CY28330OCT [SPECTRALINEAR]

Clock Generator for AMD⑩ Hammer; 时钟发生器的AMD ™锤
CY28330OCT
型号: CY28330OCT
厂家: SPECTRALINEAR INC    SPECTRALINEAR INC
描述:

Clock Generator for AMD⑩ Hammer
时钟发生器的AMD ™锤

晶体 时钟发生器 外围集成电路 光电二极管
文件: 总14页 (文件大小:172K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY28330  
Clock Generator for AMD™ Hammer  
Table 1. Frequency Table (MHz)[1]  
Features  
FS  
(3:0)  
PCI_HT  
SEL  
CPU PCI_H PCI  
Div T Div Div  
• Supports AMD¥ Hammer CPU  
• 2 differential Pair of CPU Clocks  
• 6 Low Skew/Jitter PCI Clocks  
• 1 Free-running PCI Clock  
CPU  
PCI_HT  
PCI  
VC0  
0000 Hi-Z  
0001 XIN  
0001 XIN  
X
0
1
Hi-Z  
Hi-Z  
XIN/3 XIN/6  
XIN/6 XIN/6  
• 3 Low Skew/Jitter AGP/HT Clocks  
• 148M Output for USB  
0010 100.0 0/1 66.7/33.3 33.31 200  
0011 100.0 0/1 66.7/33.3 33.31 200  
0100 100.0 0/1 66.7/33.3 33.31 200  
0101 133.3 0/1 66.7/33.3 33.31 266.6  
0110 166.7 0/1 66.7/33.3 33.31 333.3  
0111 200.0 0/1 66.7/33.3 33.31 400.0  
1000 105.0 0/1 70.0/35.0 35.00 210.0  
1001 110.0 0/1 73.3/36.7 36.67 220.0  
1010 115.0 0/1 76.7/38.3 38.33 230.0  
1011 120.0 0/1 60.0/30.0 30.00 240.0  
1100 140.0 0/1 70.0/35.0 35.00 280.0  
1101 150.0 0/1 60.0/30.0 30.00 300.0  
1110 160.0 0/1 64.0/32.0 32.00 320.0  
1111 180.0 0/1 60.0/30.0 30.00 360.0  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
3/6  
3/6  
3/6  
4/8  
6
6
6
8
• 1 programmable 24M or 48M for FDC  
• 3 REF 14.318MHz Clocks  
• Dial-a-Frequency¥ Programmability  
• Cypress Spread Spectrum for Best EMI Reduction  
• SMBus Register Programmable Options  
• 5V Tolerance SCLK and SDATA Lines  
• 3.3V Operation  
5/10 10  
6/12 12  
3/6  
3/6  
3/6  
4/8  
4/8  
6
6
6
8
8
• Power Management Control Pins  
• 48 Pin SSOP Package  
5/10 10  
5/10 10  
6/12 12  
=
Pin Configuration  
Block Diagram  
XIN  
14.31818MHz  
XTAL  
FS0/REF0  
VDD  
XIN  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
FS1/REF1  
VSS  
VDD  
REF(0:2)  
USB  
XOUT  
2
3
/4  
/2  
XOUT  
VSS  
4
FS2/REF2  
*SPREAD  
VDDA  
VSSA  
CPUT0  
CPUC0  
VSS  
PLL1  
5
*PCI33HT66SEL#  
PCI33_HT66_0  
PCI33_HT66_1  
VDD  
6
24_48MH  
7
8
9
24_48MH/  
24_48SEL#  
VSS  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
PCI33_HT66_2  
*SRESET#/PD#  
PCI33_0  
PCI33_1  
VSS  
VDD  
CPUT1  
CPUC1  
VDD  
FS(0:3)  
PCISTOP#  
CPUT(0:1)  
CPUC(0:1)  
PLL2  
VSS  
VDD  
VSSF  
VDDF  
USB  
SPREAD  
PCI33_2  
PCI33_3  
VDD  
Control Logic  
PCI33_F  
/N  
SRESET#/PD#  
VSS  
VDD  
SCLK  
VSS  
STOP  
CNTL  
PCI33_(0:5)  
PCI33_4  
PCI33_5  
FS3/PCI33_F  
PCISTOP#  
24_48MHz/SEL#  
VSS  
SDATA  
SDATA  
PCI33_HT66_(0:2)  
SCLK  
* = 150 K:Pull-up  
Note:  
1. All outputs except XOUT will be three-stated when FS(3:0) = 0000.  
Rev 1.0, November 21, 2006  
Page 1 of 14  
2200 Laurelwood Road, Santa Clara, CA 95054  
Tel:(408) 855-0555 Fax:(408) 855-0550  
www.SpectraLinear.com  
CY28330  
Pin Description  
Pin  
3
Name  
XIN  
PWR  
VDD  
VDD  
I/O  
I
Description  
Oscillator Buffer Input. Connect to a crystal or to an external clock.  
4
XOUT  
O
Oscillator Buffer Output. Connect to a crystal. Do not connect when  
an external clock is applied at XIN.  
41, 37  
40, 36  
CPUT(0:1)  
CPUC(0:1)  
VDDC  
VDDC  
O
O
CPU clock outputs 0 and 1: push-pull “true” output of differential pair.  
CPU clock outputs 0 and 1: push-pull “compliment” output of differ-  
ential pair.  
23  
PCI33_F  
VDD  
VDD  
O
O
3.3V free-running PCI clock output.  
13, 14, 17, 18,  
21, 22  
PCI33(0:5)  
3.3V PCI clock outputs controlled by PCISTOP#.  
7, 8, 11  
PCI33_HT66(0:2)  
PCI33_HT66SEL#  
VDD  
VDD  
O
3.3V PCI 33MHz or HyperTransport¥ꢀ66 clock outputs. This group  
is selectable between 33 MHz and 66 MHz based upon the state of the  
PCI33HT66SEL#.  
6
I
PU  
This input selects the output frequency of PCI33_HT66 outputs to  
either 33 MHz or 66 MHz. There is an internal 150K ohm pull-up  
resistor. This pin will be externally strapped low using a 10Kohm  
resistor to VSS. 0 = 66 MHz, 1 = 33 MHz.  
31  
28  
USB  
VDDF  
VDDF  
O
3.3V USB clock output at 48 MHz.  
