CY28331OXC [SPECTRALINEAR]

Clock Generator for AMD⑩ Hammer; 时钟发生器的AMD ™锤
CY28331OXC
型号: CY28331OXC
厂家: SPECTRALINEAR INC    SPECTRALINEAR INC
描述:

Clock Generator for AMD⑩ Hammer
时钟发生器的AMD ™锤

时钟发生器
文件: 总16页 (文件大小:179K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY28331  
Clock Generator for AMD™ Hammer  
Features  
Table 1. Frequency Table (MHz)[1]  
• Supports AMD™ Hammer CPU  
FS  
(3:0)  
PCI_HT  
SEL  
• Two differential pairs of CPU clocks  
• Eight low-skew/low-jitter PCI clocks  
• One free-running PCI clock  
CPU  
HT66  
PCI  
0000  
X
High-Z  
(All outputs except XOUT are three-stated)  
0001  
0010  
0011  
0100  
0101  
0110  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
133.9  
166.9  
200.9  
100.0  
133.3  
166.7  
200.0  
67.0/33.5  
66.8/33.4  
67.0/33.5  
66.7/33.3  
66.7/33.3  
66.7/33.3  
66.7/33.3  
33.5  
33.4  
33.5  
33.3  
33.3  
33.3  
33.3  
• Four low-skew/low-jitter PCI/HyperTransport™ clocks  
• One 48M output for USB  
• One programmable 24M or 48M for FDC  
• Three REF 14.318 MHz clocks  
• Dial-a-Frequency£ programmability  
• Lexmark Spread Spectrum for optimal electromagnetic  
interference (EMI) reduction  
0111  
(default)  
• SMBus register-programmable options  
• 5V-tolerance SCLK and SDATA lines  
• 3.3V operation  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
105.0  
110.0  
210.0  
240.0  
270.0  
233.3  
266.7  
300.0  
70.0/35.0  
73.3/36.7  
70.0/35.0  
60.0/30.0  
67.5/33.8  
58.3/29.2  
66.7/33.3  
75.0/37.5  
35.0  
36.7  
35.0  
30.0  
33.8  
29.2  
33.3  
37.5  
• Power management control pins  
• 48-pin SSOP package  
Block Diagram  
Pin Configuration  
XIN  
14.31818MHz  
XTAL  
REF(0:2)  
USB  
XOUT  
*FS0/REF0  
VDD  
1
2
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
*FS1/REF1  
VSS  
VDD  
XIN  
XOUT  
3
4
/4  
*FS2/REF2  
PLL1  
VSS  
PCI33HT66_0/*PCI33HT66SEL0#  
PCI33HT66_1/*PCI33HT66SEL1#  
5
6
SRESET#/PD#  
VDDA  
VSSA  
CPUT0  
CPUC0  
VSS  
7
8
24_48MHz  
PCI33_HT66_2  
VDD  
VSS  
/2  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
SEL#  
PCI33_HT66_3  
PCI33_7  
PCI33_0  
PCI33_1  
VSS  
VDD  
CPUT1  
CPUC1  
VDD  
VSS  
VSSF  
VDDF  
SRESET#  
VDD  
FS(0:3)  
CPUT(0:1)  
CPUC(0:1)  
PCI33_2  
PCI33_3  
VDD  
PLL2  
**USB/FS3  
VSS  
VDD  
PCISTOP#  
VSS  
SPREAD  
Control  
PCI33_4  
PCI33_5  
PCISel/PCI33_F  
*PCI33_6/PCISTOP#  
24_48MHz/**SEL#  
VSS  
PCI33_F  
/N  
Logic  
PD#  
SDATA  
SCLK  
SCLK  
STOP  
PCI33_(0:7)  
*100K Internal Pull-up  
**100K Internal Pull-down  
SDATA  
CNTL  
PCI33_HT66_(0:3)  
Note:  
1. HCLK, 66 MHz, and 33 MHz are in phase and synchronous at power-up.  
Rev 1.0, November 24, 2006  
Page 1 of 16  
2200 Laurelwood Road, Santa Clara, CA 95054  
Tel:(408) 855-0555 Fax:(408) 855-0550  
www.SpectraLinear.com  
CY28331  
Pin Description  
Pin  
Name  
PWR  
VDD  
VDD  
I/O  
I
Description  
3
4
XIN  
Oscillator Buffer Input. Connect to a crystal or to an external clock.  
XOUT  
O
Oscillator Buffer Output. Connect to a crystal. Do not connect when an  
external clock is applied at XIN.  
41, 37  
40, 36  
CPUT(0:1)  
CPUC(0:1)  
VDDC  
VDDC  
O
O
CPU clock outputs 0 and 1: push-pull “true” output of differential pair.  
CPU clock outputs 0 and 1: push-pull “complement” output of differential  
pair.  
13, 14, 17, PCI33(0:5)  
18, 21, 22  
O
3.3V PCI clock outputs controlled by PCISTOP#.  
23  
PCISel /  
PCI33_F  
I/O PCISel is a strap option during power-up to select Pin 24 functionality:  
0: Configure Pin 24 as PCI33_6  
1: Configure Pin 24 as PCISTOP# (default 100k internal pull-up)  
After power-up, this pin reverts to standard PCI33_F output.  
8, 11  
6, 7  
PCI33_HT66(2:3)  
VDDD  
O
3.3V PCI 33 MHz or HyperTransport66 clock outputs. This group is  
selectable between 33 MHz and 66 MHz, based on the state of  
PCI33HT66SEL[0:1]#.  
PCI33_HT66_[0:1]/  
PCI33_HT66SEL[0:1]#  
VDDD  
I/O PCI33 or HT66 select. This input strap selects the output frequency of  
PCI33_HT66 outputs to either 33 MHz or 66 MHz. There is an internal  
100Kohm pull-up resistor. After power-up, this pin becomes  
PCI33_HT66_[0:1] output.  
SEL1  
SEL0 PIN6  
PIN7  
PIN8  
PIN11  
0
0
1
1
0
1
0
1
HT66_0  
HT66_1 HT66_2  
HT66_1 HT66_2  
HT66_1 PCI33_2  
PCI33_1 PCI33_2  
HT66_3  
PCI33_3  
