit.  
TEST PROCEDURE :  
- Adjust the current level at the IH value by short circuiting the D.U.T.  
- Fire the D.U.T. with a surge current : IPP = 10A, 10/1000µs.  
- The D.U.T. will come back to the off-state within a duration of 50ms max.  
TEST CIRCUIT FOR VFP AND VDGL PARAMETERS  
R
(VP is defined in unload condition)  
4
TIP  
L
R
2
RING  
R
3
R
V
P
C
C
2
1
1
G ND  
Pulse (µs)  
Vp  
C1  
(µF)  
20  
C2  
(nF)  
200  
33  
L
R1  
()  
50  
R2  
()  
15  
13  
0
R3  
()  
25  
25  
3
R4  
()  
25  
25  
3
IPP  
Rs  
()  
10  
10  
62  
tr  
10  
1.2  
2
tp  
700  
50  
(V)  
(µH)  
0
(A)  
30  
30  
38  
1500  
1500  
2500  
1
0
76  
10  
10  
0
1.1  
1.3  
5/9  
LCP1521S/LCP152DEE  
TECHNICAL INFORMATION  
Fig. A1: LCP152 concept behavior.  
Rs1  
L 1  
TIP  
V Tip  
ID1  
IG  
T1  
Th1  
D1  
Gate  
-Vbat  
GND  
GND  
L 2  
C
Rs2  
VRing  
RING  
Figure A1 shows the classical protection circuit using the LCP152 crowbar concept. This topology  
has been developed to protect the new high voltage SLIC’s. It allows to program the negative firing  
threshold while the positive clamping value is fixed at GND.  
When a negative surge occurs on one wire (L1 for example) a current IG flows through the base of the tran-  
sistor T1 and then injects a current in the gate of the thyristor Th1. Th1 fires and all the surge current flows  
through the ground. After the surge when the current flowing through Th1 becomes less negative than the  
holding current IH, then Th1 switches off.  
When a positive surge occurs on one wire (L1 for example) the diode D1 conducts and the surge current  
flows through the ground.  
Fig. A2: Example of PCB layout based on LCP152 protection.  
GND  
To  
To  
SLIC side  
line side  
In order to minimize the remaining voltage across the SLIC inputs during the surge, the TIP and RING pins  
of the LCP152 are doubled (Pins 1 and 8 for TIP / Pins 4 and 5 for RING).  
This fact allows the board designer to connect the tracks like in figure A2. With such a PCB design, the ex-  
tra voltages caused by track stray inductance remain located on the line side of the LCP and do not affects  
the SLIC side.  
The capacitor C is used to speed up the crowbar structure firing during the fast surge edges.  
This allows to minimize the dynamical breakover voltage at the SLIC Tip and Ring inputs during fast  
strikes. Note that this capacitor is generally present around the SLIC - Vbat pin.  
So to be efficient it has to be as close as possible from the LCP152 Gate pin and from the reference  
ground track (or plan) (see Fig. A2). The optimized value for C is 220nF.  
6/9  
LCP1521S/LCP152DEE  
The series resitors Rs1 and Rs2 designed in figure A1 represent the fuse resistors or the PTC which are man-  
datory to withstand the power contact or the power induction tests imposed by the various country standards.  
Taking into account this fact the actual lightning surge current flowing through the LCP is equal to:  
I surge = V surge / (Rg + Rs)  
With  
V surge = peak surge voltage imposed by the standard.  
Rg = series resistor of the surge generator  
Rs = series resistor of the line card (e.g. PTC)  
e.g. For a line card with 30of series resistors which has to be qualified under GR1089 Core 1000V  
10/1000µs surge, the actual current through the LCP152 is equal to:  
I surge = 1000 / (10 + 30) = 25A  
The LCP152 is particularly optimized for the new telecom applications such as the fiber in the loop, the  
WLL, the remote central office. In this case, the operating voltages are smaller than in the classical system.  