24_48/SEL#  
I/O  
PU  
3.3v Super I/O clock output. At power up this pin is sensed to  
determine whether the output is 24 MHz or 48 MHz. There is an internal  
150K ohmpull-up resistor. Thispin will be externally strapped lowusing  
a 10K ohm resistor to VSS. 0 = 48 MHz, 1 = 24 MHz.  
1, 48, 45  
REF(0:2)/FS(0:2)  
SPREAD  
VDD  
VDD  
I/O  
PU  
3.3V Reference clock output. At power up this pin is sensed to  
determine the CPU output frequency. There is an internal 150K ohm  
pull-up resistor. These pins will be externally strapped low using a 10K  
ohm resistor to VSS. See Table 1.  
44  
I
PU  
Spread Spectrum clock enable. At power up this pin is sensed to  
determine whether spread spectrum clocking in enabled on all output  
except the USB and 24_48/SEL#. There is an internal 150K ohm  
pull-up resistor. This pin will be externally strapped low using a 10K  
ohm resistor to VSS. 0=disable, 1=enable.  
24  
12  
PCISTOP#  
VDD  
I
PU  
Control for PCI33(0:5) and PCI33_HT66(0:2) outputs. Active LOW  
control input to halt all 33MHz PCI clocks except PCI33_F. Only the  
PCI33_HT66 outputs that are running at 33MHz will be stopped. The  
outputs will be glitch free when turning off and turning on. There is an  
internal 150K ohm pull-up resistor.  
SRESET#  
PD#  
VDD  
VDD  
O
SRESET output from Watchdog timer. Active low.  
I
PU  
Power-down input. 1 = running, 0 = Power Down. There is an internal  
150K ohm pull-up resistor.  
26  
25  
SDATA  
SCLK  
VDD  
VDD  
VDD  
I/O  
I
Data pin for SMBus (rev2.0).  
Clock pin for SMBus (rev2.0).  
2, 9,16,19,29,  
35, 38, 46  
PWR Power connection to 3.3V for the core.  
5, 10, 15, 20,  
27, 30, 34, 39,  
47  
VSS  
GND Power connection to GROUND for the CORE section of the chip.  
43  
42  
VDDA  
VSSA  
PWR Power connection to 3.3V for the ANALOG section of the chip.  
GND Power connection to GROUND for the ANALOG section of the  
chip.  
32  
33  
VDDF  
VSSF  
PWR Power connection to 3.3V for the 48-MHz PLL section of the chip.  
GND Power connection to GROUND for the 48-MHz PLL section of the  
chip.  
Rev 1.0,November 21, 2006  
Page 2 of 14  
CY28330  
bit first) with the ability to stop after any complete byte has  
been transferred. For byte write and byte read operations, the  
system controller can access individual indexed bytes. The  
offset of the indexed byte is encoded in the command code,  
as described in Table 2.  
Serial Data Interface  
To enhance the flexibility and function of the clock synthesizer,  
a two-signal serial interface is provided. Through the Serial  
Data Interface, various device functions such as individual  
clock output buffers, etc., can be individually enabled or  
disabled.  
The block write and block read protocol is outlined in Table 3  
while Table 4 outlines the corresponding byte write and byte  
read protocol.  
The registers associated with the Serial Data Interface  
initializes to their default setting upon power-up, and therefore  
use of this interface is optional. Clock device register changes  
are normally made upon system initialization, if any are  
required. The interface can also be used during system  
operation for power management functions.  
The slave receiver address is 11010010 (D2h).  
Table 2. Command Code Definition  
Bit  
Description  
7
0 = Block read or block write operation  
1 = Byte read or byte write operation  
Data Protocol  
(6:0)  
Byte offset for byte read or byte write operation.  
For block read or block write operations, these bits  
should be '0000000'  
The clock driver serial protocol accepts byte write, byte read,  
block write, and block read operation from the controller. For  
block write/read operation, the bytes must be accessed in  
sequential order from lowest to highest byte (most significant  
Table 3. Block Read and Block Write protocol  
Block Write Protocol  
Block Read Protocol  
Description  
Bit  
1
Description  
Start  
Bit  
1
2:8  
9
Start  
2:8  
9
Slave address - 7 bits  
Write = 0  
Slave address - 7 bits  
Write = 0  
10  