PCI33_3  
PCI33_3  
HT66_0  
HT66_0  
HT66_0  
31  
28  
USB/FS3  
I/O 3.3V USB clock output at 48 MHz. At power-up this pin is sensed to  
determine the CPU output frequency. There is an internal 100K-ohm  
pull-down resistor.  
24_48MHz/SEL#  
I/O 3.3V super I/O clock output. At power-up this pin is sensed to determine  
whether the output is 24 MHz or 48 MHz. There is an internal 100K-ohm  
pull-down resistor. This pin will be externally strapped high using a  
10K-ohm resistor to VSS. 0 = 48 MHz, 1 = 24 MHz.  
1, 48, 45 REF(0:2)/FS(0:2)  
I/O 3.3V reference clock output. At power-up this pin is sensed to determine  
the CPU output frequency. There is an internal 100K-ohm pull-up resistor  
for FS0, while FS(1:2) includes 100K ohm pull-up resistors.  
44  
24  
SRESET#/PD#  
I/O Watchdog Time-out Reset Output. Power-down input (100K internal  
pull-up).  
PCI33_6/  
PCISTOP#  
I/O When configured through pin 23 as PCI_STOP#, this pin controls the  
PCI33(0:5,7) and PCI33_HT66(1:3) outputs. Active LOW control input to  
halt all 33-MHz PCI clocks except PCI33_F. Only the PCI33_HT66 outputs  
that are running at 33 MHz will be stopped. The outputs will be glitch-free  
when turning off and turning on (100K internal pull-up). When configured  
through pin 23 as PCI33_6, PCI_STOP# is unavailable.  
12  
26  
PCI33_7  
SDATA  
O
3.3V PCI clock outputs controlled by PCISTOP#.  
I/O Data pin for SMBus (rev2.0). There is an internal 100K-ohm pull-up  
resistor.  
25  
SCLK  
VDD  
I
Clock pin for SMBus (rev2.0). There is an internal 100K-ohm pull-up  
resistor.  
2, 9, 16,  
19, 29, 35,  
38, 46  
PWR Power connection to 3.3V for the core.  
5, 10, 15, VSS  
20, 27, 30,  
34, 39, 47  
GND Power connection to GROUND for the CORE section of the chip.  
Rev 1.0,November 24, 2006  
Page 2 of 16  
CY28331  
Pin Description (continued)  
Pin  
Name  
PWR  
I/O  
Description  
43  
42  
32  
33  
VDDA  
VSSA  
VDDF  
VSSF  
PWR Power connection to 3.3V for the ANALOG section of the chip.  
GND Power connection to GROUND for the analog section of the chip.  
PWR Power connection to 3.3V for the 48 MHz PLL section of the chip.  
GND Power connection to GROUND for the 48 MHz PLL section of the chip.  
Serial Data Interface  
Data Protocol  
To enhance the flexibility and function of the clock synthesizer,  
a two-signal serial interface is provided. Through the Serial  
Data Interface (SDI), various device functions, such as  
individual clock output buffers, can be individually enabled or  
disabled. The registers associated with the SDI initialize to  
their default setting upon power-up, and therefore use of this  
interface is optional. Clock device register changes are  
normally made upon system initialization, if any are required.  
The interface can also be used during system operation for  
power management functions.  
The clock driver serial protocol accepts byte write, byte read,  
block write, and block read operations from the controller. For  
block write/read operation, the bytes must be accessed in  
sequential order from lowest to highest byte (most significant  
bit first) with the ability to stop after any complete byte has  
been transferred. For byte write and byte read operations, the  
system controller can access individually indexed bytes. The  
offset of the indexed byte is encoded in the command code,  
as described in Table 2.  
The block write and block read protocol is outlined in Table 3  
while Table 4 outlines the corresponding byte write and byte  
read protocol. The slave receiver address is 11010010 (D2h).  
Table 2. Command Code Definition  
Bit  
Description  
7
0 = Block read or block write operation, 1 = Byte read or byte write operation.  
(6:0)  
Byte offset for byte read or byte write operation. For block read or block write operations, these bits  
should be '0000000.'  
Table 3. Block Read and Block Write Protocol  
Block Write Protocol  
Block Read Protocol  
Description  
Bit  
1
Description  
Bit  
1
Start  
Start  
2:8  
9
Slave address – 7 bits  
Write = 0  
2:8  
9
Slave address – 7 bits  
Write = 0  
10  
Acknowledge from slave  
10  
Acknowledge from slave  
11:18  
Command Code – 8 bits  
'00000000' stands for block operation  
11:18  
Command Code – 8 bits  
