L9903 [STMICROELECTRONICS]

MOTOR BRIDGE CONTROLLER; 汽车桥控制器
L9903
型号: L9903
厂家: ST    ST
描述:

MOTOR BRIDGE CONTROLLER
汽车桥控制器

控制器
文件: 总17页 (文件大小:133K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
L9903  
MOTOR BRIDGE CONTROLLER  
PRODUCT PREVIEW  
OPERATING SUPPLY VOLTAGE 8V TO 20V,  
OVERVOLTAGE MAX. 40V  
OPERATING SUPPLY VOLTAGE 6V WITH  
IMPLEMENTED STEPUP CONVERTER  
QUIESCENT CURRENT IN STANDBY MODE  
LESS THAN 50µA  
ISO 9141 COMPATIBLE INTERFACE  
CHARGE PUMP FOR DRIVING A POWER  
MOS AS REVERSE BATTERY PROTECTION  
SO20  
PWM OPERATION FREQUENCY UP TO  
ORDERING NUMBER: L9903  
30KHZ  
PROGRAMMABLE CROSS CONDUCTION  
PROTECTION TIME  
OVERVOLTAGE, UNDERVOLTAGE, SHORT  
CIRCUIT AND THERMAL PROTECTION  
DESCRIPTION  
Control circuit for power MOS bridge driver in auto-  
motive applications with ISO 9141bus interface.  
REAL TIME DIAGNOSTIC  
BLOCK DIAGRAM  
10  
VS  
R
CP  
Ref er ence  
VCC  
-
+
1
BIAS  
ST  
11  
CP  
Charge  
pump  
=
V
STH  
13  
12  
CB1  
GH1  
f
ST  
VCC  
Overvoltage  
14  
Undervoltage  
S1  
R
DG  
2
Thermal shutdown  
DG  
R
S1  
=
V
S1TH  
19  
GL1  
4
EN  
R
R
EN  
GL1  
18  
GL2  
S2  
5
DIR  
R
GL2  
R
DIR  
VCC  
17  
R
PWM  
3
PWM  
R
S2  
=
V
S2TH  
6
PR  
15  
16  
GH2  
CB2  
Timer  
ISO-Interface  
9
K
7
8
RX  
TX  
R
R
RX  
VCC  
=
0.5 V  
VS  
TX  
I
KH  
20  
GND  
June 2000  
1/17  
This is preliminary information on a new product now in development. Details are subject to change without notice.  
L9903  
PIN FUNCTION  
N°  
1
Pin  
ST  
Description  
Open Drain Switch for Stepup converter  
Open drain diagnostic output  
PWM input for H-bridge control  
Enable input  
2
DG  
PWM  
EN  
3
4
5
DIR  
PR  
Direction select input for H-bridge control  
6
Programmable cross conduction protection time  
ISO 9141 interface, receiver output  
7
RX  
8
TX  
ISO 9141 interface, transmitter input  
9
K
ISO 9141 Interface, bidirectional communication K-line  
Supply voltage  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
VS  
CP  
Charge pump for driving a power MOS as reverse battery protection  
Gate driver for power MOS highside switch in halfbridge 1  
External bootstrap capacitor  
GH1  
CB1  
S1  
Source/drain of halfbridge 1  
GH2  
CB2  
S2  
Gate driver for power MOS highside switch in halfbridge 2  
External bootstrap capacitor  
Source/drain of halfbridge 2  
GL2  
GL1  
GND  
Gate driver for power MOS lowside switch in halfbridge 2  
Gate driver for power MOS lowside switch in halfbridge 1  
Ground  
PIN CONNECTION (Top view)  
ST  
1
2
3
4
5
6
7
8
9
10  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
GND  
GL1  
GL2  
S2  
DG  
PWM  
EN  
DIR  
PR  
RX  
TX  
CB2  
GH2  
S1  
CB1  
GH1  
CP  
K
VS  
SO20  
2/17  
L9903  
ABSOLUTE MAXIMUM RATINGS  
Symbol  
Parameter  
Value  
-0.3 to 40  
-100  
Unit  
V
V
I
, V  
Bootstrap voltage  
Bootstrap current  
CB1  
CB2  
, I  
mA  
V
CB1 CB2  
V
Charge pump voltage  
Charge pump current  
Logic input voltage  
-0.3 to 40  
-1  
CP  
CP  
I
mA  
V
V
,V  
-0.3 to 7  
DIR  
EN  
,V  
,V  
PWM TX  
I
,I  
Logic input current  
±1  
mA  
DIR EN  
,I  
,I  
PWM TX  
V
I
,V  
Logic output voltage  
Logic output current  
Gate driver voltage  
Gate driver current  
Gate driver voltage  
Gate driver current  
K-line voltage  
-0.3 to 7  
-1  
V
mA  
V
DG RX  
,I  
DG RX  
V
, V  
-0.3 to V + 10  
GH1 GH2  
SX  
I
, I  
-1  
-0.3 to 10  
-10  
mA  
V
GH1 GH2  
V
GL1  
, V  
GL2  
GL2  
I
, I  
mA  
V
GL1  
V
-20 to V  