Acknowledge from slave  
10  
Acknowledge from slave  
11:18  
Command Code - 8 Bit  
'00000000' stands for block operation  
11:18  
Command Code - 8 Bit  
'00000000' stands for block operation  
19  
20:27  
28  
Acknowledge from slave  
Byte Count from master - 8 bits  
Acknowledge from slave  
Data byte 0 from master- 8 bits  
Acknowledge from slave  
Data byte 1 from master - 8 bits  
Acknowledge from slave  
Data bytes from master/Acknowledge  
Data Byte N - 8 bits  
19  
20  
Acknowledge from slave  
Repeat start  
21:27  
28  
Slave address - 7 bits  
Read = 1  
29:36  
37  
29  
Acknowledge from slave  
Byte count from slave - 8 bits  
Acknowledge  
38:45  
46  
30:37  
38  
....  
39:46  
47  
Data byte 0 from slave - 8 bits  
Acknowledge  
....  
....  
Acknowledge from slave  
Stop  
48:55  
56  
Data byte 1 from slave - 8 bits  
Acknowledge  
....  
....  
Data bytes from slave/Acknowledge  
Data byte N from slave - 8 bits  
Not Acknowledge  
....  
....  
....  
Stop  
Rev 1.0,November 21, 2006  
Page 3 of 14  
CY28330  
Table 4. Byte Read and Byte Write protocol  
Byte Write Protocol  
Byte Read Protocol  
Description  
Bit  
1
Description  
Start  
Bit  
1
Start  
2:8  
9
Slave address - 7 bits  
Write = 0  
2:8  
9
Slave address - 7 bits  
Write = 0  
10  
Acknowledge from slave  
10  
Acknowledge from slave  
Command Code - 8 bits  
'1xxxxxxx' stands for byte operation, bits[6:0] of  
the command code represents the offset of the  
byte to be accessed  
11:18  
Command Code - 8 bits  
'1xxxxxxx' stands for byte operation, bits[6:0] of  
the command code represents the offset of the  
byte to be accessed  
11:18  
19  
20:27  
28  
Acknowledge from slave  
Data byte from master - 8 bits  
Acknowledge from slave  
Stop  
19  
20  
Acknowledge from slave  
Repeat start  
21:27  
28  
Slave address - 7 bits  
Read = 1  
29  
29  
Acknowledge from slave  
Data byte from slave - 8 bits  
Not Acknowledge  
Stop  
30:37  
38  
39  
Serial Control Registers  
Byte 0: Frequency and Spread Spectrum Control Register  
Bit  
@Pup  
Description  
7
Inactive = 0 Write Disable (write once). A 1 written to this bit after a 1 has been written to Byte0 bit0 will perma-  
nently disable modification of all configuration registers until the part has been powered off. Once  
the clock generator has been Write Disabled, the SMBus controller should still accept and  
acknowledge subsequent write cycles but it should not modify any of the registers.  
6
Inactive = 0 Spread Spectrum enable (0=disable, 1=enable). This bit provides a SW programmable control for  
spread spectrum clocking. See Table 5. The readback version of this bit is the hardware strapped  
value such that the SW has the ability to know each state, either by readback or by writing the SSE bit.  
5
4
3
2
1
0
0
ATPG Mode. 0 = disable, 1 = enable. See Byte 8, bit 7.  
FS(3) (corresponds to Frequency Selection. See Table 1.  
FS(2) (corresponds to Frequency Selection. See Table 1.  
FS(1) (corresponds to Frequency Selection. See Table 1.  
FS(0) (corresponds to Frequency Selection. See Table 1.  
FS3 pin  
FS2 pin  
FS1 pin  
FS0 pin  
Inactive = 0 Write Enable. A 1 written to this bit after power up will enable modification of all configuration registers  
and subsequent 0's written to this bit will disable modification of all configuration except this single  
bit. Note that block write transactions to the interface will complete, however unless the interface has  
been previously un-locked, the writes will have no effect. The effect of writing this bit does not take  
effect until the subsequent block write command.  
Table 5. Spread Spectrum Enable  
Pin 44  
B0b6  
Spread Enable  
0
0
1
1
0
1
0
1
Off  
On  
On  
On  
Rev 1.0,November 21, 2006  
Page 4 of 14  
CY28330  
Byte 1: PCI Clock Control Register  
Bit  
7
@Pup  
Pin#  
8
Name  
Test Condition  
1
1
1
1
1
1
1
1
PCI33_HT66_1 enable (1=Enabled, 0=Disabled)  
PCI33_HT66_0 enable (1=Enabled, 0=Disabled)  
6
7
5
22  
21  
18  
17  
14  
13  
PCI33_5  
PCI33_4  
PCI33_3  