'00000000' stands for block operation  
19  
20:27  
28  
Acknowledge from slave  
Byte Count – 8 bits  
Acknowledge from slave  
Data byte 1 – 8 bits  
Acknowledge from slave  
Data byte 2 – 8 bits  
Acknowledge from slave  
......................  
19  
20  
Acknowledge from slave  
Repeat start  
21:27  
28  
Slave address – 7 bits  
Read = 1  
29:36  
37  
29  
Acknowledge from slave  
Byte count from slave – 8 bits  
Acknowledge  
38:45  
46  
30:37  
38  
....  
39:46  
47  
Data byte from slave – 8 bits  
Acknowledge  
....  
Data Byte (N–1) – 8 bits  
Acknowledge from slave  
Data Byte N – 8 bits  
Acknowledge from slave  
Stop  
....  
48:55  
56  
Data byte from slave – 8 bits  
Acknowledge  
....  
....  
....  
Data bytes from slave/Acknowledge  
Data byte N from slave – 8 bits  
Not Acknowledge  
....  
....  
....  
....  
Stop  
Rev 1.0,November 24, 2006  
Page 3 of 16  
CY28331  
Table 4. Byte Read and Byte Write Protocol  
Byte Write Protocol  
Byte Read Protocol  
Description  
Bit  
1
Description  
Bit  
1
Start  
Start  
2:8  
9
Slave address – 7 bits  
Write = 0  
2:8  
9
Slave address – 7 bits  
Write = 0  
10  
Acknowledge from slave  
10  
Acknowledge from slave  
11:18 Command Code – 8 bits  
'1xxxxxxx' stands for byte operation, bits[6:0] of the  
11:18 Command Code – 8 bits  
'1xxxxxxx' stands for byte operation, bits[6:0] of the  
command code represents the offset of the byte to  
be accessed  
command code represents the offset of the byte to be  
accessed  
19  
Acknowledge from slave  
19  
20  
Acknowledge from slave  
Repeat start  
20:27 Data byte from master – 8 bits  
28  
29  
Acknowledge from slave  
Stop  
21:27 Slave address – 7 bits  
28  
29  
Read = 1  
Acknowledge from slave  
30:37 Data byte from slave – 8 bits  
38  
39  
Not Acknowledge  
Stop  
Serial Control Registers  
Byte 0: Frequency and Spread Spectrum Control Register  
Bit  
@Pup  
Pin#  
Name  
Description  
7
Inactive = 0  
Write Disable (write once). A 1 written to this bit after a 1 has been written to Byte0  
bit0 will permanently disable modification of all configuration registers until the part  
has been powered off. Once the clock generator has been Write Disabled, the  
SMBus controller should still accept and acknowledge subsequent write cycles but  
it should not modify any of the registers.  
6
5
4
3
2
1
0
0
For Test, always program to ‘0’  
1
12  
31  
45  
48  
1
PCI33_7 Enable (1 = Enabled, 0 = Disabled)  
FS3 pin  
FS2 pin  
FS1 pin  
FS0 pin  
Inactive = 0  
FS3  
FS2  
FS1  
FS0  
corresponds to Frequency Selection. See Table 1.  
corresponds to Frequency Selection. See Table 1.  
corresponds to Frequency Selection. See Table 1.  
corresponds to Frequency Selection. See Table 1.  
Write Enable. A 1 written to this bit after power-up will enable modification of all  
configuration registers and subsequent 0's written to this bit will disable modification  
of all configuration except this single bit. Note that block write transactions to the  
interface will complete, however unless the interface has been previously unlocked,  
the writes will have no effect. The effect of writing this bit doe not take effect until  
the subsequent block write command.  
Byte 1: PCI Clock Control Register  
Bit  
7
@Pup  
Pin#  
23  
Name  
Description  
Enable (1 = Enabled, 0 = Disabled)  
1
1
1
1
1
1
1
PCI33_F  
PCI33_6  
PCI33_5  
PCI33_4  
PCI33_3  
PCI33_2  
PCI33_1  
6
24  
Enable (1 = Enabled, 0 = Disabled)  
Enable (1 = Enabled, 0 = Disabled)  
Enable (1 = Enabled, 0 = Disabled)  
Enable (1 = Enabled, 0 = Disabled)  
Enable (1 = Enabled, 0 = Disabled)  
Enable (1 = Enabled, 0 = Disabled)  
5
22  
4
21  
3
18  
2
17  
1
14  
Rev 1.0,November 24, 2006  
Page 4 of 16  
CY28331  
Byte 1: PCI Clock Control Register (continued)  
Bit  
@Pup  
Pin#  
Name  
Description  
Description  
0
1
13  
PCI33_0  
Enable (1 = Enabled, 0 = Disabled)  
Byte 2: USB, 24–48MHz, REF(0:2) Control Register  
Bit  
@Pup  
Pin #  
Name  
7
active = 1  
37, 36  
CPUT/C(1) CPUT/C(1) shutdown. This bit can be optionally used to disable the CPUT/C(1)  
clock pair. During shutdown, CPUT = low and CPUC = high  
6
active = 1  
41, 40  
CPUT/C(0) CPUT/C(0) shutdown. This bit can be optionally used to disable the CPUT/C(0)  