S
K
PR  
PR  
V
Programming input voltage  
Programming input current  
Source/drain voltage  
Source/drain current  
Output voltage  
-0.3 to 7  
-1  
V
I
mA  
V
V
I
, V  
-2 to V + 2  
S1  
S2  
VS  
, I  
S1 S2  
-10  
-0.3 to 40  
-1  
mA  
V
V
ST  
I
Step up output current  
DC supply voltage  
mA  
V
ST  
V
-0.3 to 27  
40  
VSDC  
V
Pulse supply voltage (T £ 500ms)  
DC supply current  
V
VSP  
I
-10  
mA  
VS  
For externally applied voltages or currents exceeding these limits damage of the device may occur!  
All pins of the IC are protected against ESD. The verification is performed according to MIL883C, human body  
model with R=1.5k, C=100pF and discharge voltage ±2kV, corresponding to a maximum discharge energy of  
0.2mJ.  
3/17  
L9903  
THERMAL DATA  
Symbol  
Parameter  
Value  
-40 to 150  
min 150  
typ 15  
Unit  
°C  
T
Operating junction temperature  
J
T
Junction temperature thermal shutdown threshold  
Junction thermal shutdown hysteresis  
°C  
JSD  
T
°C  
JSDH  
1)  
R
85  
°C/W  
th j-amb  
Thermal resistance junction to ambient  
1. see application note 110 for SO packages.  
ELECTRICAL CHARACTERISTCS (8V < V < 20V, V =HIGH, -40°C T 150°C, unless otherwise spec-  
VS  
EN  
J
ified. The voltages are refered to GND and currents are assumed positive, when current flows into the pin.  
Symbol  
Parameter  
Test Condition  
Min.  
Typ.  
Max.  
Unit  
Supply (VS)  
V
Overvoltage disable HIGH  
threshold  
20  
22  
24  
V
VS OVH  
2)  
V
1.6  
V
V
VS OVh  
Overvoltage threshold hysteresis  
V
Undervoltage disable HIGH  
threshold  
6
7
VS UVH  
V
Undervoltage threshold  
0.66  
V
VS UVh  
2)  
hysteresis  
I
Supply current  
Supply current  
V
= 0 ; V = 13.5V; T < 85°C  
50  
20  
µA  
VSL  
EN  
VS  
J
I
V
V
= 13.5V; V = HIGH;  
mA  
VSH  
VS  
EN  
= LOW;  
DIR  
f
= 20kHz; C  
= 0.1µF;  
PWM  
CBX  
C
R
= 4.7nF; C  
= 4.7nF;  
GLX  
GHX  
= 10k; C = 150pF  
PR  
PR  
Enable input (EN)  
V
Low level  
High level  
1.5  
V
V
V
ENL  
V
3.5  
16  
ENH  
2)  
V
1
ENh  
Hysteresis threshold  
R
Input pull down resistance  
V
= 5V  
EN  
50  
100  
1.5  
kΩ  
EN  
H-bridge control inputs (DIR, PWM)  
V
Input low level  
Input high level  
V
V
DIRL  
V
PWML  
V
3.5  
16  
DIRH  
V
PWMH  
2)  
V
1
V
DIRh  
Input threshold hysteresis  
Internal pull up resistance  
V
PWMh  
R
V
= 0; V = 0  
PWM  
50  
100  
kΩ  
DIR  
DIR  
3)  
R
PWM  
to internal VCC  
4/17  
L9903  
ELECTRICAL CHARACTERISTICS  
(continued)  
Symbol  
Parameter  
Test Condition  
Min.  
Typ.  
Max.  
Unit  
DIAGNOSTIC output (DG)  
V
R
Output drop  
I
= 1mA  
DG  
0.6  
40  
V
DG  
DG  
Internal pull up resistance  
V
= 0V  
10  
20  
2
kΩ  
DG  
3)  
to internal VCC  
4)  
Programmable cross conduction protection  
N
Threshold voltage ratio V  
/
1.8  
2.2  
PR  
PRH  
R
= 10kΩ  
PR  
V
PRL  
I
Current capability  
-0.5  
mA  
PR  
V
= 2V  
PR  
ISO interface, transmission input (TX)  
V
Input low level  
1.5  
40  
V
V
TXL  
V
Input high level  
3.5  
10  
TXH  
V
Input hysteresis voltage 2)  
1
V
TXh  
R
Internal pull up resistance to  
internal VCC 3)  
V
= 0  
20  
kΩ  
TX  
TX  
ISO interface, receiver output (RX)  
V
Output voltage high stage  
4.5  
5
5.5  
20  
V
RXL  
TX = HIGH; I = 0; V = V  
VS  
RX  
K
R
Internal pull up resistance  
TX = HIGH;  
= 0V  
10  
40  
k
RX  
3)  
V
RX  
to internal VCC  
R
ON resistance to ground  
TX = LOW;  
= 1mA  
90  
W
RXON  
I
RX  
t
Output high delay time  
Output low delay time  
Fig. 1  