PCI33_2  
PCI33_1  
PCI33_0  
enable (1=Enabled, 0=Disabled)  
enable (1=Enabled, 0=Disabled)  
enable (1=Enabled, 0=Disabled)  
enable (1=Enabled, 0=Disabled)  
enable (1=Enabled, 0=Disabled)  
enable (1=Enabled, 0=Disabled)  
4
3
2
1
0
Byte 2: PCI Clock, USB, 24_48MHz, REF(0:2) Control Register  
Bit  
@Pup  
Test Condition  
7
active = 1  
CPUT/C(1) shutdown. This bit can be optionally used to disable the CPUT/C(1) clock pair.  
During shutdown, CPUT=low and CPUC=high  
6
active = 1  
CPUT/C(0) shutdown. This bit can be optionally used to disable the CPUT/C(0) clock pair.  
During shutdown, CPUT=low and CPUC=high  
5
4
3
2
1
0
active = 1  
active = 1  
active = 1  
active = 1  
active = 1  
active = 1  
REF(2) enable (1=Enabled, 0=Disabled)  
REF(1) enable (1=Enabled, 0=Disabled)  
REF(0) enable (1=Enabled, 0=Disabled)  
24_48MHz enable (1=Enabled, 0=Disabled)  
USB enable (1=Enabled, 0=Disabled)  
PCI33_HT66(2) enable (1=Enabled, 0=Disabled)  
Byte 3: PCI Clock Free Running Select Control Register  
Bit  
7
@Pup  
0
Description  
PCI33 drive strength. 0 = normal, 1 = high.  
6
0
PCI33_HT66 drive strength. 0 = normal, 1 = high.  
5
Inactive = 0  
Inactive = 0  
Inactive = 0  
Inactive = 0  
Inactive = 0  
Inactive = 0  
PCI(5) free running enable (1=Free running, 0=Disabled)  
PCI(4) free running enable (1=Free running, 0=Disabled)  
PCI(3) free running enable (1=Free running, 0=Disabled)  
PCI(2) free running enable (1=Free running, 0=Disabled)  
PCI(1) free running enable (1=Free running, 0=Disabled)  
PCI(0) free running enable (1=Free running, 0=Disabled)  
4
3
2
1
0
Byte 4: Pin Latched/Real Time State (and one free running control)  
Bit  
7
@Pup  
active = 1  
Pin 44  
Pin 28  
Pin 6  
Description  
PCI33_F output enable. This bit can be optional used to disable the PCI33_F output.  
SPREAD pin state, not latched  
6
5
24_48SEL# pin power up latched state  
PCI33_HT66SEL# pin statement latched  
FS(2) power up latched state  
4
3
Pin 45  
Pin 48  
Pin 1  
2
FS(1) power up latched state  
1
FS(0) power up latched state  
0
Pin 23  
FS(3) power up latched state  
Rev 1.0,November 21, 2006  
Page 5 of 14  
CY28330  
Byte 5: Clock Vendor ID  
Bit  
7
@Pup  
Description  
1
0
0
0
0
0
0
0
Vendor ID, Cypress = 100  
Vendor ID  
6
5
Vendor ID  
4
Device Revision ID  
Device Revision ID  
Device Revision ID  
Device Revision ID  
Device Revision ID  
3
2
1
0
Byte 6: SSCG, Dial-a-Skew™ and Dial-a-Ratio™ Register  
Bit  
7
@Pup  
Description  
SS_MODE; 0 = down spread, 1 = center spread See Table 6.  
SST1 Select spread percentage. See Table 6.  
SST0 Select spread percentage. See Table 6.  
Reserved  
0
0
0
1
0
6
5
4
3
DASAG1; Programming these b its allow shifting the skew of the HT66(0:2) signals relative  
to their default value. See Table 7.  
2
1
0
0
DASAG0; Programming these bits allow shifting the skew of the HT66(0:2) signals relative  
to their default value. See Table 7.  
DARAG1; Programming these bits allow shifting the ratio of the HT66(0:2) signals relative  
to their default value. See Table 8.  
DARAG0; Programming these bits allow shifting the ratio of the HT(0:2) signals relative to  
their default value. See Table 8.  
0
0
Table 6. Spread Spectrum Table  
SS_Mode (B6b7)  
SST1 (B6b6)  
SST0 (B6b5)  
% Spread  
-1.5%  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
-1.0%  
-0.7%  
-0.5%  
r0.75%  
r0.5  
r0.35%  
0.25%  
Table 7. Dial-a-Skew CPU to HT66  
Table 8. Dial-a-Ratio CPU to HT66  
DASAG(1:0)  
HT66 Skew Shift  
Default  
DASAG(1:0)  
CPU/HT66 Ratio  
00  
01  
10  
11  
00  
01  
10  
11  
Frequency selection default  
-150 ps  
2/1  
2.5/1  
3/1  
+ 150ps  
+ 300 ps  
Rev 1.0,November 21, 2006  
Page 6 of 14  
CY28330  
Byte 7: Watchdog Control Register  
Bit  
@Pup  
Name  
Description  
7
0
Pin 12 Mode SRESET#; 1 = Pin 12 is the input pin which functions as a PD# signal. 0 = Pin 12 is the  
output pin as SRESET# signal.  
Select  
6
0
Frequency  
Reversion  
This bit allows setting the Revert Frequency once the system is rebooted due to Watchdog  
