MB9AF144MB [SPANSION]

The MB9A140NB Series are highly integrated;
MB9AF144MB
型号: MB9AF144MB
厂家: SPANSION    SPANSION
描述:

The MB9A140NB Series are highly integrated

文件: 总121页 (文件大小:4532K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
The following document contains information on Cypress products. Although the document is marked  
with the name “Spansion”, the company that originally developed the specification, Cypress will  
continue to offer these products to new and existing customers.  
Continuity of Specifications  
There is no change to this document as a result of offering the device as a Cypress product. Any  
changes that have been made are the result of normal document improvements and are noted in the  
document history page, where supported. Future revisions will occur when appropriate, and changes  
will be noted in a document history page.  
Continuity of Ordering Part Numbers  
Cypress continues to support existing part numbers. To order these products, please use only the  
Ordering Part Numbers listed in this document.  
For More Information  
Please contact your local sales office for additional information about Cypress products and solutions.  
About Cypress  
Cypress (NASDAQ: CY) delivers high-performance, high-quality solutions at the heart of today’s most  
advanced embedded systems, from automotive, industrial and networking platforms to highly  
interactive consumer and mobile devices. With a broad, differentiated product portfolio that includes  
NOR flash memories, F-RAM™ and SRAM, Traveo™ microcontrollers, the industry’s only PSoC®  
programmable system-on-chip solutions, analog and PMIC Power Management ICs, CapSense®  
capacitive touch-sensing controllers, and Wireless BLE Bluetooth® Low-Energy and USB connectivity  
solutions, Cypress is committed to providing its customers worldwide with consistent innovation, best-  
in-class support and exceptional system value.  
MB9A140NB Series  
32-bit ARM® Cortex®-M3 based Microcontroller  
MB9AF141LB/MB/NB, MB9AF142LB/MB/NB,  
MB9AF144LB/MB/NB  
Data Sheet (Full Production)  
Notice to Readers: This document states the current technical specifications regarding the Spansion  
product(s) described herein. Spansion Inc. deems the products to have been in sufficient production  
volume such that subsequent versions of this document are not expected to change. However,  
typographical or specification corrections, or modifications to the valid combinations offered may occur.  
Publication Number MB9A140NB_DS706-00040  
Revision 4.0  
Issue Date June 10, 2015  
D a t a S h e e t  
Notice On Data Sheet Designations  
Spansion Inc. issues data sheets with Advance Information or Preliminary designations to advise readers  
of product information or intended specifications throughout the product life cycle, including development,  
qualification, initial production, and full production. In all cases, however, readers are encouraged to  
verify that they have the latest information before finalizing their design. The following descriptions of  
Spansion data sheet designations are presented here to highlight their presence and definitions.  
Advance Information  
The Advance Information designation indicates that Spansion Inc. is developing one or more specific  
products, but has not committed any design to production. Information presented in a document with this  
designation is likely to change, and in some cases, development on the product may discontinue.  
Spansion Inc. therefore places the following conditions upon Advance Information content:  
“This document contains information on one or more products under development at Spansion  
Inc. The information is intended to help you evaluate this product. Do not design in this product  
without contacting the factory. Spansion Inc. reserves the right to change or discontinue work on  
this proposed product without notice.”  
Preliminary  
The Preliminary designation indicates that the product development has progressed such that a  
commitment to production has taken place. This designation covers several aspects of the product life  
cycle, including product qualification, initial production, and the subsequent phases in the manufacturing  
process that occur before full production is achieved. Changes to the technical specifications presented  
in a Preliminary document should be expected while keeping these aspects of production under  
consideration. Spansion places the following conditions upon Preliminary content:  
“This document states the current technical specifications regarding the Spansion product(s)  
described herein. The Preliminary status of this document indicates that product qualification  
has been completed, and that initial production has begun. Due to the phases of the  
manufacturing process that require maintaining efficiency and quality, this document may be  
revised by subsequent versions or modifications due to changes in technical specifications.”  
Combination  
Some data sheets contain a combination of products with different designations (Advance Information,  
Preliminary, or Full Production). This type of document distinguishes these products and their  
designations wherever necessary, typically on the first page, the ordering information page, and pages  
with the DC Characteristics table and the AC Erase and Program table (in the table notes). The  
disclaimer on the first page refers the reader to the notice on this page.  
Full Production (No Designation on Document)  
When a product has been in production for a period of time such that no changes or only nominal  
changes are expected, the Preliminary designation is removed from the data sheet. Nominal changes  
may include those affecting the number of ordering part numbers available, such as the addition or  
deletion of a speed option, temperature range, package type, or VIO range. Changes may also include  
those needed to clarify a description or to correct a typographical error or incorrect specification.  
Spansion Inc. applies the following conditions to documents in this category:  
“This document states the current technical specifications regarding the Spansion product(s)  
described herein. Spansion Inc. deems the products to have been in sufficient production  
volume such that subsequent versions of this document are not expected to change. However,  
typographical or specification corrections, or modifications to the valid combinations offered may  
occur.”  
Questions regarding these document designations may be directed to your local sales office.  
MB9A140NB_DS706-00040-4v0-E, June 10, 2015  
MB9A140NB Series  
32-bit ARM® Cortex®-M3 based Microcontroller  
MB9AF141LB/MB/NB, MB9AF142LB/MB/NB,  
MB9AF144LB/MB/NB  
Data Sheet (Full Production)  
Description  
The MB9A140NB Series are highly integrated 32-bit microcontrollers dedicated for embedded controllers  
with low-power consumption mode and competitive cost.  
These series are based on the ARM Cortex-M3 Processor with on-chip Flash memory and SRAM, and have  
peripheral functions such as various timers, ADCs, and Communication Interfaces (UART, CSIO, I2C).  
The products which are described in this data sheet are placed into TYPE6 product categories in FM3  
Family Peripheral Manual.  
Note: ARM and Cortex are the trademarks of ARM Limited in the EU and other countries.  
Publication Number MB9A140NB_DS706-00040  
Revision 4.0  
Issue Date June 10, 2015  
This document states the current technical specifications regarding the Spansion product(s) described herein. Spansion Inc. deems the products to have been in sufficient  
production volume such that subsequent versions of this document are not expected to change. However, typographical or specification corrections, or modifications to the  
valid combinations offered may occur.  
D a t a S h e e t  
Features  
32-bit ARM Cortex-M3 Core  
Processor version: r2p1  
Up to 40 MHz Frequency Operation  
Integrated Nested Vectored Interrupt Controller (NVIC): 1 NMI (non-maskable interrupt) and  
48 peripheral interrupts and 16 priority levels  
24-bit System timer (Sys Tick): System timer for OS task management  
On-chip Memories  
[Flash memory]  
Dual operation Flash memory  
Dual Operation Flash memory has the upper bank and the lower bank.  
So, this series could implement erase, write and read operations  
for each bank simultaneously.  
Main area: Up to 256 Kbytes (Up to 240 Kbytes upper bank + 16 Kbytes lower bank)  
Work area: 32 Kbytes (lower bank)  
Read cycle: 0 wait-cycle  
Security function for code protection  
[SRAM]  
This Series on-chip SRAM is composed of two independent SRAM (SRAM0, SRAM1). SRAM0 is  
connected to I-code bus and D-code bus of Cortex-M3 core. SRAM1 is connected to System bus.  
SRAM0: Up to 16 Kbytes  
SRAM1: Up to 16 Kbytes  
External Bus Interface*  
Supports SRAM, NOR Flash memory device  
Up to 8 chip selects  
8-/16-bit Data width  
Up to 25-bit Address bit  
Maximum area size : Up to 256 Mbytes  
Supports Address/Data multiplex  
Supports external RDY function  
* : MB9AF141LB, F142LB and F144LB do not support External Bus Interface.  
Multi-function Serial Interface (Max 8channels)  
4 channels with 16 steps×9-bit FIFO (ch.4 to ch.7), 4 channels without FIFO (ch.0 to ch.3)  
Operation mode is selectable from the followings for each channel.  
UART  
CSIO  
I2C  
[UART]  
Full-duplex double buffer  
Selection with or without parity supported  
Built-in dedicated baud rate generator  
External clock available as a serial clock  
Hardware Flow control* : Automatically control the transmission by CTS/RTS (only ch.4)  
Various error detection functions available (parity errors, framing errors, and overrun errors)  
* : MB9AF141LB, F142LB and F144LB do not support Hardware Flow control.  
[CSIO]  
Full-duplex double buffer  
Built-in dedicated baud rate generator  
Overrun error detection function available  
[I2C]  
Standard-mode (Max 100 kbps) / Fast-mode (Max 400 kbps) supported  
2
MB9A140NB_DS706-00040-4v0-E, June 10, 2015  
D a t a S h e e t  
DMA Controller (8 channels)  
The DMA Controller has an independent bus from the CPU, so CPU and DMA Controller can process  
simultaneously.  
8 independently configured and operated channels  
Transfer can be started by software or request from the built-in peripherals  
Transfer address area: 32-bit (4 Gbytes)  
Transfer mode: Block transfer/Burst transfer/Demand transfer  
Transfer data type: byte/half-word/word  
Transfer block count: 1 to 16  
Number of transfers: 1 to 65536  
A/D Converter (Max 24 channels)  
[12-bit A/D Converter]  
Successive Approximation type  
Built-in 2 units  
Conversion time: 2.0 μs @ 2.7 V to 3.6 V  
Priority conversion available (priority at 2 levels)  
Scanning conversion mode  
Built-in FIFO for conversion data storage (for SCAN conversion: 16 steps, for Priority conversion:  
4 steps)  
Base Timer (Max 8 channels)  
Operation mode is selectable from the followings for each channel.  
16-bit PWM timer  
16-bit PPG timer  
16-/32-bit reload timer  
16-/32-bit PWC timer  
General-Purpose I/O Port  
This series can use its pins as general-purpose I/O ports when they are not used for external bus or  
peripherals. Moreover, the port relocate function is built in. It can set which I/O port the peripheral function  
can be allocated to.  
Capable of pull-up control per pin  
Capable of reading pin level directly  
Built-in the port relocate function  
Up to 83 fast general-purpose I/O Ports@100 pin Package  
Some ports are 5V tolerant I/O.  
See Pin Description to confirm the corresponding pins.  
Dual Timer (32-/16-bit Down Counter)  
The Dual Timer consists of two programmable 32-/16-bit down counters.  
Operation mode is selectable from the followings for each channel.  
Free-running  
Periodic (=Reload)  
One-shot  
June 10, 2015, MB9A140NB_DS706-00040-4v0-E  
3
D a t a S h e e t  
HDMI-CEC/Remote Control Receiver (Up to 2 channels)  
HDMI-CEC transmitter  
Header block automatic transmission by judging Signal free  
Generating status interrupt by detecting Arbitration lost  
Generating START, EOM, ACK automatically to output CEC transmission by setting 1 byte data  
Generating transmission status interrupt when transmitting 1 block (1 byte data and EOM/ACK)  
HDMI-CEC receiver  
Automatic ACK reply function available  
Line error detection function available  
Remote control receiver  
4 bytes reception buffer  
Repeat code detection function available  
Real-time clock (RTC)  
The Real-time clock can count Year/Month/Day/Hour/Minute/Second/A day of the week from 01 to 99.  
The interrupt function with specifying date and time (Year/Month/Day/Hour/Minute/Second/A day of  
the week.) is available. This function is also available by specifying only Year, Month, Day, Hour or  
Minute.  
Timer interrupt function after set time or each set time.  
Capable of rewriting the time with continuing the time count.  
Leap year automatic count is available.  
Watch Counter  
The Watch counter is used for wake up from sleep and timer mode.  
Interval timer: up to 64 s (Max) @ Sub Clock : 32.768 kHz  
External Interrupt Controller Unit  
Up to 16 external interrupt input pins  
Include one non-maskable interrupt (NMI) input pin  
Watchdog Timer (2 channels)  
A watchdog timer can generate interrupts or a reset when a time-out value is reached.  
This series consists of two different watchdogs, a Hardware watchdog and a Software watchdog.  
The Hardware watchdog timer is clocked by the built-in low-speed CR oscillator. Therefore, the Hardware  
watchdog is active in any low-power consumption modes except RTC, Stop, Deep Standby RTC and Deep  
Standby Stop modes.  
CRC (Cyclic Redundancy Check) Accelerator  
The CRC accelerator calculates the CRC which has a heavy software processing load, and achieves a  
reduction of the integrity check processing load for reception data and storage.  
CCITT CRC16 and IEEE-802.3 CRC32 are supported.  
CCITT CRC16 Generator Polynomial: 0x1021  
IEEE-802.3 CRC32 Generator Polynomial: 0x04C11DB7  
4
MB9A140NB_DS706-00040-4v0-E, June 10, 2015  
D a t a S h e e t  
Clock and Reset  
[Clocks]  
Selectable from five clock sources (2 external oscillators, 2 built-in CR oscillators, and Main PLL).  
Main Clock:  
Sub Clock:  
4 MHz to 48 MHz  
32.768 kHz  
Built-in high-speed CR Clock: 4 MHz  
Built-in low-speed CR Clock:  
Main PLL Clock  
100 kHz  
[Resets]  
Reset requests from INITX pin  
Power on reset  
Software reset  
Watchdog timers reset  
Low-voltage detection reset  
Clock Super Visor reset  
Clock Super Visor (CSV)  
Clocks generated by built-in CR oscillators are used to supervise abnormality of the external clocks.  
External clock failure (clock stop) is detected, reset is asserted.  
External frequency anomaly is detected, interrupt or reset is asserted.  
Low-Voltage Detector (LVD)  
This Series includes 2-stage monitoring of voltage on the VCC pins. When the voltage falls below the  
voltage that has been set, Low-Voltage Detector generates an interrupt or reset.  
LVD1: error reporting via interrupt  
LVD2: auto-reset operation  
Low-Power Consumption Mode  
Six low-power consumption modes supported.  
Sleep  
Timer  
RTC  
Stop  
Deep Standby RTC (selectable between keeping the value of RAM and not)  
Deep Standby Stop (selectable between keeping the value of RAM and not)  
Debug  
Serial Wire JTAG Debug Port (SWJ-DP)  
Embedded Trace Macrocells (ETM).*  
*: MB9AF141LB/MB, F142LB/MB and F144LB/MB support only SWJ-DP.  
Unique ID  
Unique value of the device (41-bit) is set.  
Power Supply  
Wide range voltage:  
VCC = 1.65 V to 3.6 V  
June 10, 2015, MB9A140NB_DS706-00040-4v0-E  
5
D a t a S h e e t  
Product Lineup  
Memory size  
Product name  
MB9AF141LB/MB/NB MB9AF142LB/MB/NB MB9AF144LB/MB/NB  
Main  
On-chip  
area  
64 Kbytes  
32 Kbytes  
128 Kbytes  
32 Kbytes  
256 Kbytes  
32 Kbytes  
Flash  
Work  
memory  
area  
16 Kbytes  
16 Kbytes  
32 Kbytes  
SRAM0  
On-chip  
8 Kbytes  
8 Kbytes  
16 Kbytes  
8 Kbytes  
8 Kbytes  
16 Kbytes  
SRAM1  
SRAM  
Total  
Function  
Product name  
Pin count  
MB9AF141LB  
MB9AF141MB  
MB9AF142MB  
MB9AF144MB  
80/96  
MB9AF141NB  
MB9AF142NB  
MB9AF144NB  
100/112  
MB9AF142LB  
MB9AF144LB  
64  
Cortex-M3  
40 MHz  
CPU  
Freq.  
Power supply voltage range  
DMAC  
1.65 V to 3.6 V  
8ch.  
Addr: 21-bit (Max)  
Addr: 25-bit (Max)  
R/W Data: 8-bit (Max) R/W Data: 8-/16-bit (Max)  
External Bus Interface  
-
CS: 4 (Max)  
Support: SRAM,  
NOR Flash memory  
8ch. (Max)  
CS: 8 (Max)  
Support: SRAM,  
NOR Flash memory  
Multi-function Serial Interface  
(UART/CSIO/I2C)  
ch.4 to ch.7: FIFO (16steps × 9-bit)  
ch.0 to ch.3: No FIFO  
Base Timer  
(PWC/Reload timer/PWM/PPG)  
8ch. (Max)  
1 unit  
Dual Timer  
HDMI-CEC/ Remote Control  
Receiver  
2ch. (Max)  
Real-Time Clock  
Watch Counter  
CRC Accelerator  
Watchdog timer  
1 unit  
1 unit  
Yes  
1ch. (SW) + 1ch. (HW)  
8 pins (Max) +  
NMI × 1  
51 pins (Max)  
12ch. (2 units)  
11 pins (Max) +  
NMI × 1  
66 pins (Max)  
17ch. (2 units)  
Yes  
16 pins (Max) +  
External Interrupts  
NMI × 1  
83 pins (Max)  
24ch. (2 units)  
I/O ports  
12-bit A/D converter  
CSV (Clock Super Visor)  
LVD (Low-Voltage Detector)  
2ch.  
High-speed  
Low-speed  
4 MHz  
100 kHz  
Built-in  
CR  
Debug Function  
Unique ID  
SWJ-DP  
SWJ-DP/ETM  
Yes  
Note: All signals of the peripheral function in each product cannot be allocated by limiting the pins of package.  
It is necessary to use the port relocate function of the I/O port according to your function use.  
See Electrical Characteristics 4.AC Characteristics (3)Built-in CR Oscillation Characteristics for  
accuracy of built-in CR.  
6
MB9A140NB_DS706-00040-4v0-E, June 10, 2015  
D a t a S h e e t  
Packages  
MB9AF141LB MB9AF141MB MB9AF141NB  
MB9AF142LB MB9AF142MB MB9AF142NB  
MB9AF144LB MB9AF144MB MB9AF144NB  
Product name  
Package  
LQFP: FPT-64P-M38 (0.5mm pitch)  
LQFP: FPT-64P-M39 (0.65mm pitch)  
QFN: LCC-64P-M24 (0.5mm pitch)  
LQFP: FPT-80P-M37 (0.5mm pitch)  
LQFP: FPT-80P-M40 (0.65mm pitch)  
BGA: BGA-96P-M07 (0.5mm pitch)  
LQFP: FPT-100P-M23 (0.5mm pitch)  
QFP: FPT-100P-M36 (0.65mm pitch)  
BGA: BGA-112P-M04 (0.8mm pitch)  
: Supported  
-
-
-
-
-
-
-  
-
-
-
-
-
-  
-  
-  
-  
-
-
Note: See Package Dimensions for detailed information on each package.  
June 10, 2015, MB9A140NB_DS706-00040-4v0-E  
7
D a t a S h e e t  
Pin Assignment  
FPT-100P-M23  
(TOP VIEW)  
VCC  
1
2
3
4
5
6
7
8
9
75 VSS  
P50/INT00_0/SIN3_1/MADATA00_1  
P51/INT01_0/SOT3_1/MADATA01_1  
P52/INT02_0/SCK3_1/MADATA02_1  
P53/SIN6_0/TIOA1_2/INT07_2/MADATA03_1  
P54/SOT6_0/TIOB1_2/MADATA04_1  
P55/SCK6_0/ADTG_1/MADATA05_1  
P56/INT08_2/MADATA06_1  
74 P20/AN19/INT05_0/CROUT_0/MAD24_1  
73 P21/AN18/SIN0_0/INT06_1/WKUP2  
72 P22/AN17/SOT0_0/TIOB7_1  
71 P23/AN16/SCK0_0/TIOA7_1  
70 P1F/AN15/ADTG_5/MAD23_1  
69 P1E/AN14/RTS4_1/MAD22_1  
68 P1D/AN13/CTS4_1/MAD21_1  
67 P1C/AN12/SCK4_1/MAD20_1  
66 P1B/AN11/SOT4_1/MAD19_1  
65 P1A/AN10/SIN4_1/INT05_1/MAD18_1  
64 P19/AN09/SCK2_2/MAD17_1  
63 P18/AN08/SOT2_2/MAD16_1  
62 AVSS  
P30/TIOB0_1/INT03_2/MADATA07_1  
P31/TIOB1_1/SCK6_1/INT04_2/MADATA08_1 10  
P32/TIOB2_1/SOT6_1/INT05_2/MADATA09_1 11  
P33/INT04_0/TIOB3_1/SIN6_1/ADTG_6/MADATA10_1 12  
P34/TIOB4_1/MADATA11_1 13  
P35/TIOB5_1/INT08_1/MADATA12_1 14  
P36/SIN5_2/INT09_1/MADATA13_1 15  
P37/SOT5_2/INT10_1/MADATA14_1 16  
P38/SCK5_2/INT11_1/MADATA15_1 17  
P39/ADTG_2 18  
LQFP - 100  
61 AVRH  
60 AVCC  
59 P17/AN07/SIN2_2/INT04_1/MAD15_1  
58 P16/AN06/SCK0_1/MAD14_1  
57 P15/AN05/SOT0_1/MAD13_1  
56 P14/AN04/SIN0_1/INT03_1/MAD12_1  
55 P13/AN03/SCK1_1/RTCCO_1/SUBOUT_1/MAD11_1  
54 P12/AN02/SOT1_1/MAD10_1  
53 P11/AN01/SIN1_1/INT02_1/WKUP1/MAD09_1  
52 P10/AN00  
P3A/TIOA0_1/RTCCO_2/SUBOUT_2 19  
P3B/TIOA1_1 20  
P3C/TIOA2_1 21  
P3D/TIOA3_1 22  
P3E/TIOA4_1 23  
P3F/TIOA5_1 24  
VSS 25  
51 VCC  
<Note>  
The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated  
port number. For these pins, there are multiple pins that provide the same function for the same channel.  
Use the extended port function register (EPFR) to select the pin.  
8
MB9A140NB_DS706-00040-4v0-E, June 10, 2015  
D a t a S h e e t  
FPT-100P-M36  
(TOP VIEW)  
P51/INT01_0/SOT3_1/MADATA01_1 81  
50 P22/AN17/SOT0_0/TIOB7_1  
49 P23/AN16/SCK0_0/TIOA7_1  
48 P1F/AN15/ADTG_5/MAD23_1  
47 P1E/AN14/RTS4_1/MAD22_1  
46 P1D/AN13/CTS4_1/MAD21_1  
45 P1C/AN12/SCK4_1/MAD20_1  
44 P1B/AN11/SOT4_1/MAD19_1  
43 P1A/AN10/SIN4_1/INT05_1/MAD18_1  
42 P19/AN09/SCK2_2/MAD17_1  
41 P18/AN08/SOT2_2/MAD16_1  
40 AVSS  
P52/INT02_0/SCK3_1/MADATA02_1 82  
P53/SIN6_0/TIOA1_2/INT07_2/MADATA03_1 83  
P54/SOT6_0/TIOB1_2/MADATA04_1 84  
P55/SCK6_0/ADTG_1/MADATA05_1 85  
P56/INT08_2/MADATA06_1 86  
P30/TIOB0_1/INT03_2/MADATA07_1 87  
P31/TIOB1_1/SCK6_1/INT04_2/MADATA08_1 88  
P32/TIOB2_1/SOT6_1/INT05_2/MADATA09_1 89  
P33/INT04_0/TIOB3_1/SIN6_1/ADTG_6/MADATA10_1 90  
P34/TIOB4_1/MADATA11_1 91  
QFP - 100  
P35/TIOB5_1/INT08_1/MADATA12_1 92  
P36/SIN5_2/INT09_1/MADATA13_1 93  
P37/SOT5_2/INT10_1/MADATA14_1 94  
P38/SCK5_2/INT11_1/MADATA15_1 95  
P39/ADTG_2 96  
39 AVRH  
38 AVCC  
37 P17/AN07/SIN2_2/INT04_1/MAD15_1  
36 P16/AN06/SCK0_1/MAD14_1  
35 P15/AN05/SOT0_1/MAD13_1  
34 P14/AN04/SIN0_1/INT03_1/MAD12_1  
33 P13/AN03/SCK1_1/RTCCO_1/SUBOUT_1/MAD11_1  
32 P12/AN02/SOT1_1/MAD10_1  
31 P11/AN01/SIN1_1/INT02_1/WKUP1/MAD09_1  
P3A/TIOA0_1/RTCCO_2/SUBOUT_2 97  
P3B/TIOA1_1 98  
P3C/TIOA2_1 99  
P3D/TIOA3_1 100  
<Note>  
The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated  
port number. For these pins, there are multiple pins that provide the same function for the same channel.  
