CY28331-2OC [CYPRESS]

Processor Specific Clock Generator, 300MHz, CMOS, PDSO48, SSOP-48;
CY28331-2OC
型号: CY28331-2OC
厂家: CYPRESS    CYPRESS
描述:

Processor Specific Clock Generator, 300MHz, CMOS, PDSO48, SSOP-48

时钟 光电二极管 外围集成电路 晶体
文件: 总17页 (文件大小:115K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY28331-2  
Clock Generator for AMD™ Hammer  
Features  
Table 1. Frequency Table (MHz)  
• Supports AMDHammer CPU  
FS  
PCI_HT  
SEL  
• Two differential pair of CPU clocks  
• Eight low-skew/-jitter PCI clocks  
• One free-running PCI clock  
(3:0)  
CPU  
HT66  
PCI  
0000  
X
Hi-Z (All outputs except XOUT are  
three-stated)  
• Four low-skew/-jitter PCI/HyperTransportclocks  
• One 48M output for USB  
• One programmable 24M or 48M for FDC  
• Three REF 14.318-MHz clocks  
• Dial-a-Frequencyprogrammability  
0001  
0010  
0011  
0100  
0101  
0110  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
133.9  
166.9  
200.9  
100.0  
133.3  
166.7  
67.0/33.5  
66.8/33.4  
67.0/33.5  
66.7/33.3  
66.7/33.3  
66.7/33.3  
33.5  
33.4  
33.5  
33.3  
33.3  
33.3  
• LexmarkSpread Spectrum for optimal electromag-  
netic interference (EMI) reduction  
• SMBus register programmable options  
• 5V-tolerance SCLK and SDATA lines  
• 3.3V operation  
• Power management control pins  
• 48-pin SSOP package  
0111  
(default)  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
200.0  
105.0  
110.0  
210.0  
240.0  
270.0  
233.3  
266.7  
300.0  
66.7/33.3  
70.0/35.0  
73.3/36.7  
70.0/35.0  
60.0/30.0  
67.5/33.8  
58.3/29.2  
66.7/33.3  
75.0/37.5  
33.3  
35.0  
36.7  
35.0  
30.0  
33.8  
29.2  
33.3  
37.5  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
HCLK, 66 MHz and 33 MHz are in phase and synchronous  
upon power-up.  
Block Diagram  
Pin Configuration  
XIN  
14.31818MHz  
REF(0:2)  
USB  
XTAL  
XOUT  
*FS0/REF0  
1
2
3
4
5
6
7
8
9
48 *FS1/REF1  
47 VSS  
46 VDD  
45 *FS2/REF2  
44 SRESET#PD#  
43 VDDA  
42 VSSA  
41 CPUT0  
40 CPUC0  
39 VSS  
VDD  
XIN  
XOUT  
VSS  
/4  
PLL1  
PCI33_HT66_0/*PCI33HT66SEL0#  
PCI33_HT66_1/*PCI33HT66SEL1#  
PCI33_HT66_2  
24_48MHz  
/2  
VDD  
SEL#  
VSS 10  
PCI33_HT66_3 11  
PCI33_7 12  
38 VDD  
37 CPUT1  
36 CPUC1  
35 VDD  
SRESET#  
PCI33_0 13  
PCI33_1 14  
VSS 15  
VDD 16  
PCI33_2 17  
PCI33_3 18  
VDD 19  
VSS 20  
PCI33_4 21  
34 VSS  
33 VSSF  
32 VDDF  
31 **USB/FS23  
30 VSS  
29 VDD  
28 24_48MHz/**SEL#  
27 VSS  
26 SDATA  
25 SCLK  
FS(0:3)  
CPUT(0:1)  
CPUC(0:1)  
PLL2  
PCISTOP#  
SPREAD  
Control  
PCI33_F  
/N  
Logic  
PD#  
*PCISel/PCI33_5 22  
PCI33_F 23  
*PCI33_6/PCISTOP# 24  
SCLK  
STOP  
PCI33_(0:7)  
PCI33_HT66_(0:3)  
SDATA  
* 100K Internal Pull-up  
** 100K Internal Pull-down  
CNTL  
Cypress Semiconductor Corporation  
Document #: 38-07545 Rev. **  
3901 North First Street  
San Jose, CA 95134  
408-943-2600  
Revised May 19, 2003  
CY28331-2  
Pin Description  
Pin  
Name  
PWR  
VDD  
VDD  
I/O  
I
Description  
3
4
XIN  
Oscillator Buffer Input. Connect to a crystal or to an external clock.  
XOUT  
O
Oscillator Buffer Output. Connect to a crystal. Do not connect when an  
external clock is applied at XIN.  
41, 37  
40, 36  
CPUT(0:1)  
CPUC(0:1)  
VDDC  
VDDC  
O
O
CPU clock outputs 0 and 1: push-pull “true” output of differential pair.  
CPU clock outputs 0 and 1: push-pull “compliment” output of differential  
pair.  
13, 14, 17,  
18, 21  
PCI33(0:5)  
O
3.3V PCI clock outputs controlled by PCISTOP#.  
22  
PCISEL/PCI_5  
I/O PCISEL is a strap option during power-up to select Pin 24 functionality:  
0: Configure Pin 24 as PCI33_6  
1: Configure Pin 24 as PCISTOP# (default 100k internal pull-up)  
After power-up, this pin reverts to standard PCI33_5 output.  
23  
PCISEL /  
PCI33_F  
I/O Free-running 3.3V PCI clock output.  
8, 11  
PCI33_HT66(2:3)  
VDDD  
O
3.3V PCI 33 MHz or HyperTransport 66 clock outputs. This group is  
selectable between 33MHz and 66MHz based upon the state of  
PCI33HT66SEL[0:1]#.  
6, 7  
PCI33_HT66_[0:1]/  
VDDD  
I/O PCI33 or HT66 Select.  
PCI33_HT66SEL[0:1]#  
This input strap selects the output frequency of PCI33_HT66 outputs to  
either 33 MHz or 66 MHz. There is an internal 100Kohm pull-up resistor.  
After power-up, this pin becomes PCI33_HT66_[0:1] output.  
SEL1 SEL0  