0.5  
0.5  
µs  
µs  
RXH  
t
RXL  
ISO interface, K-line (K)  
V
Input low level  
-20V  
0.45 ·  
KL  
V
VS  
V
Input high level  
0.55 ·  
VVS  
V
KH  
VS  
V
Input hysteresis voltage 2)  
0.025·  
0.8V  
Kh  
V
VS  
I
Input current  
V
= HIGH  
-5  
25  
30  
µA  
W
KH  
TX  
TX  
TX  
R
ON resistance to ground  
Short circuit current  
Transmission frequency  
V
V
= LOW; I =10mA  
10  
KON  
KSC  
K
I
= LOW  
40  
60  
130  
mA  
kHz  
f
100  
K
2. not tested in production: guaranteed by design and verified in characterization  
3. Internal V is 4.5V ... 5.5V  
VCC  
4. see page 18 for calculation of programmable cross conduction protection time  
5/17  
L9903  
ELECTRICAL CHARACTERISTICS  
(continued)  
Symbol  
Parameter  
Test Condition  
= 13.5V; Fig. 1  
VS  
Min.  
Typ.  
Max.  
Unit  
t
Rise time  
V
2
6
µs  
Kr  
External loads at K-line:  
R = 510pull up  
K
to V  
VS  
C = 2.2nF to GND  
K
t
Fall time  
2
4
4
6
µs  
µs  
µs  
µs  
Kf  
t
Switch high delay time  
Switch low delay time  
Short circuit detection time  
17  
17  
40  
KH  
t
KL  
t
V
= 13.5V;  
VS  
10  
SH  
TX = LOW  
V
> 0.55 · V  
K
VS  
Charge pump  
V
Charge pump voltage  
V
V
V
= 8V  
V
7V  
V
10V  
+
V
14V  
V
14V  
+
VS  
CP  
VS  
VS  
VS  
VS  
= 13.5V  
= 20V  
+
VS  
+
VS  
V
+
VS  
V
VS  
10V  
+14V  
I
t
Charging current  
V
= 13.5V  
-50  
-75  
1.2  
µA  
CP  
CP  
VS  
V
= V + 8V  
CP VS  
2)  
V
C
= 13.5V  
= 10nF  
4
ms  
VS  
Charging time  
= V + 8V  
CP  
V
CP  
VS  
f
Charge pump frequency  
V
= 13.5V  
250  
500  
750  
kHz  
CP  
VS  
Drivers for external highside power MOS  
V
V
Bootstrap voltage  
V
V
V
= 8V; I  
=13.5V; I  
= 20V; I  
= 0; V = 0  
7.5  
10  
10  
14  
14  
14  
V
V
V
CB1  
CB2  
VS  
VS  
VS  
CBX  
SX  
= 0; V = 0  
SX  
CBX  
= 0; V = 0  
SX  
CBX  
R
R
ON-resistance of SINK stage  
10  
W
GH1L  
GH2L  
V
= 8V; V = 0  
SX  
CBX  
I
= 50mA; T = 25°C  
J
GHX  
20  
W
V
= 8V; V = 0  
SX  
CBX  
I
= 50mA; T = 125°C  
J
GHX  
R
R
ON-resistance of SOURCE stage  
Gate ON voltage (SOURCE)  
I
I
= -50mA; T = 25°C  
10  
20  
W
W
GH1H  
GH2H  
GHX  
GHX  
J
= -50mA; T = 125°C  
J
V
V
V
C
= V = 8V; I  
= 0;  
V
+6.5V  
V
VS  
+14V  
GH1H  
GH2H  
VS  
SX  
GHX  
VS  
= 0.1µF  
CBX  
V
C
= V = 13.5V; I  
= 0;  
V
10V  
+
V
VS  
+14V  
VS  
SX  
GHX  
VS  
= 0.1µF  
CBX  
V
C
= V = 20V; I  
= 0;  
V
+10V  
V
VS  
+14V  
VS  
SX  
GHX  
VS  
= 0.1µF  
CBX  
6/17  
L9903  
ELECTRICAL CHARACTERISTICS  
(continued)  
Symbol  
Parameter  
Test Condition  
EN = LOW  
Min.  
Typ.  
Max.  
Unit  
R
R
Gate discharge resistance  
10  
100  
kΩ  
GH1  
GH2  
R
R
Sink resistance  
10  
100  
kΩ  
S1  
S2  
Drivers for external lowside power MOS  
R
R
ON-resistance of SINK stage  
ON-resistance of SOURCE stage  
Gate ON voltage (SOURCE)  
I
I
= 50mA; T = 25°C  
10  
20  
W
W
GL1L  
GL2L  
GLX  
GLX  
J
= 50mA; T = 125°C  
J
R
I
I
= -50mA; T = 25°C  
10  
20  
W
W
GL1H,  
GLX  
GLX  
J
R
= -50mA; T = 125°C  
J
GL2H  
V
V
V
V
= 8V; I  
= 0  
7V  
10V  
10V  
V
V
GL1H,  
VS  
VS  
VS  
GLX  
VS  
VS  
V
GL2H  
= 13.5V; I  
= 0  
GLX  
= 20V;I  
= 0  
14V  
GLX  
R
GL1  
Gate discharge resistance  
EN = LOW  
10  
100  
kΩ  
R
GL2  
2. not tested in production: guaranteed by design and verified in characterization  
Timing of the drivers  
t
t
Propagation delay time  
Fig. 2  
500  
ns  
GH1LH  
GH2LH  
V
V
C
= 13.5V  
= V =0  
VS  
S1  
S2  
= 0.1µF  
CBX  
RPR= 10kW  
Propagation delay time including Fig. 2  
t
t
0.7  
1
1.3  