Use the extended port function register (EPFR) to select the pin.  
June 10, 2015, MB9A140NB_DS706-00040-4v0-E  
9
D a t a S h e e t  
FPT-80P-M37/M40  
(TOP VIEW)  
VCC  
1
2
3
4
5
6
7
8
9
60 P20/AN19/INT05_0/CROUT_0/MAD24_1  
59 P21/AN18/SIN0_0/INT06_1/WKUP2  
58 P22/AN17/SOT0_0/TIOB7_1  
57 P23/AN16/SCK0_0/TIOA7_1  
56 P1B/AN11/SOT4_1/MAD19_1  
55 P1A/AN10/SIN4_1/INT05_1/MAD18_1  
54 P19/AN09/SCK2_2/MAD17_1  
53 P18/AN08/SOT2_2/MAD16_1  
52 AVSS  
P50/INT00_0/SIN3_1/MADATA00_1  
P51/INT01_0/SOT3_1/MADATA01_1  
P52/INT02_0/SCK3_1/MADATA02_1  
P53/SIN6_0/TIOA1_2/INT07_2/MADATA03_1  
P54/SOT6_0/TIOB1_2/MADATA04_1  
P55/SCK6_0/ADTG_1/MADATA05_1  
P56/INT08_2/MADATA06_1  
P30/TIOB0_1/INT03_2/MADATA07_1  
P31/TIOB1_1/SCK6_1/INT04_2/MADATA08_1 10  
P32/TIOB2_1/SOT6_1/INT05_2/MADATA09_1 11  
P33/INT04_0/TIOB3_1/SIN6_1/ADTG_6/MADATA10_1 12  
P39/ADTG_2 13  
51 AVRH  
LQFP - 80  
50 AVCC  
49 P17/AN07/SIN2_2/INT04_1/MAD15_1  
48 P16/AN06/SCK0_1/MAD14_1  
47 P15/AN05/SOT0_1/MAD13_1  
46 P14/AN04/SIN0_1/INT03_1/MAD12_1  
45 P13/AN03/SCK1_1/RTCCO_1/SUBOUT_1/MAD11_1  
44 P12/AN02/SOT1_1/MAD10_1  
43 P11/AN01/SIN1_1/INT02_1/WKUP1/MAD09_1  
42 P10/AN00  
P3A/TIOA0_1/RTCCO_2/SUBOUT_2 14  
P3B/TIOA1_1 15  
P3C/TIOA2_1 16  
P3D/TIOA3_1 17  
P3E/TIOA4_1 18  
P3F/TIOA5_1 19  
VSS 20  
41 VCC  
<Note>  
The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated  
port number. For these pins, there are multiple pins that provide the same function for the same channel.  
Use the extended port function register (EPFR) to select the pin.  
10  
MB9A140NB_DS706-00040-4v0-E, June 10, 2015  
D a t a S h e e t  
FPT-64P-M38/M39  
(TOP VIEW)  
VCC  
1
48 P21/AN18/SIN0_0/INT06_1/WKUP2  
47 P22/AN17/SOT0_0/TIOB7_1  
46 P23/AN16/SCK0_0/TIOA7_1  
45 P19/AN09/SCK2_2  
44 P18/AN08/SOT2_2  
43 AVSS  
P50/INT00_0/SIN3_1  
P51/INT01_0/SOT3_1  
2
3
4
5
6
7
8
9
P52/INT02_0/SCK3_1  
P30/TIOB0_1/INT03_2  
P31/TIOB1_1/SCK6_1/INT04_2  
P32/TIOB2_1/SOT6_1/INT05_2  
P33/INT04_0/TIOB3_1/SIN6_1/ADTG_6  
P39/ADTG_2  
42 AVRH  
LQFP - 64  
41 AVCC  
40 P17/AN07/SIN2_2/INT04_1  
39 P15/AN05  
P3A/TIOA0_1/RTCCO_2/SUBOUT_2 10  
P3B/TIOA1_1 11  
38 P14/AN04/INT03_1  
37 P13/AN03/SCK1_1/RTCCO_1/SUBOUT_1  
36 P12/AN02/SOT1_1  
35 P11/AN01/SIN1_1/INT02_1/WKUP1  
34 P10/AN00  
P3C/TIOA2_1 12  
P3D/TIOA3_1 13  
P3E/TIOA4_1 14  
P3F/TIOA5_1 15  
VSS 16  
33 VCC  
<Note>  
The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated  
port number. For these pins, there are multiple pins that provide the same function for the same channel.  
Use the extended port function register (EPFR) to select the pin.  
June 10, 2015, MB9A140NB_DS706-00040-4v0-E  
11  
D a t a S h e e t  
LCC-64P- M24  
(TOP VIEW)  
VCC  
1
2
3
4
5
6
7
8
9
48 P21/AN18/SIN0_0/INT06_1/WKUP2  
47 P22/AN17/SOT0_0/TIOB7_1  
46 P23/AN16/SCK0_0/TIOA7_1  
45 P19/AN09/SCK2_2  
44 P18/AN08/SOT2_2  
43 AVSS  
P50/INT00_0/SIN3_1  
P51/INT01_0/SOT3_1  
P52/INT02_0/SCK3_1  
P30/TIOB0_1/INT03_2  
P31/TIOB1_1/SCK6_1/INT04_2  
P32/TIOB2_1/SOT6_1/INT05_2  
P33/INT04_0/TIOB3_1/SIN6_1/ADTG_6  
P39/ADTG_2  
42 AVRH  
QFN - 64  
41 AVCC  
40 P17/AN07/SIN2_2/INT04_1  
39 P15/AN05  
P3A/TIOA0_1/RTCCO_2/SUBOUT_2 10  
P3B/TIOA1_1 11  
38 P14/AN04/INT03_1  
37 P13/AN03/SCK1_1/RTCCO_1/SUBOUT_1  
36 P12/AN02/SOT1_1  
35 P11/AN01/SIN1_1/INT02_1/WKUP1  
34 P10/AN00  
P3C/TIOA2_1 12  
P3D/TIOA3_1 13  
P3E/TIOA4_1 14  
P3F/TIOA5_1 15  
VSS 16  
33 VCC  
<Note>  
The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated  
port number. For these pins, there are multiple pins that provide the same function for the same channel.  
Use the extended port function register (EPFR) to select the pin.  
12  
MB9A140NB_DS706-00040-4v0-E, June 10, 2015  
D a t a S h e e t  
BGA-112P-M04  
(TOP VIEW)  
1
2
3
4
5
6
7
8
9
10  
11  
TMS/  
SWDIO  
A
B
C
D
E
F
VSS  
VCC  
P50  
P53  
P30  
P34  
P37  
P3B  
VCC  
VCC  
VSS  
P81  
VSS  
P51  
P54  
P31  
P35  
P38  
P3C  
P3F  
VSS  
C
P80  
P52  
VSS  
P55  
P32  
P36  
P3A  
P3E  
VSS  
X1A  
X0A  
VCC  
P61  
P60  
VSS  
P33  
P39  
P3D  
VSS  
P40  
INITX  
VSS  
P0E  
P0F  
P62  
P0B  
P0C  
P0D  
P63  
AN22  
AN23  
P09  
TRSTX  
VCC  
VSS  
AN19  
AN16  
AN12  
AN09  
AN06  
AN03  
AN01  
VSS  
X1  
VSS  
TDI  
TDO/  
SWO  
TCK/  
SWCLK  
AN20  
VSS  
VSS  
AN21  
AN14  
AN10  
AN07  
AN04  
VSS  
MD1  
X0  
AN18  
AN15  
AN11  
AVRH  
AVSS  
AVCC  
AN00  
VCC  
P56  
P0A  
Index  
AN17  
AN13  
AN08  
VSS  
G
H
J
P44  
P43  
P42  
P41  
P4C  
P49  
P48  
P45  
AN05  
P4D  
P4B  
P4A  
AN02  
P4E  
K
L
MD0  
VSS  
<Note>  
The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated  
port number. For these pins, there are multiple pins that provide the same function for the same channel.  
Use the extended port function register (EPFR) to select the pin.  
June 10, 2015, MB9A140NB_DS706-00040-4v0-E  
13  
D a t a S h e e t  
BGA-96P-M07  
(TOP VIEW)  
1
2
3
4
5
6
7
8
9
10  
11  
TMS/  
SWDIO  
A
B
C
D
E
F
VSS  
VCC  
P50  
P53  
P56  
VSS  
P32  
P3A  
P3D  
VCC  
VSS  
P81  
VSS  
P51  
P54  
P30  
VSS  
P33  
P3B  
P3E  
VSS  
C
P80  
P52  
VSS  
P55  
P31  
VSS  
P39  
P3C  
VSS  
X1A  
X0A  
VCC  
P61  
VSS  
P63  
P62  
P0F  
P0D  
P0E  
VSS  
P0C  
P0B  
AN22  
TRSTX  
VSS  
VSS  
TDI  
TDO/  
SWO  
TCK/  
SWCLK  
P60  
P0A  
VSS  
AN17  
AN11  
AN08  
AN06  
AN04  
VSS  
MD1  
X0  
AN19  
AN16  
AN10  
AN07  
AN05  
AN03  
AN01  
VSS  
AN18  
VSS  
Index  
AN09  
AVRH  
AVSS  
AVCC  
AN00  
VCC  
G
H
J
P3F  
INITX  
VSS  
P48  
P45  
P44  
P4A  
P49  
VSS  
P4D  
P4C  
P4B  
AN02  
P4E  
K
L
MD0  
X1  
VSS  
<Note>  
The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated  
port number. For these pins, there are multiple pins that provide the same function for the same channel.  
Use the extended port function register (EPFR) to select the pin.  
14  
MB9A140NB_DS706-00040-4v0-E, June 10, 2015  
D a t a S h e e t  
List of Pin Functions  
List of Pin Numbers  
The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated  
port number. For these pins, there are multiple pins that provide the same function for the same channel.  
Use the extended port function register (EPFR) to select the pin.  
Pin No  
I/O  
Circuit  
Type  
Pin State  
Type  
Pin Name  
LQFP-64  
QFN-64  
LQFP-100 QFP-100 BGA-112 LQFP-80 BGA-96  
1
79  
B1  
1
B1  
1
2
-
VCC  
P50  
-
INT00_0  
SIN3_1  
MADATA00_1  
P51  
2
80  
C1  
2
C1  
E
E
L
L
INT01_0  
3
-
3
4
5
6
81  
82  
83  
84  
C2  
B3  
D1  
D2  
3
4
5
6
C2  
B3  
D1  
D2  
SOT3_1  
(SDA3_1)  
MADATA01_1  
P52  
INT02_0  
4
-
E
E
E
L
L
K
SCK3_1  
(SCL3_1)  
MADATA02_1  
P53  
SIN6_0  
-
-
TIOA1_2  
INT07_2  
MADATA03_1  
P54  
SOT6_0  
(SDA6_0)  
TIOB1_2  
MADATA04_1  
June 10, 2015, MB9A140NB_DS706-00040-4v0-E  
15  
D a t a S h e e t  
Pin No  
I/O  
Circuit  
Type  
Pin State  
Type  
Pin Name  
LQFP-64  
QFN-64  
LQFP-100 QFP-100 BGA-112 LQFP-80 BGA-96  
P55  
SCK6_0  
(SCL6_0)  
7
85  
D3  
7
D3  
-
-
E
K
ADTG_1  
MADATA05_1  
P56  
8
9
86  
87  
D5  
E1  
8
9
E1  
E2  
INT08_2  
MADATA06_1  
P30  
E
E
L
L
5
-
TIOB0_1  
INT03_2  
MADATA07_1  
P31  
TIOB1_1  
6
-
SCK6_1  
(SCL6_1)  
10  
11  
12  
88  
89  
90  
E2  
E3  
E4  
10  
11  
12  
E3  
G1  
G2  
E
E
E
L
L
L
INT04_2  
MADATA08_1  
P32  
TIOB2_1  
7
-
SOT6_1  
(SDA6_1)  
INT05_2  
MADATA09_1  
P33  
INT04_0  
TIOB3_1  
SIN6_1  
8
ADTG_6  
MADATA10_1  
P34  
-
-
13  
14  
91  
92  
F1  
F2  
-
-
-
-
TIOB4_1  
MADATA11_1  
P35  
E
E
K
L
TIOB5_1  
INT08_1  
MADATA12_1  
-
16  
MB9A140NB_DS706-00040-4v0-E, June 10, 2015  
D a t a S h e e t  
Pin No  
I/O  
Circuit  
Type  
Pin State  
Type  
Pin Name  
LQFP-64  
QFN-64  
LQFP-100 QFP-100 BGA-112 LQFP-80 BGA-96  
P36  
SIN5_2  
INT09_1  
MADATA13_1  
VSS  
15  
93  
F3  
-
-
-
E
L
-
-
-
-
-
-
-
-
-
-
-
-
F1  
F2  
F3  
-
-
-
-
-
-
VSS  
VSS  
P37  
SOT5_2  
(SDA5_2)  
16  
17  
94  
95  
G1  
G2  
-
-
-
-
-
-
E
E
L
L
INT10_1  
MADATA14_1  
P38  
SCK5_2  
(SCL5_2)  
INT11_1  
MADATA15_1  
P39  
18  
19  
96  
97  
F4  
13  
14  
G3  
H1  
9
E
E
K
K
ADTG_2  
P3A  
TIOA0_1  
RTCCO_2  
SUBOUT_2  
P3B  
G3  
10  
20  
21  
98  
99  
H1  
H2  
15  
16  
H2  
H3  
11  
12  
E
E
E
K
K
K
TIOA1_1  
P3C  
TIOA2_1  
P3D  
22  
-
100  
G4  
B2  
H3  
17  
-
J1  
B2  
J2  
13  
-
TIOA3_1  
VSS  
-
-
P3E  
23  
1
18  
14  
E
E
K
K
TIOA4_1  
P3F  
24  
2
J2  
19  
J4  
15  
TIOA5_1  
VSS  
25  
26  
3
4
L1  
J1  
20  
-
L1  
-
16  
-
-
-
VCC  
June 10, 2015, MB9A140NB_DS706-00040-4v0-E  
17  
D a t a S h e e t  
Pin No  
I/O Circuit Pin State  
Pin Name  
LQFP-64  
QFN-64  
Type  
Type  
LQFP-100 QFP-100 BGA-112 LQFP-80 BGA-96  
P40  
27  
5
J4  
-
-
-
TIOA0_0  
INT12_1  
P41  
E
L
28  
29  
30  
6
7
8
L5  
K5  
J5  
-
-
-
-
-
-
-
-
-
TIOA1_0  
INT13_1  
P42  
E
E
E
L
K
K
TIOA2_0  
P43  
TIOA3_0  
ADTG_7  
P44  
31  
32  
9
H5  
L6  
21  
22  
L5  
-
-
TIOA4_0  
MAD00_1  
P45  
TIOA5_0  
MAD01_1  
VSS  
E
E
K
K
10  
K5  
-
-
-
-
K2  
J3  
-
-
K2  
J3  
-
-
-
-
-
-
-
-
-
VSS  
VSS  
-
-
H4  
-
-
-
-
-
-
-
L6  
L2  
L4  
K1  
-
VSS  
33  
34  
35  
11  
12  
13  
L2  
L4  
K1  
23  
24  
25  
17  
-
C
VSS  
18  
VCC  
P46  
36  
14  
L3  
26  
L3  
19  
D
F
X0A  
P47  
37  
38  
15  
16  
K3  
K4  
27  
28  
K3  
K4  
20  
21  
D
B
G
C
X1A  
INITX  
P48  
INT14_1  
SIN3_2  
MAD02_1  
P49  
39  
17  
K6  
29  
J5  
-
E
L
22  
-
TIOB0_0  
40  
18  
J6  
30  
K6  
E
K
SOT3_2  
(SDA3_2)  
MAD03_1  
18  
MB9A140NB_DS706-00040-4v0-E, June 10, 2015  
D a t a S h e e t  
Pin No  
I/O Circuit Pin State  
Pin Name  
LQFP-64  
QFN-64  
Type  
Type  
LQFP-100 QFP-100 BGA-112 LQFP-80 BGA-96  
P4A  
23  
TIOB1_0  
41  
42  
19  
20  
L7  
31  
32  
J6  
E
K
SCK3_2  
(SCL3_2)  
-
MAD04_1  
P4B  
24  
-
K7  
L7  
TIOB2_0  
MAD05_1  
P4C  
E
I
K
S
TIOB3_0  
25  
SCK7_1  
(SCL7_1)  
43  
21  
H6  
33  
K7  
CEC0  
MAD06_1  
P4D  
-
TIOB4_0  
26  
-
44  
45  
22  
23  
J7  
34  
35  
J7  
I
I
K
L
SOT7_1  
(SDA7_1)  
MAD07_1  
P4E  
TIOB5_0  
INT06_2  
SIN7_1  
MAD08_1  
MD1  
27  
K8  
K8  
-
46  
47  
48  
24  
25  
26  
K9  
L8  
L9  
36  
37  
38  
K9  
L8  
L9  
28  
29  
30  
C
G
A
E
D
A
PE0  
MD0  
X0  
PE2  
X1  
49  
27  
L10  
39  
L10  
31  
A
F
F
B
M
R
PE3  
50  
51  
28  
29  
L11  
K11  
40  
41  
L11  
K11  
32  
33  
VSS  
-
-
VCC  
P10  
52  
30  
J11  
42  
J11  
34  
AN00  
P11  
AN01  
SIN1_1  
INT02_1  
WKUP1  
MAD09_1  
35  
-
53  
31  
J10  
43  
J10  
June 10, 2015, MB9A140NB_DS706-00040-4v0-E  
19  
D a t a S h e e t  
Pin No  
I/O Circuit Pin State  
Pin Name  
LQFP-64  
QFN-64  
Type  
Type  
LQFP-100 QFP-100 BGA-112 LQFP-80 BGA-96  
P12  
AN02  
36  
54  
32  
J8  
44  
J8  
F
M
SOT1_1  
(SDA1_1)  
-
-
-
MAD10_1  
VSS  
-
-
-
-
K10  
J9  
-
-
K10  
J9  
-
-
VSS  
P13  
AN03  
SCK1_1  
(SCL1_1)  
37  
55  
33  
H10  
45  
H10  
F
M
RTCCO_1  
SUBOUT_1  
MAD11_1  
P14  
-
38  
AN04  
56  
57  
58  
59  
34  
35  
36  
37  
H9  
H7  
46  
47  
48  
49  
H9  
G10  
G9  
INT03_1  
SIN0_1  
MAD12_1  
P15  
F
F
F
F
N
M
M
N
-
39  
AN05  
SOT0_1  
(SDA0_1)  
-
-
MAD13_1  
P16  
AN06  
G10  
G9  
SCK0_1  
(SCL0_1)  
MAD14_1  
P17  
AN07  
40  
F10  
SIN2_2  
INT04_1  
MAD15_1  
AVCC  
-
60  
61  
62  
38  
39  
40  
H11  
F11  
G11  
50  
51  
52  
H11  
F11  
G11  
41  
42  
43  
-
-
-
AVRH  
AVSS  
20  
MB9A140NB_DS706-00040-4v0-E, June 10, 2015  
D a t a S h e e t  
Pin No  
I/O Circuit Pin State  
Pin Name  
LQFP-64  
QFN-64  
Type  
Type  
LQFP-100 QFP-100 BGA-112 LQFP-80 BGA-96  
P18  
AN08  
44  
-
63  
41  
G8  
53  
F9  
F
M
SOT2_2  
(SDA2_2)  
MAD16_1  
P19  
AN09  
45  
64  
-
42  
-
F10  
H8  
F9  
54  
-
E11  
-
F
M
SCK2_2  
(SCL2_2)  
-
-
MAD17_1  
VSS  
-
P1A  
AN10  
65  
43  
55  
E10  
-
-
-
SIN4_1  
INT05_1  
MAD18_1  
P1B  
F
F
F
N
M
M
AN11  
66  
67  
44  
45  
E11  
E10  
56  
E9  
SOT4_1  
(SDA4_1)  
MAD19_1  
P1C  
AN12  
-
-
SCK4_1  
(SCL4_1)  
MAD20_1  
P1D  
AN13  
68  
69  
70  
46  
47  
48  
F8  
E9  
-
-
-
-
-
-
-
-
-
F
F
F
M
M
M
CTS4_1  
MAD21_1  
P1E  
AN14  
RTS4_1  
MAD22_1  
P1F  
AN15  
D11  
ADTG_5  
MAD23_1  
June 10, 2015, MB9A140NB_DS706-00040-4v0-E  
21  
D a t a S h e e t  
Pin No  
I/O Circuit Pin State  
Pin Name  
LQFP-64  
QFN-64  
Type  
Type  
LQFP-100 QFP-100 BGA-112 LQFP-80 BGA-96  
-
-
-
-
-
-
B10  
C9  
-
-
-
-
B10  
C9  
-
-
-
VSS  
VSS  
VSS  
P23  
-
-
-
D11  
AN16  
71  
72  
73  
49  
50  
51  
D10  
E8  
57  
58  
59  
D10  
D9  
46  
47  
48  
F
F
F
M
M
R
SCK0_0  
(SCL0_0)  
TIOA7_1  
P22  
AN17  
SOT0_0  
(SDA0_0)  
TIOB7_1  
P21  
AN18  
C11  
C11  
SIN0_0  
INT06_1  
WKUP2  
P20  
AN19  
74  
52  
C10  
60  
C10  
-
INT05_0  
CROUT_0  
MAD24_1  
VSS  
F
N
75  
76  
53  
54  
A11  
A10  
-
-
A11  
-
-
-
-
-
VCC  
P00  
49  
-
77  
78  
79  
80  
81  
55  
56  
57  
58  
59  
A9  
B9  
61  
62  
63  
64  
65  
A10  
B9  
TRSTX  
MCSX7_1  
P01  
E
E
E
E
E
J
J
J
J
J
50  
TCK  
SWCLK  
P02  
51  
-
B11  
A8  
B8  
B11  
A9  
TDI  
MCSX6_1  
P03  
52  
53  
TMS  
SWDIO  
P04  
B8  
TDO  
SWO  
22  
MB9A140NB_DS706-00040-4v0-E, June 10, 2015  
D a t a S h e e t  
Pin No  
I/O Circuit Pin State  
Pin Name  
LQFP-64  
QFN-64  
Type  
Type  
LQFP-100 QFP-100 BGA-112 LQFP-80 BGA-96  
P05  
AN20  
TRACED0  
TIOA5_2  
SIN4_2  
INT00_1  
MCSX5_1  
VSS  
82  
-
60  
-
C8  
D8  
-
-
-
-
-
-
F
Q
-
P06  
AN21  
TRACED1  
TIOB5_2  
83  
61  
D9  
-
-
-
F
F
F
Q
P
P
SOT4_2  
(SDA4_2)  
INT01_1  
MCSX4_1  
P07  
AN22  
66  
A8  
ADTG_0  
MCLKOUT_1  
TRACED2  
84  
62  
A7  
-
-
-
-
SCK4_2  
(SCL4_2)  
-
-
-
A7  
-
-
VSS  
P08  
-
AN23  
TRACED3  
TIOA0_2  
CTS4_2  
MCSX3_1  
P09  
85  
63  
B7  
-
-
TRACECLK  
TIOB0_2  
RTS4_2  
MCSX2_1  
P0A  
86  
87  
64  
65  
C7  
D7  
-
-
-
E
I
O
L
54  
-
SIN4_0  
INT00_2  
MCSX1_1  
67  
C8  
June 10, 2015, MB9A140NB_DS706-00040-4v0-E  
23  
D a t a S h e e t  
Pin No  
I/O Circuit Pin State  
Pin Name  
LQFP-64  
QFN-64  
Type  
Type  
LQFP-100 QFP-100 BGA-112 LQFP-80 BGA-96  
P0B  
SOT4_0  
(SDA4_0)  
55  
-
88  
89  
66  
67  
A6  
B6  
68  
69  
C7  
B7  
I
K
TIOB6_1  
MCSX0_1  
P0C  
SCK4_0  
(SCL4_0)  
56  
I
K
TIOA6_1  
MALE_1  
VSS  
-
-
-
-
-
-
-
D4  
C3  
-
-
-
-
-
C3  
VSS  
P0D  
RTS4_0  
TIOA3_2  
MDQM0_1  
P0E  
90  
68  
C6  
70  
B6  
-
E
E
K
K
CTS4_0  
TIOB3_2  
MDQM1_1  
VSS  
91  
-
69  
-
A5  
-
71  
-
C6  
A5  
-
-
-
P0F  
NMIX  
CROUT_1  
RTCCO_0  
SUBOUT_0  
WKUP0  
P63  
92  
70  
B5  
72  
A6  
57  
E
I
93  
94  
71  
72  
D6  
C5  
73  
74  
B5  
C5  
-
INT03_0  
MWEX_1  
P62  
E
E
L
SCK5_0  
(SCL5_0)  
58  
-
K
ADTG_3  
MOEX_1  
P61  
SOT5_0  
(SDA5_0)  
95  
73  
B4  
75  
B4  
59  
E
K
TIOB2_2  
24  
MB9A140NB_DS706-00040-4v0-E, June 10, 2015  
D a t a S h e e t  
Pin No  
I/O Circuit Pin State  
Pin Name  
LQFP-64  
QFN-64  
Type  
Type  
LQFP-100 QFP-100 BGA-112 LQFP-80 BGA-96  
P60  
SIN5_0  
TIOA2_2  
INT15_1  
WKUP3  
CEC1  
60  
96  
74  
C4  
76  
C4  
I
T
-
MRDY_1  
VCC  
97  
98  
75  
76  
77  
78  
A4  
A3  
A2  
A1  
77  
78  
79  
80  
A4  
A3  
A2  
A1  
61  
62  
63  
64  
-
-
P80  
H
H
H
H
99  
P81  
100  
VSS  
June 10, 2015, MB9A140NB_DS706-00040-4v0-E  
25  
D a t a S h e e t  
List of pin functions  
The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated  
port number. For these pins, there are multiple pins that provide the same function for the same channel.  
Use the extended port function register (EPFR) to select the pin.  
Pin No  
Pin  
Function  
LQFP/  
QFN-  
64  
Pin Name  
Function Description  
LQFP- QFP- BGA- LQFP- BGA-  
100  
100  
112  
80  
96  
ADC  
ADTG_0  
ADTG_1  
ADTG_2  
ADTG_3  
ADTG_4  
ADTG_5  
ADTG_6  
ADTG_7  
ADTG_8  
AN00  
84  
7
62  
85  
96  
72  
-
A7  
D3  
F4  
66  
7
A8  
D3  
G3  
C5  
-
-
-
18  
94  
-
13  
74  
-
9
C5  
-
58  
-
A/D converter external trigger  
input pin  
70  
12  
30  
-
48  
90  
8
D11  
E4  
-
-
-
12  
-
G2  
-
8
J5  
-
-
-
-
-
-
52  
53  
54  
55  
56  
57  
58  
59  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
82  
83  
84  
85  
30  
31  
32  
33  
34  
35  
36  
37  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
60  
61  
62  
63  
J11  
J10  
J8  
42  
43  
44  
45  
46  
47  
48  
49  
53  
54  
55  
56  
-
J11  
J10  
J8  
34  
35  
36  
37  
38  
39  
-
AN01  
AN02  
AN03  
H10  
H9  
H7  
G10  
G9  
G8  
F10  
F9  
H10  
H9  
G10  
G9  
F10  
F9  
E11  
E10  
E9  
-
AN04  
AN05  
AN06  
AN07  
40  
44  
45  
-
AN08  
AN09  
AN10  
AN11  
E11  
E10  
F8  
-
A/D converter analog input pin.  
ANxx describes ADC ch.xx.  
AN12  
-
AN13  
-
-
-
AN14  
E9  
-
-
-
AN15  
D11  
D10  
E8  
-
-
-
AN16  
57  
58  
59  
60  
-
D10  
D9  
C11  
C10  
-
46  
47  
48  
-
AN17  
AN18  
C11  
C10  
C8  
D9  
A7  
B7  
AN19  
AN20  
-
AN21  
-
-
-
AN22  
66  
-
A8  
-
-
AN23  
-
26  
MB9A140NB_DS706-00040-4v0-E, June 10, 2015  
D a t a S h e e t  
Pin No  
Pin  
Function  
LQFP/  
QFN-  
64  
Pin Name  
Function Description  
LQFP- QFP- BGA- LQFP- BGA-  
100  
100  
112  
80  
96  
Base  
Timer  
0
TIOA0_0  
27  
19  
85  
40  
9
5
97  
63  
18  
87  
64  
6
J4  
G3  
B7  
J6  
-
-
-
10  
-
TIOA0_1 Base timer ch.0 TIOA pin  
14  
-
H1  
-
TIOA0_2  
TIOB0_0  
30  
9
K6  
E2  
-
22  
5
TIOB0_1 Base timer ch.0 TIOB pin  
E1  
C7  
L5  
H1  
D1  
L7  
E2  
D2  
K5  
H2  
C4  
K7  
E3  
B4  
J5  
TIOB0_2  
86  
28  
20  
5
-
-
Base  
Timer  
1
TIOA1_0  
-
-
-
TIOA1_1 Base timer ch.1 TIOA pin  
98  
83  
19  
88  
84  
7
15  
5
H2  
D1  
J6  
E3  
D2  
-
11  
-
TIOA1_2  
TIOB1_0  
41  
10  
6
31  
10  
6
23  
6
TIOB1_1 Base timer ch.1 TIOB pin  
TIOB1_2  
-
Base  
Timer  
2
TIOA2_0  
29  
21  
96  
42  
11  
95  
30  
22  
90  
43  
12  
91  
31  
23  
-
-
-
TIOA2_1 Base timer ch.2 TIOA pin  
99  
74  
20  
89  
73  
8
16  
76  
32  
11  
75  
-
H3  
C4  
L7  
G1  
B4  
-
12  
60  
24  
7
TIOA2_2  
TIOB2_0  
TIOB2_1 Base timer ch.2 TIOB pin  
TIOB2_2  
59  
-
Base  
Timer  
3
TIOA3_0  
TIOA3_1 Base timer ch.3 TIOA pin  
100  
68  
21  
90  
69  
9
G4  
C6  
H6  
E4  
A5  
H5  
H3  
-
17  
70  
33  
12  
71  
21  
18  
-
J1  
B6  
K7  
G2  
C6  
L5  
J2  
-
13  
-
TIOA3_2  
TIOB3_0  
25  
8
TIOB3_1 Base timer ch.3 TIOB pin  
TIOB3_2  
-
Base  
Timer  
4
TIOA4_0  
-
TIOA4_1 Base timer ch.4 TIOA pin  
1
14  
-
TIOA4_2  
-
TIOB4_0  
44  
13  
-
22  
91  
-
J7  
34  
-
J7  
-
26  
-
TIOB4_1 Base timer ch.4 TIOB pin  
F1  
-
TIOB4_2  
-
-
-
Base  
Timer  
5
TIOA5_0  
32  
24  
82  
45  
14  
83  
10  
2
L6  
J2  
22  
19  
-
K5  
J4  
-
-
TIOA5_1 Base timer ch.5 TIOA pin  
15  
-
TIOA5_2  
60  
23  
92  
61  
C8  
K8  
F2  
D9  
TIOB5_0  
35  
-
K8  
-
27  
-
TIOB5_1 Base timer ch.5 TIOB pin  
TIOB5_2  
-
-
-
Base  
Timer  
6
TIOA6_1 Base timer ch.6 TIOA pin  
TIOB6_1 Base timer ch.6 TIOB pin  
89  
88  
67  
66  
B6  
A6  
69  
68  
B7  
C7  
56  
55  
Base  
Timer  
7
TIOA7_0  
-
71  
-
-
49  
-
-
D10  
-
-
57  
-
-
D10  
-
-
46  
-
TIOA7_1 Base timer ch.7 TIOA pin  
TIOA7_2  
TIOB7_0  
-
-
-
-
-
-
TIOB7_1 Base timer ch.7 TIOB pin  
TIOB7_2  
72  
-
50  
-
E8  
-
58  
-
D9  
-
47  
-
June 10, 2015, MB9A140NB_DS706-00040-4v0-E  
27  
D a t a S h e e t  
Pin No  
LQFP- QFP- BGA- LQFP- BGA-  
Pin  
Function  
LQFP/  
QFN-  
64  
Pin Name  
Function Description  
100  
100  
112  
80  
62  
64  
96  
B9  
A9  
Debugger  
Serial wire debug interface  
clock input pin  
SWCLK  
SWDIO  
78  
56  
B9  
50  
52  
Serial wire debug interface  
data input / output pin  
80  
58  
A8  
SWO  
TCK  
TDI  
Serial wire viewer output pin  
J-TAG test clock input pin  
J-TAG test data input pin  
J-TAG debug data output pin  
81  
78  
79  
81  
59  
56  
57  
59  
B8  
B9  
65  
62  
63  
65  
B8  
B9  
53  
50  
51  
53  
B11  
B8  
B11  
B8  
TDO  
J-TAG test mode state  
input/output pin  
TMS  
80  
58  
A8  
64  
A9  
52  
TRACECLK Trace CLK output pin of ETM  
TRACED0  
86  
82  
83  
84  
85  
77  
31  
32  
39  
40  
41  
42  
43  
44  
45  
53  
54  
55  
56  
57  
58  
59  
63  
64  
65  
66  
67  
68  
69  
70  
74  
64  
60  
61  
62  
63  
55  
9
C7  
C8  
D9  
A7  
B7  
A9  
H5  
L6  
-
-
-
-
-
-
-
-
49  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
TRACED1  
-
-
Trace data output pins of ETM  
TRACED2  
-
-
TRACED3  
-
-
TRSTX  
J-TAG test reset input pin  
61  
21  
22  
29  
30  
31  
32  
33  
34  
35  
43  
44  
45  
46  
47  
48  
49  
53  
54  
55  
56  
-
A10  
L5  
K5  
J5  
External  
Bus  
MAD00_1  
MAD01_1  
MAD02_1  
MAD03_1  
MAD04_1  
MAD05_1  
MAD06_1  
MAD07_1  
MAD08_1  
MAD09_1  
MAD10_1  
MAD11_1  
MAD12_1  
MAD13_1  
MAD14_1  
MAD15_1  
MAD16_1  
MAD17_1  
MAD18_1  
MAD19_1  
MAD20_1  
MAD21_1  
MAD22_1  
MAD23_1  
MAD24_1  
10  
17  
18  
19  
20  
21  
22  
23  
31  
32  
33  
34  
35  
36  
37  
41  
42  
43  
44  
45  
46  
47  
48  
52  
K6  
J6  
K6  
J6  
L7  
K7  
H6  
J7  
L7  
K7  
J7  
K8  
J10  
J8  
K8  
J10  
J8  
H10  
H9  
H7  
G10  
G9  
G8  
F10  
F9  
H10  
H9  
G10  
G9  
F10  
F9  
E11  
E10  
E9  
-
External bus interface address  
bus  
E11  
E10  
F8  
-
-
E9  
-
-
D11  
C10  
-
-
60  
C10  
28  
MB9A140NB_DS706-00040-4v0-E, June 10, 2015  
D a t a S h e e t  
Pin No  
Pin  
Function  
LQFP/  
QFN-  
64  
Pin Name  
Function Description  
LQFP- QFP- BGA- LQFP- BGA-  
100  
100  
112  
80  
96  
External  
Bus  
MCSX0_1  
MCSX1_1  
MCSX2_1  
MCSX3_1  
MCSX4_1  
MCSX5_1  
MCSX6_1  
MCSX7_1  
MDQM0_1  
MDQM1_1  
88  
87  
86  
85  
83  
82  
79  
77  
90  
91  
66  
65  
64  
63  
61  
60  
57  
55  
68  
69  
A6  
D7  
C7  
B7  
D9  
C8  
B11  
A9  
C6  
A5  
68  
67  
-
C7  
C8  
-
-
-
-
-
-
-
-
-
-
-
-
-
External bus interface chip  
select output pin  
-
-
-
-
63  
61  
70  
71  
B11  
A10  
B6  
C6  
External bus interface byte  
mask signal output pin  
External bus interface read  
enable signal for SRAM  
MOEX_1  
MWEX_1  
94  
93  
72  
71  
C5  
D6  
74  
73  
C5  
B5  
-
-
External bus interface write  
enable signal for SRAM  
2
3
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
C1  
C2  
B3  
D1  
D2  
D3  
D5  
E1  
E2  
E3  
E4  
F1  
F2  
F3  
G1  
G2  
2
3
C1  
C2  
B3  
D1  