PIN6  
PIN7  
PIN8  
PIN11  
0
0
1
1
0
1
0
1
HT66_0 HT66_1 HT66_2 HT66_3  
HT66_0 HT66_1 HT66_2 PCI33_3  
HT66_0 HT66_1 PCI33_2PCI33_3  
HT66_0 PCI33_1 PCI33_2PCI33_3  
31  
28  
USB/FS3  
I/O 3.3V USB clock output at 48 MHz. At power-up this pin is sensed to  
determine the CPU output frequency. There is an internal 100-Kohm  
pull-down resistor.  
24_48MHz/SEL#  
I/O 3.3V Super I/O clock output. At power-up this pin is sensed to determine  
whether the output is 24 MHz or 48 MHz. There is an internal 100-Kohm  
pull-down resistor. This pin will be externally strapped high using a 10-Kohm  
resistor to VSS. 0 = 48 MHz, 1 = 24 MHz.  
1, 48, 45  
REF(0:2)/FS(0:2)  
SRESET#/PD#  
I/O 3.3V Reference clock output. At power-up this pin is sensed to determine  
the CPU output frequency. There is an internal 100K ohm pull-up resistor  
for FS0, while FS(1:2) includes 100K ohm pull-up resistors.  
44  
24  
I/O Watchdog Time-out Reset Output. Power-down input (100k internal  
pull-up).  
PCI33_6/  
PCISTOP#  
I/O When configured through Pin 23 as PCI_STOP#, this pin controls the  
PCI33(0:5,7) and PCI33_HT66(1:3) outputs. Active LOW control input to  
halt all 33MHz PCI clocks except PCI33_F. Only the PCI33_HT66 outputs  
that are running at 33MHz will be stopped. The outputs will be glitch-free  
when turning off and turning on (100k internal pull-up).  
When configured through Pin 23 as PCI33_6, PCI_STOP# is unavailable.  
12  
26  
PCI33_7  
SDATA  
O
3.3V PCI clock outputs controlled by PCISTOP#.  
I/O Data pin for SMBus (rev 2.0). There is an internal 100 Kohm pull-up  
resistor.  
25  
SCLK  
VDD  
I
Clock pin for SMBus (rev 2.0). There is an internal 100 Kohm pull-up  
resistor.  
2, 9, 16,  
19, 29, 35,  
38, 46  
PWR Power connection to 3.3V for the core.  
Document #: 38-07545 Rev. **  
Page 2 of 17  
CY28331-2  
Pin Description (continued)  
Pin  
Name  
PWR  
I/O  
Description  
5, 10, 15,  
20, 27, 30,  
34, 39, 47  
VSS  
GND Power connection to GROUND for the CORE section of the chip.  
43  
42  
32  
VDDA  
VSSA  
VDDF  
PWR Power connection to 3.3V for the ANALOG section of the chip.  
GND Power connection to GROUND for the ANALOG section of the chip.  
PWR Power connection to 3.3V for the 48-MHz phase-locked loop (PLL)  
section of the chip.  
33  
VSSF  
GND Power connection to GROUND for the 48-MHz PLL section of the chip.  
been transferred. For byte write and byte read operations, the  
system controller can access individually indexed bytes. The  
offset of the indexed byte is encoded in the command code,  
Serial Data Interface  
To enhance the flexibility and function of the clock synthesizer,  
a two-signal serial interface is provided. Through the Serial  
Data Interface, various device functions, such as individual  
clock output buffers, can be individually enabled or disabled.  
The registers associated with the Serial Data Interface  
initializes to their default setting upon power-up, and therefore  
use of this interface is optional. Clock device register changes  
are normally made upon system initialization, if any are  
required. The interface can also be used during system  
operation for power management functions.  
as described in Table 2.  
The block write and block read protocol is outlined in Table 3  
while Table 4 outlines the corresponding byte write and byte  
read protocol. The slave receiver address is 11010010 (D2h).  
Table 2. Command Code Definition  
Bit  
Description  
7
0 = Block read or block write operation, 1 = Byte  
read or byte write operation  
Data Protocol  
(6:0)  
Byte offset for byte read or byte write operation.  
For block read or block write operations, these bits  
should be ‘0000000’  
The clock driver serial protocol accepts byte write, byte read,  
block write, and block read operations from the controller. For  
block write/read operation, the bytes must be accessed in  
sequential order from lowest to highest byte (most significant  
bit first) with the ability to stop after any complete byte has  
Table 3. Block Read and Block Write Protocol  
Block Write Protocol  
Block Read Protocol  
Description  
Bit  
1
Description  
Bit  
Start  
1
2:8  
9
Start  
2:8  
9
Slave address – 7 bits  
Write = 0  
Slave address – 7 bits  
Write = 0  