µs  
GH1LH  
GH2LH  
cross conduction protection time  
V
V
C
= 13.5V  
VS  
t
= V =0  
CCP  
S1  
S2  
= 0.1µF  
CBX  
t
t
Propagation delay time  
500  
ns  
GH1HL  
GH2HL  
C
R
= 150pF;  
PR  
= 10k;  
PR  
5)  
t
Propagation delay time  
Fig. 2  
500  
ns  
GL1LH  
V
V
C
= 13.5V  
t
VS  
GL2LH  
= V =0  
S1  
S2  
= 0.1µF  
CBX  
R
= 10kΩ  
PR  
t
Propagation delay time including Fig. 2  
0.7  
1
1.3  
µs  
GL1LH  
cross conduction protection time  
V
V
C
= 13.5V  
t
VS  
GL2LH  
t
= V =0  
CCP  
S1  
S2  
= 0.1µF  
CBX  
t
Propagation delay time  
500  
ns  
GL1HL  
t
GL2HL  
C
R
= 150pF;  
PR  
= 10k;  
PR  
5)  
7/17  
L9903  
ELECTRICAL CHARACTERISTICS  
(continued)  
Fig. 2  
Symbol  
Parameter  
Test Condition  
Min.  
Typ.  
Max.  
Unit  
t
Rise time  
Fall time  
Rise time  
Fall time  
1
µs  
GH1r  
V
V
C
= 13.5V  
= V =0  
t
VS  
GH2r  
S1  
S2  
= 0.1µF  
t
t
1
1
1
µs  
µs  
µs  
GH1f  
GH2f  
CBX  
C
C
R
= 4.7nF  
= 4.7nF  
GHX  
GLX  
t
t
GL1r  
GL2r  
= 10k;  
PR  
t
GL1f  
t
GL2f  
Short Circuit Detection  
V
V
Threshold voltage  
4
V
S1TH  
S2TH  
t
Detection time  
5
1
10  
15  
µs  
SCd  
Step up converter (ST)  
(5.2V  
V
< 10V)  
VS  
V
ST disable HIGH threshold  
10  
2
V
V
STH  
V
ST disable threshold hysteresis  
STh  
2)  
voltage  
R
Open drain ON resistance  
20  
DSON  
V
= 5.2V;  
VS  
I
= 50mA  
ST  
f
Clock frequency  
50  
100  
149  
kHz  
ST  
2. not tested in production: guaranteed by design and verified in characterization  
5. tested with differed values in production but guaranteed by design and verified in characterization  
8/17  
L9903  
Figure 1. Timing of the ISO-interface  
V
TX  
0.7  
V  
V C C  
0.3  
V
0.3 V  
VC C  
V C C  
t
t
t
t
t
KH  
KL  
V
K
t
t
Kr  
K f  
80%  
I
>
I
KSC  
K
0.55  
0.45  
V  
V S  
V
V S  
20%  
t
t
RXH  
RXL  
V
RX  
0.7  
V  
V C C  
0.3  
V  
VC C  
open dr ai n  
tr ansis tor at  
K -pin  
t
SH  
ON  
OFF  
Figure 2. Timing of the drivers for the external MOS regarding the inputs DIR and PWM  
PW M  
or  
t
D IR  
t
t
GH XHL  
GH XLH  
t
t
GH Xf  
G HXr  
80%  
20%  
GHX  
t
t
t
GLXH L  
GLXLH  
80%  
20%  
GLX  
t
t
t
G LXr  
GLXf  
9/17  
L9903  
Figure 3. I(V) characteristics of the K-Line for TX = HIGH and VVS=13.5V  
IK [mA]  
0.2  
0.1  
0.0  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-20  
-10  
0
10  
20  
VK [V]  
Figure 4. Driving sequence  
EN  
DIR  
PW M  
braking  
GH1  
GL1  
GH2  
GL2  
Note:  
Before standby mode  
(EN = low) a braking phase  
is mandatory to discharge  
the stored energy of the  
motor.  
10/17  
L9903  
Figure 5. Charging time of an external capacitor of 10nF connected to CP pin at V =8V and  
VS  
V
=13.5V  
VS  
voltage [V]  
30  
Charging time of a 10nF load at CP  
CP for VS=13.5V  
25  
20  
15  
10  
5
CP for VS=8V  
EN  
0
0
1
2
3
4
time [ms]  
Figure 6. Application Circuit Diagram  
V
BAT  
D1  
Gate  
Protection  
VS  
10  
1
R
C P  
R
C
C
1
S2  
ST  
S1  
Voltage  
Reference  
BIAS  
VC C  
-
+
Regu la tor  
11  
C P  
C harge  
pu mp  
V
=
STH  
13  
12  
CB1  
GH1  
R
f
C1  
ST  
V
CC  
C
B1  
VC C  
O v erv oltage  
Un de rvoltage  
14  
S1  
R
DG  
DG  
EN  
2
4
T he rmal s hu tdown  
M
R
S
1
V
=
S1T H  
R
R
19  
G L1  
R
R
G L  
E
N
1
18  
G L2  
S2  
DIR  
5
R
G L  
2
R
D IR  
VC C  
µC  
17  
R
PW  
M
PWM  
PR  
3
6
R
S
2
V
=
C
S2T H  
B2  
R
15  
16  
GH2  
CB2  
Tim  
e r  
C
R
PR  
PR  
ISO- Interf ac e  
9
K
RX  
TX  
7
8
K-Line  
R
R
R X  
V
0.5  
V  
V S  
=
C C  
T X  
I
KH  