D2  
D3  
E1  
E2  
E3  
G1  
G2  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
MADATA00_1  
MADATA01_1  
MADATA02_1  
MADATA03_1  
MADATA04_1  
MADATA05_1  
MADATA06_1  
MADATA07_1  
MADATA08_1  
MADATA09_1  
MADATA10_1  
MADATA11_1  
MADATA12_1  
MADATA13_1  
MADATA14_1  
MADATA15_1  
4
4
5
5
6
6
7
7
8
8
9
9
External bus interface data bus  
10  
11  
12  
13  
14  
15  
16  
17  
10  
11  
12  
-
-
-
-
-
-
-
-
-
Address Latch enable signal  
for multiplex  
89  
67  
B6  
69  
B7  
-
MALE_1  
External RDY input signal  
96  
84  
74  
62  
C4  
A7  
76  
66  
C4  
A8  
-
-
MRDY_1  
External bus clock output pin  
MCLKOUT_1  
June 10, 2015, MB9A140NB_DS706-00040-4v0-E  
29  
D a t a S h e e t  
Pin No  
LQFP- QFP- BGA- LQFP- BGA-  
Pin  
Function  
LQFP/  
QFN-  
64  
Pin Name  
Function Description  
100  
100  
112  
80  
96  
External  
Interrupt  
INT00_0  
INT00_1  
INT00_2  
INT01_0  
INT01_1  
INT02_0  
INT02_1  
INT03_0  
INT03_1  
INT03_2  
INT04_0  
INT04_1  
INT04_2  
INT05_0  
INT05_1  
INT05_2  
INT06_1  
INT06_2  
2
80  
60  
65  
81  
61  
82  
31  
71  
34  
87  
90  
37  
88  
52  
43  
89  
51  
23  
C1  
C8  
D7  
C2  
D9  
B3  
J10  
D6  
H9  
E1  
2
C1  
-
2
-
External interrupt request 00  
input pin  
82  
87  
3
-
67  
3
C8  
C2  
-
54  
3
External interrupt request 01  
input pin  
83  
4
-
-
4
B3  
J10  
B5  
H9  
E2  
G2  
F10  
E3  
C10  
E10  
G1  
C11  
K8  
4
External interrupt request 02  
input pin  
53  
93  
56  
9
43  
73  
46  
9
35  
-
External interrupt request 03  
input pin  
38  
5
12  
59  
10  
74  
65  
11  
73  
45  
E4  
12  
49  
10  
60  
55  
11  
59  
35  
8
External interrupt request 04  
input pin  
G9  
E2  
40  
6
C10  
F9  
-
External interrupt request 05  
input pin  
-
E3  
7
External interrupt request 06  
input pin  
C11  
K8  
48  
27  
External interrupt request 07  
input pin  
INT07_2  
5
83  
D1  
5
D1  
-
INT08_1  
INT08_2  
External interrupt request 08  
input pin  
14  
8
92  
86  
F2  
-
-
-
-
D5  
8
E1  
External interrupt request 09  
input pin  
INT09_1  
INT10_1  
INT11_1  
INT12_1  
INT13_1  
INT14_1  
INT15_1  
NMIX  
15  
16  
17  
27  
28  
39  
96  
92  
93  
94  
95  
5
F3  
G1  
G2  
J4  
-
-
-
-
-
-
External interrupt request 10  
input pin  
External interrupt request 11  
input pin  
-
-
-
External interrupt request 12  
input pin  
-
-
-
External interrupt request 13  
input pin  
6
L5  
K6  
C4  
B5  
-
-
-
External interrupt request 14  
input pin  
17  
74  
70  
29  
76  
72  
J5  
C4  
A6  
-
External interrupt request 15  
input pin  
60  
57  
Non-Maskable Interrupt input  
pin  
30  
MB9A140NB_DS706-00040-4v0-E, June 10, 2015  
D a t a S h e e t  
Pin No  
Pin  
Function  
LQFP/  
QFN-  
64  
49  
50  
51  
52  
53  
-
-
-
-
-
54  
55  
56  
-
Pin Name  
Function Description  
LQFP- QFP- BGA- LQFP- BGA-  
100  
100  
112  
80  
96  
GPIO  
P00  
P01  
P02  
P03  
P04  
P05  
P06  
P07  
P08  
P09  
P0A  
P0B  
P0C  
P0D  
P0E  
P0F  
P10  
P11  
P12  
P13  
P14  
P15  
P16  
P17  
P18  
P19  
P1A  
P1B  
P1C  
P1D  
P1E  
P1F  
P20  
P21  
P22  
P23  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
52  
53  
54  
55  
56  
57  
58  
59  
63  
64  
65  
66  
67  
68  
69  
70  
74  
73  
72  
71  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
30  
31  
32  
33  
34  
35  
36  
37  
41  
42  
43  
44  
45  
46  
47  
48  
52  
51  
50  
49  
A9  
B9  
B11  
A8  
B8  
61  
62  
63  
64  
65  
-
-
66  
-
A10  
B9  
B11  
A9  
B8  
-
-
A8  
-
C8  
D9  
A7  
B7  
General-purpose I/O port 0  
C7  
-
-
D7  
A6  
B6  
C6  
A5  
B5  
J11  
J10  
J8  
H10  
H9  
H7  
G10  
G9  
G8  
F10  
F9  
67  
68  
69  
70  
71  
72  
42  
43  
44  
45  
46  
47  
48  
49  
53  
54  
55  
56  
-
C8  
C7  
B7  
B6  
C6  
A6  
J11  
J10  
J8  
H10  
H9  
G10  
G9  
F10  
F9  
E11  
E10  
E9  
-
-
57  
34  
35  
36  
37  
38  
39  
-
40  
44  
45  
-
-
-
-
-
-
-
48  
47  
46  
General-purpose I/O port 1  
E11  
E10  
F8  
-
-
-
60  
59  
58  
57  
-
-
-
E9  
D11  
C10  
C11  
E8  
C10  
C11  
D9  
D10  
General-purpose I/O port 2  
D10  
June 10, 2015, MB9A140NB_DS706-00040-4v0-E  
31  
D a t a S h e e t  
Pin No  
LQFP- QFP- BGA- LQFP- BGA-  
Pin  
Function  
LQFP/  
Pin Name  
Function Description  
QFN-  
64  
5
6
7
8
-
-
-
-
-
9
10  
11  
12  
13  
14  
15  
-
100  
100  
112  
80  
96  
GPIO  
P30  
P31  
P32  
P33  
P34  
P35  
P36  
P37  
P38  
P39  
P3A  
P3B  
P3C  
P3D  
P3E  
P3F  
P40  
P41  
P42  
P43  
P44  
P45  
P46  
P47  
P48  
P49  
P4A  
P4B  
P4C  
P4D  
P4E  
P50  
P51  
P52  
P53  
P54  
P55  
P56  
P60  
P61  
P62  
P63  
P80  
P81  
PE0  
PE2  
PE3  
9
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
1
E1  
E2  
E3  
E4  
F1  
F2  
F3  
G1  
G2  
F4  
G3  
H1  
H2  
G4  
H3  
J2  
9
10  
11  
12  
-
-
-
-
-
13  
14  
15  
16  
17  
18  
19  
-
E2  
E3  
G1  
G2  
-
-
-
-
-
G3  
H1  
H2  
H3  
J1  
J2  
J4  
-
-
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
27  
28  
29  
30  
31  
32  
36  
37  
39  
40  
41  
42  
43  
44  
45  
2
3
4
5
6
7
8
96  
95  
94  
93  
98  
99  
46  
48  
49  
General-purpose I/O port 3  
2
5
6
7
8
9
J4  
L5  
K5  
J5  
H5  
L6  
L3  
K3  
K6  
J6  
L7  
K7  
H6  
J7  
K8  
C1  
C2  
B3  
D1  
D2  
D3  
D5  
C4  
B4  
C5  
D6  
A3  
A2  
K9  
L9  
L10  
-
-
-
-
-
-
-
-
-
21  
22  
26  
27  
29  
30  
31  
32  
33  
34  
35  
2
3
4
5
6
7
8
76  
75  
74  
73  
78  
79  
36  
38  
39  
L5  
K5  
L3  
K3  
J5  
K6  
J6  
L7  
K7  
J7  
K8  
C1  
C2  
B3  
D1  
D2  
D3  
E1  
C4  
B4  
C5  
B5  
A3  
A2  
K9  
L9  
L10  
10  
14  
15  
17  
18  
19  
20  
21  
22  
23  
80  
81  
82  
83  
84  
85  
86  
74  
73  
72  
71  
76  
77  
24  
26  
27  
-
19  
20  
-
22  
23  
24  
25  
26  
27  
2
3
4
-
-
-
-
60  
59  
58  
-
62  
63  
28  
30  
31  
General-purpose I/O port 4  
General-purpose I/O port 5  
General-purpose I/O port 6  
General-purpose I/O port 8  
General-purpose I/O port E  
32  
MB9A140NB_DS706-00040-4v0-E, June 10, 2015  
D a t a S h e e t  
Pin No  
Pin  
Function  
LQFP/  
QFN-  
64  
Pin Name  
Function Description  
LQFP- QFP- BGA- LQFP- BGA-  
100  
100  
112  
80  
96  
Multi-  
function  
Serial  
0
SIN0_0  
SIN0_1  
73  
56  
51  
34  
C11  
H9  
59  
46  
C11  
H9  
48  
Multi-function serial interface  
ch.0 input pin  
-
Multi-function serial interface  
ch.0 output pin.  
This pin operates as SOT0  
when it is used in a  
UART/CSIO (operation  
modes 0 to 2) and as SDA0  
when it is used in an I2C  
(operation mode 4).  
Multi-function serial interface  
ch.0 clock I/O pin.  
SOT0_0  
(SDA0_0)  
72  
57  
71  
50  
35  
49  
E8  
H7  
58  
47  
57  
D9  
47  
SOT0_1  
(SDA0_1)  
G10  
D10  
-
SCK0_0  
(SCL0_0)  
D10  
46  
This pin operates as SCK0  
when it is used in a  
UART/CSIO (operation  
modes 0 to 2) and as SCL0  
when it is used in an I2C  
(operation mode 4).  
Multi-function serial interface  
ch.1 input pin  
SCK0_1  
(SCL0_1)  
58  
53  
36  
31  
G10  
J10  
48  
43  
G9  
-
Multi-  
function  
Serial  
1
SIN1_1  
J10  
35  
Multi-function serial interface  
ch.1 output pin.  
This pin operates as SOT1  
when it is used in a  
(SDA1_1) UART/CSIO (operation  
modes 0 to 2) and as SDA1  
when it is used in an I2C  
(operation mode 4).  
SOT1_1  
54  
55  
32  
33  
J8  
44  
45  
J8  
36  
37  
Multi-function serial interface  
ch.1 clock I/O pin.  
This pin operates as SCK1  
SCK1_1  
(SCL1_1)  
when it is used in a  
H10  
H10  
UART/CSIO (operation  
modes 0 to 2) and as SCL1  
when it is used in an I2C  
(operation mode 4).  
June 10, 2015, MB9A140NB_DS706-00040-4v0-E  
33  
D a t a S h e e t  
Pin No  
LQFP- QFP- BGA- LQFP- BGA-  
Pin  
Function  
LQFP/  
QFN-  
64  
Pin Name  
Function Description  
100  
100  
112  
80  
96  
Multi-  
function  
Serial  
2
Multi-function serial interface  
ch.2 input pin  
Multi-function serial interface  
ch.2 output pin.  
SIN2_2  
59  
37  
G9  
49  
F10  
40  
This pin operates as SOT2  
when it is used in a  
(SDA2_2) UART/CSIO (operation  
modes 0 to 2) and as SDA2  
when it is used in an I2C  
(operation mode 4).  
SOT2_2  
63  
64  
41  
42  
G8  
53  
54  
F9  
44  
Multi-function serial interface  
ch.2 clock I/O pin.  
This pin operates as SCK2  
SCK2_2  
(SCL2_2)  
when it is used in a  
F10  
E11  
45  
UART/CSIO (operation  
modes 0 to 2) and as SCL2  
when it is used in an I2C  
(operation mode 4).  
Multi-  
function  
Serial  
3
SIN3_1  
SIN3_2  
2
80  
17  
C1  
K6  
2
C1  
J5  
2
-
Multi-function serial interface  
ch.3 input pin  
39  
29  
Multi-function serial interface  
ch.3 output pin.  
This pin operates as SOT3  
when it is used in a  
SOT3_1  
(SDA3_1)  
3
81  
C2  
3
C2  
3
UART/CSIO (operation  
modes 0 to 2) and as SDA3  
when it is used in an I2C  
(operation mode 4).  
Multi-function serial interface  
ch.3 clock I/O pin.  
SOT3_2  
(SDA3_2)  
40  
4
18  
82  
J6  
30  
4
K6  
B3  
-
SCK3_1  
(SCL3_1)  
B3  
4
This pin operates as SCK3  
when it is used in a  
UART/CSIO (operation  
modes 0 to 2) and as SCL3  
when it is used in an I2C  
(operation mode 4).  
SCK3_2  
(SCL3_2)  
41  
19  
L7  
31  
J6  
-
34  
MB9A140NB_DS706-00040-4v0-E, June 10, 2015  
D a t a S h e e t  
Pin No  
Pin  
Function  
LQFP/  
QFN-  
64  
Pin Name  
Function Description  
LQFP- QFP- BGA- LQFP- BGA-  
100  
100  
112  
80  
96  
Multi-  
function  
Serial  
4
SIN4_0  
SIN4_1  
SIN4_2  
87  
65  
82  
65  
43  
60  
D7  
F9  
C8  
67  
55  
-
C8  
E10  
-
54  
-
Multi-function serial interface  
ch.4 input pin  
-
Multi-function serial interface  
ch.4 output pin.  
This pin operates as SOT4  
when it is used in a  
UART/CSIO (operation  
modes 0 to 2) and as SDA4  
when it is used in an I2C  
(operation mode 4).  
SOT4_0  
(SDA4_0)  
88  
66  
83  
66  
44  
61  
A6  
E11  
D9  
68  
56  
-
C7  
E9  
-
55  
-
SOT4_1  
(SDA4_1)  
SOT4_2  
(SDA4_2)  
-
Multi-function serial interface  
ch.4 clock I/O pin.  
This pin operates as SCK4  
when it is used in a  
UART/CSIO (operation  
modes 0 to 2) and as SCL4  
when it is used in an I2C  
(operation mode 4).  
SCK4_0  
(SCL4_0)  
89  
67  
67  
45  
B6  
69  
-
B7  
-
56  
-
SCK4_1  
(SCL4_1)  
E10  
SCK4_2  
(SCL4_2)  
84  
62  
A7  
-
-
-
RTS4_0  
RTS4_1  
RTS4_2  
CTS4_0  
CTS4_1  
CTS4_2  
SIN5_0  
SIN5_2  
90  
69  
86  
91  
68  
85  
96  
15  
68  
47  
64  
69  
46  
63  
74  
93  
C6  
E9  
C7  
A5  
F8  
B7  
C4  
F3  
70  
-
B6  
-
-
-
Multi-function serial interface  
ch.4 RTS output pin  
-
-
-
71  
-
C6  
-
-
Multi-function serial interface  
ch.4 CTS input pin  
-
-
-
-
Multi-  
function  
Serial  
5
76  
-
C4  
-
60  
-
Multi-function serial interface  
ch.5 input pin  
Multi-function serial interface  
ch.5 output pin.  
This pin operates as SOT5  
when it is used in a  
SOT5_0  
(SDA5_0)  
95  
73  
B4  
75  
B4  
59  
UART/CSIO (operation  
modes 0 to 2) and as SDA5  
when it is used in an I2C  
(operation mode 4).  
SOT5_2  
(SDA5_2)  
16  
94  
94  
72  
G1  
C5  
-
-
-
Multi-function serial interface  
ch.5 clock I/O pin.  
This pin operates as SCK5  
when it is used in a  
SCK5_0  
(SCL5_0)  
74  
C5  
58  
UART/CSIO (operation  
modes 0 to 2) and as SCL5  
when it is used in an I2C  
(operation mode 4).  
SCK5_2  
(SCL5_2)  
17  
95  
G2  
-
-
-
June 10, 2015, MB9A140NB_DS706-00040-4v0-E  
35  
D a t a S h e e t  
Pin No  
LQFP- QFP- BGA- LQFP- BGA-  
Pin  
Function  
LQFP/  
QFN-  
64  
Pin Name  
Function Description  
100  
100  
112  
80  
96  
Multi-  
function  
Serial  
6
SIN6_0  
SIN6_1  
5
83  
90  
D1  
E4  
5
D1  
G2  
-
Multi-function serial interface  
ch.6 input pin  
12  
12  
8
Multi-function serial interface  
ch.6 output pin.  
This pin operates as SOT6  
when it is used in a  
SOT6_0  
(SDA6_0)  
6
84  
D2  
6
D2  
-
UART/CSIO (operation  
modes 0 to 2) and as SDA6  
when it is used in an I2C  
(operation mode 4).  
Multi-function serial interface  
ch.6 clock I/O pin.  
SOT6_1  
(SDA6_1)  
11  
7
89  
85  
E3  
D3  
11  
7
G1  
D3  
7
-
SCK6_0  
(SCL6_0)  
This pin operates as SCK6  
when it is used in a  
UART/CSIO (operation  
modes 0 to 2) and as SCL6  
when it is used in an I2C  
(operation mode 4).  
Multi-function serial interface  
ch.7 input pin  
SCK6_1  
(SCL6_1)  
10  
45  
88  
23  
E2  
K8  
10  
35  
E3  
K8  
6
Multi-  
function  
Serial  
7
SIN7_1  
27  
Multi-function serial interface  
ch.7 output pin.  
This pin operates as SOT7  
when it is used in a  
(SDA7_1) UART/CSIO (operation  
modes 0 to 2) and as SDA7  
when it is used in an I2C  
(operation mode 4).  
SOT7_1  
44  
43  
22  
21  
J7  
34  
33  
J7  
26  
25  
Multi-function serial interface  
ch.7 clock I/O pin.  
This pin operates as SCK7  
SCK7_1  
(SCL7_1)  
when it is used in a  
H6  
K7  
UART/CSIO (operation  
modes 0 to 2) and as SCL7  
when it is used in an I2C  
(operation mode 4).  
36  
MB9A140NB_DS706-00040-4v0-E, June 10, 2015  
D a t a S h e e t  
Pin No  
Pin  
Function  
LQFP/  
QFN-  
64  
Pin Name  
Function Description  
LQFP- QFP- BGA- LQFP- BGA-  
100  
100  
112  
80  
96  
Real-time  
clock  
RTCCO_0  
RTCCO_1  
RTCCO_2  
SUBOUT_0  
92  
55  
19  
92  
55  
19  
70  
33  
97  
70  
33  
97  
B5  
H10  
G3  
72  
45  
14  
72  
45  
14  
A6  
H10  
H1  
57  
0.5 seconds pulse output pin  
of Real-time clock  
37  
10  
57  
37  
10  
B5  
A6  
SUBOUT_1 Sub clock output pin  
SUBOUT_2  
H10  
G3  
H10  
H1  
Low-Power  
Consumption  
Mode  
Deep standby mode return  
WKUP0  
92  
53  
73  
96  
70  
31  
51  
74  
B5  
J10  
C11  
C4  
72  
43  
59  
76  
A6  
J10  
C11  
C4  
57  
35  
48  
60  
signal input pin 0  
Deep standby mode return  
signal input pin 1  
WKUP1  
Deep standby mode return  
signal input pin 2  
WKUP2  
Deep standby mode return  
signal input pin 3  
WKUP3  
HDMI-  
CEC/  
Remote  
Control  
HDMI-CEC/RemoteControl  
Reception ch.0 input/output  
pin  
HDMI-CEC/RemoteControl  
Reception ch.1 input/output  
pin  
CEC0  
CEC1  
43  
96  
21  
74  
H6  
C4  
33  
76  
K7  
C4  
25  
60  
June 10, 2015, MB9A140NB_DS706-00040-4v0-E  
37  
D a t a S h e e t  
Pin No  
LQFP- QFP- BGA- LQFP- BGA-  
Pin  
Function  
LQFP/  
QFN-  
64  
Pin Name  
Function Description  
100  
100  
112  
80  
96  
Reset  
Mode  
External Reset Input pin.  
A reset is valid when  
INITX=L.  
INITX  
38  
16  
K4  
28  
K4  
21  
Mode 0 pin.  
During normal operation,  
MD0=L must be input. During  
serial programming to Flash  
memory, MD0=H must be  
input.  
MD0  
47  
25  
L8  
37  
36  
L8  
29  
Mode 1 pin.  
During serial programming to  
Flash memory, MD1=L must  
be input.  
MD1  
46  
24  
K9  
K9  
28  
Power  
GND  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
Power supply Pin  
Power supply Pin  
Power supply Pin  
Power supply Pin  
Power supply Pin  
Power supply Pin  
GND Pin  
GND Pin  
GND Pin  
GND Pin  
GND Pin  
GND Pin  
GND Pin  
GND Pin  
GND Pin  
GND Pin  
GND Pin  
GND Pin  
GND Pin  
GND Pin  
GND Pin  
GND Pin  
GND Pin  
GND Pin  
GND Pin  
GND Pin  
GND Pin  
1
26  
35  
51  
76  
97  
-
-
-
-
25  
-
-
-
-
34  
50  
-
-
-
-
-
-
75  
-
-
-
-
-
79  
4
13  
29  
54  
75  
-
-
-
-
3
-
-
-
-
12  
28  
-
-
-
-
-
-
53  
-
-
-
-
-
B1  
J1  
1
-
25  
41  
-
77  
-
-
-
-
20  
-
-
-
-
24  
40  
-
-
-
-
-
B1  
-
K1  
K11  
-
A4  
F1  
F2  
F3  
B2  
L1  
K2  
J3  
1
-
18  
33  
-
61  
-
-
-
-
16  
-
-
-
-
-
32  
-
-
-
-
-
K1  
K11  
A10  
A4  
-
-
-
B2  
L1  
K2  
J3  
H4  
-
L4  
L11  
K10  
J9  
H8  
B10  
C9  
-
A11  
D8  
-
D4  
C3  
-
-
L6  
L4  
L11  
K10  
J9  
-
B10  
C9  
D11  
A11  
-
A7  
-
C3  
A5  
A1  
-
-
-
-
-
-
-
80  
-
-
-
-
-
-
-
64  
GND Pin  
GND Pin  
GND Pin  
100  
78  
A1  
38  
MB9A140NB_DS706-00040-4v0-E, June 10, 2015  
D a t a S h e e t  
Pin No  
Pin  
Function  
LQFP/  
QFN-  
64  
Pin Name  
Function Description  
LQFP- QFP- BGA- LQFP- BGA-  
100  
100  
112  
80  
38  
26  
39  
96  
Clock  
Main clock (oscillation) input  
pin  
Sub clock (oscillation) input  
pin  
Main clock (oscillation) I/O  
pin  
X0  
X0A  
X1  
48  
26  
L9  
L9  
30  
19  
31  
36  
14  
L3  
L3  
49  
27  
L10  
L10  
X1A  
CROUT_0  
CROUT_1  
Sub clock (oscillation) I/O pin  
Built-in high-speed CR-osc  
clock output port  
37  
74  
92  
15  
52  
70  
K3  
C10  
B5  
27  
60  
72  
K3  
C10  
A6  
20  
-
57  
ADC  
power  
A/D converter analog power  
supply pin  
A/D converter analog reference  
voltage input pin  
AVCC  
AVRH  
AVSS  
C
60  
61  
62  
33  
38  
39  
40  
11  
H11  
F11  
G11  
L2  
50  
51  
52  
23  
H11  
F11  
G11  
L2  
41  
42  
43  
17  
ADC  
GND  
C pin  
A/D converter GND pin  
Power stabilization capacity  
pin  
June 10, 2015, MB9A140NB_DS706-00040-4v0-E  
39  
D a t a S h e e t  
I/O Circuit Type  
Type  
Circuit  
Remarks  
A
It is possible to select the main  
oscillation / GPIO function  
Pull-up  
resistor  
When the main oscillation is  
selected.  
Oscillation feedback resistor  
: Approximately 1 MΩ  
With Standby mode control  
Digital output  
Digital output  
P-ch  
P-ch  
X1  
When the GPIO is selected.  
CMOS level output.  
CMOS level hysteresis input  
With pull-up resistor control  
With standby mode control  
Pull-up resistor  
N-ch  
R
: Approximately 33 kΩ  
IOH= -4 mA, IOL= 4 mA  
Pull-up resistor control  
Digital input  
Standby mode control  
Clock input  
Feedback  
resistor  
Standby mode control  
Digital input  
Standby mode control  
Pull-up  
resistor  
R
Digital output  
P-ch  
N-ch  
P-ch  
X0  
Digital output  
Pull-up resistor control  
B
CMOS level hysteresis input  
Pull-up resistor  
: Approximately 33 kΩ  
Pull-up resistor  
Digital input  
40  
MB9A140NB_DS706-00040-4v0-E, June 10, 2015  
D a t a S h e e t  
Type  
Circuit  
Remarks  
C
Open drain output  
CMOS level hysteresis input  
Digital input  
Digital output  
N-ch  
D
It is possible to select the sub  
oscillation / GPIO function  
Pull-up  
resistor  
When the sub oscillation is  
selected.  
Oscillation feedback resistor  
: Approximately 5 MΩ  
With Standby mode control  
P-ch  
P-ch  
Digital output  
X1A  
When the GPIO is selected.  
CMOS level output.  
N-ch  
Digital output  
CMOS level hysteresis input  
With pull-up resistor control  
With standby mode control  
Pull-up resistor  
: Approximately 33 kΩ  
IOH= -4 mA, IOL= 4 mA  
R
Pull-up resistor control  
Digital input  
Standby mode control  
Clock input  
Feedback  
resistor  
Standby mode control  
Digital input  
Standby mode control  
Pull-up  
resistor  
R
Digital output  
P-ch  
N-ch  
P-ch  
X0A  
Digital output  
Pull-up resistor control  
June 10, 2015, MB9A140NB_DS706-00040-4v0-E  
41  
D a t a S h e e t  
Type  
Circuit  
Remarks  
E
CMOS level output  
CMOS level hysteresis input  
With pull-up resistor control  
With standby mode control  
Pull-up resistor  
P-ch  
P-ch  
: Approximately 33 kΩ  
Digital output  
Digital output  
IOH= -4 mA, IOL= 4 mA  
When this pin is used as an  
I2C pin, the digital output  
P-ch transistor is always off  
N-ch  
R
Pull-up resistor control  
Digital input  
Standby mode control  
F
CMOS level output  
CMOS level hysteresis input  
With input control  
Analog input  
With pull-up resistor control  
With standby mode control  
Pull-up resistor  
: Approximately 33 kΩ  
IOH= -4 mA, IOL= 4 mA  
When this pin is used as an  
I2C pin, the digital output  
P-ch transistor is always off  
Digital output  
Digital output  
P-ch  
P-ch  
N-ch  
Pull-up resistor control  
Digital input  
R
Standby mode control  
Analog input  
Input control  
G
CMOS level hysteresis input  
Mode input  
42  
MB9A140NB_DS706-00040-4v0-E, June 10, 2015  
D a t a S h e e t  
Type  
Circuit  
Remarks  
H
CMOS level output  
CMOS level hysteresis input  
With standby mode control  
IOH = -12.0 mA, IOL= 10.5 mA  
P-ch  
Digital output  
Digital output  
N-ch  
R
Digital input  
Standby mode control  
I
CMOS level output  
CMOS level hysteresis input  
5 V tolerant  
With pull-up resistor control  
With standby mode control  
Pull-up resistor  
: Approximately 33 kΩ  
IOH= -4 mA, IOL= 4 mA  
Available to control PZR  
registers.  
When this pin is used as an  
I2C pin, the digital output  
P-ch transistor is always off  
P-ch  
P-ch  
Digital output  
Digital output  
N-ch  
R
Pull-up resistor control  
Digital input  
Standby mode control  
June 10, 2015, MB9A140NB_DS706-00040-4v0-E  
43  
D a t a S h e e t  
Handling Precautions  
Any semiconductor devices have inherently a certain rate of failure. The possibility of failure is greatly  
affected by the conditions in which they are used (circuit conditions, environmental conditions, etc.). This  
page describes precautions that must be observed to minimize the chance of failure and to obtain higher  
reliability from your Spansion semiconductor devices.  
1. Precautions for Product Design  
This section describes precautions when designing electronic equipment using semiconductor devices.  
Absolute Maximum Ratings  
Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature,  
etc.) in excess of certain established limits, called absolute maximum ratings. Do not exceed these ratings.  
Recommended Operating Conditions  
Recommended operating conditions are normal operating ranges for the semiconductor device. All the  
device's electrical characteristics are warranted when operated within these ranges.  
Always use semiconductor devices within the recommended operating conditions. Operation outside these  
ranges may adversely affect reliability and could result in device failure.  
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data  
sheet. Users considering application outside the listed conditions are advised to contact their sales  
representative beforehand.  
Processing and Protection of Pins  