clock pair. During shutdown, CPUT = low and CPUC = high  
5
4
3
2
1
0
active = 1  
active = 1  
active = 1  
active = 1  
active = 1  
0
45  
48  
1
REF2  
REF1  
REF0  
Enable (1 = Enabled, 0 = Disabled)  
Enable (1 = Enabled, 0 = Disabled)  
Enable (1 = Enabled, 0 = Disabled)  
28  
31  
24_48MHz Enable (1 = Enabled, 0 = Disabled)  
USB  
Enable (1 = Enabled, 0 = Disabled)  
For Test, always program to ‘0’  
Byte 3: PCI Clock Free Running Select Control Register  
Bit  
@Pup  
Pin #  
Name  
Description  
7
Inactive = 0  
PCI_DRV  
0 = Low Strength  
1 = High Strength  
6
Inactive = 0  
PCI33_HT66 Drive Strength  
0 = Low Strength  
1 = High Strength  
5
4
3
2
1
0
Inactive = 0  
22  
21  
18  
11  
8
PCI5  
PCI4  
PCI3  
Free running enable (10 = Free running, 0 = Disabled)  
Free running enable (1 = Free running, 0 = Disabled)  
Free running enable (1 = Free running, 0 = Disabled)  
Inactive = 0  
Inactive = 0  
1
1
1
PCI33_HT66_3 Enable (1 = Enabled, 0 = Disabled)  
PCI33_HT66_2 Enable (1 = Enabled, 0 = Disabled)  
PCI33_HT66_1 Enable (1 = Enabled, 0 = Disabled)  
7
Byte 4: Pin Latched/Real-time State  
Bit  
7
@Pup  
Pin#  
Name  
Description  
1
HW  
0
6
PCI33_HT66_0 Enable (1 = Enabled, 0 = Disabled)  
24_48MHz/SEL# Pin power-up latched state  
6
5
Reserved  
SSEN  
For Test, always program to ‘0’  
4
1
Spread Spectrum enable (0 = disable, 1 = enable).  
This bit provides a SW programmable control for spread spectrum clocking.  
3
2
1
0
FS3 pin  
FS2 pin  
FS1 pin  
FS0 pin  
31  
45  
48  
1
FS3  
FS2  
FS1  
FS0  
Power-up latched state  
Power-up latched state  
Power-up latched state  
Power-up latched state  
Rev 1.0,November 24, 2006  
Page 5 of 16  
CY28331  
Byte 5: SSCG, Dial-a-Skew™, and Dial-a-Ratio™ Register  
Bit  
7
@Pup  
Description  
0
1
Spread Spectrum Selection:  
bit7  
0
bit6  
0
bit5  
0
% Spread  
–1.5  
–1.0  
6
0
0
1
0
1
0
–0.7  
0
1
1
1
0
0
1
0
1
–0.5 (default)  
0.75  
0.50  
5
1
1
1
1
1
0
1
0.35  
0.25  
4
3
2
1
0
0
0
0
0
0
HT66 Frequency Fractional Aligner: These bits determine the HT66 fixed frequency when the  
HT66 Output Frequency Selection bit is set. It does not incorporate spread spectrum.  
Fract_Align  
bit[4:0]  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
PCI_HT  
(MHz)  
Off  
PCI  
(MHz)  
Off  
(default)  
66.5  
67.5  
68.5  
69.5  
70.6  
71.6  
72.6  
73.6  
74.7  
75.7  
76.7  
77.7  
78.7  
79.8  
80.8  
81.8  
82.8  
83.9  
84.9  
85.9  
86.9  
88.0  
89.0  
90.0  
91.0  
92.0  
93.1  
94.1  
95.1  
96.1  
97.2  
33.2  
33.7  
34.3  
34.8  
35.3  
35.8  
36.3  
36.8  
37.3  
37.8  
38.4  
38.9  
39.4  
39.9  
40.4  
40.9  
41.4  
41.9  
42.4  
43.0  
43.5  
44.0  
44.5  
45.0  
45.5  
46.0  
46.5  
47.0  
47.6  
48.1  
48.6  
Byte 6: Watchdog Control Register  
Bit @Pup Name  
HT66 Output Frequency HT66 Output Frequency Selection:  
Description  
7
0
Selection  
0: Set according to Frequency Selection Table  
1: Set according to Fractional Aligner Table  
6
0
Pin 44 Mode Select  
Pin 44 Mode Select:  
0 = Pin 12 is the output pin as SRESET# signal.  
1 = Pin 12 is the input pin which functions as a PD# signal.  
Rev 1.0,November 24, 2006  
Page 6 of 16  
CY28331  
Byte 6: Watchdog Control Register (continued)  
Bit @Pup  
Name  
Description  
5
0
Frequency Reversion Frequency Reversion:  
This bit allows setting the Revert Frequency once the system is rebooted due to  
Watchdog time out only.  
0 = Selects frequency of existing H/W setting  
1 = Selects frequency of the second to last S/W setting. (the software setting prior to  
the one that caused a system reboot).  
4
0
WD Time-out  
WD Time-out:  
This bit is set to “1” when the Watchdog times out. It is reset to “0” when the system  
clears the WD time stamps (WD3:0).  
3
2
1
0
0
0
WD3  
WD2  
WD1  
This bit allows the selection of the time stamp for the Watchdog timer. After a  
Watchdog time-out, the frequency will revert to the original frequency.  
WD3 .. ..  
WD0  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
Off (default)  
1 second  
2 seconds  
3 seconds  
4 seconds  
5 seconds  
6 seconds  
7 seconds  
8 seconds  
9 seconds  
10 seconds  
11 seconds  
12 seconds  
13 seconds  
14 seconds  
15 seconds  
0
0
WD0  
Byte 7: Clock Vendor ID  