This makes the high voltage SLICs particularly suitable. The schematics of figure A3 gives the most fre-  
quent topology used for these applications.  
Fig. A3: Protection of high voltage SLIC.  
-Vbat  
Rs (*)  
TIP  
Gate  
220nF  
TIP  
GND  
GND  
GND  
Line  
SLIC  
RING  
Rs (*)  
RING  
LCP152  
Line card  
Rs (*) = PTC or Resitor fuse  
7/9  
LCP1521S/LCP152DEE  
Fig. 1: Surge peak current versus overload dura-  
tion.  
Fig. 2: Relative variation of holding current versus  
junction temperature  
IH ( Tj ) / IH ( Tj=25°C )  
1.3  
1.2  
1.1  
1
TO BE DEFINED  
0.9  
0.8  
Tj ( °C )  
0.7  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90  
PACKAGE MECHANICAL DATA  
QFN 3x3 (6 Leads)  
DIMENSIONS  
REF.  
Millimetres  
Inches  
Min. Typ. Max. Min. Typ. Max.  
A
A1  
A2  
A3  
b
0.80  
0
1
0.031  
0
0.040  
0.002  
0.030  
0.05  
0.65  
0.75 0.026  
20  
3
0.787  
0.33  
2.90  
1.92  
2.90  
1.11  
0.43 0.013  
0.017  
D
3.10 0.114 0.118 0.122  
2.12 0.076 0.083  
0.114 0.118 0.122  
D2  
E
3
3.10  
E2  
e
1.31 0.044  
0.051  
0.018  
0.005  
12°  
0.95  
0.24  
0.037  
0.009  
L
0.20  
0.45 0.008  
L1  
L2  
K
0.13  
0.20  
0°  
0.008  
<
12°  
0°  
8/9  
LCP1521S/LCP152DEE  
DIMENSIONS  
PACKAGE MECHANICAL DATA  
SO-8 (Plastic)  
REF.  
Millimetres  
Inches  
Min. Typ. Max. Min. Typ. Max.  
L
A
a1  
a2  
a3  
b
1.75  
0.069  
0.010  
0.065  
0.033  
0.019  
0.010  
0.020  
c1  
C
0.1  
0.25 0.004  
1.65  
a3  
A
a2  
0.65  
0.35  
0.19  
0.85 0.025  
0.48 0.014  
0.25 0.007  
b
1
a1  
e
b
E
e3  
b1  
C
D
M
0.25 0.50 0.50 0.010  
45° (typ)  
c1  
D
5
8
4.8  
5.8  
5.0 0.189  
6.2 0.228  
0.197  
0.244  
F
E
1
4
e
1.27  
3.81  
0.050  
0.150  
e3  
F
3.8  
0.4  
4.0 0.15  
1.27 0.016  
0.6  
0.157  
0.050  
0.024  
L
M
S
8° (max)  
Order code  
Marking  
CP152S  
CP152S  
CP15  
Package  
SO-8  
Weight  
Base qty  
Delivery mode  
Tube  
LCP1521S  
0.08 g  
0.08 g  
100  
2500  
3000  
LCP1521SRL  
SO-8  
Tape & Reel  
Tape & Reel  
LCP152DEERL  
QFN 3x3  
0.022 g  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of  
use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by  
implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to  
change without notice. This publication supersedes and replaces all information previously supplied.  
STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written  
approval of STMicroelectronics.  
The ST logo is a registered trademark of STMicroelectronics  
© 2003 STMicroelectronics - Printed in Italy - All rights reserved.  
STMicroelectronics GROUP OF COMPANIES  
Australia - Brazil - Canada - China - Finland - France - Germany  
Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore  
Spain - Sweden - Switzerland - United Kingdom - United States.  
http://www.st.com  
9/9  

相关型号:

LCP1531

Programmable transient voltage suppressor for SLIC protection
STMICROELECTR

LCP1531RL

Programmable transient voltage suppressor for SLIC protection
STMICROELECTR

LCP1G050M0R2R

Ultra-Low Capacitance ESD Suppressor for High-Speed Application
THINKING

LCP1G120M0R2

Ultra-Low Capacitance ESD Suppressor for High-Speed Application
THINKING

LCP2-0.36-330

Miniature Low Cost Toroidal Inductors
NUVOTEM TALEM

LCP2-0.44-220

Miniature Low Cost Toroidal Inductors
NUVOTEM TALEM

LCP2-0.54-150

Miniature Low Cost Toroidal Inductors
NUVOTEM TALEM

LCP2-0.66-100

Miniature Low Cost Toroidal Inductors
NUVOTEM TALEM

LCP2-0.80-68

Miniature Low Cost Toroidal Inductors
NUVOTEM TALEM

LCP2-1.08-47

Miniature Low Cost Toroidal Inductors
NUVOTEM TALEM

LCP2-1.32-33

Miniature Low Cost Toroidal Inductors
NUVOTEM TALEM

LCP2-1.40-22

Miniature Low Cost Toroidal Inductors
NUVOTEM TALEM