These precautions must be followed when handling the pins which connect semiconductor devices to power  
supply and input/output functions.  
(1) Preventing Over-Voltage and Over-Current Conditions  
Exposure to voltage or current levels in excess of maximum ratings at any pin is likely to cause  
deterioration within the device, and in extreme cases leads to permanent damage of the device. Try to  
prevent such overvoltage or over-current conditions at the design stage.  
(2) Protection of Output Pins  
Shorting of output pins to supply pins or other output pins, or connection to large capacitance can  
cause large current flows. Such conditions if present for extended periods of time can damage the  
device.  
Therefore, avoid this type of connection.  
(3) Handling of Unused Input Pins  
Unconnected input pins with very high impedance levels can adversely affect stability of operation.  
Such pins should be connected through an appropriate resistance to a power supply pin or ground pin.  
Latch-up  
Semiconductor devices are constructed by the formation of P-type and N-type areas on a substrate. When  
subjected to abnormally high voltages, internal parasitic PNPN junctions (called thyristor structures) may  
be formed, causing large current levels in excess of several hundred mA to flow continuously at the power  
supply pin. This condition is called latch-up.  
CAUTION: The occurrence of latch-up not only causes loss of reliability in the semiconductor device, but  
can cause injury or damage from high heat, smoke or flame. To prevent this from happening, do the  
following:  
(1) Be sure that voltages applied to pins do not exceed the absolute maximum ratings. This should  
include attention to abnormal noise, surge levels, etc.  
(2) Be sure that abnormal current flows do not occur during the power-on sequence.  
Code: DS00-00004-3E  
44  
MB9A140NB_DS706-00040-4v0-E, June 10, 2015  
D a t a S h e e t  
Observance of Safety Regulations and Standards  
Most countries in the world have established standards and regulations regarding safety, protection from  
electromagnetic interference, etc. Customers are requested to observe applicable regulations and standards  
in the design of products.  
Fail-Safe Design  
Any semiconductor devices have inherently a certain rate of failure. You must protect against injury,  
damage or loss from such failures by incorporating safety design measures into your facility and equipment  
such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating  
conditions.  
Precautions Related to Usage of Devices  
Spansion semiconductor devices are intended for use in standard applications (computers, office automation  
and other office equipment, industrial, communications, and measurement equipment, personal or  
household devices, etc.).  
CAUTION: Customers considering the use of our products in special applications where failure or  
abnormal operation may directly affect human lives or cause physical injury or property damage, or where  
extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea  
floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult  
with sales representatives before such use. The company will not be responsible for damages arising from  
such use without prior approval.  
2. Precautions for Package Mounting  
Package mounting may be either lead insertion type or surface mount type. In either case, for heat resistance  
during soldering, you should only mount under Spansion's recommended conditions. For detailed  
information about mount conditions, contact your sales representative.  
Lead Insertion Type  
Mounting of lead insertion type packages onto printed circuit boards may be done by two methods: direct  
soldering on the board, or mounting by using a socket.  
Direct mounting onto boards normally involves processes for inserting leads into through-holes on the  
board and using the flow soldering (wave soldering) method of applying liquid solder. In this case, the  
soldering process usually causes leads to be subjected to thermal stress in excess of the absolute ratings for  
storage temperature. Mounting processes should conform to Spansion recommended mounting conditions.  
If socket mounting is used, differences in surface treatment of the socket contacts and IC lead surfaces can  
lead to contact deterioration after long periods. For this reason it is recommended that the surface treatment  
of socket contacts and IC leads be verified before mounting.  
Surface Mount Type  
Surface mount packaging has longer and thinner leads than lead-insertion packaging, and therefore leads are  
more easily deformed or bent. The use of packages with higher pin counts and narrower pin pitch results in  
increased susceptibility to open connections caused by deformed pins, or shorting due to solder bridges.  
You must use appropriate mounting techniques. Spansion Inc. recommends the solder reflow method, and  
has established a ranking of mounting conditions for each product. Users are advised to mount packages in  
accordance with Spansion ranking of recommended conditions.  
June 10, 2015, MB9A140NB_DS706-00040-4v0-E  
45  
D a t a S h e e t  
Lead-Free Packaging  
CAUTION: When ball grid array (BGA) packages with Sn-Ag-Cu balls are mounted using Sn-Pb eutectic  
soldering, junction strength may be reduced under some conditions of use.  
Storage of Semiconductor Devices  
Because plastic chip packages are formed from plastic resins, exposure to natural environmental conditions  
will cause absorption of moisture. During mounting, the application of heat to a package that has absorbed  
moisture can cause surfaces to peel, reducing moisture resistance and causing packages to crack. To prevent,  
do the following:  
(1) Avoid exposure to rapid temperature changes, which cause moisture to condense inside the product.  
Store products in locations where temperature changes are slight.  
(2) Use dry boxes for product storage. Products should be stored below 70% relative humidity, and at  
temperatures between 5°C and 30°C.  
When you open Dry Package that recommends humidity 40% to 70% relative humidity.  
(3) When necessary, Spansion Inc. packages semiconductor devices in highly moisture-resistant  
aluminum laminate bags, with a silica gel desiccant. Devices should be sealed in their aluminum  
laminate bags for storage.  
(4) Avoid storing packages where they are exposed to corrosive gases or high levels of dust.  
Baking  
Packages that have absorbed moisture may be de-moisturized by baking (heat drying). Follow the Spansion  
recommended conditions for baking.  
Condition: 125°C/24 h  
Static Electricity  
Because semiconductor devices are particularly susceptible to damage by static electricity, you must take  
the following precautions:  
(1) Maintain relative humidity in the working environment between 40% and 70%. Use of an apparatus  
for ion generation may be needed to remove electricity.  
(2) Electrically ground all conveyors, solder vessels, soldering irons and peripheral equipment.  
(3) Eliminate static body electricity by the use of rings or bracelets connected to ground through high  
resistance (on the level of 1 MΩ).  
Wearing of conductive clothing and shoes, use of conductive floor mats and other measures to  
minimize shock loads is recommended.  
(4) Ground all fixtures and instruments, or protect with anti-static measures.  
(5) Avoid the use of styrofoam or other highly static-prone materials for storage of completed board  
assemblies.  
46  
MB9A140NB_DS706-00040-4v0-E, June 10, 2015  
D a t a S h e e t  
3. Precautions for Use Environment  
Reliability of semiconductor devices depends on ambient temperature and other conditions as described  
above.  
For reliable performance, do the following:  
(1) Humidity  
Prolonged use in high humidity can lead to leakage in devices as well as printed circuit boards. If high  
humidity levels are anticipated, consider anti-humidity processing.  
(2) Discharge of Static Electricity  
When high-voltage charges exist close to semiconductor devices, discharges can cause abnormal  
operation. In such cases, use anti-static measures or processing to prevent discharges.  
(3) Corrosive Gases, Dust, or Oil  
Exposure to corrosive gases or contact with dust or oil may lead to chemical reactions that will  
adversely affect the device. If you use devices in such conditions, consider ways to prevent such  
exposure or to protect the devices.  
(4) Radiation, Including Cosmic Radiation  
Most devices are not designed for environments involving exposure to radiation or cosmic radiation.  
Users should provide shielding as appropriate.  
(5) Smoke, Flame  
CAUTION: Plastic molded devices are flammable, and therefore should not be used near combustible  
substances. If devices begin to smoke or burn, there is danger of the release of toxic gases.  
Customers considering the use of Spansion products in other special environmental conditions should  
consult with sales representatives.  
Please check the latest handling precautions at the following URL.  
http://www.spansion.com/fjdocuments/fj/datasheet/e-ds/DS00-00004.pdf  
June 10, 2015, MB9A140NB_DS706-00040-4v0-E  
47  
D a t a S h e e t  
Handling Devices  
Power supply pins  
In products with multiple VCC and VSS pins, respective pins at the same potential are interconnected  
within the device in order to prevent malfunctions such as latch-up. However, all of these pins should be  
connected externally to the power supply or ground lines in order to reduce electromagnetic emission levels,  
to prevent abnormal operation of strobe signals caused by the rise in the ground level, and to conform to the  
total output current rating.  
Moreover, connect the current supply source with each Power supply pin and GND pin of this device at low  
impedance. It is also advisable that a ceramic capacitor of approximately 0.1 µF be connected as a bypass  
capacitor between each Power supply pin and GND pin, between AVCC pin and AVSS pin near this device.  
Stabilizing supply voltage  
A malfunction may occur when the power supply voltage fluctuates rapidly even though the fluctuation is  
within the recommended operating conditions of the VCC power supply voltage. As a rule, with voltage  
stabilization, suppress the voltage fluctuation so that the fluctuation in VCC ripple (peak-to-peak value) at  
the commercial frequency (50 Hz/60 Hz) does not exceed 10% of the VCC value in the recommended  
operating conditions, and the transient fluctuation rate does not exceed 0.1 V/μs when there is a momentary  
fluctuation on switching the power supply..  
Crystal oscillator circuit  
Noise near the X0/X1 and X0A/X1A pins may cause the device to malfunction. Design the printed circuit  
board so that X0/X1, X0A/X1A pins, the crystal oscillator, and the bypass capacitor to ground are located as  
close to the device as possible.  
It is strongly recommended that the PC board artwork be designed such that the X0/X1 and X0A/X1A pins  
are surrounded by ground plane as this is expected to produce stable operation.  
Evaluate oscillation of your using crystal oscillator by your mount board.  
Sub crystal oscillator  
This series sub oscillator circuit is low gain to keep the low current consumption.  
The crystal oscillator to fill the following conditions is recommended for sub crystal oscillator to stabilize  
the oscillation.  
Surface mount type  
Size:  
More than 3.2 mm × 1.5 mm  
Load capacitance: Approximately 6 pF to 7 pF  
Lead type  
Load capacitance: Approximately 6 pF to 7 pF  
48  
MB9A140NB_DS706-00040-4v0-E, June 10, 2015  
D a t a S h e e t  
Using an external clock  
When using an external clock as an input of the main clock, set X0/X1 to the external clock input, and input  
the clock to X0. X1(PE3) can be used as a general-purpose I/O port.  
Similarly, when using an external clock as an input of the sub clock, set X0A/X1A to the external clock  
input, and input the clock to X0A. X1A (P47) can be used as a general-purpose I/O port.  
Example of Using an External Clock  
Device  
X0(X0A)  
Set as  
Can be used as  
general-purpose  
I/O ports.  
External clock  
input  
X1(PE3),  
X1A (P47)  
Handling when using Multi-function serial pin as I2C pin  
If it is using the multi-function serial pin as I2C pins, P-ch transistor of digital output is always disabled.  
However, I2C pins need to keep the electrical characteristic like other pins and not to connect to the external  
I2C bus system with power OFF.  
C Pin  
This series contains the regulator. Be sure to connect a smoothing capacitor (CS) for the regulator between  
the C pin and the GND pin. Please use a ceramic capacitor or a capacitor of equivalent frequency  
characteristics as a smoothing capacitor.  
However, some laminated ceramic capacitors have the characteristics of capacitance variation due to  
thermal fluctuation (F characteristics and Y5V characteristics). Please select the capacitor that meets the  
specifications in the operating conditions to use by evaluating the temperature characteristics of a  
capacitor.A smoothing capacitor of about 4.7μF would be recommended for this series.  
C
Device  
CS  
VSS  
GND  
Mode pins (MD0)  
Connect the MD pin (MD0) directly to VCC or VSS pins. Design the printed circuit board such that the  
pull-up/down resistor stays low, as well as the distance between the mode pins and VCC pins or VSS pins is  
as short as possible and the connection impedance is low, when the pins are pulled-up/down such as for  
switching the pin level and rewriting the Flash memory data. It is because of preventing the device  
erroneously switching to test mode due to noise.  
June 10, 2015, MB9A140NB_DS706-00040-4v0-E  
49  
D a t a S h e e t  
Notes on power-on  
Turn power on/off in the following order or at the same time.  
If not using the A/D converter, connect AVCC = VCC and AVSS = VSS.  
Turning on : VCC →AVCC AVRH  
Turning off : AVRH AVCC VCC  
Serial Communication  
There is a possibility to receive wrong data due to the noise or other causes on the serial communication.  
Therefore, design a printed circuit board so as to avoid noise.  
Consider the case of receiving wrong data due to noise, perform error detection such as by applying a  
checksum of data at the end. If an error is detected, retransmit the data.  
Differences in features among the products with different memory sizes and between Flash  
memory products and MASK products  
The electric characteristics including power consumption, ESD, latch-up, noise characteristics, and  
oscillation characteristics among the products with different memory sizes and between Flash memory  
products and MASK products are different because chip layout and memory structures are different.  
If you are switching to use a different product of the same series, please make sure to evaluate the electric  
characteristics.  
Pull-Up function of 5 V tolerant I/O  
Please do not input the signal more than VCC voltage at the time of Pull-Up function use of 5 V tolerant  
I/O.  
50  
MB9A140NB_DS706-00040-4v0-E, June 10, 2015  
D a t a S h e e t  
Block Diagram  
TRSTX,TCK,  
TDI,TMS  
SWJ-DP  
TPIU*1  
ETM*1  
SRAM0  
8/16 Kbyte  
TDO  
ROM  
Table  
TRACEDx,  
TRACECLK  
I
SRAM1  
8/16 Kbyte  
D
NVIC  
Sys  
On-Chip Flash  
64+32 Kbyte/  
128+32 Kbyte/  
256+32 Kbyte  
Flash I/F  
Security  
Dual-Timer  
WatchDog Timer  
(Software)  
Clock Reset  
Generator  
INITX  
WatchDog Timer  
(Hardware)  
DMAC  
8ch.  
CSV  
CLK  
X0  
X1  
Main  
Source Clock  
CR  
PLL  
CR  
Osc  
Sub  
Osc  
X0A  
X1A  
4 MHz 100 kHz  
CROUT  
MADx  
External Bus I/F*2  
MADATAx  
MCSXx,  
MOEX,  
MWEX,  
MALE,  
MRDY,  
MCLKOUT,  
MDQMx  
AVCC,  
AVSS,  
AVRH  
12-bit A/D Converter  
Unit 0  
ANxx  
Power-On  
Reset  
Unit 1  
ADTGx  
LVD  
LVD Ctrl  
Regulator  
C
IRQ-Monitor  
TIOAx  
TIOBx  
Base Timer  
16-bit 8ch./  
32-bit 4ch.  
CRC  
Accelerator  
Watch Counter  
External Interrupt  
Controller  
16-pin + NMI  
INTx  
NMIX  
MD0,  
MD1  
MODE-Ctrl  
GPIO  
P0x,  
P1x,  
.
.
.
PIN-Function-Ctrl  
HDMI-CEC/  
Remote Reciver Control  
PEx  
CEC0,CEC1  
SCKx  
SINx  
Multi-Function Serial I/F  
8ch.  
(with FIFO ch.4 to ch.7)  
HW flow control(ch.4)*2  
RTCCO,  
SUBOUT  
Real-Time Clock  
SOTx  
CTS4  
RTS4  
WKUPx  
Deep Standby Ctrl  
*1: For the MB9AF141LB/MB, MB9AF142LB/MB, and MB9AF144LB/MB, ETM is not available.  
*2: For the MB9AF141LB, MB9AF142LB and MB9AF144LB, the External Bus Interface is not available. And  
the Multi-function Serial Interface does not support hardware flow control in these products.  
Memory Size  
See Memory size in Product Lineup to confirm the memory size.  
June 10, 2015, MB9A140NB_DS706-00040-4v0-E  
51  
D a t a S h e e t  
Memory Map  
Memory Map (1)  
Peripherals Area  
0x41FF_FFFF  
Reserved  
0xFFFF_FFFF  
Reserved  
0xE010_0000  
0xE000_0000  
Cortex-M3 Private  
Peripherals  
0x4006_1000  
0x4006_0000  
0x4005_0000  
0x4004_0000  
0x4003_F000  
0x4003_C000  
0x4003_B000  
0x4003_A000  
0x4003_9000  
0x4003_8000  
0x4003_7000  
0x4003_6000  
0x4003_5000  
DMAC  
Reserved  
EXT-bus I/F  
Reserved  
RTC  
Reserved  
Watch Counter  
CRC  
0x7000_0000  
0x6000_0000  
External Device  
Area  
MFS  
Reserved  
Reserved  
LVD/DS mode  
HDMI-CEC/  
Remote Control Receiver  
0x4400_0000  
0x4200_0000  
0x4000_0000  
32Mbytes  
Bit band alias  
0x4003_4000  
0x4003_3000  
0x4003_2000  
0x4003_1000  
0x4003_0000  
0x4002_F000  
0x4002_E000  
GPIO  
Reserved  
Int-Req.Read  
EXTI  
Peripherals  
Reserved  
Reserved  
CR Trim  
0x2400_0000  
0x2200_0000  
32Mbytes  
Bit band alias  
Reserved  
0x4002_8000  
0x4002_7000  
A/DC  
Reserved  
Reserved  
Base Timer  
0x4002_6000  
0x4002_5000  
0x2008_0000  
0x2000_0000  
0x1FFF_0000  
0x0020_8000  
0x0020_0000  
0x0010_4000  
0x0010_0000  
SRAM1  
SRAM0  
Reserved  
Flash(Work area)  
Reserved  
Reserved  
See the next page  
"Memory Map (2)"  
for the memory size  
details.  
Security/CR Trim  
0x4001_6000  
0x4001_5000  
Dual Timer  
Reserved  
Flash(Main area)  
0x4001_3000  
SW WDT  
HW WDT  
0x4001_2000  
0x4001_1000  
0x0000_0000  
Clock/Reset  
0x4001_0000  
Reserved  
Flash I/F  
0x4000_1000  
0x4000_0000  
52  
MB9A140NB_DS706-00040-4v0-E, June 10, 2015  
D a t a S h e e t  
Memory Map (2)  
MB9AF144LB/MB/NB  
MB9AF142LB/MB/NB  
MB9AF141LB/MB/NB  
0x2008_0000  
0x2008_0000  
0x2008_0000  
Reserved  
Reserved  
Reserved  
0x2000_4000  
0x2000_0000  
0x1FFF_C000  
0x2000_2000  
0x2000_0000  
0x1FFF_E000  
0x2000_2000  
0x2000_0000  
0x1FFF_E000  
SRAM1  
16Kbytes  
SRAM1  
8Kbytes  
SRAM1  
8Kbytes  
SRAM0  
8Kbytes  
SRAM0  
8Kbytes  
SRAM0  
16Kbytes  
Reserved  
Reserved  
Reserved  
SA4-7 (8 KBx4)  
Reserved  
0x0020_8000  
0x0020_0000  
0x0020_8000  
0x0020_0000  
0x0020_8000  
0x0020_0000  
SA4-7 (8 KBx4)  
Reserved  
SA4-7 (8 KBx4)  
Reserved  
0x0010_4000  
0x0010_2000  
0x0010_0000  
0x0010_4000  
0x0010_2000  
0x0010_0000  
0x0010_4000  
0x0010_2000  
0x0010_0000  
CR trimming  
Security  
CR trimming  
Security  
CR trimming  
Security  
Reserved  
Reserved  
Reserved  
0x0004_0000  
SA9-11 (64 KBx3)  
0x0002_0000  
0x0000_0000  
SA9 (64 KB)  
0x0001_0000  
0x0000_0000  
SA8 (48 KB)  
SA8 (48 KB)  
SA8 (48 KB)  
SA2-3 (8 KBx2)  
SA2-3 (8 KBx2)  
SA2-3 (8 KBx2)  
0x0000_0000  
Refer to the programming manual for the detail of Flash main area.  
MB9AB40N/A40N/340N/140N/150R,MB9B520M/320M/120M Series Flash Programming Manual  
June 10, 2015, MB9A140NB_DS706-00040-4v0-E  
53  
D a t a S h e e t  
Peripheral Address Map  
Start address  
End address  
Bus  
Peripherals  
0x4000_0000  
0x4000_1000  
0x4001_0000  
0x4001_1000  
0x4001_2000  
0x4001_3000  
0x4001_5000  
0x4001_6000  
0x4002_0000  
0x4002_5000  
0x4002_6000  
0x4002_7000  
0x4002_8000  
0x4002_E000  
0x4002_F000  
0x4003_0000  
0x4003_1000  
0x4003_2000  
0x4003_3000  
0x4003_4000  
0x4003_5000  
0x4003_5800  
0x4003_6000  
0x4003_8000  
0x4003_9000  
0x4003_A000  
0x4003_B000  
0x4003_C000  
0x4003_F000  
0x4004_0000  
0x4006_0000  
0x4006_1000  
0x4000_0FFF  
0x4000_FFFF  
0x4001_0FFF  
0x4001_1FFF  
0x4001_2FFF  
0x4001_4FFF  
0x4001_5FFF  
0x4001_FFFF  
0x4002_4FFF  
0x4002_5FFF  
0x4002_6FFF  
0x4002_7FFF  
0x4002_DFFF  
0x4002_EFFF  
0x4002_FFFF  
0x4003_0FFF  
0x4003_1FFF  
0x4003_2FFF  
0x4003_3FFF  
0x4003_4FFF  
0x4003_57FF  
0x4003_5FFF  
0x4003_7FFF  
0x4003_8FFF  
0x4003_9FFF  
0x4003_AFFF  
0x4003_BFFF  
0x4003_EFFF  
0x4003_FFFF  
0x4005_FFFF  
0x4006_0FFF  
0x41FF_FFFF  
Flash memory I/F register  
Reserved  
AHB  
Clock/Reset Control  
Hardware Watchdog timer  
Software Watchdog timer  
Reserved  
APB0  
Dual Timer  
Reserved  
Reserved  
Base Timer  
Reserved  
APB1 A/D Converter  
Reserved  
Built-in CR trimming  
Reserved  
External Interrupt  
Interrupt Source Check Register  
Reserved  
GPIO  
HDMI-CEC/Remote control Receiver  
Low-Voltage Detector  
Deep standby mode Controller  
Reserved  
APB2  
Multi-function serial  
CRC  
Watch Counter  
Real-time clock  
Reserved  
External bus interface  
Reserved  
AHB  
DMAC register  
Reserved  
54  
MB9A140NB_DS706-00040-4v0-E, June 10, 2015  
D a t a S h e e t  
Pin Status in Each CPU State  
The terms used for pin status have the following meanings.  
INITX=0  
This is the period when the INITX pin is the L level.  
INITX=1  
This is the period when the INITX pin is the H level.  
SPL=0  
This is the status that the standby pin level setting bit (SPL) in the standby mode control register  
(STB_CTL) is set to 0.  
SPL=1  
This is the status that the standby pin level setting bit (SPL) in the standby mode control register  
(STB_CTL) is set to 1.  
Input enabled  
Indicates that the input function can be used.  