Bit  
7
@Pup  
Description  
0
1
0
1
1
0
0
0
Revision ID[1]  
Revision ID[0]  
Device ID[9]  
Device ID[8]  
Vendor ID[3]  
Vendor ID[2]  
Vendor ID[1]  
Vendor ID[0]  
6
5
4
3
2
1
0
Byte 8: Device ID  
Bit  
7
@Pup  
Description  
0
1
0
0
1
0
1
1
Device ID  
Device ID  
Device ID  
Device ID  
Device ID  
Device ID  
Device ID  
Device ID  
6
5
4
3
2
1
0
Rev 1.0,November 24, 2006  
Page 7 of 16  
CY28331  
Byte 9: Dial-a-Frequency Control Register N  
Bit  
7
@PUp  
0
Description  
ATPG Pulse  
6
N6  
N5  
N4  
N3  
N2  
N1  
N0  
These bits are for programming the PLL’s internal N register. This access allows the user to  
modify the CPU frequency with great accuracy. All other synchronous clocks (clocks that are  
generated from the same PLL, such as PCI, remain at their existing ratios relative to the CPU  
clock.  
5
4
3
2
1
0
Byte 10: Dial-a-Frequency Control Register M  
Bit  
7
@Pup  
0
Description  
ATPG Mode (default = 0)  
6
M5  
M4  
M3  
M2  
M1  
M0  
These bits are for programming the PLL’s internal M register. This access allows the user to modify  
the CPU frequency with great accuracy. All other synchronous clocks (clocks that are generated  
from the same PLL, such as PCI, remain at their existing ratios relative to the CPU clock.  
5
4
3
2
1
When this bit = 1, it enables the Dial-a-Frequency N and M bits to be multiplexed into the internal N  
and M registers. When this bit = 0, the ROM based N and M values are loading into the internal N  
and M registers.  
0
DAFEN  
Byte 11:  
Bit  
@Pup Pin #  
Name  
Description  
7
0
For Test, ALWAYS program to ‘0’  
PCI33/HT66 Mode Select 1  
Power-up Latched State of PCI33HT66SEL1# Mode Select 1 (read only).  
HW  
HW  
7
6
6
5
PCI33HT66SEL1#  
PCI33HT66SEL0#  
PCI33/HT66 Mode Select 0  
Power-up Latched State of PCI33HT66SEL0# Mode Select 0 (read only).  
4
3
2
1
0
0
0
0
0
0
Reserved Set = 0  
Reserved Set = 0  
Reserved Set = 0  
Reserved Set = 0  
Reserved Set = 0  
System Self-Recovery Clock Management  
This feature is designed to allow the system designer to  
change frequency while the system is running and reboot the  
operation of the system in case of a hang up due to the  
frequency change.  
new frequency. If this device receives a new SMBus command  
to clear the bits originally programmed in Watchdog Timer bits  
(reprogram to 0000) before the Watchdog times out, then this  
device will keep operating in its normal condition with the new  
selected frequency.  
When the system sends an SMBus command requesting a  
frequency change through the Dial-a-Frequency Control  
Registers, it must have previously sent a command to the  
Watchdog Timer to select which time out stamp the Watchdog  
must perform, otherwise the System Self-Recovery feature will  
not be applicable. Consequently, this device will change  
frequency and then the Watchdog timer starts timing.  
Meanwhile, the system BIOS is running its operation with the  
The Watchdog timer will also be triggered if you program the  
software frequency select bits (FSEL) to a new frequency  
selection. If the Watchdog times out before the new SMBus  
reprograms the Watchdog Timer bits to (0000), then this  
device will send a low system reset pulse, on SRESET#, and  
changes WD Time-out bit to “1.”  
Rev 1.0,November 24, 2006  
Page 8 of 16  
CY28331  
RESET W ATCHDOG TIMER  
Set WD(0:3) Bits = 0  
INITIALIZE W ATCHDOG TIMER  
Set Frequency Revert Bit  
Set WD(0:3) = (# of Sec ) x2  
SET SOFTW ARE FSEL  
Set SW Freq_Sel = 1  
Set FS(0:4)  
SET DIAL-A-FREQUENCY  
Load M and N Registers  
Set Pro_Freq_EN = 1  
Wait for 6msec For  
Clock Output to Ramp to  
Target Frequency  
N
CLEAR W D  
Hang?  
Exit  
Set WD(0:3) Bits = 0  
Y
W ATCHDOG TIMEOUT  
FrequencyRevert Bit =  
0
FrequencyRevert Bit =  
1
Set Frequency to FS_SW  
Set Frequency to  
FS_HW_Latched  
Set SRESET# = 0 for 6 msec  
Reset  
Figure 1. Watchdog Flow Chart  
Rev 1.0,November 24, 2006  
Page 9 of 16  
CY28331  
Dial-a-Frequency  
ROM  
M Register  
SMBus  
Control  
Register N  
Latch  
Control Register N White  
N Register  
SMBus  
Control  
Register M  
Control Register M White  
DAFEN  
Figure 2. Dial-a-Frequency Feature  
The SMBus controlled Dial-a-Frequency feature is available in  
Operation  