20  
GND  
G ND  
11/17  
L9903  
FUNCTIONAL DESCRIPTION  
General  
The L9903 integrated circuit (IC) is designed to control four external N-channel MOS transistors in H-Bridge con-  
figuration for DC-motor driving in automotive applications. It includes an ISO9141 compatible interface. A typical  
application is shown in fig.6.  
Voltage supply  
The IC is supplied via an external reverse battery protection diode to the V pin. The typical operating voltage  
VS  
range is down to 8V.  
Extended supply voltage range (ST)  
The operating battery voltage range can be extended down to 6V using the additional components shown in  
fig.7. A small inductor of L~150µH (I ~500mA) in series to the battery supply builts up a step up converter  
peak  
with the switching open drain output ST. The switching frequency is typical 100kHz with a fixed duty cycle of  
50%. The step up converter starts below V < 8V, increases the supply voltage at the VS pin and switches off  
VS  
at V > 10V to avoid EME at nominal battery voltage. The diode D2 in series with the ST pin is necessary only  
VS  
for systems with negative battery voltage. No additional load can be driven by the step up converter.  
Figure 7.  
L9903  
V
L1  
D1  
BAT  
VS  
ST  
C1  
C2  
D2  
-
+
V
=
STH  
f
ST  
12/17  
L9903  
FUNCTIONAL DESCRIPTION  
(continued)  
Control inputs (EN, DIR, PWM)  
The cmos level inputs drive the device as shown in fig.4 and described in the truth table.  
The device is activated with enable input HIGH signal. For enable input floating (not connected) or VEN=0V the  
device is in standby mode. When activating the device a wake-up time of 50µs is recommended to stabilize the  
internal supplies.  
The DIR and PWM inputs control the driver of the external H-Bridge transistors. The motor direction can be  
choosen with the DIR input, the duty cycle and frequency with the PWM input. Unconnected inputs are defined  
by internal pull up resistors. During wake-up and braking and before disactivating the IC via enable both inputs  
should be driven HIGH.  
Truth table:  
Driver stage for external  
Status  
Control inputs  
EN DIR PWM TS  
Device status  
Diagnostic  
Comment  
power MOS  
OV  
x
UV  
x
SC  
x
GH1 GL1 GH2 GL2  
DG  
T
1
2
0
x
x
x
x
x
R
L
R
L
R
L
R
L
standby mode  
1
1
0
0
0
L
thermal  
shutdown  
3
4
5
1
1
1
x
x
x
x
x
x
0
0
0
1
0
0
0
1
0
0
0
1
L
L
L
L
L
L
L
L
L
L
L
overvoltage  
undervoltage  
6)  
6)  
6)  
6
6)  
X
X
X
X
short circuit  
6
7
8
1
1
1
0
x
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
L
H
H
H
L
L
H
H
L
L
L
H
H
H
braking mode  
H
Symbols: x Don’t care  
R:Resistive output  
L: Output in sink condition  
TS:Thermal shutdown  
OV:Overvoltage  
0: Logic LOW or not active  
1: Logic HIGH or active  
H: Output in source condition  
UV:Undervoltage  
T: Tristate  
SC:Short Circuit  
6. Only those external MOS transistors of the H-Bridge which are in short circuit condition are switched off. All others remain driven  
by DIR and PWM.  
Thermal shutdown  
When the junction temperature exceeds T  
all driver are switched in sink condition (L), the K- output is off and  
JSD  
the diagnostic DG is LOW until the junction temperature drops below T  
- T  
.
JSD  
JHYST  
Overvoltage Shutdown  
When the supply voltage V exceeds the overvoltage threshold V  
VS  
all driver are switched in sink condi-  
VSOVH  
tion (L), the K- output is off and the diagnostic DG is LOW.  
13/17  
L9903  
FUNCTIONAL DESCRIPTION  