10  
Acknowledge from slave  
10  
Acknowledge from slave  
11:18  
Command Code – 8 bits  
‘00000000’ stands for block operation  
11:18  
Command Code – 8 bits  
‘00000000’ stands for block operation  
19  
20:27  
28  
Acknowledge from slave  
Byte Count – 8 bits  
Acknowledge from slave  
Data byte 1 – 8 bits  
Acknowledge from slave  
Data byte 2 – 8 bits  
Acknowledge from slave  
......................  
19  
20  
Acknowledge from slave  
Repeat start  
21:27  
28  
Slave address – 7 bits  
Read = 1  
29:36  
37  
29  
Acknowledge from slave  
Byte count from slave – 8 bits  
Acknowledge  
38:45  
46  
30:37  
38  
....  
39:46  
47  
Data byte from slave – 8 bits  
Acknowledge  
....  
Data Byte (N–1) –8 bits  
Acknowledge from slave  
Data Byte N –8 bits  
Acknowledge from slave  
Stop  
....  
48:55  
56  
Data byte from slave – 8 bits  
Acknowledge  
....  
....  
....  
Data bytes from slave/Acknowledge  
Data byte N from slave – 8 bits  
Not Acknowledged  
Stop  
....  
....  
....  
....  
Document #: 38-07545 Rev. **  
Page 3 of 17  
CY28331-2  
Table 4. Byte Read and Byte Write Protocol  
Byte Write Protocol  
Byte Read Protocol  
Description  
Bit  
1
Description  
Bit  
1
Start  
Start  
2:8  
9
Slave address – 7 bits  
Write = 0  
2:8  
9
Slave address – 7 bits  
Write = 0  
10  
Acknowledge from slave  
10  
Acknowledge from slave  
Command Code – 8 bits  
11:18  
Command Code – 8 bits  
11:18  
‘1xxxxxxx’ stands for byte operation, bits[6:0] of the  
command code represents the offset of the byte to  
be accessed  
‘1xxxxxxx’ stands for byte operation, bits[6:0] of the  
command code represents the offset of the byte to  
be accessed  
19  
20:27  
28  
Acknowledge from slave  
Data byte from master – 8 bits  
Acknowledge from slave  
Stop  
19  
20  
Acknowledge from slave  
Repeat start  
21:27  
28  
Slave address – 7 bits  
Read = 1  
29  
29  
Acknowledge from slave  
Data byte from slave – 8 bits  
Not Acknowledge  
Stop  
30:37  
38  
39  
Serial Control Registers  
Byte 0: Frequency and Spread Spectrum Control Register  
Bit  
@Pup  
Pin#  
Name  
Description  
Write Disable (write once).  
A 1 written to this bit after a 1 has been written to Byte0 bit0 will permanently  
disable modification of all configuration registers until the part has been  
powered off. Once the clock generator has been Write Disabled, the SMBus  
controller should still accept and acknowledge subsequent write cycles but  
it should not modify any of the registers.  
7
Inactive = 0  
6
5
4
3
2
1
0
For Test, ALWAYS program to ‘0’  
1
12  
31  
45  
48  
1
PCI33_7  
enable (1 = Enabled, 0 = Disabled)  
FS3 pin  
FS2 pin  
FS1 pin  
FS0 pin  
FS3  
FS2  
FS1  
FS0  
corresponds to Frequency Selection. See Table 1.  
corresponds to Frequency Selection. See Table 1.  
corresponds to Frequency Selection. See Table 1.  
corresponds to Frequency Selection. See Table 1.  
Write Enable. A 1 written to this bit after power-up will enable modification  
of all configuration registers and subsequent 0's written to this bit will disable  
modification of all configuration except this single bit. Note that block write  
transactions to the interface will complete, however unless the interface has  
been previously unlocked, the writes will have no effect. The effect of writing  
this bit does not take effect until the subsequent block write command.  
0
Inactive = 0  
Byte 1: PCI Clock Control Register  
Bit  
7
@Pup  
Pin#  
23  
Name  
Description  
enable (1 = Enabled, 0 = Disabled)  
enable (1 = Enabled, 0 = Disabled)  
enable (1 = Enabled, 0 = Disabled)  
enable (1 = Enabled, 0 = Disabled)  
enable (1 = Enabled, 0 = Disabled)  
enable (1 = Enabled, 0 = Disabled)  
1
1
1
1
1
1
PCI33_F  
PCI33_6  
PCI33_5  
PCI33_4  
PCI33_3  
PCI33_2  
6
24  
5
22  
4
21  
3
18  
2
17  
Document #: 38-07545 Rev. **  
Page 4 of 17  
CY28331-2  
Byte 1: PCI Clock Control Register(continued)  
Bit  
1
@Pup  
Pin#  
14  
Name  
Description  
enable (1 = Enabled, 0 = Disabled)  
enable (1 = Enabled, 0 = Disabled)  
1
1
PCI33_1  
PCI33_0  
0
13  
Byte 2: USB, 24–48MHz, REF(0:2) Control Register  
Bit  
@Pup  
Pin #  
Name  
Description  
CPUT/C(1) CPUT/C(1) shutdown. This bit can be optionally used to disable the  