this device via Dial-a-Frequency Control Register N and  
Dial-a-Frequency Control Register M. P is a PLL constant that  
depends on the frequency selection prior to accessing the  
Dial-a-Frequency feature.  
Pin strapping on any configuration pin is based on a 10K ohm  
resistor connected to either 3.3V (VDD) or ground (VSS). When  
the VDD supply goes above 2.0V, the Power-on-Reset circuitry  
latches all of the configuration bits into their respective  
registers and then allows the outputs to be enabled. The  
output may not occur immediately after this time as the PLL  
needs to be locked and will not output an invalid frequency.  
The CPU frequencies are defined from the hardware-sampled  
inputs. Additional frequencies and operating states can be  
selected through the SMBus-programmable interface.  
Table 5.  
FS(3:0)  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
P
127994667  
191992000  
191992000  
95996000  
127994667  
191992000  
191992000  
95966000  
95966000  
191992000  
191992000  
191992000  
191992000  
191992000  
191992000  
Spread spectrum modulation is required for all outputs derived  
from the internal CPU PLL2. This include the CPU(0:1),  
PCI33(0:6), PCI33_F, and PCI33_HT66(0:3). The REF (0:2),  
USB, and 24_48 clocks are not affected by the spread  
spectrum modulation. The spread spectrum modulation is set  
for both center and down modes using a Lexmark profiles for  
amounts of 0.5% and 1.0% at a 33-KHz rate.  
The CPU clock driver is of a push-pull type for the differential  
outputs, instead of the Athlon open-drain style. The CPU clock  
termination has been derived such that a 15-40 ohm, 3.3V  
output driver can be used for the CPU clock.  
The PCISTOP# signal provides for synchronous control over  
the any output, except the PCI33_F, that is running at 33 MHz.  
If the PCI33_HT66 outputs are configured to run at 66 MHz will  
not be stopped by this signal. The PCISTOP# signal is  
sampled by an internal PCI clock such that once it is sensed  
low or active, the 33-MHz signals are stopped on the next high  
to low transition and remains low.  
The algorithm is the same for all P values, which is Fcpu =  
(P*N)/M with the following conditions. M = (20..58), N =  
(21..125) and N > M > N/2.  
Rev 1.0,November 24, 2006  
Page 10 of 16  
CY28331  
Absolute Maximum Ratings  
Parameter  
Description  
Conditions  
Non-functional  
Min.  
–0.5  
–0.5  
–65  
Max.  
4.6  
Unit  
V
V
DD, VDDA, VDDF  
Supply Voltage  
Input Voltage  
VIN  
Functional  
VDD + 0.5  
+150  
V
TS  
Storage Temperature  
Non-functional  
°C  
TJ  
Temperature, Junction  
Functional  
+150  
°C  
ØJC  
ØJA  
ESDh  
Ul-94  
MSL  
Dissipation, Junction to Case  
Dissipation, Junction to Ambient  
ESD Protection (Human Body Model)  
Flammability Rating  
Mil-Spec 883E Method 1012.1  
JEDEC (JESD 51)  
MIL-STD-883, Method 3015  
V–0 @1/8 in.  
32.78  
73.61  
> 2,000  
°C/W  
°C/W  
V
10  
ppm  
Moisture Sensitivity Level  
1
Recommended Operating Conditions  
Parameter  
Description  
Min.  
3.135  
0
Typ.  
Max.  
3.465  
70  
Unit  
V
DD, VDDA, VDDF Supply Voltage  
3.3  
V
TA  
Operating Temperature, Ambient  
qC  
FXIN  
Input Frequency (Crystal or Reference)  
10  
14.318  
16  
MHz  
SCLK and SDATA Input Electrical Characteristics (5V-tolerant)  
Parameter  
Description  
Input Low Voltage  
Conditions  
Min.  
VSS – 0.5  
2.0  
Typ.  
Max.  
Unit  
V
VIL  
VIH  
0.8  
Input High Voltage  
Input High/Low Current  
Output High Voltage  
Output Low Current  
VDD + 0.3  
V
IIL, IIH  
VOL  
IOL  
0 < VIN < VDD  
5
0.4  
6
µA  
V
IOL = 1.75 mA  
VO = 0.8V  
VSS – 0.3  
2
mA  
DC Electrical Specifications (All outputs loaded)  
Parameter  
VIL  
Description  
Input Low Voltage  
Conditions  
Min.  
VSS – 0.5  
2.0  
Typ.  
Max.  
Unit  
V
0.8  
VIH  
Input High Voltage  
VDD + 0.5  
V
IIL  
Input Low Current  
@VIL = VSS, except PU and PD  
@VIH = VDD, except PU and PD  
–5  
5
µA  
µA  
µA  
mA  
mA  
pF  
pF  
nH  
pF  
V
IIH  
Input High Current  
LTSL  
IDD3.3V  
Three-state Leakage Current  
Dynamic Supply Current  
Power-down Supply Current  
Input Pin Capacitance  
Output Pin Capacitance  
Pin Inductance  
10  
CPU(0:1) @ 200 MHz  
Except XIN and XOUT  
250  
I
PD3.3V  
2
CIN  
5