Internal input fixed at 0  
This is the status that the input function cannot be used. Internal input is fixed at L.  
Hi-Z  
Indicates that the pin drive transistor is disabled and the pin is put in the Hi-Z state.  
Setting disabled  
Indicates that the setting is disabled.  
Maintain previous state  
Maintains the state that was immediately prior to entering the current mode.  
If a built-in peripheral function is operating, the output follows the peripheral function.  
If the pin is being used as a port, that output is maintained.  
Analog input is enabled  
Indicates that the analog input is enabled.  
Trace output  
Indicates that the trace function can be used.  
GPIO selected  
In Deep standby mode, pins switch to the general-purpose I/O port.  
June 10, 2015, MB9A140NB_DS706-00040-4v0-E  
55  
D a t a S h e e t  
List of Pin Status  
Power-on  
Return from  
Deep  
standby  
reset or  
low-voltage  
detection  
state  
Device Run mode  
internal or Sleep  
reset state mode state  
Timer mode,  
RTC mode, or  
Stop mode state  
Deep standby RTC  
mode or Deep standby  
Stop mode state  
INITX  
input state  
mode state  
Function  
group  
Power  
supply  
unstable  
Power  
supply  
stable  
Power  
supply  
stable  
INITX = 1  
-
Power supply stable  
Power supply stable Power supply stable  
INITX = 1 INITX = 1  
-
-
INITX = 0 INITX = 1 INITX = 1  
-
-
-
SPL = 0  
SPL = 1  
SPL = 0  
SPL = 1  
GPIO  
selected  
Internal  
input fixed  
at 0  
Hi-Z /  
Internal  
input fixed  
at 0  
Hi-Z /  
Internal  
input fixed  
at 0  
Maintain  
previous  
state  
Maintain  
previous  
state  
GPIO  
Setting  
Setting  
Setting  
GPIO  
selected  
disabled  
disabled  
disabled  
selected  
A
Main crystal  
oscillator input  
pin/  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
External main  
clock input  
selected  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
GPIO  
selected  
Internal  
input fixed  
at 0  
Hi-Z /  
Internal  
input fixed  
at "0"  
Hi-Z /  
Internal  
input fixed  
at 0  
Maintain  
previous  
state  
Maintain  
previous  
state  
GPIO  
Setting  
Setting  
Setting  
GPIO  
selected  
disabled  
disabled  
disabled  
selected  
Hi-Z /  
Internal  
input fixed  
at 0  
Hi-Z /  
Internal  
input fixed  
at 0  
External main  
clock input  
selected  
Maintain  
previous  
state  
Maintain  
previous  
state  
Maintain  
previous  
state  
Maintain  
previous  
state  
Setting  
Setting  
Setting  
disabled  
disabled  
disabled  
B
Maintain  
previous  
Maintain  
previous  
Maintain  
previous  
Maintain  
previous  
Maintain  
previous  
Maintain  
previous  
Hi-Z /  
Internal  
input  
state/When state/When state/When state/When state/When state/When  
oscillation oscillation oscillation oscillation oscillation oscillation  
Hi-Z /  
Hi-Z /  
Main crystal  
oscillator output  
pin  
Internal  
Internal  
fixed at  
0/  
stops*1,  
stops*1,  
stops*1,  
stops*1,  
stops*1,  
stops*1,  
input fixed input fixed  
Hi-Z /  
Hi-Z /  
Hi-Z /  
Hi-Z /  
Hi-Z /  
Hi-Z /  
at 0  
at 0  
or Input  
enabled  
Internal  
Internal  
Internal  
Internal  
Internal  
Internal  
input fixed input fixed input fixed input fixed input fixed input fixed  
at 0  
at 0  
at 0  
at 0  
at 0  
at 0  
Pull-up /  
Input  
Pull-up /  
Input  
Pull-up /  
Input  
Pull-up /  
Input  
Pull-up /  
Input  
Pull-up /  
Input  
Pull-up /  
Input  
Pull-up /  
Input  
Pull-up /  
Input  
INITX  
C
D
input pin  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
Mode  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
input pin  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
Mode  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
input pin  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
E
Maintain  
previous  
state  
Maintain  
previous  
state  
Hi-Z /  
Input  
Hi-Z /  
Input  
GPIO  
Setting  
Setting  
Setting  
GPIO  
GPIO  
selected  
disabled  
disabled  
disabled  
selected  
selected  
enabled  
enabled  
56  
MB9A140NB_DS706-00040-4v0-E, June 10, 2015  
D a t a S h e e t  
Power-on  
reset or  
low-voltage  
detection  
state  
Return from  
Deep  
standby  
Device Run mode  
internal or Sleep  
reset state mode state  
Timer mode,  
RTC mode, or  
Stop mode state  
Deep standby RTC  
mode or Deep standby  
Stop mode state  
INITX  
input state  
mode state  
Function  
group  
Power  
supply  
unstable  
Power  
supply  
stable  
Power  
supply  
stable  
INITX = 1  
-
Power supply stable  
Power supply stable Power supply stable  
INITX = 1 INITX = 1  
-
-
INITX = 0 INITX = 1 INITX = 1  
-
-
-
SPL = 0  
SPL = 1  
SPL = 0  
SPL = 1  
GPIO  
selected  
Internal  
input fixed  
at 0  
Hi-Z /  
Internal  
input fixed  
at 0  
Hi-Z /  
Internal  
input fixed  
at 0  
Maintain  
previous  
state  
Maintain  
previous  
state  
GPIO  
Setting  
Setting  
Setting  
GPIO  
selected  
disabled  
disabled  
disabled  
selected  
F
Sub crystal  
oscillator input  
pin /  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
External sub  
clock input  
selected  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
GPIO  
selected  
Internal  
input fixed  
at 0  
Hi-Z /  
Internal  
input fixed  
at 0  
Hi-Z /  
Internal  
input fixed  
at 0  
Maintain  
previous  
state  
Maintain  
previous  
state  
GPIO  
Setting  
Setting  
Setting  
GPIO  
selected  
disabled  
disabled  
disabled  
selected  
Hi-Z /  
Internal  
input fixed  
at 0  
Hi-Z/  
Internal  
input fixed  
at 0  
External sub  
clock input  
selected  
Maintain  
previous  
state  
Maintain  
previous  
state  
Maintain  
previous  
state  
Maintain  
previous  
state  
Setting  
Setting  
Setting  
disabled  
disabled  
disabled  
G
Maintain  
previous  
Maintain  
previous  
Maintain  
previous  
Maintain  
previous  
Maintain  
previous  
Hi-Z /  
Internal  
input  
state/When state/When state/When state/When state/When  
Maintain oscillation oscillation oscillation oscillation oscillation  
Hi-Z /  
Hi-Z /  
Sub crystal  
oscillator output  
pin  
Internal  
Internal  
fixed at  
0 /  
previous  
state  
stops*2,  
stops*2,  
stops*2,  
stops*2,  
stops*2,  
input fixed input fixed  
Hi-Z /  
Hi-Z /  
Hi-Z/  
Hi-Z/  
Hi-Z/  
at 0  
at 0  
or Input  
enable  
Internal  
Internal  
Internal  
Internal  
Internal  
input fixed input fixed input fixed input fixed input fixed  
at 0  
at 0  
at 0  
at 0  
at 0  
GPIO  
selected  
Internal  
input fixed  
at 0  
Hi-Z /  
Internal  
input fixed  
at 0  
Hi-Z /  
Internal  
input fixed  
at 0  
Hi-Z /  
Input  
Hi-Z /  
Input  
Maintain  
previous  
state  
Maintain  
previous  
state  
GPIO  
GPIO  
H
Hi-Z  
selected  
selected  
enabled  
enabled  
June 10, 2015, MB9A140NB_DS706-00040-4v0-E  
57  
D a t a S h e e t  
Power-on  
reset or  
low-voltage  
detection  
state  
Return from  
Deep  
standby  
Device Run mode  
internal or Sleep  
reset state mode state  
Timer mode,  
RTC mode, or  
Stop mode state  
Deep standby RTC  
mode or Deep standby  
Stop mode state  
INITX  
input state  
mode state  
Function  
group  
Power  
supply  
unstable  
Power  
supply  
stable  
Power  
supply  
stable  
INITX = 1  
-
Power supply stable  
Power supply stable Power supply stable  
INITX = 1 INITX = 1  
-
-
INITX = 0 INITX = 1 INITX = 1  
-
-
-
SPL = 0  
SPL = 1  
SPL = 0  
SPL = 1  
Maintain  
previous  
state  
Setting  
Setting  
Setting  
NMIX selected  
disabled  
disabled  
disabled  
Hi-Z /  
WKUP  
input  
Maintain  
previous  
state  
Maintain  
previous  
state  
WKUP  
input  
Resource other  
than above  
selected  
GPIO  
I
Hi-Z /  
Internal  
input fixed  
at 0  
selected  
Hi-Z /  
Input  
Hi-Z /  
Input  
enabled  
enabled  
Hi-Z  
Hi-Z  
enabled  
enabled  
GPIO  
selected  
Pull-up /  
Input  
Pull-up /  
Input  
Maintain  
previous  
state  
Maintain  
previous  
state  
Maintain  
previous  
state  
Maintain  
previous  
state  
JTAG  
selected  
enabled  
enabled  
Maintain  
previous  
state  
Maintain  
previous  
state  
GPIO  
selected  
Internal  
input fixed  
at 0  
J
Hi-Z /  
Internal  
input fixed  
at 0  
Hi-Z /  
Internal  
input fixed  
at 0  
GPIO  
Setting  
Setting  
Setting  
GPIO  
selected  
disabled  
disabled  
disabled  
selected  
GPIO  
Hi-Z /  
Internal  
input fixed  
at 0  
Hi-Z /  
Internal  
input fixed  
at 0  
Resource selected  
Hi-Z /  
Input  
Hi-Z /  
Input  
Maintain  
previous  
state  
Maintain  
previous  
state  
selected  
Internal  
input fixed  
at 0  
GPIO  
K
Hi-Z  
selected  
GPIO  
enabled  
enabled  
selected  
Maintain  
previous  
state  
External interrupt  
enabled selected  
Setting  
Setting  
Setting  
disabled  
disabled  
disabled  
GPIO  
selected  
Internal  
input fixed  
at 0  
Hi-Z /  
Internal  
input fixed  
at 0  
Maintain  
previous  
state  
Maintain  
previous  
state  
Resource other  
than above  
selected  
GPIO  
L
Hi-Z /  
Internal  
input fixed  
at 0  
selected  
Hi-Z /  
Input  
Hi-Z /  
Input  
Hi-Z  
Hi-Z  
enabled  
enabled  
GPIO  
selected  
Hi-Z /  
Hi-Z /  
Hi-Z /  
Hi-Z /  
Hi-Z /  
Hi-Z /  
Hi-Z /  
Hi-Z /  
Internal  
Internal  
Internal  
Internal  
Internal  
Internal  
Internal  
Internal  
input fixed input fixed input fixed input fixed input fixed input fixed input fixed input fixed  
Analog input  
selected  
at 0 /  
Analog  
input  
at 0 /  
Analog  
input  
at 0 /  
Analog  
input  
at 0 /  
Analog  
input  
at 0 /  
Analog  
input  
at 0 /  
Analog  
input  
at 0 /  
Analog  
input  
at 0 /  
Analog  
input  
M
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
Resource other  
than above  
selected  
GPIO  
selected  
Internal  
input fixed  
at 0  
Hi-Z /  
Internal  
input fixed  
at 0  
Hi-Z /  
Internal  
input fixed  
at 0  
Maintain  
previous  
state  
Maintain  
previous  
state  
Setting  
Setting  
Setting  
GPIO  
disabled  
disabled  
disabled  
selected  
GPIO  
selected  
58  
MB9A140NB_DS706-00040-4v0-E, June 10, 2015  
D a t a S h e e t  
Power-on  
reset or  
low-voltage  
detection  
state  
Return from  
Deep  
standby  
Device Run mode  
internal or Sleep  
reset state mode state  
Timer mode,  
RTC mode, or  
Stop mode state  
Deep standby RTC  
mode or Deep standby  
Stop mode state  
INITX  
input state  
mode state  
Function  
group  
Power  
supply  
unstable  
Power  
supply  
stable  
Power  
supply  
stable  
INITX = 1  
-
Power supply stable  
Power supply stable Power supply stable  
INITX = 1 INITX = 1  
-
-
INITX = 0 INITX = 1 INITX = 1  
-
-
-
SPL = 0  
SPL = 1  
SPL = 0  
SPL = 1  
Hi-Z /  
Hi-Z /  
Hi-Z /  
Hi-Z /  
Hi-Z /  
Hi-Z /  
Hi-Z /  
Hi-Z /  
Internal  
Internal  
Internal  
Internal  
Internal  
Internal  
Internal  
Internal  
input fixed input fixed input fixed input fixed input fixed input fixed input fixed input fixed  
Analog input  
selected  
Hi-Z  
at 0 /  
Analog  
input  
at 0 /  
Analog  
input  
at 0 /  
Analog  
input  
at 0 /  
Analog  
input  
at 0 /  
Analog  
input  
at 0 /  
Analog  
input  
at 0 /  
Analog  
input  
at 0 /  
Analog  
input  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
N
Maintain  
previous  
state  
External interrupt  
enabled selected  
GPIO  
selected  
Internal  
input fixed  
at 0  
Hi-Z /  
Internal  
input fixed  
at 0  
Maintain  
previous  
state  
Maintain  
previous  
state  
Resource other  
than above  
selected  
Setting  
Setting  
Setting  
GPIO  
disabled  
disabled  
disabled  
selected  
Hi-Z /  
Internal  
input fixed  
at 0  
GPIO  
selected  
Setting  
Setting  
Setting  
Trace  
Trace selected  
disabled  
disabled  
disabled  
output  
GPIO  
selected  
Internal  
input fixed  
at 0  
Hi-Z /  
Internal  
input fixed  
at 0  
Resource other  
than above  
selected  
Maintain  
previous  
state  
Maintain  
previous  
state  
GPIO  
O
Hi-Z /  
Internal  
input fixed  
at 0  
selected  
Hi-Z /  
Input  
Hi-Z /  
Input  
Hi-Z  
enabled  
enabled  
GPIO  
selected  
Hi-Z /  
Hi-Z /  
Hi-Z /  
Hi-Z /  
Hi-Z /  
Hi-Z /  
Hi-Z /  
Hi-Z /  
Internal  
Internal  
Internal  
Internal  
Internal  
Internal  
Internal  
Internal  
input fixed input fixed input fixed input fixed input fixed input fixed input fixed input fixed  
Analog input  
selected  
Hi-Z  
at 0 /  
Analog  
input  
at 0 /  
Analog  
input  
at 0 /  
Analog  
input  
at 0 /  
Analog  
input  
at 0 /  
Analog  
input  
at 0 /  
Analog  
input  
at 0 /  
Analog  
input  
at 0 /  
Analog  
input  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
P
Trace  
Trace selected  
output  
GPIO  
selected  
Internal  
input fixed  
at 0  
Hi-Z /  
Internal  
input fixed  
at 0  
Resource other  
than above  
selected  
Maintain  
previous  
state  
Maintain  
previous  
state  
Setting  
Setting  
Setting  
GPIO  
Hi-Z /  
Internal  
input fixed  
at 0  
disabled  
disabled  
disabled  
selected  
GPIO  
selected  
June 10, 2015, MB9A140NB_DS706-00040-4v0-E  
59  
D a t a S h e e t  
Power-on  
reset or  
low-voltage  
detection  
state  
Return from  
Deep  
standby  
Device Run mode  
internal or Sleep  
reset state mode state  
Timer mode,  
RTC mode, or  
Stop mode state  
Deep standby RTC  
mode or Deep standby  
Stop mode state  
INITX  
input state  
mode state  
Function  
group  
Power  
supply  
unstable  
Power  
supply  
stable  
Power  
supply  
stable  
INITX = 1  
-
Power supply stable  
Power supply stable Power supply stable  
INITX = 1 INITX = 1  
-
-
INITX = 0 INITX = 1 INITX = 1  
-
-
-
SPL = 0  
SPL = 1  
SPL = 0  
SPL = 1  
Hi-Z /  
Internal  
Hi-Z /  
Internal  
Hi-Z /  
Internal  
Hi-Z /  
Hi-Z /  
Hi-Z /  
Hi-Z /  
Hi-Z /  
Internal  
Internal  
Internal  
Internal  
Internal  
input fixed input fixed input fixed input fixed input fixed input fixed input fixed input fixed  
Analog input  
selected  
Hi-Z  
at 0 /  
Analog  
input  
at 0 /  
Analog  
input  
at 0 /  
Analog  
input  
at 0 /  
Analog  
input  
at 0 /  
Analog  
input  
at 0 /  
Analog  
input  
at 0 /  
Analog  
input  
at 0 /  
Analog  
input  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
Trace  
output  
Trace selected  
Q
Maintain  
previous  
state  
GPIO  
selected  
Internal  
input fixed  
at 0  
External interrupt  
enabled selected  
Hi-Z /  
Internal  
input fixed  
at 0  
Maintain  
previous  
state  
Maintain  
previous  
state  
Setting  
Setting  
Setting  
GPIO  
disabled  
disabled  
disabled  
selected  
Resource other  
than above  
selected  
Hi-Z /  
Internal  
input fixed  
at 0  
GPIO  
selected  
Hi-Z /  
Hi-Z /  
Hi-Z /  
Hi-Z /  
Hi-Z /  
Hi-Z /  
Hi-Z /  
Hi-Z /  
Internal  
Internal  
Internal  
Internal  
Internal  
Internal  
Internal  
Internal  
input fixed input fixed input fixed input fixed input fixed input fixed input fixed input fixed  
Analog input  
selected  
Hi-Z  
at 0 /  
Analog  
input  
at 0 /  
Analog  
input  
at 0 /  
Analog  
input  
at 0 /  
Analog  
input  
at 0 /  
Analog  
input  
at 0 /  
Analog  
input  
at 0 /  
Analog  
input  
at 0 /  
Analog  
input  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
Hi-Z /  
WKUP  
input  
enabled  
WKUP  
input  
WKUP  
enabled  
Maintain  
previous  
state  
R
enabled  
enabled  
External interrupt  
enabled selected  
Maintain  
previous  
state  
Maintain  
previous  
state  
Setting  
Setting  
Setting  
GPIO  
GPIO  
selected  
Internal  
input fixed  
at 0  
disabled  
disabled  
disabled  
selected  
Hi-Z /  
Internal  
input fixed  
at 0  
Resource other  
than above  
selected  
Hi-Z /  
Internal  
input fixed  
at 0  
GPIO  
selected  
Maintain  
previous  
state  
Maintain  
previous  
state  
Maintain  
previous  
state  
Maintain  
previous  
state  
Maintain  
previous  
state  
Maintain  
previous  
state  
CEC  
Setting  
Setting  
Setting  
enabled  
disabled  
disabled  
disabled  
Resource other  
than above  
selected  
GPIO  
S
Hi-Z /  
Internal  
input fixed  
at 0  
Hi-Z /  
Internal  
input fixed  
at 0  
Hi-Z /  
Input  
Hi-Z /  
Input  
Maintain  
previous  
state  
Maintain  
previous  
state  
selected  
Internal  
input fixed  
at 0  
GPIO  
Hi-Z  
selected  
enabled  
enabled  
GPIO  
selected  
60  
MB9A140NB_DS706-00040-4v0-E, June 10, 2015  
D a t a S h e e t  
Power-on  
reset or  
low-voltage  
detection  
state  
Return from  
Deep  
standby  
Device Run mode  
internal or Sleep  
reset state mode state  
Timer mode,  
RTC mode, or  
Stop mode state  
Deep standby RTC  
mode or Deep standby  
Stop mode state  
INITX  
input state  
mode state  
Function  
group  
Power  
supply  
unstable  
Power  
supply  
stable  
Power  
supply  
stable  
INITX = 1  
-
Power supply stable  
Power supply stable Power supply stable  
INITX = 1 INITX = 1  
-
-
INITX = 0 INITX = 1 INITX = 1  
-
-
-
SPL = 0  
SPL = 1  
Maintain  
previous  
state  
SPL = 0  
SPL = 1  
Maintain  
previous  
state  
Maintain  
previous  
state  
Maintain  
previous  
state  
Maintain  
previous  
state  
Maintain  
previous  
state  
CEC  
Setting  
Setting  
Setting  
enabled  
disabled  
disabled  
disabled  
Hi-Z /  
WKUP  
input  
WKUP  
enabled  
WKUP  
input  
Maintain  
previous  
state  
Setting  
Setting  
Setting  
enabled  
enabled  
disabled  
disabled  
disabled  
T
External interrupt  
enabled selected  
Maintain  
previous  
state  
Maintain  
previous  
state  
GPIO  
GPIO  
selected  
Internal  
input fixed  
at 0  
selected  
Hi-Z /  
Internal  
input fixed  
at 0  
Resource other  
than above  
selected  
Hi-Z /  
Internal  
input fixed  
at 0  
Hi-Z /  
Input  
Hi-Z /  
Input  
Hi-Z  
enabled  
enabled  
GPIO  
selected  
*1: Oscillation is stopped at Sub Timer mode, Low-speed CR Timer mode, RTC mode, Stop mode, Deep  
Standby RTC mode, and Deep Standby Stop mode.  
*2: Oscillation is stopped at Stop mode and Deep Standby Stop mode.  
June 10, 2015, MB9A140NB_DS706-00040-4v0-E  
61  
D a t a S h e e t  
Electrical Characteristics  
1. Absolute Maximum Ratings  
Rating  
Parameter  
Symbol  
Unit  
Remarks  
Min  
Max  
Power supply voltage*1, *2  
VCC  
AVCC  
AVRH  
VSS - 0.5  
VSS - 0.5  
VSS - 0.5  
VSS + 4.6  
VSS + 4.6  
VSS + 4.6  
VCC + 0.5  
(4.6 V)  
VSS + 6.5  
AVCC + 0.5  
(4.6 V)  
VCC + 0.5  
(4.6 V)  
V
V
V
Analog power supply voltage*1, *3  
Analog reference voltage*1, *3  
VSS - 0.5  
VSS - 0.5  
VSS - 0.5  
V
V
V
Input voltage*1  
VI  
5 V tolerant  
Analog pin input voltage*1  
Output voltage*1  
VIA  
VO  
VSS - 0.5  
V
10  
mA  
L level maximum output current*4  
L level average output current*5  
IOL  
-
39  
4
10.5  
100  
50  
- 10  
- 39  
- 4  
- 12  
- 100  
- 50  
300  
+ 150  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mW  
°C  
P80/P81 pins  
P80/P81 pins  
IOLAV  
-
L level total maximum output current  
L level total average output current*6  
IOL  
IOLAV  
-
-
H level maximum output current*4  
IOH  
-
-
P80/P81 pins  
P80/P81 pins  
H level average output current*5  
IOHAV  
H level total maximum output current  
H level total average output current*6  
Power consumption  
IOH  
IOHAV  
PD  
-
-
-
Storage temperature  
TSTG  
- 55  
*1: These parameters are based on the condition that VSS = AVSS = 0 V.  
*2: VCC must not drop below VSS - 0.5 V.  
*3: Ensure that the voltage does not to exceed VCC + 0.5 V, for example, when the power is turned on.  
*4: The maximum output current is defined as the value of the peak current flowing through any one of the  
corresponding pins.  
*5: The average output current is defined as the average current value flowing through any one of the  
corresponding pins for a 100 ms period.  
*6: The total average output current is defined as the average current value flowing through all of  
corresponding pins for a 100 ms.  
<WARNING>  
Semiconductor devices may be permanently damaged by application of stress (including, without limitation,  
voltage, current or temperature) in excess of absolute maximum ratings.  
Do not exceed any of these ratings.  
62  
MB9A140NB_DS706-00040-4v0-E, June 10, 2015  
D a t a S h e e t  
2. Recommended Operating Conditions  
(VSS = AVSS = 0.0V)  
Value  
Parameter  
Symbol Conditions  
Unit  
Remarks  
Min  
Max  
3.6  
Power supply voltage  
Analog power supply voltage  
VCC  
AVCC  
-
-
1.65*2  
1.65  
2.7  
V
V
V
V
3.6  
AVCC = VCC  
AVCC 2.7 V  
AVCC<2.7 V  
AVCC  
AVCC  
10  
Analog reference voltage  
AVRH  
-
AVCC  
1
Smoothing capacitor  
Operating temperature  
CS  
TA  
--  
-
µF For Regulator*1  
°C  
- 40  
+ 85  
*1 : See C Pin in Handling Devices for the connection of the smoothing capacitor.  
*2 : In between less than the minimum power supply voltage and low voltage reset/interrupt detection voltage  
or more, instruction execution and low voltage detection function by built-in High-speed CR(including  
Main PLL is used) or built-in Low-speed CR is possible to operate only.  
<WARNING>  
The recommended operating conditions are required in order to ensure the normal operation of the  
semiconductor device. All of the device's electrical characteristics are warranted when the device is  
operated under these conditions.  
Any use of semiconductor devices will be under their recommended operating condition.  
Operation under any conditions other than these conditions may adversely affect reliability of device and  
could result in device failure.  
No warranty is made with respect to any use, operating conditions or combinations not represented on this  
data sheet. If you are considering application under any conditions other than listed herein, please contact  
sales representatives beforehand.  
June 10, 2015, MB9A140NB_DS706-00040-4v0-E  
63  
D a t a S h e e t  
3. DC Characteristics  
(1) Current rating  
(VCC = AVCC = 1.65V to 3.6V, VSS = AVSS = 0V, TA = - 40°C to + 85°C)  
Value  
Pin  
name  
Parameter Symbol  