time out only.  
0 = selects frequency of existing H/W setting  
1 = selects frequency of the second to last S/W setting. (the software setting prior to the  
one that caused a system reboot).  
5
4
0
0
For Test, ALWAYS program to ‘0’  
WD Time-out This bit is set to “1” when the Watchdog times out. It is reset to “0” when the system clears  
the WD time stamps (WD3:0).  
3
2
1
0
0
0
0
0
WD3  
WD2  
WD1  
WD0  
This bit allows the selection of the time stamp for the Watchdog timer. See Table 9.  
This bit allows the selection of the time stamp for the Watchdog timer. See Table 9  
This bit allows the selection of the time stamp for the Watchdog timer. See Table 9.  
This bit allows the selection of the time stamp for the Watchdog timer. See Table 9.  
Table 9. Watchdog Time Stamp  
WD3  
0
WD2  
0
WD1  
0
WD0  
0
Function  
Off  
0
0
0
1
1 second  
0
0
1
0
2 seconds  
3 seconds  
4 seconds  
5 seconds  
6 seconds  
7 seconds  
8 seconds  
9 seconds  
10 seconds  
11 seconds  
12 seconds  
13 seconds  
14 seconds  
15 seconds  
0
0
1
1
0
1
0
0
0
1
0
1
0
1
1
0
0
1
1
1
1
0
0
0
1
0
0
1
1
0
1
0
1
0
1
1
1
1
0
0
1
1
0
1
1
1
1
0
1
1
1
1
Byte 8: Dial-a-Frequency™ Control Register N  
Bit  
@PUp  
Description  
7
0
ATPG Pulse. A 0 to 1 transition on this bit will trigger a differential pulse on the CPUT/C  
lines whose pulse width is equal to the period of the currently latched frequency.  
6
5
4
3
2
1
0
N6  
N5  
N4  
N3  
N2  
N1  
N0  
These bits are for programming the PLL’s internal N register. This access allows the  
user to modify the CPU frequency with great accuracy. All other synchronous clocks (clocks  
that are generated from the same PLL, such as PCI, remain at their existing ratios relative  
to the CPU clock.  
Rev 1.0,November 21, 2006  
Page 7 of 14  
CY28330  
Byte 9: Dial-a-Frequency™ Control Register M  
Bit  
7
@Pup  
0
Description  
CPU output skew; 0 = normal, 1 = -200ps Pin 41 to Pin 7  
6
R5  
R4  
R3  
R2  
R1  
R0  
0
These bits are for programming the PLL’s internal R register. This access allows the user  
to modify the CPU frequency with great accuracy. All other synchronous clocks (clocks that  
are generated from the same PLL, such as PCI, remain at their existing ratios relative to  
the CPU clock.  
5
4
3
2
1
0
When this bit = 1, it enables the Dial-a-Frequency N and R bits to be multiplexed into the  
internal N and R registers. When this bit = 0, the ROM based N and R values are loading  
into the internal N and R registers.  
ROM  
N Register  
SMBus  
Latch  
Byte8  
Byte8 Write  
R Register  
SMBus  
Byte9  
Byte9 Write  
DAFEN  
Figure 1. Dial-a-Frequency Register Loading  
output may not occur immediately after this time as the PLL  
needs to be locked and will not output an invalid frequency.  
The CPU frequencies are defined from the hardware-sampled  
inputs. Additional frequencies and operating states can be  
selected through the SMBus programmable interface.  
Dial-a-Frequency Feature  
Dial-a-Frequency gives the designer direct access to the  
reference divider (M) and the feedback divider (N) of the  
internal Phase Lock Loop (PLL). The algorithm is the same for  
all P values, which is Fcpu = (P * N) / M with the following  
conditions. M = (20..56), N = (21..127) and N > M > N/2. ‘P’ is  
a large value constant that translates the output of the PLL into  
the CPU frequency. The Value of ‘P’ is relative to the latest  
frequency selected in the device prior to enabling the  
Dial-a-Frequency feature. Furthermore, P is an indication that  
the frequency ratios between the CPU, SDRAM, AGP (3V66),  
and PCI clock outputs remains unchanged when the  
Dial-a-Frequency feature is enabled.  
Spread spectrum modulation is required for all outputs derived  
from the internal CPU PLL2 (see Block Diagram). This include  
the CPU(0:1), PCI33(0:5), PCI33_F and PCI33_HT66(0:2).  
The REF (0:2), USB and 24_48 clocks are not affected by the  
spread spectrum modulation. The spread spectrum  
modulation is set for both center and down modes using linear  