Undervoltage Shutdown  
(continued)  
For supply voltages below the undervoltage disable threshold the gate driver remains in sink condition (L) and  
the diagnostic DG is low.  
Short Circuit Detection  
The output voltage atthe S1 and S2 pin of the H-Bridge is monitored by comparators to detect shorts to ground  
or battery. The activated external highside MOS transistor will be switched off if the voltage drop remains below  
the comparator threshold voltage V  
and V for longer than the short current detection time t . The  
S2TH SCd  
S1TH  
transistor remains in off condition, the diagnostic output goes LOW until the DIR or PWM input status will be  
changed. The status doesn’t change for the other MOS transistors. The external lowside MOS transistor will be  
switched off if the voltage drop passes over the comparator threshold voltage V  
and V  
for longer than  
S1TH  
S2TH  
the short current detection time t . The transistor remains in off condition, the diagnostic output goes LOW  
SCd  
until the DIR or PWM input status will be changed. The status doesn’t change for the other MOS transistors.  
Diagnostic Output (DG)  
The diagnostic output provides a real time error detection, if monitors the following error stacks: Thermal shut-  
down, overvoltage shutdown , undervoltage shutdown and short circuit shutdown. The open drain output with  
internal pull up resistor is LOW if an error is occuring.  
Bootstrap capacitor (CB1,CB2)  
To ensure, that the external power MOS transistors reach the required R , a minimum gate source voltage  
DSON  
of 5V for logic level and 10V for standard power MOS transistors has to be guaranteed. The highside transistors  
require a gate voltage higher than the supply voltage. This is achieved with the internal chargepump circuit in  
combination with the bootstrap capacitor. The bootstrap capacitor is charged, when the highside MOS transistor  
is OFF and the lowside is ON. When the lowside is switched OFF, the charged bootstrap capacitor is able to  
supply the gate driver of the highside power MOS transistor. For effective charging the values of the bootstrap  
capacitors should be larger than the gate-source capacitance of the power MOS and respect the required PWM  
ratio.  
Chargepump circuit (CP)  
The reverse battery protection can be obtained with an external N-channel MOS transistor as shown in fig.6. In  
this case its drain-bulk diode provides the protection. The output CP is intended to drive the gate of this tran-  
sistor above the battery voltage to switch on the MOS and to bypass the drain-bulk diode with the R  
. The  
DSON  
CP has a connection to VS through an internal diode and a 20kresistor.  
Gate drivers for the external N-channel power MOS transistors (GH1, GH2, GL1, GL2)  
High level at EN activates the driver of the external MOS under control of the DIR and PWM inputs (see truth  
table and driving sequence fig.4). The external power MOS gates are connected via series resistors to the de-  
vice to reduce electro magnetic emission (EME) of the system. The resistors influence the switching behaviour.  
They have to be choosen carefully. Too large resistors enlarge the charging and discharging time of the power  
MOS gate and can generate cross current in the halfbridges. The driver assures a longer switching delay time  
from source to sink stage in order to prevent the cross conduction.  
The gate source voltage is limited to 14V. The charge/discharge current is limited by the R  