Conditions  
Unit Remarks  
Typ*3 Max*4  
CPU: 40 MHz,  
Peripheral: 40 MHz  
CPU: 40 MHz,  
Peripheral: the clock stops  
NOP operation  
15.5  
8.7  
21  
12  
mA *1, *5  
PLL  
Rrun mode  
mA *1, *5  
High-speed  
CR  
Rrun mode  
Sub  
Rrun mode  
Low-speed  
CR  
Run mode  
PLL  
Sleep mode  
High-speed  
CR  
Sleep mode  
Sub  
Sleep mode  
Low-speed  
CR  
ICC  
CPU/ Peripheral: 4 MHz*2  
CPU/ Peripheral: 32 kHz  
CPU/ Peripheral: 100 kHz  
Peripheral: 40 MHz  
1.8  
110  
125  
9
2.9  
680  
700  
12.5  
1.6  
mA *1  
μA *1, *6  
μA *1  
Power  
supply  
current  
VCC  
mA *1, *5  
mA *1  
Peripheral: 4 MHz*2  
Peripheral: 32 kHz  
0.8  
96  
ICCS  
670  
680  
μA *1, *6  
μA *1  
Peripheral: 100 kHz  
110  
Sleep mode  
*1: When all ports are fixed.  
*2: When setting it to 4 MHz by trimming.  
*3: TA=+25°C, VCC=3.6 V  
*4: TA=+85°C, VCC=3.6 V  
*5: When using the crystal oscillator of 4 MHz(Including the current consumption of the oscillation circuit)  
*6: When using the crystal oscillator of 32 kHz(Including the current consumption of the oscillation circuit)  
64  
MB9A140NB_DS706-00040-4v0-E, June 10, 2015  
D a t a S h e e t  
Value  
Pin  
name  
Parameter Symbol  
Conditions  
Unit Remarks  
mA *1, *3  
mA *1, *3  
μA *1, *4  
μA *1, *4  
μA *1, *4  
μA *1, *4  
μA *1  
Typ*2 Max*2  
TA = + 25°C,  
2.1  
2.5  
3.4  
35  
When LVD is off  
TA = + 85°C,  
Main Timer  
mode  
-
When LVD is off  
TA = + 25°C,  
When LVD is off  
TA = + 85°C,  
When LVD is off  
TA = + 25°C,  
ICCT  
12  
-
Sub Timer  
mode  
330  
29  
9.8  
-
When LVD is off  
TA = + 85°C,  
When LVD is off  
TA = + 25°C,  
When LVD is off  
TA = + 85°C,  
ICCR  
RTC mode  
Stop mode  
280  
28  
9
ICCH  
-
270  
μA *1  
When LVD is off  
TA = + 25°C,  
When LVD is off,  
When RAM is off  
1.25  
5.3  
7
18  
70  
100  
9
μA *1, *4, *5  
μA *1, *4, *5  
μA *1, *4, *5  
μA *1, *4, *5  
μA *1, *5  
Power  
supply  
current  
ICCHD  
TA = + 25°C,  
When LVD is off,  
When RAM is on  
VCC  
Deep Standby  
Stop mode  
TA = + 85°C,  
When LVD is off,  
When RAM is off  
TA = + 85°C,  
When LVD is off,  
When RAM is on  
TA = + 25°C,  
-
When LVD is off,  
When RAM is off  
1.9  
5.9  
TA = + 25°C,  
When LVD is off,  
When RAM is on  
20  
μA *1, *5  
Deep Standby  
RTC mode  
ICCRD  
TA = + 85°C,  
When LVD is off,  
When RAM is off  
TA = + 85°C,  
When LVD is off,  
When RAM is on  
75  
μA *1, *5  
μA *1, *5  
-
105  
*1: When all ports are fixed.  
*2: VCC=3.6 V  
*3: When using the crystal oscillator of 4 MHz(Including the current consumption of the oscillation circuit)  
*4: When using the crystal oscillator of 32 kHz(Including the current consumption of the oscillation circuit)  
*5: RAM on/off setting is on-chip SRAM only.  
June 10, 2015, MB9A140NB_DS706-00040-4v0-E  
65  
D a t a S h e e t  
· Low-Voltage Detection Current  
(VCC = 1.65V to 3.6V, VDDI = 1.1V to 1.3V, VSS = 0V, TA = - 40°C to + 85°C)  
Value  
Max  
Pin  
name  
Parameter  
Symbol  
Conditions  
Unit  
Remarks  
Typ  
At operation  
for reset  
VCC = 3.6 V  
0.13  
0.3  
μA At not detect  
μA At not detect  
Low-voltage  
detection circuit  
(LVD) power  
supply current  
ICCLVD  
VCC  
At operation  
for interrupt  
VCC = 3.6 V  
0.13  
0.3  
· Flash Memory Current  
(VCC = 1.65V to 3.6V, VDDI = 1.1V to 1.3V, VSS = 0V, TA = - 40°C to + 85°C)  
Value  
Max  
Pin  
name  
Parameter  
Symbol  
Conditions  
Unit  
Remarks  
Typ  
Flash memory  
write/erase  
current  
ICCFLASH  
VCC  
At Write/Erase  
9.5  
11.2  
mA  
*
*: The current at which to write or erase Flash memory, ICCFLASH is added to ICC.  
· A/D Converter Current  
(VCC = VCC28 = AVCC = 1.65V to 3.6V, VDDI = 1.1V to 1.3V, VSS = AVSS = 0V, TA = - 40°C to +85°C)  
Value  
Max  
Pin  
name  
Parameter  
Symbol  
Conditions  
Unit  
mA  
μA  
Remarks  
Typ  
At 1unit  
operation  
0.27  
0.42  
Power supply  
current  
ICCAD  
AVCC  
AVRH  
At stop  
0.03  
0.72  
0.02  
10  
At 1unit  
operation  
AVRH=3.6 V  
1.29  
2.6  
mA  
Reference power  
supply current  
ICCAVRH  
At stop  
μA  
66  
MB9A140NB_DS706-00040-4v0-E, June 10, 2015  
D a t a S h e e t  
(2) Pin Characteristics  
(VCC = AVCC = 1.65V to 3.6V, VSS = AVSS = 0V, TA = - 40°C to + 85°C)  
Value  
Typ  
Parameter Symbol Pin name  
Conditions  
Unit Remarks  
Min  
Max  
CMOS  
hysteresis  
input pin,  
MD0, MD1  
VCC 2.7 V  
VCC < 2.7 V  
VCC 2.7 V  
VCC < 2.7 V  
VCC 2.7 V  
VCC < 2.7 V  
VCC 2.7 V  
VCC × 0.8  
-
-
-
-
VCC + 0.3  
V
H level input  
voltage  
(hysteresis  
input)  
VCC × 0.7  
VCC × 0.8  
VCC × 0.7  
VIHS  
5 V tolerant  
input pin  
VSS + 5.5  
V
V
V
CMOS  
hysteresis  
input pin,  
MD0, MD1  
VCC × 0.2  
VCC × 0.3  
VCC × 0.2  
VSS - 0.3  
VSS - 0.3  
L level input  
voltage  
(hysteresis  
input)  
VILS  
5 V tolerant  
input pin  
VCC < 2.7 V  
VCC × 0.3  
VCC 2.7 V,  
IOH = - 4 mA  
VCC - 0.5  
4 mA type  
P80/P81  
-
-
VCC  
V
V
VCC < 2.7 V,  
IOH = - 2 mA  
VCC - 0.45  
H level  
output voltage  
VOH  
VCC 2.7 V,  
IOH = - 12 mA  
VCC - 0.4  
VCC  
0.4  
0.4  
VCC < 2.7 V,  
IOH = - 6.5 mA  
VCC 2.7 V,  
IOL = 4 mA  
4mA type  
VSS  
-
-
V
V
VCC < 2.7 V,  
IOL = 2 mA  
L level  
output voltage  
VOL  
VCC 2.7 V,  
IOL = 10.5 mA  
P80/P81  
-
VSS  
VCC < 2.7 V,  
IOL = 5 mA  
-
- 5  
-
-
-
+ 5  
μA  
μA  
Input leak  
current  
VCC = AVCC  
AVRH = VSS  
=
=
IIL  
CEC0,  
CEC1  
+1.8  
AVSS = 0.0 V  
VCC 2.7 V  
21  
-
33  
-
66  
Pull-up  
resistor value  
RPU Pull-up pin  
kΩ  
VCC < 2.7 V  
134  
Other than  
VCC,  
Input  
capacitance  
VSS,  
AVCC,  
CIN  
-
-
5
15  
pF  
AVSS,  
AVRH  
June 10, 2015, MB9A140NB_DS706-00040-4v0-E  
67  
D a t a S h e e t  
4. AC Characteristics  
(1) Main Clock Input Characteristics  
(VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C)  
Value  
Pin  
name  
Parameter  
Input frequency  
Input clock cycle  
Symbol  
Conditions  
Unit  
Remarks  
Min  
4
Max  
48  
VCC 2.7 V  
VCC < 2.7 V  
When crystal oscillator  
is connected  
When using external  
clock  
When using external  
clock  
When using external  
clock  
MHz  
MHz  
ns  
4
20  
fCH  
-
-
4
48  
250  
55  
X0,  
X1  
tCYLH  
-
20.83  
45  
Input clock pulse  
width  
PWH/tCYLH,  
PWL/tCYLH  
%
Input clock rising  
time and falling  
time  
tCF,  
tCR  
When using external  
clock  
-
-
5
ns  
fCM  
fCC  
-
-
-
-
-
-
40  
40  
MHz Master clock  
Base clock  
(HCLK/FCLK)  
MHz  
Internal operating  
clock*1 frequency  
fCP0  
fCP1  
fCP2  
-
-
-
-
-
-
-
-
-
40  
40  
40  
MHz APB0 bus clock*2  
MHz APB1 bus clock*2  
MHz APB2 bus clock*2  
Base clock  
tCYCC  
-
-
25  
-
ns  
(HCLK/FCLK)  
Internal operating  
clock*1 cycle time  
tCYCP0  
tCYCP1  
tCYCP2  
-
-
-
-
-
-
25  
25  
25  
-
-
-
ns  
ns  
ns  
APB0 bus clock*2  
APB1 bus clock*2  
APB2 bus clock*2  
*1: For more information about each internal operating clock, see Chapter 2-1: Clock in FM3 Family Peripheral  
Manual.  
*2: For about each APB bus which each peripheral is connected to, see Block Diagram in this data  
sheet.  
X0  
68  
MB9A140NB_DS706-00040-4v0-E, June 10, 2015  
D a t a S h e e t  
(2) Sub Clock Input Characteristics  
(VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C)  
Value  
Typ  
Pin  
name  
Parameter  
Symbol  
Conditions  
Unit  
Remarks  
Min  
Max  
When crystal  
-
-
32.768  
-
kHz oscillator is  
connected  
Input frequency  
fCL  
When using  
external clock  
When using  
external clock  
When using  
external clock  
-
-
32  
10  
45  
-
-
-
100  
31.25  
55  
kHz  
X0A,  
X1A  
Input clock cycle  
tCYLL  
-
μs  
Input clock pulse  
width  
PWH/tCYLL,  
PWL/tCYLL  
%
X0A  
(3) Built-in CR Oscillation Characteristics  
Built-in High-speed CR  
(VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C)  
Value  
Typ Max  
Parameter  
Symbol  
Conditions  
Unit  
Remarks  
Min  
TA = + 25°C  
VCC 2.7 V  
3.96  
4
4
4
4.04  
TA = + 25°C  
VCC < 2.7 V  
When trimming*1  
3.9  
4.1  
Clock frequency  
fCRH  
MHz  
TA =  
- 40°C to + 85°C  
3.84  
4.16  
TA =  
- 40°C to + 85°C  
2.8  
-
-
-
5.2  
30  
When not trimming  
Frequency  
stabilization time  
2
tCRWT  
-
μs  
*
*1: In the case of using the values in CR trimming area of Flash memory at shipment for frequency/temperature  
trimming.  
*2: This is the time to stabilize the frequency of High-speed CR clock after setting trimming value.  
This period is able to use High-speed CR clock as source clock.  
Built-in Low-speed CR  
(VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C)  
Value  
Typ Max  
Parameter  
Symbol  
Conditions  
Unit  
Remarks  
Min  
Clock frequency  
fCRL  
-
50  
100  
150  
kHz  
June 10, 2015, MB9A140NB_DS706-00040-4v0-E  
69  
D a t a S h e e t  
(4-1) Operating Conditions of Main PLL (In the case of using main clock for input of PLL)  
(VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C)  
Value  
Typ  
Parameter  
PLL oscillation stabilization wait time*1  
(LOCK UP time)  
Symbol  
Unit  
Remarks  
Min  
Max  
-
tLOCK  
100  
-
μs  
PLL input clock frequency  
PLL multiple rate  
fPLLI  
-
fPLLO  
fCLKPLL  
4
5
75  
-
-
-
-
-
16  
MHz  
37 multiple  
150  
40  
PLL macro oscillation clock frequency  
MHz  
MHz  
Main PLL clock frequency*2  
*1: Time from when the PLL starts operating until the oscillation stabilizes.  
*2: For more information about Main PLL clock (CLKPLL), see Chapter 2-1: Clock in FM3 Family  
Peripheral Manual.  
(4-2) Operating Conditions of Main PLL (In the case of using the built-in High-speed CR for the input  
clock of the Main PLL)  
(VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C)  
Value  
Parameter  
Symbol  
Unit  
Remarks  
Min  
Typ  
Max  
PLL oscillation stabilization wait time*1  
(LOCK UP time)  
tLOCK  
100  
-
-
μs  
PLL input clock frequency  
PLL multiple rate  
fPLLI  
-
fPLLO  
fCLKPLL  
3.8  
19  
72  
-
4
-
-
4.2  
MHz  
35 multiple  
150  
40  
PLL macro oscillation clock frequency  
MHz  
MHz  
Main PLL clock frequency*2  
-
*1: Time from when the PLL starts operating until the oscillation stabilizes.  
*2: For more information about Main PLL clock (CLKPLL), see Chapter 2-1: Clock in FM3 Family  
Peripheral Manual.  
Note: Make sure to input to the Main PLL source clock, the High-speed CR clock (CLKHC) that the  
frequency/temperature has been trimmed.  
When setting PLL multiple rate, please take the accuracy of the built-in High-speed CR clock into account  
and prevent the master clock from exceeding the maximum frequency.  
Main PLL connection  
Main PLL  
clock  
(CLKPLL)  
PLL input  
clock  
PLL macro  
oscillation clock  
Main clock (CLKMO)  
K
M
divider  
Main  
PLL  
divider  
High-speed CR clock (CLKHC)  
N
divider  
70  
MB9A140NB_DS706-00040-4v0-E, June 10, 2015  
D a t a S h e e t  
(5) Reset Input Characteristics  
(VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C)  
Value  
Pin  
name  
Parameter  
Symbol  
Conditions  
Unit Remarks  
Min  
Max  
Reset input time  
tINITX  
INITX  
-
500  
-
ns  
(6) Power-on Reset Timing  
Parameter  
(VCC= 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C)  
Value  
Pin  
name  
Symbol  
Unit  
Remarks  
Min  
0
Max  
Power supply rising time  
tVCCR  
tOFF  
-
-
ms  
ms  
Power supply shut down time  
1
VCC  
Time until releasing  
Power-on reset  
tPRT  
1.34  
16.09  
ms  
VCC_minimum  
VDH_minimum  
VCC  
0.2V  
tVCCR  
0.2V  
0.2V  
tPRT  
tOFF  
Internal reset  
Reset active  
Release  
start  
CPU Operation  
Glossary  
VCC_minimum: Minimum VCC of recommended operating conditions  
VDH_minimum: Minimum detection voltage (when SVHR=00000) of Low-Voltage detection reset  
See 6. Low-Voltage Detection Characteristics  
June 10, 2015, MB9A140NB_DS706-00040-4v0-E  
71  
D a t a S h e e t  
(7) External Bus Timing  
External bus clock output characteristics  
(VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C)  
Value  
Parameter  
Symbol  
Pin name  
Conditions  
Unit  
Min  
Max  
40  
VCC 2.7 V  
VCC < 2.7 V  
-
-
MHz  
MHz  
Output frequency  
tCYCLE  
MCLKOUT*  
20  
*: The external bus clock output (MCLKOUT) is a divided clock of HCLK.  
For more information about setting of clock divider, see Chapter 12: External Bus Interface in FM3 Family  
Peripheral Manual.  
When external bus clock is not output, this characteristic does not give any effect on external bus operation.  
MCLKOUT  
External bus signal input/output characteristics  
(VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C)  
Parameter  
Symbol Conditions  
Value  
Unit  
Remarks  
VIH  
0.8 × VCC  
0.2 × VCC  
0.8 × VCC  
0.2 × VCC  
V
V
V
V
Signal input characteristics  
VIL  
-
VOH  
Signal output characteristics  
VOL  
VIH  
VIL  
VIH  
VIL  
Input signal  
VOH  
VOL  
VOH  
VOL  
Output signal  
72  
MB9A140NB_DS706-00040-4v0-E, June 10, 2015  
D a t a S h e e t  
Separate Bus Access Asynchronous SRAM Mode  
(VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C)  
Value  
Parameter  
Symbol  
tOEW  
Pin name  
Conditions  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Min  
Max  
VCC 2.7 V  
VCC < 2.7 V  
VCC 2.7 V  
VCC < 2.7 V  
VCC 2.7 V  
VCC < 2.7 V  
VCC 2.7 V  
MOEX  
MOEX  
MCLK×n-3  
-
Min pulse width  
MCSX ↓ → Address  
output delay time  
MOEX ↑ →  
Address hold time  
MCSX ↓ →  
MOEX delay time  
MOEX ↑ →  
MCSX time  
MCSX[7:0],  
MAD[24:0]  
MOEX,  
-9  
-12  
+9  
+12  
tCSL AV  
tOEH - AX  
tCSL - OEL  
tOEH - CSH  
tCSL - RDQML  
tDS - OE  
MCLK×m+9  
MCLK×m+12  
MCLK×m-9 MCLK×m+9  
0
MAD[24:0]  
VCC < 2.7 V MCLK×m-12 MCLK×m+12  
MOEX,  
MCSX[7:0]  
VCC 2.7 V  
VCC < 2.7 V  
VCC 2.7 V  
MCLK×m+9  
MCLK×m+12  
MCLK×m-9 MCLK×m+9  
0
MCSX ↓ →  
MCSX,  
MDQM[1:0]  
MOEX,  
MADATA[15:0]  
MOEX,  
MDQM delay time  
Data set up →  
MOEX time  
MOEX ↑ →  
Data hold time  
MWEX  
Min pulse width  
MWEX ↑ → Address  
output delay time  
MCSX ↓ →  
MWEX delay time  
MWEX ↑ →  
MCSX delay time  
MCSX ↓→  
MDQM delay time  
MWEX ↓→  
Data output time  
MWEX ↑ →  
VCC < 2.7 V MCLK×m-12 MCLK×m+12  
VCC 2.7 V  
VCC < 2.7 V  
VCC 2.7 V  
VCC < 2.7 V  
VCC 2.7 V  
VCC < 2.7 V  
VCC 2.7 V  
VCC < 2.7 V  
VCC 2.7 V  
30  
38  
-
-
tDH - OE  
0
-
-
MADATA[15:0]  
tWEW  
MWEX  
MCLK×n-3  
MWEX,  
MAD[24:0]  
MCLK×m+9  
MCLK×m+12  
MCLK×n+9  
tWEH - AX  
tCSL - WEL  
tWEH - CSH  
tCSL-WDQML  
tCSL - DV  
tWEH - DX  
0
MCLK×n-9  
VCC < 2.7 V MCLK×n-12 MCLK×n+12  
MWEX,  
MCSX[7:0]  
VCC 2.7 V  
VCC < 2.7 V  
VCC 2.7 V  
MCLK×m+9  
MCLK×m+12  
MCLK×n+9  
0
MCSX,  
MDQM[1:0]  
MCSX,  
MADATA[15:0]  
MWEX,  
MADATA[15:0]  
MCLK×n-9  
VCC < 2.7 V MCLK×n-12 MCLK×n+12  
VCC 2.7 V  
VCC < 2.7 V  
VCC 2.7 V  
VCC < 2.7 V  
MCLK-9  
MCLK-12  
MCLK+9  
MCLK+12  
MCLK×m+9  
MCLK×m+12  
0
Data hold time  
Note: When the external load capacitance CL = 30 pF (m = 0 to 15, n = 1 to 16).  
June 10, 2015, MB9A140NB_DS706-00040-4v0-E  
73  
D a t a S h e e t  
MCLK  
MCSX[7:0]  
MAD[24:0]  
MOEX  
MDQM[1:0]  
MWEX  
MADATA[15:0]  
74  
MB9A140NB_DS706-00040-4v0-E, June 10, 2015  
D a t a S h e e t  
Separate Bus Access Synchronous SRAM Mode  
(VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C)  
Value  
Parameter  
Symbol  
tAV  
Pin name  
Conditions  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Min  
Max  
12  
13  
VCC 2.7 V  
VCC < 2.7 V  
VCC 2.7 V  
VCC < 2.7 V  
VCC 2.7 V  
VCC < 2.7 V  
VCC 2.7 V  
VCC < 2.7 V  
VCC 2.7 V  
VCC < 2.7 V  
VCC 2.7 V  
VCC < 2.7 V  
VCC 2.7 V  
VCC < 2.7 V  
VCC 2.7 V  
VCC < 2.7 V  
VCC 2.7 V  
VCC < 2.7 V  
VCC 2.7 V  
VCC < 2.7 V  
VCC 2.7 V  
VCC < 2.7 V  
VCC 2.7 V  
VCC <2.7 V  
VCC 2.7 V  
VCC <2.7 V  
MCLK,  
MAD[24:0]  
Address delay time  
1
tCSL  
1
1
1
1
12  
12  
MCLK,  
MCSX[7:0]  
MCSX delay time  
MOEX delay time  
tCSH  
9
12  
9
tREL  
MCLK,  
MOEX  
tREH  
tDS  
12  
24  
37  
Data set up →  
MCLK time  
MCLK ↑ →  
MCLK,  
MADATA[15:0]  
MCLK,  
-
tDH  
0
-
Data hold time  
MADATA[15:0]  
9
12  
9
12  
9
12  
9
tWEL  
tWEH  
tDQML  
tDQMH  
tODS  
tOD  
1
MCLK,  
MWEX  
MWEX delay time  
1
1
MDQM[1:0]  
delay time  
MCLK,  
MDQM[1:0]  
1
12  
MCLK + 18  
MCLK + 24  
18  
MCLK ↑ →  
Data output time  
MCLK ↑ →  
MCLK,  
MADATA[15:0]  
MCLK,  
MCLK + 1  
1
Data hold time  
MADATA[15:0]  
24  
Note: When the external load capacitance CL = 30 pF.  
MCLK  
MCSX[7:0]  
MAD[24:0]  
MOEX  
MDQM[1:0]  
MWEX  
MADATA[15:0]  
June 10, 2015, MB9A140NB_DS706-00040-4v0-E  
75  
D a t a S h e e t  
Multiplexed Bus Access Asynchronous SRAM Mode  
(VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C)  
Value  
Parameter  
Symbol  
tALE-CHMADV  
tCHMADH  
Pin name  
Conditions  
Unit  
ns  
Min  
Max  
+10  
+20  
VCC 2.7 V  
VCC < 2.7 V  
Multiplexed  
address delay time  
Multiplexed  
-2  
MALE,  
MADATA[15:0]  
VCC 2.7 V MCLK×n+0 MCLK×n+10  
VCC < 2.7 V MCLK×n+0 MCLK×n+20  
ns  
address hold time  
Note: When the external load capacitance CL = 30 pF (m = 0 to 15, n = 1 to 16).  
MCLK  
MCSX[7:0]  
MALE  
MAD [24:0]  
MOEX  
MDQM [1:0]  
MWEX  
MADATA[15:0]  
76  
MB9A140NB_DS706-00040-4v0-E, June 10, 2015  
D a t a S h e e t  
Multiplexed Bus Access Synchronous SRAM Mode  
(VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C)  
Value  
Parameter  
Symbol  
tCHAL  
Pin name  
Conditions  
Unit Remarks  
Min  
Max  
9
VCC 2.7 V  
VCC < 2.7 V  
VCC 2.7 V  
VCC < 2.7 V  
ns  
ns  
ns  
ns  
1
12  
9
12  
MCLK,  
ALE  
MALE delay time  
tCHAH  
1
1
MCLK ↑ →  
Multiplexed  
Address delay time  
MCLK ↑ →  
Multiplexed  
Data output time  
VCC 2.7 V  
VCC < 2.7 V  
VCC 2.7 V  
VCC < 2.7 V  
tCHMADV  
tOD  
ns  
ns  
MCLK,  
MADATA[15:0]  
tCHMADX  
1
tOD  
Note: When the external load capacitance CL = 30 pF.  
MCLK  
MCSX[7:0]  
MALE  
MAD [24:0]  
MOEX  
MDQM [1:0]  
MWEX  
MADATA[15:0]  
June 10, 2015, MB9A140NB_DS706-00040-4v0-E  
77  
D a t a S h e e t  
External Ready Input Timing  
(VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C)  
Value  
Parameter  
Symbol Pin name Conditions  
Unit Remarks  
Min  
Max  
MCLK ↑  
MRDY input  
setup time  
VCC 2.7 V  
23  
MCLK,  
MRDY  
tRDYI  
-
ns  
VCC < 2.7 V  
37  
When RDY is input  
···  
MCLK  
Over 2cycles  
Original  
MOEX  
MWEX  
tRDYI  
MRDY  
When RDY is released  
··· ···  
MCLK  
2 cycles  
Extended  
MOEX  
MWEX  
tRDYI  
0.5×VCC  
MRDY  
78  
MB9A140NB_DS706-00040-4v0-E, June 10, 2015  
D a t a S h e e t  
(8) Base Timer Input Timing  
Timer input timing  
(VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C)  
Value  
Parameter  
Symbol  
Pin name Conditions  
Unit Remarks  
Min  
Max  
TIOAn/TIOBn  
(when using as  
ECK, TIN)  
tTIWH  
tTIWL  
,
Input pulse width  
-
2tCYCP  
-
ns  
tTIWH  
tTIWL  
ECK  
TIN  
VIHS  
VIHS  
VILS  
VILS  
Trigger input timing  
Parameter  
(VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C)  
Value  
Symbol Pin name Conditions  
Unit Remarks  
Min  
Max  
TIOAn/TIOBn  
(when using as  
TGIN)  
tTRGH  
tTRGL  
,
Input pulse width  
-
2tCYCP  
-
ns  
tTRGH  
tTRGL  
VIHS  
VIHS  
TGIN  
VILS  
VILS  
Note: tCYCP indicates the APB bus clock cycle time.  
About the APB bus number which the Base Timer is connected to, see Block Diagram in this data  
sheet.  
June 10, 2015, MB9A140NB_DS706-00040-4v0-E  
79  
D a t a S h e e t  
(9) CSIO/UART Timing  
CSIO (SPI = 0, SCINV = 0)  
(VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C)  
VCC < 2.7 V  
Pin  
VCC 2.7 V  
Parameter  
Serial clock cycle time  
SCK ↓ → SOT delay time  
Symbol  
Conditions  
Unit  
ns  
name  
SCKx  
SCKx,  
SOTx  
SCKx,  
SINx  
Min  
Max  
Min  
Max  
tSCYC  
4tCYCP  
-
4tCYCP  
-
tSLOVI  
- 30  
50  
0
+ 30  
- 20  
36  
0
+ 20  
ns  
Master mode  
SIN SCK setup time  
SCK ↑ → SIN hold time  
Serial clock L pulse width  
Serial clock H pulse width  
SCK ↓ → SOT delay time  
SIN SCK setup time  
SCK ↑ → SIN hold time  
tIVSHI  
tSHIXI  
tSLSH  
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCKx,  
SINx  
2tCYCP  
10  
-
2tCYCP  
10  
-
SCKx  
SCKx  
-
-
tCYCP  
10  
+
tCYCP  
10  
+
tSHSL  
-
-
SCKx,  
SOTx  
SCKx,  
SINx  
SCKx,  
SINx  
tSLOVE  
tIVSHE  
tSHIXE  
-
50  
-
-
33  
-
Slave mode  
10  
20  
10  
20  
-
-
SCK falling time  
SCK rising time  
tF  
tR  
SCKx  
SCKx  
-
-
5
5
-
-
5
5
ns  
ns  
Notes: The above characteristics apply to clock synchronous mode.  
tCYCP indicates the APB bus clock cycle time.  
About the APB bus number which Multi-function serial is connected to, see Block Diagram in  
this data sheet.  
These characteristics only guarantee the same relocate port number.  
For example, the combination of SCKx_0 and SOTx_1 is not guaranteed.  
When the external load capacitance CL = 30 pF.  
80  
MB9A140NB_DS706-00040-4v0-E, June 10, 2015  
D a t a S h e e t  
tSCYC  
VOH  
VOH  
SCK  
VOL  
tSHOVI  
VOH  
VOL  
SOT  
SIN  
tIVSLI  
tSLIXI  
VIH  
VIL  
VIH  
VIL  
Master mode  
tSHSL  
tSLSH  
VIH  
VIH  
tF  
SCK  
VIL  
VIL  
tR  
VIL  
tSHOVE  
VOH  
VOL  
SOT  
SIN  
tIVSLE  
tSLIXE  
VIH  
VIL  
VIH  
VIL  
Slave mode  
June 10, 2015, MB9A140NB_DS706-00040-4v0-E  
81  
D a t a S h e e t  
CSIO (SPI = 0, SCINV = 1)  
(VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C)  
VCC < 2.7 V  
Pin  
VCC 2.7 V  
Parameter  
Serial clock cycle time  
SCK ↑ → SOT delay time  
Symbol  
Conditions  
Unit  
ns  
name  
SCKx  
SCKx,  
SOTx  
SCKx,  
SINx  
Min  
Max  
Min  
Max  
tSCYC  
4tCYCP  
-
4tCYCP  
-
tSHOVI  
- 30  
50  
0
+ 30  
- 20  
36  
0
+ 20  
ns  
Master mode  
SIN SCK setup time  
SCK ↓ → SIN hold time  
Serial clock L pulse width  
Serial clock H pulse width  
SCK ↑ → SOT delay time  
SIN SCK setup time  
SCK ↓ → SIN hold time  
tIVSLI  
tSLIXI  
tSLSH  
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCKx,  
SINx  
2tCYCP  
10  
-
2tCYCP  
10  
-
SCKx  
SCKx  
-
-
tCYCP  
10  
+
tCYCP  
10  
+
tSHSL  
-
-
SCKx,  
SOTx  
SCKx,  
SINx  
SCKx,  
SINx  
tSHOVE  
tIVSLE  
tSLIXE  
-
50  
-
-
33  