and Lexmark profiles for amounts of 0.5% and 1.0% at a  
33KHz rate.  
The CPU clock driver is of a push-pull type for the differential  
outputs, instead of the AMD Athlon¥ open-drain style. The  
CPU clock termination has been derived such that a 15-40  
ohm, 3.3V output driver can be used for the CPU clock.  
Table 10.  
FS(3:0)  
P
XXXX  
95995000  
The PCISTOP# signal provides for synchronous control over  
the any output, except the PCI33_F, that is running at 33MHz.  
If the PCI33_HT66 outputs are configured to run at 66MHz will  
not be stopped by this signal. The PCISTOP# signal is  
sampled by an internal PCI clock such that once it is sensed  
low or active, the 33MHz signals are stopped on the next high  
to low transition such that there is always a valid high signal.  
Operation  
Pin strapping on any configuration pin is based on a 10K ohm  
resistor connected to either 3.3V (VDD) or ground (VSS).  
When the VDD supply goes above 2.0V, the Power-On-Reset  
circuitry latches all of the configuration bits into their respective  
registers and then allows the outputs to be enabled. The  
Rev 1.0,November 21, 2006  
Page 8 of 14  
CY28330  
Absolute Maximum Rating  
Parameter  
Description  
Supply voltage  
Input voltage  
Rating  
–0.5 to 3.8  
–0.5 to 3.8  
–65 to +150  
> 2,000  
Unit  
V
VDD, VDDA, VDDF  
VIN1, VIN2  
V
TSTG  
Storage temperature  
Input ESD (HBN)  
°C  
V
ESDprotection  
Operating Condition[2]  
Parameter  
VDD, VDDA, VDDF  
TA  
Description  
Min.  
3.135  
0
Typ.  
Max.  
Unit  
V
Supply voltage  
3.3  
3.465  
70  
Operating temperature, Ambient  
Input frequency (crystal or reference)  
qC  
Finput  
10  
14.318  
16  
MHz  
SCLK and SDATA Input Electrical Characteristics (5V tolerant)  
Parameter  
VIL  
Description  
Supply voltage  
Conditions  
Min.  
VSS-0.3  
2.0  
Typ.  
Max.  
0.8  
Unit  
V
VIH  
Input voltage  
VDD+0.3  
µ5  
V
IIL, IIH  
VOL  
IOL  
Input high/low current  
Output high voltage  
Output low voltage  
0<VIN<VDD  
µA  
V
IOL=1.75mA  
VO=0.8V  
VSS-0.3  
2
0.4  
6
mA  
DC Parameters (All outputs loaded)  
Parameter Description  
VIL Input Low Voltage  
Input High Voltage  
Conditions  
See Note 3  
Min.  
VSS-0.3  
2.0  
Typ.  
Max.  
0.8  
Unit  
V
VIH  
IIL  
VDD+0.3  
-50  
V
Input Low Current (@VIL = VSS) For internal Pull up resistors,  
See Note 4  
µA  
IIH  
Input High Current (@VIH =VDD)  
Three-State leakage Current  
50  
10  
µA  
µA  
mA  
mA  
pF  
pF  
nH  
pF  
V
Ioz  
Idd3.3V  
Ipd3.3V  
Cin  
Dynamic Supply Current  
Power Down Supply Current  
Input pin capacitance  
Output pin capacitance  
Pin inductance  
CPU(0:1) @ 200MHz  
250  
2
5
6
Cout  
Lpin  
7
Cxtal  
VBIAS  
Txs  
Crystal pin capacitance  
Crystal DC Bias Voltage  
Crystal Startup time  
Measured from Pin to Ground.  
From Stable 3.3V power supply.  
27  
36  
45  
0.3Vdd  
Vdd/2  
0.7Vdd  
40  
µs  
Notes:  
2. Multiple Supplies: The Voltage on any input or I/O pin cannot exceed the power pin during power-up. Power supply sequencing is NOT required.  
3. Applicable to input signals: SPREAD, PCISTOP#, 24–48/Sel#.  
4. Internal Pull-up and Pull-down resistors have a typical value of 250:ꢁ  
Rev 1.0,November 21, 2006  
Page 9 of 14  
CY28330  
AC Parameter  
PCI133_HT66 = 66MHz  
Parameter  
Description  
Test Condition  
Min.  
Typ. Max. Unit  
TR  
Output Rise Edge Rate  
Output Fall Edge Rate  
Differential Voltage  
Measured @ the Hammer test load using  
VOCM 400mV, 0.850V to 1.650V  
2
7
V/ns  
V/ns  
V
TF  
Measured @ the Hammer test load using  
VOCM 400mV, 1.650V to 0.850V  
2
7
VDIFF  
DVDIFF  
VCM  
'VCM  
Measured @ the Hammer test load (single  
ended)  
0.4  
1.25  
1.25  
2.3  
150  
1.45  
200  
Change in VDIFF_DC Magnitude Measured @ the Hammer test load (single  
ended)  
-150  
1.05  
-200  
mV  
V
Common Mode Voltage  
Measured @ the Hammer test load (single  
ended)  
Change in VCM  
Measured @ the Hammer test load (single  
ended)  
mV  
TD  
Duty Cycle  
Measured at VOX  
Measured at VOX  
Measured at VOX  