COUT  
LPIN  
CXTAL  
VBIAS  
6
7
Crystal Pin Capacitance  
Crystal DC Bias Voltage  
Measured from Pin to Ground.  
27  
36  
45  
0.3VDD  
VDD/2  
0.7VDD  
Rev 1.0,November 24, 2006  
Page 11 of 16  
CY28331  
AC Electrical Specifications  
PCI133_HT66 = 66MHz  
Parameter  
Description  
Test Condition  
Min.  
Typ.  
Max. Unit  
Hammer CPU  
TR  
Output Rise Edge Rate  
Output Fall Edge Rate  
Differential Voltage  
Measured @ the Hammer test load using  
VOCM 400 mV, 0.850V to 1.650V  
2
7
V/ns  
V/ns  
V
TF  
Measured @ the Hammer test load using  
VOCM 400 mV, 1.650V to 0.850V  
2
7
VDIFF  
Measured @ the Hammer test load  
(single-ended)  
0.4  
1.25  
1.25  
2.3  
150  
1.45  
200  
'
Change in VDIFF_DC Magnitude Measured @ the Hammer test load  
(single-ended)  
–150  
1.05  
–200  
mV  
V
DIFF  
VCM  
Common Mode Voltage  
Measured @ the Hammer test load  
(single-ended)  
'VCM  
Change in VCM  
Measured @ the Hammer test load  
(single-ended)  
mV  
TDC  
Duty Cycle  
Measured at VOX  
45  
50  
53  
200  
1000  
3
%
ps  
ps  
ms  
TCYC  
TACCUM  
TFS  
Jitter, Cycle to Cycle  
Jitter, Accumulated  
Measured at VOX  
0
–1000  
0
100  
Measured at VOX  
Frequency Stabilization from  
Power-up  
Measure from full supply voltage  
RON  
Output Impedance  
Average value during switching transition  
15  
35  
55  
W
PCI/HyperTransport Clock Outputs  
VOL  
VOH  
IOL  
Output Low Voltage  
Output High Voltage  
Output Low Current  
Output High Current  
Frequency Actual  
IOL = 9.0 mA  
IOH = –12.0 mA  
VO = 0.8V  
0.4  
V
V
2.4  
10  
mA  
mA  
MHz  
MHz  
V/ns  
V/ns  
%
IOH  
F33  
F66  
TR  
VO = 2.0V  
–15  
33.33  
66.67  
Output Rise Edge Rate  
Output Fall Edge Rate  
Duty Cycle  
Measured from 20% to 60%  
Measured from 60% to 20%  
Measured at 1.5V  
0.5  
0.5  
4
4
TF  
TDC  
TCCJ  
TLTJ  
45  
55  
Cycle-to-Cycle Jitter  
Long Term Jitter  
Measured at 1.5V  
0
400  
1000  
ps  
Measured at 1.5V  
–1000  
ps  
REF(0:2) Clock Outputs  
VOL  
VOH  
IOL  
Output Low Voltage  
IOL = 9.0 mA  
IOH = –12.0 mA  
VO = 0.8V  
0.4  
V
V
Output High Voltage  
Output Low Current  
Output High Current  
Frequency, Actual  
Output Rise Edge Rate  
Output Fall Edge Rate  
Duty Cycle  
2.4  
16  
mA  
mA  
MHz  
V/ns  
V/ns  
%
IOH  
F
VO = 2.0V  
–22  
14.318  
500  
TR  
Measured from 20% to 60%  
Measured from 60% to 20%  
Measured at 1.5V  
0.5  
0.5  
45  
2
2
TF  
TDC  
TCCJ  
TLTJ  
TFS  
55  
Cycle-to-Cycle Jitter  
Long-term Jitter  
Measured at 1.5V  
0
1000  
1000  
3
ps  
Measured at 1.5V  
–1000  
0
ps  
Frequency Stabilization from  
Power-up  
Measure from full supply voltage  
mS  
Rev 1.0,November 24, 2006  
Page 12 of 16  
CY28331  
AC Electrical Specifications (continued)  
PCI133_HT66 = 66MHz  
Parameter  
Description  
Output Impedance  
Test Condition  
Min.  
Typ.  
Max. Unit  
RON  
Average value during switching transition  
20  
24  
60  
W
USB, 24_48 Clock Outputs  
VOL  
VOH  
IOL  
Output Low Voltage  
Output High Voltage  
Output Low Current  
Output High Current  
Frequency Actual  
IOL = 9.0 mA  
IOH = –12.0 mA  
VO = 0.8V  
0.4  
V
V
2.4  
16  
mA  
mA  
MHz  
MHz  
V/ns  
V/ns  
%
IOH  
VO = 2.0V  
–22  
F33  
24.004  
48.008  
F66  
tR  
Output Rise Edge Rate  
Output Fall Edge Rate  
Duty Cycle  
Measured from 20% to 80%  
Measured from 80% to 20%  
Measured at 1.5V  
0.5  
0.5  
45  
2
2
tF  
tD  
55  
TCCJ  
TCCJ  
TLTJ  
TSTABLE  
24_48MHz Cycle-to-Cycle Jitter  
USB Cycle-to-Cycle Jitter  
Long-term Jitter  
Measured at 1.5V  
0
250  
500  
200  
1000  
3
ps  
Measured at 1.5V  
0
ps  
Measured at 1.5V  
–1000  
0
ps  
Frequency Stabilization from  
Power-up  
Measure from full supply voltage  
ms  
RON  
Output Impedance  
Average value during switching transition  
20  
24  
60  
W
Table 6. Skew [2]  
Parameter  
Description  
Conditions  
Skew Window Unit  
TSK_CPU_CPU  
CPU to CPU skew, time independent Measured @ crossing points for CPUT rising  
edges1  
250  
500  
500  
500  
500  
500  
200  
200  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
TSK_CPU_PCI33  
CPU to PCI33 skew, time  
independent  
Measured @ crossing points for CPUT rising  
edge and 1.5V PCI clocks  
TSK_PCI33_PCI33 PCI33 to PCI33 skew, time  
independent  