-
Slave mode  
10  
20  
10  
20  
-
-
SCK falling time  
SCK rising time  
tF  
tR  
SCKx  
SCKx  
-
-
5
5
-
-
5
5
ns  
ns  
Notes: The above characteristics apply to clock synchronous mode.  
tCYCP indicates the APB bus clock cycle time.  
About the APB bus number which Multi-function serial is connected to, see Block Diagram in  
this data sheet.  
These characteristics only guarantee the same relocate port number.  
For example, the combination of SCKx_0 and SOTx_1 is not guaranteed.  
When the external load capacitance CL = 30 pF.  
82  
MB9A140NB_DS706-00040-4v0-E, June 10, 2015  
D a t a S h e e t  
tSCYC  
VOH  
VOH  
SCK  
VOL  
tSHOVI  
VOH  
VOL  
SOT  
SIN  
tIVSLI  
tSLIXI  
VIH  
VIL  
VIH  
VIL  
Master mode  
tSHSL  
tSLSH  
VIH  
VIH  
tF  
SCK  
VIL  
VIL  
tR  
VIL  
tSHOVE  
VOH  
VOL  
SOT  
SIN  
tIVSLE  
tSLIXE  
VIH  
VIL  
VIH  
VIL  
Slave mode  
June 10, 2015, MB9A140NB_DS706-00040-4v0-E  
83  
D a t a S h e e t  
CSIO (SPI = 1, SCINV = 0)  
(VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C)  
VCC < 2.7 V  
Pin  
VCC 2.7 V  
Parameter  
Serial clock cycle time  
SCK ↑ → SOT delay time  
Symbol  
Conditions  
Unit  
ns  
name  
SCKx  
SCKx,  
SOTx  
SCKx,  
SINx Master mode  
SCKx,  
SINx  
Min  
Max  
Min  
Max  
tSCYC  
4tCYCP  
-
4tCYCP  
-
tSHOVI  
- 30  
50  
0
+ 30  
- 20  
36  
0
+ 20  
ns  
SIN SCK setup time  
SCK ↓→ SIN hold time  
SOT SCK delay time  
Serial clock L pulse width  
Serial clock H pulse width  
SCK ↑ → SOT delay time  
SIN SCK setup time  
SCK ↓→ SIN hold time  
tIVSLI  
tSLIXI  
tSOVLI  
tSLSH  
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCKx,  
SOTx  
2tCYCP  
34  
-
2tCYCP  
34  
-
-
-
2tCYCP  
10  
-
2tCYCP  
10  
-
SCKx  
-
-
tCYCP  
10  
+
tCYCP  
10  
+
tSHSL  
SCKx  
SCKx,  
SOTx  
SCKx,  
SINx  
SCKx,  
SINx  
-
-
tSHOVE  
tIVSLE  
tSLIXE  
-
50  
-
-
33  
-
Slave mode  
10  
20  
10  
20  
-
-
SCK falling time  
SCK rising time  
tF  
tR  
SCKx  
SCKx  
-
-
5
5
-
-
5
5
ns  
ns  
Notes: The above characteristics apply to clock synchronous mode.  
tCYCP indicates the APB bus clock cycle time.  
About the APB bus number which Multi-function serial is connected to, see Block Diagram in  
this data sheet.  
These characteristics only guarantee the same relocate port number.  
For example, the combination of SCKx_0 and SOTx_1 is not guaranteed.  
When the external load capacitance CL = 30 pF.  
84  
MB9A140NB_DS706-00040-4v0-E, June 10, 2015  
D a t a S h e e t  
tSCYC  
VOH  
SCK  
VOL  
VOL  
tSHOVI  
tSOVLI  
VOH  
VOL  
VOH  
VOL  
SOT  
SIN  
tIVSLI  
tSLIXI  
VIH  
VIL  
VIH  
VIL  
Master mode  
tSLSH  
tSHSL  
VIH  
tF  
VIH  
VIH  
SCK  
SOT  
SIN  
VIL  
VIL  
tR  
tSHOVE  
VOH  
VOL  
*
VOH  
VOL  
tIVSLE  
tSLIXE  
VIH  
VIL  
VIH  
VIL  
Slave mode  
*: Changes when writing to TDR register  
June 10, 2015, MB9A140NB_DS706-00040-4v0-E  
85  
D a t a S h e e t  
CSIO (SPI = 1, SCINV = 1)  
(VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C)  
VCC < 2.7 V  
Pin  
name  
SCKx  
VCC 2.7 V  
Parameter  
Symbol  
Conditions  
Unit  
Min  
Max  
Min  
Max  
Serial clock cycle time  
tSCYC  
4tCYCP  
-
4tCYCP  
-
ns  
SCKx,  
SOTx  
SCK ↓ → SOT delay time  
tSLOVI  
- 30  
+ 30  
- 20  
+ 20  
ns  
SCKx,  
SINx  
SCKx,  
SINx  
SCKx,  
SOTx  
SIN SCK setup time  
SCK ↑ → SIN hold time  
SOT SCK delay time  
Serial clock L pulse width  
Serial clock H pulse width  
SCK ↓ → SOT delay time  
SIN SCK setup time  
SCK ↑ → SIN hold time  
tIVSHI  
tSHIXI  
tSOVHI  
tSLSH  
50  
0
-
-
36  
0
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Master mode  
2tCYCP  
34  
2tCYCP  
10  
tCYCP  
10  
-
2tCYCP  
34  
2tCYCP  
10  
tCYCP  
10  
-
-
-
-
-
SCKx  
SCKx  
-
-
+
+
tSHSL  
-
-
SCKx,  
SOTx  
SCKx,  
SINx  
SCKx,  
SINx  
tSLOVE  
tIVSHE  
tSHIXE  
-
50  
-
-
33  
-
Slave mode  
10  
20  
10  
20  
-
-
SCK falling time  
SCK rising time  
tF  
tR  
SCKx  
SCKx  
-
-
5
5
-
-
5
5
ns  
ns  
Notes: The above characteristics apply to clock synchronous mode.  
tCYCP indicates the APB bus clock cycle time.  
About the APB bus number which Multi-function serial is connected to, see Block Diagram in  
this data sheet.  
These characteristics only guarantee the same relocate port number.  
For example, the combination of SCKx_0 and SOTx_1 is not guaranteed.  
When the external load capacitance CL = 30 pF.  
86  
MB9A140NB_DS706-00040-4v0-E, June 10, 2015  
D a t a S h e e t  
tSCYC  
VOL  
VOH  
VOH  
SCK  
tSOVHI  
tSLOVI  
VOH  
VOL  
VOH  
VOL  
SOT  
SIN  
tSHIXI  
tIVSHI  
VIH  
VIL  
VIH  
VIL  
Master mode  
tR  
tF  
tSHSL  
tSLSH  
VIH  
VIH  
SCK  
VIL  
VIL  
VIL  
tSLOVE  
VOH  
VOL  
VOH  
VOL  
SOT  
SIN  
tIVSHE  
tSHIXE  
VIH  
VIL  
VIH  
VIL  
Slave mode  
UART external clock input (EXT = 1)  
(VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C)  
Value  
Parameter  
Symbol Conditions  
Unit Remarks  
Min  
Max  
Serial clock L pulse width  
Serial clock H pulse width  
SCK falling time  
tSLSH  
tSHSL  
tF  
tCYCP + 10  
tCYCP + 10  
-
-
5
5
ns  
ns  
ns  
ns  
CL = 30 pF  
-
-
SCK rising time  
tR  
tF  
tR  
t
t
SLSH  
SHSL  
SCK  
V
V
V
IH  
IH  
IH  
VIL  
VIL  
V
IL  
June 10, 2015, MB9A140NB_DS706-00040-4v0-E  
87  
D a t a S h e e t  
(10) External Input Timing  
Parameter Symbol  
(VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C)  
Value  
Pin name  
Conditions  
Unit  
Remarks  
Min  
Max  
A/D converter  
trigger input  
1
ADTG  
-
2tCYCP  
*
-
ns  
tINH,  
Input pulse width  
tINL  
*2  
*3  
2tCYCP + 100*1  
500  
-
-
ns  
ns  
INTxx,  
NMIX  
External interrupt  
NMI  
Deep standby  
wake up  
WKUPx  
*4  
600  
-
ns  
*1: tCYCP indicates the APB bus clock cycle time.  
About the APB bus number which the Multi-function Timer is connected to, see Block Diagram in this  
data sheet.  
*2: When in Run mode, in Sleep mode.  
*3: When in Stop mode, in Timer mode.  
*4: When in Deep Standby RTC mode, in Deep Standby Stop mode.  
88  
MB9A140NB_DS706-00040-4v0-E, June 10, 2015  
D a t a S h e e t  
(11) I2C Timing  
Parameter  
(VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C)  
Standard-mode Fast-mode  
Symbol Conditions  
Unit Remarks  
Min  
Max  
Min  
Max  
SCL clock frequency  
(Repeated) START  
condition hold time  
SDA ↓ → SCL ↓  
FSCL  
0
100  
0
400 kHz  
tHDSTA  
4.0  
-
0.6  
-
μs  
SCL clock L width  
SCL clock H width  
(Repeated) START  
condition setup time  
SCL ↑ → SDA ↓  
Data hold time  
SCL ↓ → SDA ↓ ↑  
Data setup time  
tLOW  
tHIGH  
4.7  
4.0  
-
-
1.3  
0.6  
-
-
μs  
μs  
tSUSTA  
4.7  
-
0.6  
-
μs  
CL = 30 pF,  
R = (Vp/IOL)*1  
tHDDAT  
0
3.45*2  
0
0.9*3 μs  
tSUDAT  
tSUSTO  
250  
4.0  
-
-
100  
0.6  
-
-
ns  
SDA ↓ ↑ → SCL ↑  
STOP condition setup time  
SCL ↑ → SDA ↑  
μs  
Bus free time between  
STOP condition and  
START condition  
Noise filter  
tBUF  
4.7  
-
-
1.3  
-
-
μs  
4
4
tSP  
-
2 tCYCP  
*
2 tCYCP  
*
ns  
*1: R and C represent the pull-up resistor and load capacitance of the SCL and SDA lines, respectively.  
Vp indicates the power supply voltage of the pull-up resistor and IOL indicates VOL guaranteed current.  
*2: The maximum tHDDAT must satisfy that it does not extend at least L period (tLOW) of device's SCL signal.  
*3: A Fast-mode I2C bus device can be used on a Standard-mode I2C bus system as long as the device satisfies  
the requirement of tSUDAT 250 ns.  
*4: tCYCP is the APB bus clock cycle time.  
About the APB bus number that I2C is connected to, see Block Diagram in this data sheet.  
To use Standard-mode, set the APB bus clock at 2 MHz or more.  
To use Fast-mode, set the APB bus clock at 8 MHz or more.  
SDA  
SCL  
June 10, 2015, MB9A140NB_DS706-00040-4v0-E  
89  
D a t a S h e e t  
(12) ETM Timing  
(VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C)  
Value  
Min Max  
Parameter  
Symbol  
Pin name  
Conditions  
Unit  
Remarks  
VCC 2.7 V  
VCC < 2.7 V  
VCC 2.7 V  
VCC < 2.7 V  
VCC 2.7 V  
VCC < 2.7 V  
2
11  
TRACECLK,  
TRACED[3:0]  
Data hold  
tETMH  
ns  
2
15  
-
40 MHz  
20 MHz  
TRACECLK  
frequency  
1/ tTRACE  
-
TRACECLK  
25  
50  
-
-
ns  
ns  
TRACECLK  
clock cycle  
tTRACE  
Note: When the external load capacitance CL = 30 pF.  
HCLK  
TRACECLK  
TRACED[3:0]  
90  
MB9A140NB_DS706-00040-4v0-E, June 10, 2015  
D a t a S h e e t  
(13) JTAG Timing  
Parameter  
(VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C)  
Value  
Symbol Pin name Conditions  
Unit  
ns  
Remarks  
Min  
Max  
VCC 2.7 V  
VCC < 2.7 V  
VCC 2.7 V  
VCC < 2.7 V  
VCC 2.7 V  
TMS, TDI setup  
time  
TCK,  
TMS, TDI  
tJTAGS  
15  
-
TCK,  
TMS, TDI  
TMS, TDI hold time tJTAGH  
TDO delay time tJTAGD  
15  
-
ns  
-
-
25  
45  
TCK,  
TDO  
ns  
VCC < 2.7 V  
Note: When the external load capacitance CL = 30 pF.  
TCK  
TMS/TDI  
TDO  
June 10, 2015, MB9A140NB_DS706-00040-4v0-E  
91  
D a t a S h e e t  
5. 12-bit A/D Converter  
Electrical Characteristics for the A/D Converter  
(VCC = AVCC = 1.65V to 3.6V, VSS = AVSS = 0V, TA = - 40°C to + 85°C)  
Value  
Typ  
-
Pin  
name  
Parameter  
Symbol  
Unit  
Remarks  
Min  
-
-
Max  
12  
± 4.5  
Resolution  
Integral Nonlinearity  
Differential  
-
-
-
-
bit  
LSB  
± 2  
-
-
-
-
-
± 2.2  
± 6  
± 2.5  
± 15  
LSB  
mV  
Nonlinearity  
Zero transition voltage  
Full-scale transition  
voltage  
VZT  
VFST  
ANxx  
ANxx  
AVRH ± 6 AVRH ± 15 mV  
2.0*1  
4.0*1  
10*1  
0.6  
1.2  
3.0  
100  
200  
500  
-
-
-
-
-
-
-
-
-
AVCC 2.7 V  
Conversion time  
Sampling time*2  
-
-
-
-
μs  
1.8 V< AVCC < 2.7 V  
1.65 V< AVCC < 1.8 V  
AVCC 2.7 V  
1.8 V< AVCC < 2.7 V  
1.65 V< AVCC < 1.8 V  
AVCC 2.7 V  
tS  
10  
us  
Compare clock  
cycle*3  
tCCK  
-
1000  
1.0  
ns  
1.8 V< AVCC < 2.7 V  
1.65 V< AVCC < 1.8 V  
State transition time to  
operation permission  
Power supply current  
(analog + digital)  
Reference power  
supply current  
(between AVRH to  
AVSS)  
Analog input capacity  
tSTT  
-
-
-
-
μs  
-
-
0.27  
0.03  
0.42  
10  
mA  
μA  
A/D 1unit operation  
When A/D stops  
A/D 1unit operation  
AVRH=3.6 V  
AVCC  
-
0.72  
1.29  
2.6  
mA  
-
AVRH  
-
-
0.02  
-
μA  
When A/D stops  
CAIN  
RAIN  
-
-
9.4  
2.2  
5.5  
10.5  
4
pF  
AVCC 2.7 V  
1.8 V< AVCC < 2.7 V  
1.65 V< AVCC < 1.8 V  
Analog input resistor  
-
-
kΩ  
Interchannel disparity  
Analog port input  
current  
-
-
-
-
-
-
-
-
-
-
-
LSB  
μA  
V
ANxx  
ANxx  
AVRH  
5
Analog input voltage  
AVSS  
2.7  
AVCC  
AVRH  
AVCC  
AVCC 2.7 V  
AVCC < 2.7 V  
Reference voltage  
V
*1: The conversion time is the value of sampling time (tS) + compare time (tC).  
The condition of the minimum conversion time is the following.  
AVCC 2.7 V, HCLK=40 MHz  
1.8 V < AVCC < 2.7 V, HCLK=40 MHz  
sampling time: 0.6 μs, compare time: 1.4 μs  
sampling time: 1.2 μs, compare time: 2.8 μs  
1.65 V < AVCC < 1.8 V, HCLK=40 MHz sampling time: 3 μs, compare time: 7 μs  
Ensure that it satisfies the value of the sampling time (tS) and compare clock cycle (tCCK).  
For setting of the sampling time and the compare clock cycle, see Chapter 1-1: A/D Converter in FM3  
Family Peripheral Manual Analog Macro Port.  
The register setting of the A/D Converter are reflected in the operation according to the APB bus clock  
timing.  
The sampling clock and compare clock is generated from the Base clock (HCLK).  
About the APB bus number which the A/D Converter is connected to, see Block Diagram in this data  
sheet.  
*2: A necessary sampling time changes by external impedance.  
Ensure that it set the sampling time to satisfy (Equation 1).  
*3: The compare time (tC) is the value of (Equation 2).  
92  
MB9A140NB_DS706-00040-4v0-E, June 10, 2015  
D a t a S h e e t  
Comparator  
ANxx  
Analog input pin  
REXT  
RAIN  
Analog  
signal source  
CAIN  
(Equation 1) tS ( RAIN + REXT ) × CAIN × 9  
tS:  
Sampling time[ns]  
RAIN  
:
input resistor of A/D[kΩ] = 2.2 kΩ at 2.7 V < AVCC < 3.6 V  
input resistor of A/D[kΩ] = 5.5 kΩ at 1.8 V < AVCC < 2.7 V  
input resistor of A/D[kΩ] = 10.5 kΩ at 1.65 V < AVCC < 1.8 V  
input capacity of A/D[pF] = 9.4 pF at 1.65 V < AVCC < 3.6 V  
Output impedance of external circuit[kΩ]  
CAIN  
REXT  
:
:
(Equation 2) tC = tCCK × 14  
tC:  
tCCK  
Compare time  
Compare clock cycle  
:
June 10, 2015, MB9A140NB_DS706-00040-4v0-E  
93  
D a t a S h e e t  
Definition of 12-bit A/D Converter Terms  
Resolution:  
Integral Nonlinearity:  
Analog variation that is recognized by an A/D converter.  
Deviation of the line between the zero-transition point  
(0b000000000000 ←→ 0b000000000001) and the full-scale transition  
point (0b111111111110 ←→ 0b111111111111) from the actual conversion  
characteristics.  
Differential Nonlinearity:  
Deviation from the ideal value of the input voltage that is required to  
change the output code by 1 LSB.  
Integral Nonlinearity  
Differential Nonlinearity  
0xFFF  
Actual conversion  
Actual conversion  
characteristics  
characteristics  
0xFFE  
0x(N+1)  
0xN  
{1 LSB(N-1) + VZT}  
0xFFD  
VFST  
Ideal characteristics  
(Actually-  
measured  
value)  
VNT  
0x004  
(Actually-measured  
value)  
V(N+1)T  
(Actually-measured  
value)  
0x(N-1)  
0x(N-2)  
0x003  
0x002  
Actual conversion  
characteristics  
VNT  
(Actually-measured  
value)  
Ideal characteristics  
0x001  
(Actually-measured value)  
VZT  
Actual conversion characteristics  
AVSS  
AVRH  
AVSS  
AVRH  
Analog input  
Analog input  
VNT - {1LSB × (N - 1) + VZT}  
1LSB  
Linearity error of digital output N =  
[LSB]  
V(N + 1) T - VNT  
Differential linearity error of digital output N =  
- 1 [LSB]  
1LSB  
VFST - VZT  
1LSB =  
4094  
N:  
A/D converter digital output value.  
VZT: Voltage at which the digital output changes from 0x000 to 0x001.  
VFST: Voltage at which the digital output changes from 0xFFE to 0xFFF.  
VNT: Voltage at which the digital output changes from 0x(N − 1) to 0xN.  
94  
MB9A140NB_DS706-00040-4v0-E, June 10, 2015  
D a t a S h e e t  
6. Low-Voltage Detection Characteristics  
(1) Low-Voltage Detection Reset  
(TA = - 40°C to + 85°C)  
Value  
Typ  
1.50  
1.55  
1.55  
Parameter  
Symbol  
Conditions  
SVHR*1 = 00000  
SVHR*1 = 00001  
SVHR*1 = 00010  
SVHR*1 = 00011  
SVHR*1 = 00100  
SVHR*1 = 00101  
SVHR*1 = 00110  
SVHR*1 = 00111  
SVHR*1 = 01000  
SVHR*1 = 01001  
SVHR*1 = 01010  
SVHR*1 = 01011  
SVHR*1 = 01100  
SVHR*1 = 01101  
SVHR*1 = 01110  
SVHR*1 = 01111  
SVHR*1 = 10000  
SVHR*1 = 10001  
SVHR*1 = 10010  
SVHR*1 = 10011  
-
Unit  
Remarks  
Min  
1.38  
1.43  
1.43  
Max  
1.60  
1.65  
1.65  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
LVD stabilization  
wait time  
VDL  
VDH  
VDL  
VDH  
VDL  
VDH  
VDL  
VDH  
VDL  
VDH  
VDL  
VDH  
VDL  
VDH  
VDL  
VDH  
VDL  
VDH  
VDL  
VDH  
VDL  
VDH  
VDL  
VDH  
VDL  
VDH  
VDL  
VDH  
VDL  
VDH  
VDL  
VDH  
VDL  
VDH  
VDL  
VDH  
VDL  
VDH  
VDL  
VDH  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
When voltage drops  
When voltage rises  
When voltage drops  
When voltage rises  
When voltage drops  
When voltage rises  
When voltage drops  
When voltage rises  
When voltage drops  
When voltage rises  
When voltage drops  
When voltage rises  
When voltage drops  
When voltage rises  
When voltage drops  
When voltage rises  
When voltage drops  
When voltage rises  
When voltage drops  
When voltage rises  
When voltage drops  
When voltage rises  
When voltage drops  
When voltage rises  
When voltage drops  
When voltage rises  
When voltage drops  
When voltage rises  
When voltage drops  
When voltage rises  
When voltage drops  
When voltage rises  
When voltage drops  
When voltage rises  
When voltage drops  
When voltage rises  
When voltage drops  
When voltage rises  
When voltage drops  
When voltage rises  
Same as SVHR = 00000 value  
1.47 1.60 1.73  
Same as SVHR = 00000 value  
1.52 1.65 1.78  
Same as SVHR = 00000 value  
1.56 1.70 1.84  
Same as SVHR = 00000 value  
1.61 1.75 1.89  
Same as SVHR = 00000 value  
1.66 1.80 1.94  
Same as SVHR = 00000 value  
1.70 1.85 2.00  
Same as SVHR = 00000 value  
1.75 1.90 2.05  
Same as SVHR = 00000 value  
1.79 1.95 2.11  
Same as SVHR = 00000 value  
1.84 2.00 2.16  
Same as SVHR = 00000 value  
1.89 2.05 2.21  
Same as SVHR = 00000 value  
2.30 2.50 2.70  
Same as SVHR = 00000 value  
2.39 2.60 2.81  
Same as SVHR = 00000 value  
2.48 2.70 2.92  
Same as SVHR = 00000 value  
2.58 2.80 3.02  
Same as SVHR = 00000 value  
2.67 2.90 3.13  
Same as SVHR = 00000 value  
2.76 3.00 3.24  
Same as SVHR = 00000 value  
2.85 3.10 3.35  
Same as SVHR = 00000 value  
2.94 3.20 3.46  
Same as SVHR = 00000 value  
5200 ×  
tLVDW  
-
-
μs  
μs  
2
tCYCP  
*
LVD detection  
delay time  
tLVDDL  
-
-
-
200  
*1: The SVHR bit of Low-Voltage Detection Voltage Control Register (LVD_CTL) is initialized to 00000 by  
Low-Voltage Detection Reset.  
*2: tCYCP indicates the APB2 bus clock cycle time.  
June 10, 2015, MB9A140NB_DS706-00040-4v0-E  
95  
D a t a S h e e t  
(2) Interrupt of Low-Voltage Detection  
(TA = - 40°C to + 85°C)  
Value  
Min Typ Max  
Parameter  
Symbol Conditions  
Unit  
Remarks  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
LVD stabilization  
wait time  
VDL  
VDH  
VDL  
VDH  
VDL  
VDH  
VDL  
VDH  
VDL  
VDH  
VDL  
VDH  
VDL  
VDH  
VDL  
VDH  
VDL  
VDH  
VDL  
VDH  
VDL  
VDH  
VDL  
VDH  
VDL  
VDH  
VDL  
VDH  
VDL  
VDH  
VDL  
VDH  
1.56  
1.61  
1.61  
1.66  
1.66  
1.70  
1.70  
1.75  
1.75  
1.79  
1.79  
1.84  
1.84  
1.89  
1.89  
1.93  
2.30  
2.39  
2.39  
2.48  
2.48  
2.58  
2.58  
2.67  
2.67  
2.76  
2.76  
2.85  
2.85  
2.94  
2.94  
3.04  
1.70  
1.75  
1.75  
1.80  
1.80  
1.85  
1.85  
1.90  
1.90  
1.95  
1.95  
2.00  
2.00  
2.05  
2.05  
2.10  
2.50  
2.60  
2.60  
2.70  
2.70  
2.80  
2.80  
2.90  
2.90  
3.00  
3.00  
3.10  
3.10  
3.20  
3.20  
3.30  
1.84  
1.89  
1.89  
1.94  
1.94  
2.00  
2.00  
2.05  
2.05  
2.11  
2.11  
2.16  
2.16  
2.21  
2.21  
2.27  
2.70  
2.81  
2.81  
2.92  
2.92  
3.02  
3.02  
3.13  
3.13  
3.24  
3.24  
3.35  
3.35  
3.46  
3.46  
3.56  
5200 ×  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
When voltage drops  
When voltage rises  
When voltage drops  
When voltage rises  
When voltage drops  
When voltage rises  
When voltage drops  
When voltage rises  
When voltage drops  
When voltage rises  
When voltage drops  
When voltage rises  
When voltage drops  
When voltage rises  
When voltage drops  
When voltage rises  
When voltage drops  
When voltage rises  
When voltage drops  
When voltage rises  
When voltage drops  
When voltage rises  
When voltage drops  
When voltage rises  
When voltage drops  
When voltage rises  
When voltage drops  
When voltage rises  
When voltage drops  
When voltage rises  
When voltage drops  
When voltage rises  
SVHI = 00100  
SVHI = 00101  
SVHI = 00110  
SVHI = 00111  
SVHI = 01000  
SVHI = 01001  
SVHI = 01010  
SVHI = 01011  
SVHI = 01100  
SVHI = 01101  
SVHI = 01110  
SVHI = 01111  
SVHI = 10000  
SVHI = 10001  
SVHI = 10010  
SVHI = 10011  
-
tLVDW  
-
-
-
-
μs  
μs  
tCYCP  
*
LVD detection delay  
time  
tLVDDL  
-
200  
*: tCYCP indicates the APB2 bus clock cycle time.  
96  
MB9A140NB_DS706-00040-4v0-E, June 10, 2015  
D a t a S h e e t  
7. Flash Memory Write/Erase Characteristics  
(1) Write / Erase time  
(VCC = 1.65V to 3.6V, TA = - 40°C to + 85°C)  
Value  
Parameter  
Unit  
Remarks  
Typ*  
Max*  
Large Sector  
Small Sector  
1.1  
2.7  
Sector erase  
time  
Includes write time prior to internal  
erase  
s
0.3  
30  
0.9  
Half word (16-bit)  
write time  
Not including system-level overhead  
time  
Includes write time prior to internal  
erase  
528  
18  
μs  
Chip erase time  
6.8  
s
*: The typical value is immediately after shipment, the maximam value is guarantee value under 100,000 cycle  
of erase/write.  
(2) Write cycles and data hold time  
Erase/write cycles (cycle) Data hold time (year)  
Remarks  
1,000  
10,000  
20*  
10*  
*: At average + 85C  
June 10, 2015, MB9A140NB_DS706-00040-4v0-E  
97  
D a t a S h e e t  
8. Return Time from Low-Power Consumption Mode  
(1) Return Factor: Interrupt/WKUP  
The return time from Low-Power consumption mode is indicated as follows. It is from receiving the  
return factor to starting the program operation.  
Return Count Time  
(VCC = 1.65V to 3.6V, VDDI = 1.1V to 1.3V, VSS = 0V, TA = - 40°C to + 85°C)  
Value  
Parameter  
Symbol  
Unit  
Remarks  
Typ  
Max*  
tCYCC  
Sleep mode  
μs  
High-speed CR Timer mode,  
Main Timer mode,  
40  
80  
μs  
PLL Timer mode  
Low-speed CR Timer mode  
Sub Timer mode  
350  
690  
700  
880  
μs  
μs  
tICNT  
RTC mode,  
Stop mode  
278  
523  
μs  
318  
278  
603  
523  
μs  
μs  
When RAM is off  
When RAM is on  
Deep Standby RTC mode  
Deep Standby Stop mode  
*: The maximum value depends on the accuracy of built-in CR.  
Operation example of return from Low-Power consumption mode (by external interrupt*)  
External  
interrupt  
Interrupt factor  
Active  
accept  
tICNT  
Interrupt factor  
clear by CPU  
CPU  
Operation  
Start  
*: External interrupt is set to detecting fall edge.  
98  
MB9A140NB_DS706-00040-4v0-E, June 10, 2015  
D a t a S h e e t  
Operation example of return from Low-Power consumption mode (by internal resource interrupt*)  
Internal  
resource  
interrupt  
Interrupt factor  
Active  
accept  
tICNT  
Interrupt factor  
clear by CPU  
CPU  
Operation  
Start  
*: Internal resource interrupt is not included in return factor by the kind of Low-Power consumption mode.  
Notes:  
The return factor is different in each Low-Power consumption modes.  
See Chapter 6: Low Power Consumption Mode and Operations of Standby Modes in FM3 Family  
Peripheral Manual.  
When interrupt recoveries, the operation mode that CPU recoveries depend on the state before the  