of the driver.  
DSON  
The drivers are not protected against shorts.  
14/17  
L9903  
FUNCTIONAL DESCRIPTION (continued)  
Programmable cross conduction protection  
The external power MOS transistors in H-Bridge ( two half bridges) configuration are switched on with an addi-  
tional delay time t to prevent cross conduction in the halfbridge. The cross conduction protection time  
is determined by the external capacitor C and resistor R at the PR pin. The capacitor C is charged  
CCP  
t
CCP  
PR  
PR  
PR  
up to the voltage limit V . A level change on the control inputs DIR and PWM switches off the concerned ex-  
PRH  
ternal MOS transistor and the charging source at the PR pin. The resistor R discharges the capacitor C  
.
PR  
PR  
The concerned external power MOS transistor will be switched on again when the voltage at PR reaches the  
value of V . After that the CPR will be charged again. The capacitor C should be choosen between 100pF  
PRL  
PR  
and 1nF. The resistor R should be higher than 7kW. The delay time can be expressed as follows:  
PR  
t
t
= R · C · ln N  
with N = V  
/ V  
= 2  
PRL  
CCP  
PR  
PR  
PR  
PR  
PRH  
= 0.69 · R · C  
CCP  
PR  
PR  
ISO-Interface  
The ISO-Interface provides the communication between the micro controller and a serial bus with a baud rate  
up to 60kbit/s via a single wire which is V and GND compatible. The logic level transmission input TX drives  
BAT  
the open drain K-output. The K output can be connected to a serial bus with a pull up resistor to V . The K-  
BAT  
pin is protected against overvoltage, short to GND and VS and can be driven beyond V and GND. During lack  
VS  
of V or GND the output shows high impedance characteristic. The open drain output RX with an internal pull  
VS  
up resistor monitors the status at the K-pin to read the received data and control the transmitted data. Short  
circuit condition at K-pin is recognized if the internal open drain transistor isn’t able to pull the voltage potential  
at K-pin below the threshold of 0.45·V . Then the RX stays in high condition. A timer starts and switches the  
VS  
open drain transistor after typ. 20µs off. A next low at the TX input resets the timer and the open drain transistor  
switches on again.  
Figure 8. Functional schematic of the ISO-interface  
RX  
K
R
RX  
0.5 V  
=
VS  
V
CC  
R
TX  
TX  
I
KH  
R
S
R
delay  
Q
T
SH  
15/17  
L9903  
mm  
inch  
OUTLINE AND  
MECHANICAL DATA  
DIM.  
MIN. TYP. MAX. MIN. TYP. MAX.  
A
A1  
B
C
D
E
e
2.35  
0.1  
2.65 0.093  
0.3 0.004  
0.104  
0.012  
0.020  
0.013  
0.512  
0.299  
0.33  
0.23  
12.6  
7.4  
0.51 0.013  
0.32 0.009  
13  
0.496  
0.291  
7.6  
1.27  
0.050  
H
h
10  
0.25  
0.4  
10.65 0.394  
0.75 0.010  
0.419  
0.030  
0.050  
L
1.27 0.016  
SO20  
K
0° (min.)8° (max.)  
L
h x 45°  
A
A1  
K
B
C
e
H
D
20  
11  
E
1
10  
SO20MEC  
16/17  
L9903  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights ofthird partieswhich may result from its use. No license is granted  
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject  
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not  
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is a registered trademark of STMicroelectronics  
2000 STMicroelectronics - All Rights Reserved  
STMicroelectronics GROUP OF COMPANIES  
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain  
- Sweden - Switzerland - United Kingdom - U.S.A.  
http://www.st.com  
17/17  