CPUT/C(1) clock pair. During shutdown, CPUT = low and CPUC = high  
7
active = 1  
37, 36  
CPUT/C(0) CPUT/C(0) shutdown. This bit can be optionally used to disable the  
CPUT/C(0) clock pair. During shutdown, CPUT = low and CPUC = high  
6
active = 1  
41, 40  
5
4
3
2
1
0
active = 1  
active = 1  
active = 1  
active = 1  
active = 1  
0
45  
48  
1
REF2  
REF1  
REF0  
enable (1 = Enabled, 0 = Disabled)  
enable (1 = Enabled, 0 = Disabled)  
enable (1 = Enabled, 0 = Disabled)  
28  
31  
24_48MHz enable (1 = Enabled, 0 = Disabled)  
USB  
enable (1 = Enabled, 0 = Disabled)  
For Test, ALWAYS program to ‘0’  
Byte 3: PCI Clock Free-running Select Control Register  
Bit  
@Pup  
Pin #  
Name  
Description  
PCI_DRV  
0 = Low Strength  
1 = High Strength  
7
Inactive = 0  
PCI33_HT66 Drive Strength  
0 = Low Strength  
6
Inactive = 0  
1 = High Strength  
5
4
3
2
1
0
Inactive = 0  
22  
21  
18  
11  
8
PCI5  
PCI4  
PCI3  
free-running enable (10 = Free-running, 0 = Disabled)  
free-running enable (1 = Free-running, 0 = Disabled)  
free-running enable (1 = Free-running, 0 = Disabled)  
Inactive = 0  
Inactive = 0  
1
1
1
PCI33_HT66_3 enable (1 = Enabled, 0 = Disabled)  
PCI33_HT66_2 enable (1 = Enabled, 0 = Disabled)  
PCI33_HT66_1 enable (1 = Enabled, 0 = Disabled)  
7
Byte 4: Pin Latched/Real Time State  
Bit  
7
@Pup  
Pin#  
Name  
Description  
enable (1 = Enabled, 0 = Disabled)  
1
HW  
0
6
PCI33_HT66_0  
6
24_48MHz/SEL# pin power-up latched state  
5
Reserved  
SSEN  
for Test, ALWAYS program to ‘0’  
Spread Spectrum enable (0 = disable, 1 = enable).  
This bit provides a SW programmable control for spread spectrum  
clocking.  
4
1
3
2
1
0
FS3 pin  
FS2 pin  
FS1 pin  
FS0 pin  
31  
45  
48  
1
FS3  
FS2  
FS1  
FS0  
power-up latched state  
power-up latched state  
power-up latched state  
power-up latched state  
Document #: 38-07545 Rev. **  
Page 5 of 17  
CY28331-2  
Byte 5: SSCG, Dial-a-Skew™ and Dial-a-Ratio™ Register  
Bit  
7
@Pup  
Description  
0
1
1
Spread Spectrum Selection:  
bit7  
bit6  
bit5  
% Spread  
6
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
–1.5  
–1.0  
5
–0.7  
–0.5 (default)  
±0.75  
±0.50  
±0.35  
±0.25  
4
3
2
1
0
0
0
0
0
0
HT66 Frequency Fractional Aligner: These bits determine the HT66 fixed frequency when the  
HT66 Output Frequency Selection bit is set. It does not incorporate spread spectrum.  
Fract_Align PCI_HT  
PCI  
(MHz)  
Off  
bit[4:0]  
(MHz)  
Off  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
(default)  
66.5  
67.5  
68.5  
69.5  
70.6  
71.6  
72.6  
73.6  
74.7  
75.7  
76.7  
77.7  
78.7  
79.8  
80.8  
81.8  
82.8  
83.9  
84.9  
85.9  
86.9  
88.0  
89.0  
90.0  
91.0  
92.0  
93.1  
94.1  
95.1  
96.1  
97.2  
33.2  
33.7  
34.3  
34.8  
35.3  
35.8  
36.3  
36.8  
37.3  
37.8  
38.4  
38.9  
39.4  
39.9  
40.4  
40.9  
41.4  
41.9  
42.4  
43.0  
43.5  
44.0  
44.5  
45.0  
45.5  
46.0  
46.5  
47.0  
47.6  
48.1  
48.6  
Byte 6: Watchdog Control Register  
Bit  
@Pup  
Name  
Description  
7
0
HT66 Output Frequency  
Selection  
HT66 Output Frequency Selection:  
0: Set according to Frequency Selection Table  
1: Set according to Fractional Aligner Table  
6
5
0
0
Pin 44 Mode Select  
Frequency Reversion  
Pin 44 Mode Select:  
0 = Pin 12 is the output pin as SRESET# signal.  
1 = Pin 12 is the input pin which functions as a PD# signal.  
Frequency Reversion:  
This bit allows setting the Revert Frequency once the system is  
rebooted due to Watchdog time out only.  
0 = selects frequency of existing H/W setting  
1 = selects frequency of the second to last S/W setting. (the  
software setting prior to the one that caused a system reboot).  
4
0
WD Time-out  
WD Time-out:  
This bit is set to “1” when the Watchdog times out. It is reset to “0”  
when the system clears the WD time stamps (WD3:0).  
Document #: 38-07545 Rev. **  
Page 6 of 17  
CY28331-2  
Byte 6: Watchdog Control Register (continued)  
Bit  
3
@Pup  
Name  
Description  
0
0
0
0
WD3  
WD2  
WD1  
WD0  
This bit allows the selection of the time stamp for the Watchdog  
timer. After a Watchdog time-out, the frequency will revert to the  
original frequency.  
2
1
WD3 ..  
.. WD0  
00  
01  
10  
11  
00  
01  
10  
11  
00  
01  
10  
11  
00  
01  
10  