45  
0
50  
53  
%
ps  
ps  
dB  
TJC  
Jitter, Cycle to Cycle  
Jitter, Accumulated  
100  
200  
TJA  
-1000  
TBD  
1000  
TBD  
TJSC_OP  
Spectral Content Noise near  
Hammer frequency  
TJSC_DC  
Spectral Content Noise from  
0-200MHz  
Noise floor measured with Spread Spectrum TBD  
on between 0 MHz and 200 MHz. Measured  
with a 3.3V PECL differential buffer in line  
with CPU clock output  
TBD  
dB  
TFS  
Frequency Stabilization from  
Power-up  
Measure from full supply voltage  
0
3
ms  
W
RON  
Output Impedance  
Average value during switching transition.  
15  
35  
55  
Table 11.PCI/Hyper Transport Clock Outputs  
PCI33, PCI33_HT = 33 MHz PCI33_HT = 66 MHz  
Parameter  
VOL  
VOH  
IOL  
Description  
Output Low Voltage  
Output High Voltage  
Output Low Current  
Output High Current  
Frequency Actual  
Conditions  
IOL = 9.0mA  
Min.  
-
Typ.  
Max.  
Min.  
Typ. Max. Unit  
0.4  
0.4  
-
V
V
IOH =-12.0mA  
VO = 0.8V  
2.4  
10  
2.4  
10  
-
mA  
mA  
MHz  
V/ns  
V/ns  
%
IOH  
F
VO = 2.0V  
-15  
-15  
33.33  
66.67  
TR  
Output Rise Edge Rate Measured from 20% to 60%  
Output Fall Edge Rate Measured from 60% to 20%  
1
1
4
4
1
1
4
4
TF  
TD  
Duty Cycle  
Measured at 1.5V  
Measured at 1.5V  
Measured at 1.5V  
45  
0
55  
45  
55  
TJC  
TJA  
TFS  
Jitter, Cycle-to-Cycle  
Jitter Accumulated  
250  
1000  
3
0
250  
1000  
3
ps  
-1000  
0
-1000  
ps  
Frequency Stabilization Measure from full supply  
voltage  
ms  
from Power-up  
RON  
Output Impedance  
Average value during  
switching transition.  
12  
15  
55  
12  
15  
55  
W
Rev 1.0,November 21, 2006  
Page 10 of 14  
CY28330  
Table 12.REF(0:2) Clock Outputs  
PCI133_HT66 = 66 MHz  
Parameter  
VOL  
VOH  
IOL  
Description  
Test Condition  
IOL = 9.0 mA  
Min.  
Typ.  
Max.  
Unit  
V
Output Low Voltage  
Output High Voltage  
Output Low Current  
Output High Current  
Frequency, Actual  
Output Rise Edge Rate  
Output Fall Edge Rate  
Duty Cycle  
0.4  
IOH = -12.0 mA  
VO = 0.8V  
2.4  
16  
V
mA  
mA  
MHz  
V/ns  
V/ns  
%
IOH  
F
VO = 2.0V  
-22  
14.318  
TR  
Measured from 20% to 60%  
Measured from 60% to 20%  
Measured at 1.5V  
0.5  
0.5  
45  
2
2
TF  
TD  
55  
TJC  
TJA  
TFS  
RON  
Jitter, Cycle-to-Cycle  
Jitter, Accumulated  
Measured at 1.5V  
0
500  
24  
1000  
1000  
3
ps  
Measured at 1.5V  
-1000  
0
ps  
Frequency Stabilization from Power-up Measure from full supply voltage  
mS  
W
Output Impedance  
Average value during switching transition.  
20  
60  
Table 13.USB, 24_24 Clock Outputs  
PCI33, PCI33_HT =  
33MHz  
PCI33_HT = 66MHz  
Parameter  
Description  
Output Low Voltage  
Output High Voltage  
Output Low Current  
Output High Current  
Frequency Actual  
Conditions  
IOL = 9.0mA  
Min.  
Typ.  
Max.  
Min.  
Typ.  
Max. Unit  
VOL  
VOH  
IOL  
IOH  
F
0.4  
0.4  
V
IOH =-12.0mA  
VO = 0.8V  
2.4  
16  
2.4  
16  
V
mA  
mA  
MHz  
V/ns  
VO = 2.0V  
-22  
-22  
24.004  
48.008  
TR  
Output Rise Edge Rate  
Measured from 20% to  
80%  
0.5  
0.5  
2
2
0.5  
0.5  
2
2
TF  
Output Fall Edge Rate  
Measured from 80% to  
20%  
V/ns  
TD  
Duty Cycle  
Measured at 1.5V  
45  
0
55  
45  
0
55  
%
TJC  
Jitter, Cycle-to-Cycle 24_48 Measured at 1.5V  
MHz  
250  
500  
250  
500  
ps  
TJC  
TJA  
TFS  
Jitter, Cycle-to-Cycle USB  
Jitter Accumulated  
Measured at 1.5V  
Measured at 1.5V  
0
100  
1000  
3
ps  
ps  
-1000  
0
1000 -1000  
Frequency Stabilization from Measurefromfullsupply  
voltage  
3
0
ms  
Power-up  
RON  
Output Impedance  
Average value during  
switching transition.  
20  
24  
60  
20  
24  
60  
W
[5]  
Table 14.Skew  
Parameter  
Description  
Conditions  
Skew Window Unit  
TSK_CPU_CPU  
CPU to CPU skew, time Measured @ crossing points for CPUT rising edges1  
independent  
250  
500  
500  
ps  
ps  
ps  
TSK_CPU_PCI33 CPU to PCI33 skew, time Measured @ crossing points for CPUT rising edge and  
1.5V PCI clocks  
independent  
TSK_PCI33_PCI33 PCI33 to PCI33 skew,  
time independent  
Measured between rising @ 1.5V  
Note:  