Measured between rising @ 1.5V  
TSK_PCI33_HT66 PCI33 to HT66 skew, time  
independent  
Measured between rising @ 1.5V  
TSK_CPU_HT66  
TSK_HT66_HT66  
TSK_CPU_CPU  
TSK_CPU_PCI33  
CPU to HT66 skew, time  
independent  
Measured @ crossing points for CPUT rising  
edge and 1.5V for HyperTransport clocks  
HT66 to HT66 skew, time  
independent  
Measured between rising @ 1.5V  
CPU to CPU skew, time variant  
Measured @ crossing points for CPUT rising  
edges  
CPU to PCI33 skew, time variant  
Measured @ crossing points for CPUT rising  
edge and 1.5V PCI clocks  
TSK_PCI33_PCI33 PCI33 to PCI33 skew, time variant Measured between rising @ 1.5V  
200  
200  
200  
ps  
ps  
ps  
TSK_PCI33_HT66 PCI33 to HT66 skew, time variant  
Measured between rising @ 1.5V  
TSK_CPU_HT66  
CPU to HT66 skew, time variant  
Measured @ crossing points for CPUT rising  
edge and 1.5V for HyperTransport clocks  
TSK_HT66_HT66  
HT66 to HT66 skew, time variant  
Measured between rising @ 1.5V  
200  
ps  
Note:  
2. All skews in this skew budget are measured from the first referenced signal to the next. Therefore, this skew specifies the maximum SKEW WINDOW between  
these two signals to be 500 ps whether the CPU crossing leads or lags the PCI clock. This should NOT be interpreted to mean that the PCI33 edge could either  
be 500 ps before the CPU clock to 500 ps after the clock, thus defining a 1000ps window in which the PCI33 clock edge could fall.  
Rev 1.0,November 24, 2006  
Page 13 of 16  
CY28331  
Table 7.  
Clock Name  
Max Load (in pF)[3]  
CPU, USB, 24_48MHz, REF  
PCI33, PCI33_F, PCI33_HT66  
20  
30  
Tsu  
PCI_STP#  
PCI_F  
PCI  
Figure 3. PCISTOP# Assertion Waveform  
Tsu  
PCI_STP#  
PCI_F  
PCI  
Figure 4. PCISTOP# Deassertion Waveform  
Vbias=1.25V  
125 ohms  
169 ohms  
5pF  
125 ohms  
15 ohms  
3900pF  
3900pF  
15 ohms  
5pF  
Figure 5. Test Load Configuration  
Note:  
3. The above loads are positioned near each output pin when tested.  
Rev 1.0,November 24, 2006  
Page 14 of 16  
CY28331  
SRESET#/PD#  
CPUT  
CPUC  
PCI/PCI_HT  
USB,24_48MHz  
REF  
Figure 6. PD# Assertion Waveform  
PD#  
CPUT  
CPUC  
PCI 33MHz  
3V66  
USB 48MHz  
REF 14.318MHz  
Figure 7. PD# Deassertion Waveform  
Ordering Information  
Part Number  
CY28331OC  
Package Type  
48-pin SSOP  
Product Flow  
Commercial, 0q to 70qC  
Commercial, 0q to 70qC  
CY28331OCT  
Lead-free  
48-pin SSOP – Tape and Reel  
CY28331OXC  
CY28331OXCT  
48-pin SSOP  
Commercial, 0q to 70qC  
Commercial, 0q to 70qC  
48-pin SSOP – Tape and Reel  
Rev 1.0,November 24, 2006  
Page 15 of 16  
CY28331  
Package Drawing and Dimensions  
48-pin Shrunk Small Outline Package O48  
While SLI has reviewed all information herein for accuracy and reliability, Spectra Linear Inc. assumes no responsibility for the use of any cir-  
cuitry or for the infringement of any patents or other rights of third parties which would result from each use. This product is intended for use in  
normal commercial applications and is not warranted nor is it intended for use in life support, critical medical instruments, or any other applica-  
tion requiring extended temperature range, high reliability, or any other extraordinary environmental requirements unless pursuant to additional  
processing by Spectra Linear Inc., and expressed written agreement by Spectra Linear Inc. Spectra Linear Inc. reserves the right to change any  
circuitry or specification without notice.  
Rev 1.0, November 24, 2006  
Page 16 of 16  

相关型号:

CY28331OXCT

Clock Generator for AMD⑩ Hammer
SPECTRALINEAR

CY28331OXCT

Clock Generator for AMD⑩ Hammer
CYPRESS

CY28339

Intel CK408 Mobile Clock Synthesizer
CYPRESS

CY28339

Intel CK408 Mobile Clock Synthesizer
SPECTRALINEAR

CY28339ZC

Intel CK408 Mobile Clock Synthesizer
CYPRESS

CY28339ZC

Intel CK408 Mobile Clock Synthesizer
SPECTRALINEAR

CY28339ZCT

Intel CK408 Mobile Clock Synthesizer
CYPRESS

CY28339ZCT

Intel CK408 Mobile Clock Synthesizer
SPECTRALINEAR

CY28339ZCXT

Intel CK408 Mobile Clock Synthesizer
CYPRESS

CY28339ZCXT

Intel CK408 Mobile Clock Synthesizer
SPECTRALINEAR

CY28339ZCXT

Processor Specific Clock Generator, 133MHz, CMOS, PDSO48, 0.240 INCH, LEAD FREE, TSSOP2-48
SILICON

CY28339ZXC

Intel CK408 Mobile Clock Synthesizer
CYPRESS