11  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
Off (default)  
1 second  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
2 seconds  
3 seconds  
4 seconds  
5 seconds  
6 seconds  
7 seconds  
8 seconds  
9 seconds  
10 seconds  
11 seconds  
12 seconds  
13 seconds  
14 seconds  
15 seconds  
Byte 7: Clock Vendor ID  
Bit  
7
@Pup  
Description  
0
1
0
1
1
0
0
0
Revision ID[1]  
Revision ID[0]  
Device ID[9]  
Device ID[8]  
Vendor ID[3]  
Vendor ID[2]  
Vendor ID[1]  
Vendor ID[0]  
6
5
4
3
2
1
0
Byte 8: Device ID  
Bit  
7
@Pup  
Description  
0
1
0
0
1
0
1
1
Device ID  
Device ID  
Device ID  
Device ID  
Device ID  
Device ID  
Device ID  
Device ID  
6
5
4
3
2
1
0
Byte 9: Dial-a-Frequency Control Register N  
Bit  
7
@PUp  
0
Description  
ATPG Pulse  
6
N6  
N5  
N4  
N3  
N2  
N1  
N0  
These bits are for programming the PLL’s internal N register. This access allows the user to  
modify the CPU frequency with great accuracy. All other synchronous clocks (clocks that are  
generated from the same PLL, such as PCI, remain at their existing ratios relative to the CPU  
clock.  
5
4
3
2
1
0
Document #: 38-07545 Rev. **  
Page 7 of 17  
CY28331-2  
Byte 10: Dial-a-Frequency Control Register M  
Bit  
7
@Pup  
0
Description  
ATPG Mode (default = 0)  
6
M5  
M4  
M3  
M2  
M1  
M0  
These bits are for programming the PLL’s internal M register. This access allows the user to  
modify the CPU frequency with great accuracy. All other synchronous clocks (clocks that are  
generated from the same PLL such as PCI) remain at their existing ratios relative to the CPU  
clock.  
5
4
3
2
1
When this bit = 1, it enables the Dial-a-Frequency N and M bits to be multiplexed into the  
internal N and M registers. When this bit = 0, the ROM based N and M values are loading into  
the internal N and M registers.  
0
DAFEN  
Byte 11:  
Bit  
@Pup  
Pin #  
Name  
Description  
For Test, ALWAYS program to ‘0’  
PCI33/HT66 Mode Select 1  
7
0
HW  
7
6
5
PCI33HT66SEL1# Power-up Latched State of PCI33HT66SEL1# Mode Select 1.  
(read only)  
PCI33/HT66 Mode Select 0  
PCI33HT66SEL0# Power-up Latched State of PCI33HT66SEL0# Mode Select 0.  
(read only)  
HW  
6
4
3
2
1
0
0
0
0
0
0
Reserved Set = 0  
Reserved Set = 0  
Reserved Set = 0  
Reserved Set = 0  
Reserved Set = 0  
Meanwhile, the system BIOS is running its operation with the  
System Self-Recovery Clock Management  
new frequency. If this device receives a new SMBus command  
to clear the bits originally programmed in Watchdog Timer bits  
(reprogram to 0000) before the Watchdog times out, then this  
device will keep operating in its normal condition with the new  
selected frequency.  
This feature is designed to allow the system designer to  
change frequency while the system is running, and reboot the  
operation of the system in case of a hang up due to the  
frequency change.  
When the system sends an SMBus command requesting a  
frequency change through the Dial-a-Frequency Control  
Registers, it must have previously sent a command to the  
Watchdog Timer to select which time out stamp the Watchdog  
must perform, otherwise the System Self-Recovery feature will  
not be applicable. Consequently, this device will change  
frequency and then the Watchdog timer starts timing.  
The Watchdog timer will also be triggered if you program the  
software frequency select bits (FSEL) to a new frequency  
selection. If the Watchdog times out before the new SMBus  
reprograms the Watchdog Timer bits to (0000), then this  
device will send a low system reset pulse, on SRESET#, and  
changes WD Time-out bit to “1.”  
Document #: 38-07545 Rev. **  
Page 8 of 17  
CY28331-2  
RESET W ATCHDOG TIMER  
Set WD(0:3) Bits = 0  
INITIALIZE W ATCHDOG TIMER  
Set Frequency Revert Bit  
Set WD(0:3) = (# of Sec ) x2  
SET SOFTW ARE FSEL  
Set SW Freq_Sel = 1  
Set FS(0:4)  
SET DIAL-A-FREQUENCY  
Load M and N Registers  
Set Pro_Freq_EN = 1  
Wait for 6msec For  
ClockOutput to Ramp to  
Target Frequency  
N
CLEAR W D  
Set WD(0:3) Bits = 0  
Hang?  
Exit  
Y
W ATCHDOG TIMEOUT  
FrequencyRevert Bit =  
FrequencyRevert Bit =  
0
1
Set Frequency to  
FS_HW_Latched  
Set Frequency to FS_SW  
Set SRESET# = 0 for 6 msec  
Reset  
Figure 1. Watchdog Self-Recovery Sequence Flowchart  