5. All skews in this skew budget are measured from the first referenced signal to the next. Therefore, this skew specifies the maximum SKEW WINDOW between  
these two signals to be 500ps whether the CPU crossing leads or lags the PCI clock. This should NOT be interpreted to mean that the PCI33 edge could either  
be 500ps before the CPU clock to 500ps after the clock, thus defining a 1000ps window in which the PCI33 clock edge could fall.  
Rev 1.0,November 21, 2006  
Page 11 of 14  
CY28330  
Table 14.Skew (continued)[5]  
Parameter Description  
Conditions  
Skew Window Unit  
TSK_PCI33_HT66 PCI33 to HT66 skew, time Measured between rising @ 1.5V  
independent  
500  
500  
500  
200  
200  
200  
200  
200  
200  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
TSK_CPU_HT66 CPU to HT66 skew, time Measured @ crossing points for CPUT rising edge and  
1.5V for HyperTransport clocks  
independent  
TSK_HT66_HT66 HT66 to HT66 skew, time Measured between rising @ 1.5V  
independent  
TSK_CPU_CPU CPU to CPU skew, time Measured @ crossing points for CPUT rising edges  
variant  
TSK_CPU_PCI33 CPU to PCI33 skew, time Measured @ crossing points for CPUT rising edge and  
1.5V PCI clocks  
variant  
TSK_PCI33_PCI33 PCI33 to PCI33 skew,  
time variant  
Measured between rising @ 1.5V  
TSK_PCI33_HT66 PCI33 to HT66 skew, time Measured between rising @ 1.5V  
variant  
TSK_CPU_HT66 CPU to HT66 skew, time Measured @ crossing points for CPUT rising edge and  
1.5V for HyperTransport clocks  
variant  
TSK_HT66_HT66 HT66 to HT66 skew, time Measured between rising @ 1.5V  
variant  
Table 15.Loading Table  
Clock Name  
Max Load (in pF)[6]  
CPU(0:1)  
See Figure 2  
USB 24_48, REF (0:2)  
20  
30  
PC133(0:5), PC133_F, PCI33_HT66(0:2)  
Vbias=1.25V  
125 ohms  
125 ohms  
15 ohms  
15 ohms  
3900pF  
3900pF  
169 ohms  
5pF  
5pF  
Figure 2. Test Load Configuration  
Note:  
6. The above loads are positioned near each output pin when tested.  
Rev 1.0,November 21, 2006  
Page 12 of 14  
CY28330  
SRESET#/PD#  
CPUT(0:1)  
CPUC(0:1)  
PCI/PCI_HT  
USB,24_48MHz  
REF(0:2)  
Figure 3. PD# Assertion Waveform  
PD#  
CPUT  
CPUC  
PCI 33MHz  
3V66  
USB 48MHz  
REF 14.318MHz  
Figure 4. PD# Deassertion Waveform  
Rev 1.0,November 21, 2006  
Page 13 of 14  
CY28330  
Ordering Information  
Part Number  
CY28330OC  
CY28330OCT  
Package Type  
48-pin SSOP  
48-pin SSOP–Tape and Reel  
Product Flow  
Commercial, 0q to 70qC  
Commercial, 0q to 70qC  
Package Drawing and Dimensions  
48-pin Shrunk Small Outline Package O48  
While SLI has reviewed all information herein for accuracy and reliability, Spectra Linear Inc. assumes no responsibility for the use of any cir-  
cuitry or for the infringement of any patents or other rights of third parties which would result from each use. This product is intended for use in  
normal commercial applications and is not warranted nor is it intended for use in life support, critical medical instruments, or any other applica-  
tion requiring extended temperature range, high reliability, or any other extraordinary environmental requirements unless pursuant to additional  
processing by Spectra Linear Inc., and expressed written agreement by Spectra Linear Inc. Spectra Linear Inc. reserves the right to change any  
circuitry or specification without notice.  
Rev 1.0, November 21, 2006  
Page 14 of 14  

相关型号:

CY28331

Clock Generator for AMD⑩ Hammer
SPECTRALINEAR

CY28331

Clock Generator for AMD⑩ Hammer
CYPRESS

CY28331-2

Clocks and Buffers
ETC

CY28331-2OC

Processor Specific Clock Generator, 300MHz, CMOS, PDSO48, SSOP-48
CYPRESS

CY28331OC

Clock Generator for AMD⑩ Hammer
SPECTRALINEAR

CY28331OC

Clock Generator for AMD⑩ Hammer
CYPRESS

CY28331OCT

Clock Generator for AMD⑩ Hammer
SPECTRALINEAR

CY28331OCT

Clock Generator for AMD⑩ Hammer
CYPRESS

CY28331OXC

Clock Generator for AMD⑩ Hammer
SPECTRALINEAR

CY28331OXC

Clock Generator for AMD⑩ Hammer
CYPRESS

CY28331OXCT

Clock Generator for AMD⑩ Hammer
SPECTRALINEAR

CY28331OXCT

Clock Generator for AMD⑩ Hammer
CYPRESS