相关型号:

L9903TR

MOTOR BRIDGE CONTROLLER
STMICROELECTR

L9904

MOTOR BRIDGE CONTROLLER
STMICROELECTR

L9904TR

Motor bridge Controller
STMICROELECTR

L9907

MOTOR BRIDGE FOR HEADLIGHT ADJUSTMENT
STMICROELECTR

L9907

Red LED AlGaInP resonant cavity LED for POF data communication
HAMAMATSU

L9907N

MOTOR BRIDGE FOR HEADLIGHT ADJUSTMENT
STMICROELECTR

L9907ND

MOTOR BRIDGE FOR HEADLIGHT ADJUSTMENT
STMICROELECTR

L9907ND013TR

BRUSH DC MOTOR CONTROLLER, 0.8A, PDSO20, SO-20
STMICROELECTR

L9907TR

3 phase gate driver for 6step or FOC controlled Brushless Motors compatible with 48V NET
STMICROELECTR

L9909

DC MOTOR DRIVER WITH POSITION CONTROL
STMICROELECTR

L9911

CAR ALTERNATOR MULTIFUNCTION SMART VOLTAGE REGULATOR
STMICROELECTR

L9911A

CAR ALTERNATOR MULTIFUNCTION SMART VOLTAGE REGULATOR
STMICROELECTR