Document #: 38-07545 Rev. **  
Page 9 of 17  
CY28331-2  
Dial-a-Frequency  
ROM  
M Register  
SMBus  
Control  
Latch  
Register N  
Control Register N White  
N Register  
SMBus  
Control  
Register M  
Control Register M White  
DAFEN  
Figure 2. Dial-a-Frequency Feature  
The SMBus controlled Dial-a-Frequency feature is available in  
Operation  
this device via Dial-a-Frequency Control Register N and  
Dial-a-Frequency Control Register M. P is a PLL constant that  
depends on the frequency selection prior to accessing the  
Dial-a-Frequency feature.  
Pin strapping on any configuration pin is based on a 10-Kohm  
resistor connected to either 3.3V (VDD) or ground (VSS).  
When the VDD supply goes above 2.0V, the Power-on-Reset  
circuitry latches all of the configuration bits into their respective  
registers and then allows the outputs to be enabled. The  
output may not occur immediately after this time as the PLL  
needs to be locked and will not output an invalid frequency.  
The CPU frequencies are defined from the hardware-sampled  
inputs. Additional frequencies and operating states can be  
selected through the SMBus programmable interface.  
Table 5. Dial-A-Frequency Constants  
FS(3:0)  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
P
127994667  
191992000  
191992000  
95996000  
Spread spectrum modulation is required for all outputs derived  
from the internal CPU PLL2. This include the CPU(0:1),  
PCI33(0:6), PCI33_F and PCI33_HT66(0:3). The REF (0:2),  
USB and 24_48 clocks are not affected by the spread  
spectrum modulation. The spread spectrum modulation is set  
for both center and down modes using a Lexmark profiles for  
amounts of 0.5% and 1.0% at a 33KHz rate.  
127994667  
191992000  
191992000  
95966000  
The CPU clock driver is of a push-pull type for the differential  
outputs, instead of the AMD Athlonopen-drain style. The  
CPU clock termination has been derived such that a  
15–40-ohm 3.3V output driver can be used for the CPU clock.  
95966000  
191992000  
191992000  
191992000  
191992000  
191992000  
191992000  
The PCISTOP# signal provides for synchronous control over  
the any output, except the PCI33_F, that is running at 33 MHz.  
If the PCI33_HT66 outputs are configured to run at 66 MHz will  
not be stopped by this signal. The PCISTOP# signal is  
sampled by an internal PCI clock such that once it is sensed  
low or active, the 33-MHz signals are stopped on the next high  
to low transition and remains low.  
The algorithm is the same for all P values, which is Fcpu =  
(P*N)/M with the following conditions. M = (20..58), N =  
(21..125) and N > M > N/2.  
Document #: 38-07545 Rev. **  
Page 10 of 17  
CY28331-2  
Absolute Maximum Conditions  
Parameter  
Description  
Conditions  
Non-functional  
Min.  
–0.5  
–0.5  
–65  
Max  
Unit  
V
V
DD, VDDA, VDDF Supply voltage  
5.0  
VDD + 0.5  
+150  
VIN  
TS  
Input voltage  
Functional  
V
Storage temperature  
Temperature, Junction  
Dissipation, Junction to Case  
Non-functional  
Functional  
°C  
TJ  
+150  
°C  
ØJC  
Mil-Spec 883E Method  
1012.1  
45  
°C/W  
ØJA  
Dissipation, Junction to Ambient  
JEDEC (JESD 51)  
15  
10  
°C/W  
V
ESDh  
ESD Protection (Human Body Model) MIL-STD-883, Method  
3015  
>2,000  
Ul-94  
MSL  
Flammability Rating  
V-0 @1/8 in.  
ppm  
Moisture Sensitivity Level  
1
Operating Condition  
Parameter  
Description  
Min.  
Typ.  
Max.  
3.465  
70  
Unit  
V
VDD, VDDA, VDDF Supply voltage  
3.135  
0
3.3  
TA  
Operating temperature, Ambient  
°C  
FXIN  
Input frequency (crystal or reference)  
10  
14.318  
16  
MHz  
SCLK and SDATA Input Electrical Characteristics (5V-tolerant)  
Parameter  
Description  
Input Low Voltage  
Conditions  
Min.  
VSS – 0.3  
2.0  
Typ.  
Max.  
Unit  
V
VIL  
VIH  
0.8  
Input High Voltage  
Input High/Low Current  
Output High Voltage  
Output Low Current  
VDD + 0.3  
V
IIL, IIH  
VOL  
IOL  
0 < VIN < VDD  
±5  
0.4  
6
µA  
V
IOL = 1.75 mA  
VO = 0.8V  
VSS – 0.3  
2
mA  
DC Electrical Specifications (all outputs loaded)  
Parameter  
VIL  
Description  
Input Low Voltage  
Conditions  
Min.  
VSS – 0.3  
2.0  
Typ.  
Max.  
Unit  
V
0.8  
VIH  
Input High Voltage  
VDD + 0.3  
V
IIL  
Input Low Current  
@VIL = VSS, except PU and PD  
@VIH =VDD, except PU and PD  
-5  
5
µA  
µA  
µA  
mA  
mA  
pF  
pF  
nH  
pF  
V
IIH  
Input High Current  
IOZ  
Three-state Leakage Current  
Dynamic Supply Current  
Power-down Supply Current  
Input Pin Capacitance  
Output Pin Capacitance  
Pin Inductance  
10  
IDD3.3V  
IPD3.3V  
CIN  
CPU(0:1) @ 200MHz  
Except XIN and XOUT  
250  
2
5
COUT  
LPIN  
6
7
CXTAL  
VBIAS  
Crystal Pin Capacitance  
Crystal DC Bias Voltage  
Measured from Pin to Ground.  
27  
36  
45  
0.3VDD  
VDD/2  
0.7VDD  
Document #: 38-07545 Rev. **  
Page 11 of 17  
CY28331-2  
AC Electrical Specifications  
PCI133_HT66 = 66MHz  
Parameter  
Hammer CPU  
TR  
Description  
Test Condition  
Min.  
Typ.  
Max. Unit  
Output Rise Edge Rate  
Output Fall Edge Rate  
Differential Voltage  
Measured @ the Hammer test load using  
VOCM±400mV, 0.850V to 1.650V  
2
7
V/ns  
V/ns  
V
TF  
Measured @ the Hammer test load using  
VOCM ±400mV, 1.650V to 0.850V  
2
7
VDIFF  
Measured @ the Hammer test load  
(single-ended)  
0.4  
1.25  
1.25  
2.3  
150  
1.45  
200  
Change in VDIFF_DC  
Magnitude  
Measured @ the Hammer test load  
(single-ended)  
DIFF  
–150  
1.05  
–200  
mV  
V
VCM  
Common Mode Voltage  
Measured @ the Hammer test load  
(single-ended)  
VCM  
Change in VCM  
Measured @ the Hammer test load  
(single-ended)  
mV  
TDC  
Duty Cycle  
Measured at Vox  
Measured at Vox  
Measured at Vox  
45  
0
50  
53  
%
ps  
ps  
TCYC  
TACCUM  
TFS  
Jitter, Cycle to Cycle  
Jitter, Accumulated  
100  
200  
–1000  
1000  
Frequency Stabilizationfrom Measure from full supply voltage  
Power-up  
0
3
ms  
ZOUT  
Output Impedance  
Average value during switching transition.  
15  
35  
55  
PCI/HyperTransport Clock Outputs  
VOL  
VOH  
IOL  
IOH  
F33  
F66  
TR  
Output Low Voltage  
Output High Voltage  
Output Low Current  
Output High Current  
Frequency Actual  
IOL = 9.0 mA  
IOH = –12.0 mA  
VO = 0.8V  
0.4  
V
V
2.4  
10  
mA  
mA  
MHz  
MHz  
V/ns  
V/ns  
%
VO = 2.0V  
–15  
33.33  
66.67  
Output Rise Edge Rate  
Output Fall Edge Rate  
Duty Cycle  
Measured from 20% to 60%  
Measured from 60% to 20%  
Measured at 1.5V  
0.9  
0.9  
4
4
TF  
TD  
45  
55  
TJC  
TJA  
Jitter, Cycle-to-Cycle  
Jitter Accumulated  
Measured at 1.5V  
0
400  
1000  
ps  
Measured at 1.5V  
–1000  
ps  
REF(0:2) Clock Outputs  
VOL  
VOH  
IOL  
Output Low Voltage  
IOL = 9.0 mA  
IOH = –12.0 mA  
VO = 0.8V  
0.4  
V
V
Output High Voltage  
Output Low Current  
Output High Current  
Frequency, Actual  
Output Rise Edge Rate  
Output Fall Edge Rate  
Duty Cycle  
2.4  
16  
mA  
mA  
MHz  
V/ns  
V/ns  
%
IOH  
VO = 2.0V  
–22  
FA  
14.318  
TR  
Measured from 20% to 60%  
Measured from 60% to 20%  
Measured at 1.5V  
0.5  
0.5  
2
2
TF  
TDC  
TCCJ  
TACCUM  
TFS  
45  
55  
Jitter, Cycle-to-Cycle  
Jitter, Accumulated  
Measured at 1.5V  
0
500  
24  
1000  
1000  
ps  
Measured at 1.5V  
–1000  
ps  
Frequency Stabilizationfrom Measure from full supply voltage  
Power-up  
0
3
mS  
IOZ  
Output Impedance  
Average value during switching transition.  
20  
60  
Document #: 38-07545 Rev. **  
Page 12 of 17  
CY28331-2  
AC Electrical Specifications  
PCI133_HT66 = 66MHz  
Parameter  
Description  
Test Condition  
Min.  
Typ.  
Max. Unit  
USB, 24_48 Clock Outputs  
VOL  
VOH  
IOL  
Output Low Voltage  
IOL = 9.0 mA  
0.4  
V
Output High Voltage  
Output Low Current  
Output High Current  
Frequency Actual  
IOH = –12.0 mA  
VO = 0.8V  
2.4  
16  
V
mA  
mA  
MHz  
MHz  
V/ns  
V/ns  
%
IOH  
F24  
F48  
TR  
VO = 2.0V  
–22  
24.004  
48.008  
Output Rise Edge Rate  
Output Fall Edge Rate  
Duty Cycle  
Measured from 20% to 80%  
Measured from 80% to 20%  
Measured at 1.5V  
0.5  
0.5  
45  
2
2
TF  
TDC  
TCCJ  
55  
Jitter, Cycle-to-Cycle 24_48 Measured at 1.5V  
MHz  
0
250  
24  
500  
ps  
TJC  
TJA  
TFS  
Jitter, Cycle-to-Cycle USB  
Jitter Accumulated  
Measured at 1.5V  
Measured at 1.5V  
0
100  
ps  
ps  
–1000  
1000  
Frequency Stabilizationfrom Measure from full supply voltage  
Power_up  
0
3
ms  
ZOUT  
Output Impedance  
Average value during switching transition.  
20  
60  
Table 6. Skew [1]  
Parameter  
Description  
Conditions  
Skew Window  
Unit  
TSK_CPU_CPU  
CPU to CPU skew,  
time-independent  
Measured @ crossing points for CPUT rising  
edges1  
250  
ps  
TSK_CPU_PCI33 CPU to PCI33 skew, Measured @ crossing points for CPUT rising  
time-independent edge and 1.5V PCI clocks  
500  
500  
500  
500  
500  
200  
200  
200  
200  
200  
200  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
TSK_PCI33_PCI33 PCI33 to PCI33 skew, Measured between rising @ 1.5V  
time-independent  
TSK_PCI33_HT66 PCI33 to HT66 skew, Measured between rising @ 1.5V  
time-independent  
TSK_CPU_HT66 CPU to HT66 skew,  
time-independent  
Measured @ crossing points for CPUT rising  
edge and 1.5V for HyperTransport clocks  
TSK_HT66_HT66 HT66 to HT66 skew, Measured between rising @ 1.5V  
time-independent  
TSK_CPU_CPU  
CPU to CPU skew,  
time-variant  
Measured @ crossing points for CPUT rising  
edges  
TSK_CPU_PCI33 CPU to PCI33 skew, Measured @ crossing points for CPUT rising  
time-variant edge and 1.5V PCI clocks  
TSK_PCI33_PCI33 PCI33 to PCI33 skew, Measured between rising @ 1.5V  
time-variant  
TSK_PCI33_HT66 PCI33 to HT66 skew, Measured between rising @ 1.5V  
time-variant  
TSK_CPU_HT66 CPU to HT66 skew,  
time-variant  
Measured @ crossing points for CPUT rising  
edge and 1.5V for HyperTransport clocks  
TSK_HT66_HT66 HT66 to HT66 skew, Measured between rising @ 1.5V  
time-variant  
Note:  
1. All skews in this skew budget are measured from the first referenced signal to the next. Therefore, this skew specifies the maximum SKEW WINDOW between  
these two signals to be 500 ps whether the CPU crossing leads or lags the PCI clock. This should NOT be interpreted to mean that the PCI33 edge could either  
be 500 ps before the CPU clock to 500 ps after the clock, thus defining a 1000-ps window in which the PCI33 clock edge could fall.  
Document #: 38-07545 Rev. **  
Page 13 of 17  
CY28331-2  
Table 7.  
Clock Name  
Max Load (in pF)[2]  
CPU, USB, 24_48MHz, REF  
20  
30  
PCI33, PCI33_F, PCI33_HT66  
Tsu  
PCI_STP#  
PCI_F  
PCI  
Figure 3. PCISTOP# Assertion Waveform  
Tsu  
PCI_STP#  
PCI_F  
PCI  
Figure 4. PCISTOP# Deassertion Waveform  
Vbias=1.25V  
125 ohms  
169 ohms  
5pF  
125 ohms  
15 ohms  
3900pF  
3900pF  
15 ohms  
5pF  
Figure 5. Test Load Configuration  
Note:  
2. The above loads are positioned near each output pin when tested.  
Document #: 38-07545 Rev. **  
Page 14 of 17  
CY28331-2  
SRESET#/PD#  
CPUT  
CPUC  
PCI/PCI_HT  
USB,24_48MHz  
REF  
Figure 6. PD# Assertion Waveform  
PD#  
CPUT  
CPUC  
PCI 33MHz  
3V66  
USB 48MHz  
REF 14.318MHz  
Figure 7. PD# Deassertion Waveform  
Ordering Information  
Part Number  
CY28331-2OC  
CY28331-2OCT  
Package Type  
48-pin SSOP  
Product Flow  
Commercial, 0° to 70°C  
Commercial, 0° to 70°C  
48-pin SSOP – Tape and Reel  
Document #: 38-07545 Rev. **  
Page 15 of 17  
CY28331-2  
Package Drawing and Dimensions  
48-lead Shrunk Small Outline Package O48  
51-85061-*C  
AMDAthlonandHyperTransportaretrademarksofAdvancedMicroDevices, Inc. LexmarkisatrademarkofLexmarkInternational,  
Inc. Dial-a-Frequency is a registered trademark, and Dial-a-Skew and Dial-a-Ratio are trademarks, of Cypress Semiconductor.  
All product and company names mentioned in this document are the trademarks of their respective holders.  
Document #: 38-07545 Rev. **  
Page 16 of 17  
CY28331-2  
Document History Page  
Document Title: CY28331-2 Clock Generator for AMD™ Hammer  
Document Number: 38-07545  
Orig. of  
Rev.  
ECN No. Issue Date  
126369 05/21/03  
Description of Change  
Change  
**  
RGL  
New Data Sheet  
Document #: 38-07545 Rev. **  
Page 17 of 17  

相关型号:

CY28331OC

Clock Generator for AMD⑩ Hammer
SPECTRALINEAR

CY28331OC

Clock Generator for AMD⑩ Hammer
CYPRESS

CY28331OCT

Clock Generator for AMD⑩ Hammer
SPECTRALINEAR

CY28331OCT

Clock Generator for AMD⑩ Hammer
CYPRESS

CY28331OXC

Clock Generator for AMD⑩ Hammer
SPECTRALINEAR

CY28331OXC

Clock Generator for AMD⑩ Hammer
CYPRESS

CY28331OXCT

Clock Generator for AMD⑩ Hammer
SPECTRALINEAR

CY28331OXCT

Clock Generator for AMD⑩ Hammer
CYPRESS

CY28339

Intel CK408 Mobile Clock Synthesizer
CYPRESS

CY28339

Intel CK408 Mobile Clock Synthesizer
SPECTRALINEAR

CY28339ZC

Intel CK408 Mobile Clock Synthesizer
CYPRESS

CY28339ZC

Intel CK408 Mobile Clock Synthesizer
SPECTRALINEAR