Low-Power consumption mode transition. See Chapter 6: Low Power Consumption Mode in FM3  
Family Peripheral Manual.  
June 10, 2015, MB9A140NB_DS706-00040-4v0-E  
99  
D a t a S h e e t  
(2) Return Factor: Reset  
The return time from Low-Power consumption mode is indicated as follows. It is from releasing reset to  
starting the program operation.  
Return Count Time  
(VCC = 1.65V to 3.6V, VDDI = 1.1V to 1.3V, VSS = 0V, TA = - 40°C to + 85°C)  
Value  
Parameter  
Symbol  
Unit  
Remarks  
Typ  
Max*  
Sleep mode  
148  
263  
μs  
High-speed CR Timer mode,  
Main Timer mode,  
148  
263  
μs  
PLL Timer mode  
Low-speed CR Timer mode  
Sub Timer mode  
258  
322  
278  
483  
516  
523  
μs  
μs  
μs  
tRCNT  
RTC/Stop mode  
318  
278  
603  
523  
μs  
μs  
When RAM is off  
When RAM is on  
Deep Standby RTC mode  
Deep Standby Stop mode  
*: The maximum value depends on the accuracy of built-in CR.  
Operation example of return from Low-Power consumption mode (by INITX)  
INITX  
Internal reset  
Reset active  
Release  
tRCNT  
CPU  
Operation  
Start  
100  
MB9A140NB_DS706-00040-4v0-E, June 10, 2015  
D a t a S h e e t  
Operation example of return from low power consumption mode (by internal resource reset*)  
Internal  
resource  
reset  
Internal reset  
Reset active  
Release  
tRCNT  
CPU  
Operation  
Start  
*: Internal resource reset is not included in return factor by the kind of Low-Power consumption mode.  
Notes:  
The return factor is different in each Low-Power consumption modes.  
See Chapter 6: Low Power Consumption Mode and Operations of Standby Modes in FM3 Family  
Peripheral Manual.  
When interrupt recoveries, the operation mode that CPU recoveries depend on the state before the  
Low-Power consumption mode transition. See Chapter 6: Low Power Consumption Mode in FM3  
Family Peripheral Manual.  
The time during the power-on reset/low-voltage detection reset is excluded. See (6) Power-on  
Reset Timing in 4. AC Characteristics in Electrical Characteristics for the detail on the time  
during the power-on reset/low-voltage detection reset.  
When in recovery from reset, CPU changes to the High-speed CR Run mode. When using the  
main clock or the PLL clock, it is necessary to add the main clock oscillation stabilization wait  
time or the Main PLL clock stabilization wait time.  
The internal resource reset means the watchdog reset and the CSV reset.  
June 10, 2015, MB9A140NB_DS706-00040-4v0-E  
101  
D a t a S h e e t  
Ordering Information  
On-chip  
Flash  
memory  
On-chip  
SRAM  
Part number  
Package  
Packing  
Main: 64 Kbyte  
Work: 32 Kbyte  
MB9AF141LBPMC1-G-JNE2  
MB9AF142LBPMC1-G-JNE2  
MB9AF144LBPMC1-G-JNE2  
MB9AF141LBPMC-G-JNE2  
MB9AF142LBPMC-G-JNE2  
MB9AF144LBPMC-G-JNE2  
MB9AF141LBQN-G-AVE2  
MB9AF142LBQN-G-AVE2  
MB9AF144LBQN-G-AVE2  
MB9AF141MBPMC-G-JNE2  
MB9AF142MBPMC-G-JNE2  
MB9AF144MBPMC-G-JNE2  
MB9AF141MBPMC1-G-JNE2  
MB9AF142MBPMC1-G-JNE2  
MB9AF144MBPMC1-G-JNE2  
MB9AF141MBBGL-GE1  
16 Kbyte  
16 Kbyte  
32 Kbyte  
16 Kbyte  
16 Kbyte  
32 Kbyte  
16 Kbyte  
16 Kbyte  
32 Kbyte  
16 Kbyte  
16 Kbyte  
32 Kbyte  
16 Kbyte  
16 Kbyte  
32 Kbyte  
16 Kbyte  
16 Kbyte  
32 Kbyte  
16 Kbyte  
16 Kbyte  
32 Kbyte  
Plastic LQFP 64-pin  
(0.5mm pitch),  
Main: 128 Kbyte  
Work: 32 Kbyte  
(FPT-64P-M38)  
Main: 256 Kbyte  
Work: 32 Kbyte  
Main: 64 Kbyte  
Work: 32 Kbyte  
Plastic LQFP 64-pin  
(0.65mm pitch),  
Main: 128 Kbyte  
Work: 32 Kbyte  
(FPT-64P-M39)  
Main: 256 Kbyte  
Work: 32 Kbyte  
Main: 64 Kbyte  
Work: 32 Kbyte  
Plastic QFN 64-pin  
(0.5mm pitch),  
(LCC-64P-M24)  
Main: 128 Kbyte  
Work: 32 Kbyte  
Main: 256 Kbyte  
Work: 32 Kbyte  
Main: 64 Kbyte  
Work: 32 Kbyte  
Plastic LQFP 80-pin  
(0.5mm pitch),  
Main: 128 Kbyte  
Work: 32 Kbyte  
Tray  
(FPT-80P-M37)  
Main: 256 Kbyte  
Work: 32 Kbyte  
Main: 64 Kbyte  
Work: 32 Kbyte  
Plastic LQFP 80-pin  
(0.65mm pitch),  
Main: 128 Kbyte  
Work: 32 Kbyte  
(FPT-80P-M40)  
Main: 256 Kbyte  
Work: 32 Kbyte  
Main: 64 Kbyte  
Work: 32 Kbyte  
Plastic PFBGA 96-pin  
(0.5mm pitch),  
Main: 128 Kbyte  
Work: 32 Kbyte  
MB9AF142MBBGL-GE1  
(BGA-96P-M07)  
Main: 256 Kbyte  
Work: 32 Kbyte  
MB9AF144MBBGL-GE1  
Main: 64 Kbyte  
Work: 32 Kbyte  
MB9AF141NBPMC-G-JNE2  
MB9AF142NBPMC-G-JNE2  
MB9AF144NBPMC-G-JNE2  
Plastic LQFP 100-pin  
(0.5mm pitch),  
Main: 128 Kbyte  
Work: 32 Kbyte  
(FPT-100P-M23)  
Main: 256 Kbyte  
Work: 32 Kbyte  
102  
MB9A140NB_DS706-00040-4v0-E, June 10, 2015  
D a t a S h e e t  
On-chip  
Flash  
memory  
On-chip  
SRAM  
Part number  
Package  
Packing  
Main: 64 Kbyte  
Work: 32 Kbyte  
MB9AF141NBPQC-G-JNE2  
MB9AF142NBPQC-G-JNE2  
MB9AF144NBPQC-G-JNE2  
MB9AF141NBBGL-GE1  
MB9AF142NBBGL-GE1  
MB9AF144NBBGL-GE1  
16 Kbyte  
16 Kbyte  
32 Kbyte  
16 Kbyte  
16 Kbyte  
32 Kbyte  
Plastic QFP 100-pin  
(0.65mm pitch),  
(FPT-100P-M36)  
Main: 128 Kbyte  
Work: 32 Kbyte  
Main: 256 Kbyte  
Work: 32 Kbyte  
Tray  
Main: 64 Kbyte  
Work: 32 Kbyte  
Plastic PFBGA 112-pin  
(0.8mm pitch),  
Main: 128 Kbyte  
Work: 32 Kbyte  
(BGA-112P-M04)  
Main: 256 Kbyte  
Work: 32 Kbyte  
June 10, 2015, MB9A140NB_DS706-00040-4v0-E  
103  
D a t a S h e e t  
Package Dimensions  
100-pin plastic LQFP  
Lead pitch  
0.50 mm  
14.00 mm × 14.00 mm  
Gullwing  
Package width ×  
package length  
Lead shape  
Lead bend  
direction  
Normal bend  
Plastic mold  
1.70 mm MAX  
0.65 g  
Sealing method  
Mounting height  
Weight  
(FPT-100P-M23)  
100-pin plastic LQFP  
(FPT-100P-M23)  
Note 1) * : These dimensions do not include resin protrusion.  
Note 2) Pins width and pins thickness include plating thickness.  
Note 3) Pins width do not include tie bar cutting remainder.  
16.00±0.20(.630±.008)SQ  
*14.00±0.10(.551±.004)SQ  
75  
51  
76  
50  
0.08(.003)  
Details of "A" part  
+0.20  
1.50  
-0.10  
+.008  
.059  
-.004  
(
)
(Mounting height)  
INDEX  
0°~8°  
0.10±0.10  
(.004±.004)  
(Stand off)  
100  
26  
0.50±0.20  
(.020±.008)  
"A"  
0.25(.010)  
0.60±0.15  
1
25  
(.024±.006)  
0.50(.020)  
0.22±0.05  
(.009±.002)  
0.145±0.055  
(.006±.002)  
M
0.08(.003)  
Dimensions in mm (inches).  
Note:The values in parenthesesare reference values.  
C
2009-2010 FUJITSU SEMICONDUCTOR LIMITED F100034S-c-3-4  
104  
MB9A140NB_DS706-00040-4v0-E, June 10, 2015  
D a t a S h e e t  
100-pin plastic QFP  
Lead pitch  
0.65 mm  
14.00 mm × 20.00 mm  
Gullwing  
Package width ×  
package length  
Lead shape  
Sealing method  
Mounting height  
Plastic mold  
3.35 mm MAX  
Code  
(Reference)  
P-QFP100-14 × 20-0.65  
(FPT-100P-M36)  
100-pin plastic QFP  
(FPT-100P-M36)  
Note 1) * : These dimensions do not include resin protrusion.  
Note 2) Pins width and pins thickness include plating thickness.  
Note 3) Pins width do not include tie bar cutting remainder.  
23.90±0.40(.941±.016)  
20.00±0.20(.787±.008)  
*
80  
51  
81  
50  
0.10(.004)  
17.90± 0.40  
(.705±.016)  
*14.00±0.20  
(.551±.008)  
INDEX  
Details of "A" part  
100  
31  
0.25(.010)  
3.00+00.3250  
.118+..001048  
(Mounting height)  
0~8°  
1
30  
0.65(.026)  
0.32 ± 0.05  
(.013±.002)  
0.17 ± 0.06  
(.007 ±. 002)  
M
0.13(.005)  
0.25 ± 0.20  
(.010 ±. 008)  
(Stand off)  
0.80 ± 0.20  
(.031 ±. 008)  
0.88 ± 0.15  
"A"  
(.035 ±. 006)  
Dimensions in mm (inches).  
Note: The valuesin parentheses are referencevalues.  
C
2011 FUJITSU SEMICONDUCTOR LIMITED HMbF100-36Sc-1-1  
June 10, 2015, MB9A140NB_DS706-00040-4v0-E  
105  
D a t a S h e e t  
80-pin plastic LQFP  
Lead pitch  
0.50 mm  
12.00 mm × 12.00 mm  
Gullwing  
Package width ×  
package length  
Lead shape  
Lead bend  
direction  
Normal bend  
Plastic mold  
1.70 mm MAX  
0.47 g  
Sealing method  
Mounting height  
Weight  
(FPT-80P-M37)  
80-pin plastic LQFP  
(FPT-80P-M37)  
Note 1) * : These dimensions do not include resin protrusion.  
Note 2) Pins width and pins thickness include plating thickness.  
Note 3) Pins width do not include tie bar cutting remainder.  
14.00± 0.20(.551± .008)SQ  
*12.00± 0.10(.472± .004)SQ  
0.145± 0.055  
(.006± .002)  
60  
41  
Details of "A" part  
61  
40  
1.50+00..1200  
(Mounting height)  
.059+..000048  
0.25(.010)  
0~8°  
0.08(.003)  
0.50± 0.20  
(.020± .008)  
0.60± 0.15  
0.10± 0.05  
(.004± .002)  
(Stand off)  
(.024± .006)  
INDEX  
80  
21  
"A"  
1
20  
0.50(.020)  
0.22± 0.05  
M
0.08(.003)  
(.009± .002)  
Dimensions in mm (inches).  
C
Note: The values in parentheses are reference values.  
2009-2010 FUJITSU SEMICONDUCTOR LIMITED F80037S-c-1-2  
106  
MB9A140NB_DS706-00040-4v0-E, June 10, 2015  
D a t a S h e e t  
80-pin plastic LQFP  
Lead pitch  
0.65 mm  
14.00 mm × 14.00 mm  
Gullwing  
Package width ×  
package length  
Lead shape  
Sealing method  
Mounting height  
Plastic mold  
1.60 mm Max.  
Code  
(Reference)  
P-LQFP80-14 × 14-0.65  
(FPT-80P-M40)  
80-pin plastic LQFP  
(FPT-80P-M40)  
Note 1) * : These dimensions do not include resin protrusion.  
Note 2) Pins width and pins thickness include plating thickness.  
Note 3) Pins width do not include  
16.00±0.20(.630±.008)SQ  
*14.00±0.10(.551±.004)SQ  
0.145±0.055  
(.006±.002)  
60  
41  
Details of "A" part  
61  
40  
1.50±0.10  
(.059±.004)  
0.25(.010)  
0.10(.004)  
0˚~7˚  
INDEX  
0.50±0.20  
(.020±.008)  
0.10±0.05  
80  
21  
(.004±.002)  
0.60±0.15  
(.024±.006)  
20  
1
0.65(.026)  
0.32±0.06  
M
0.13(.005)  
(.013±.002)  
Dimensions in mm (inches).  
Note: The values in parentheses are referencevalues.  
C
2012 FUJITSU SEMICONDUCTOR LIMITED HMbF80-40Sc-1-1  
June 10, 2015, MB9A140NB_DS706-00040-4v0-E  
107  
D a t a S h e e t  
64-pin plastic LQFP  
Lead pitch  
0.50 mm  
10.00 mm × 10.00 mm  
Gullwing  
Package width ×  
package length  
Lead shape  
Lead bend  
direction  
Normal bend  
Plastic mold  
1.70 mm MAX  
0.32 g  
Sealing method  
Mounting height  
Weight  
(FPT-64P-M38)  
64-pin plastic LQFP  
(FPT-64P-M38)  
Note 1) * : These dimensions do not include resin protrusion.  
Note 2) Pins width and pins thickness include plating thickness.  
Note 3) Pins width do not include tie bar cutting remainder.  
12.00±0.20(.472±.008)SQ  
*10.00±0.10(.394±.004)SQ  
0.145 ± 0.055  
(.006 ± .002)  
48  
33  
Details of "A" part  
49  
32  
1.50+00..1200  
0.08(.003)  
(Mounting height)  
.059+..000084  
0.25(.010)  
0~8°  
INDEX  
0.50±0.20  
(.020±.008)  
0.60 ± 0.15  
(.024±.006)  
0.10 ± 0.10  
(.004±.004)  
(Stand off)  
64  
17  
"A"  
1
16  
0.50(.020)  
0.22±0.05  
M
0.08(.003)  
(.009±.002)  
Dimensions in mm (inches).  
Note: The values in parentheses are reference values.  
C
2010 FUJITSU SEMICONDUCTOR LIMITED F64038S-c-1-2  
108  
MB9A140NB_DS706-00040-4v0-E, June 10, 2015  
D a t a S h e e t  
64-pin plastic LQFP  
Lead pitch  
0.65 mm  
12.00 mm × 12.00 mm  
Gullwing  
Package width ×  
package length  
Lead shape  
Sealing method  
Mounting height  
Weight  
Plastic mold  
1.70 mm MAX  
0.47 g  
(FPT-64P-M39)  
64-pin plastic LQFP  
(FPT-64P-M39)  
Note 1) Pins width and pins thickness include plating thickness.  
14.00±0.20(.551±.008)SQ  
12.00±0.10(.472±.004)SQ  
48  
33  
Details of "A" part  
49  
32  
1.50+00..1200  
.059+..000048  
0~8˚  
0.10(.004)  
0.10±0.10  
(.004±.004)  
INDEX  
0.50±0.20  
(.020±.008)  
0.60±0.15  
(.024±.006)  
0.25(.010)BSC  
64  
17  
1
16  
"A"  
0.65(.026)  
0.32±0.05  
(.013±.002)  
M
0.13(.005)  
C
Dimensions in mm (inches).  
Note: The values in parentheses are referencevalues.  
2010-2011 FUJITSU SEMICONDUCTOR LIMITED HMbF64-39Sc-2-2  
June 10, 2015, MB9A140NB_DS706-00040-4v0-E  
109  
D a t a S h e e t  
64-pin plastic QFN  
Lead pitch  
0.50 mm  
9.00 mm × 9.00 mm  
Plastic mold  
0.90 mm MAX  
-
Package width ×  
package length  
Sealing method  
Mounting height  
Weight  
(LCC-64P-M24)  
64-pin plastic QFN  
(LCC-64P-M24)  
9.00±0.10  
(.354±.004)  
6.00±0.10  
(.236±.004)  
0.25±0.05  
(.010±.002)  
6.00±0.10  
(.236±.004)  
9.00±0.10  
(.354±.004)  
INDEX AREA  
0.45 (.018)  
1PIN ID  
(0.20R (.008R))  
0.50 (.020)  
(TYP)  
0.40±0.05  
(.016±.002)  
0.85±0.05  
(.033±.002)  
0.05 (.002) MAX  
(0.20 (.008))  
Dimensions in mm (inches).  
Note: The values in parentheses are reference values.  
C
2011 FUJITSU SEMICONDUCTOR LIMITED HMbC64-24Sc-2-1  
110  
MB9A140NB_DS706-00040-4v0-E, June 10, 2015  
D a t a S h e e t  
112-ball plastic PFBGA  
Ball pitch  
0.80 mm  
10.00 × 10.00 mm  
Soldering ball  
Plastic mold  
Ф 0.45 mm  
Package width ×  
package length  
Lead shape  
Sealing method  
Ball size  
Mounting height  
Weight  
1.45 mm Max.  
0.22 g  
(BGA-112P-M04)  
112-ball plastic PFBGA  
(BGA-112P-M04)  
10.00±0.10(.394±.004)  
0.20(.008) S  
B
0.80(.031)  
REF  
B
11  
10  
9
0.80(.031)  
REF  
8
A
7
10.00±0.10  
(.394±.004)  
6
5
4
3
2
1
L
K
J
H
G
F
E D  
C
B
A
(INDEX AREA)  
0.20(.008) S  
1.25±0.20  
(.049±.008)  
(Seated height)  
INDEX  
0.35±0.10  
(.014±.004)  
(Stand off)  
A
112-Ф0.45±010  
(112-Ф0.18±.004)  
M
Ф0.08(.003) S A B  
S
0.10(.004) S  
Dimensions in mm (inches).  
Note: The values in parentheses are reference values.  
C
2003-2010 FUJITSU SEMICONDUCTOR LIMITED B112004S-c-2-3  
June 10, 2015, MB9A140NB_DS706-00040-4v0-E  
111  
D a t a S h e e t  
96-pin plastic FBGA  
Lead pitch  
0.5 mm  
6.00 mm × 6.00 mm  
Ball  
Package width ×  
package length  
Lead shape  
Sealing method  
Mounting height  
Weight  
Plastic mold  
1.30 mm MAX  
0.08 g  
(BGA-96P-M07)  
96-pin plastic FBGA  
(BGA-96P-M07)  
5.00(.197)  
REF  
B
6.00±0.10(.236±.004)  
0.50  
(.020)  
TYP  
0.20(.008) S  
B
11  
10  
9
8
A
7
5.00(.197)  
REF  
6.00±0.10  
(.236±.004)  
6
5
0.50(.020)  
TYP  
4
3
2
1
L
K
J
H
G
F
E
D
C
B
A
(INDEX AREA)  
0.20(.008) S  
INDEX  
A
96-ø0.30±0.10  
(96-ø.012±.004)  
M
ø0.05(.002)  
S A B  
S
1.15±0.15  
(.045±.006)  
(Seated height)  
0.08(.003) S  
0.25±0.10  
(.010±.004)  
(Stand off)  
Dimensions in mm (inches).  
Note: The values in parentheses are reference values.  
C
2012 FUJITSU SEMICONDUCTOR LIMITED B96007S-c-1-1  
112  
MB9A140NB_DS706-00040-4v0-E, June 10, 2015  
D a t a S h e e t  
Major Changes  
Page  
Section  
Change Results  
Revision 2.0  
FEATURE  
On-chip Memories  
Unique ID  
PRODUCT LINEUP  
Function  
Revised the descriptions of [Flash memory].  
Added the descriptions of "Unique ID".  
2
5
6
Added the descriptions.  
48  
53  
HANDLING DEVICES  
MEMORY MAP  
Memory Map (2)  
PIN STATUS IN EACH CPU STATE  
List of Pin Status  
ELECTRICAL CHARACTERISTICS  
3.DC Characteristics  
Revised the Pin status type of "I".  
58  
65  
Revised the descriptions of Power supply current.  
Added the "Flash memory write/erase current".  
Added the footnote.  
(1) Current rating  
4.AC Characteristics  
Revised the table and the footnote.  
69  
(3) Built-in CR Oscillation Characteristics  
Built-in high-speed CR  
(7) External Bus Timing  
Separate Bus Access Asynchronous  
SRAM Mode  
Revised the table and the figure.  
73, 74  
75  
Separate Bus Access Synchronous SRAM Mode  
80, 82,  
84, 86  
89  
Revised the title to "CSIO Timing".  
Revised the note.  
Revised the footnote.  
(9) CSIO Timing  
(11) I2C Timing  
Revised the parameter.  
Revised the symbol.  
Corrected the value.  
5. 12-bit A/D Converter  
Electrical Characteristics for the A/D Converter  
92  
Revised the parameter.  
Revised the symbol.  
94  
Definition of 12-bit A/D Converter Terms  
Corrected "Conditions" and "Value" in the table.  
Added the Item.  
Added the footnote.  
6. Low-Voltage Detection Characteristics  
(1) Low-Voltage Detection Reset  
95  
96  
Added the Item.  
(2) Interrupt of Low-Voltage Detection  
Revision 2.1  
-
-
Company name and layout design change  
Revision 3.0  
Corrected the Series name.  
-
-
-
-
MB9A140NA Series MB9A140NB Series  
Corrected the Product name as follows.  
MB9AF144LB, MB9AF142LB, MB9AF141LB  
MB9AF144MB, MB9AF142MB, MB9AF141MB  
MB9AF144NB, MB9AF142NB, MB9AF141NB  
Added the Item.  
FEATURES  
2
3
External Bus Interface  
Multi-function Serial Interface  
PRODUCT LINEUP  
Function  
Maximum area size : Up to 256 Mbytes  
Corrected the description of "I2C"  
6
Added the footnote  
51  
52  
BLOCK DIAGRAM  
MEMORY MAP  
Memory Map (1)  
Corrected the figure  
Corrected the address "External Device Area"  
ELECTRICAL CHARACTERISTICS  
2.Recommended Operating Conditions  
3.DC Characteristics  
63  
Add the footnote  
Corrected the Condition  
Delete the minmun value  
Corrected the remarks  
Add the footnote  
(1)Current rating  
64,65  
(9)CSIO Timing  
Synchronous serial (SPI=1, SCINV=1)  
(9) CSIO Timing  
External clock(EXT=1):asyntironous only  
(12)I2C Timing  
Corrected the figure of "MS bit=1"  
Corrected the figure  
86  
88  
Corrected the description as follows.  
Typical mode Standard-mode  
High-speed modeFast-mode  
June 10, 2015, MB9A140NB_DS706-00040-4v0-E  
113  
D a t a S h e e t  
Page  
Section  
5.12-bit A/D Converter  
Electrical Characteristics for  
the A/D Converter  
Change Results  
Corrected the terminal name  
AN00 ~ AN23 ANxx  
Corrected the minmum value of "Sampling time"  
Corrected the max and min value of "State transition time to  
oprerationpermission"  
91  
Corrected the footnote  
ORDERING INFORMATON  
98  
Corrected the "Part number"  
Revision 4.0  
Memory Map  
· Memory map(2)  
53  
Added the summary of Flash memory sector and the note  
Electrical Characteristics  
3. DC Characteristics  
(1) Current rating  
· Changed the table format  
· Added Main Timer mode current  
· Moved A/D Converter Current  
64 - 66  
Electrical Characteristics  
3. DC Characteristics  
(2) Pin Characteristics  
Electrical Characteristics  
4. AC Characteristics  
(4-1) Operating Conditions of Main PLL  
(4-2) Operating Conditions of Main PLL  
Electrical Characteristics  
4. AC Characteristics  
67  
70  
Added input leak current of CEC pin at power off.  
Added the figure of Main PLL connection  
· Added Time until releasing Power-on reset  
· Changed the figure of timing  
71  
80 - 87  
92  
(6) Power-on Reset Timing  
Electrical Characteristics  
4. AC Characteristics  
· Modified from UART Timing to CSIO/UART Timing  
· Changed from Internal shift clock operation to Master mode  
· Changed from External shift clock operation to Slave mode  
· Added the typical value of Integral Nonlinearity, Differential  
Nonlinearity, Zero transition voltage and Full-scale transition voltage  
· Added Conversion time at AVcc < 2.7V  
(9) CSIO/UART Timing  
Electrical Characteristics  
5. 12bit A/D Converter  
Electrical Characteristics  
8. Return Time from Low-Power Consumption  
Mode  
98 - 101  
102, 103  
Added Return Time from Low-Power Consumption Mode  
Changed notation of part number  
Ordering Information  
114  
MB9A140NB_DS706-00040-4v0-E, June 10, 2015  
D a t a S h e e t  
June 10, 2015, MB9A140NB_DS706-00040-4v0-E  
115  
D a t a S h e e t  
116  
MB9A140NB_DS706-00040-4v0-E, June 10, 2015  
D a t a S h e e t  
June 10, 2015, MB9A140NB_DS706-00040-4v0-E  
117  
D a t a S h e e t  
Colophon  
The products described in this document are designed, developed and manufactured as contemplated for general use,  
including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not  
designed, developed and manufactured as contemplated (1) for any use that includes fatal risks or dangers that, unless  
extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury,  
severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic  
control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for any use  
where chance of failure is intolerable (i.e., submersible repeater and artificial satellite). Please note that Spansion will not  
be liable to you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the  
products. Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss  
from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire  
protection, and prevention of over-current levels and other abnormal operating conditions. If any products described in  
this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and  
Foreign Trade Law of Japan, the US Export Administration Regulations or the applicable laws of any other country, the  
prior authorization by the respective government entity will be required for export of those products.  
Trademarks and Notice  
The contents of this document are subject to change without notice. This document may contain information on a  
Spansion product under development by Spansion. Spansion reserves the right to change or discontinue work on any  
product without notice. The information in this document is provided as is without warranty or guarantee of any kind as to  
its accuracy, completeness, operability, fitness for particular purpose, merchantability, non-infringement of third-party  
rights, or any other warranty, express, implied, or statutory. Spansion assumes no liability for any damages of any kind  
arising out of the use of the information in this document.  
Copyright © 2013-2015 Cypress All rights reserved. Spansion®, the Spansion logo, MirrorBit®, MirrorBit® EclipseTM  
ORNANDTM, Easy DesignSimTM, TraveoTM and combinations thereof, are trademarks and registered trademarks of  
,
Spansion LLC in the United States and other countries. Other names used are for informational purposes only and may be  
trademarks of their respective owners.  
118  
MB9A140NB_DS706-00040-4v0-E, June 10, 2015  

相关型号:

MB9AF144MBBGL-GE1

32-bit ARM® Cortex®-M3 FM3 Microcontroller
CYPRESS

MB9AF144MBPMC-G-JNE2

32-bit ARM® Cortex®-M3 FM3 Microcontroller
CYPRESS

MB9AF144MBPMC1-G-JNE2

32-bit ARM® Cortex®-M3 FM3 Microcontroller
CYPRESS

MB9AF144NB

The MB9A140NB Series are highly integrated
SPANSION

MB9AF144NBBGL-GE1

32-bit ARM® Cortex®-M3 FM3 Microcontroller
CYPRESS

MB9AF144NBPMC-G-JNE2

32-bit ARM® Cortex®-M3 FM3 Microcontroller
CYPRESS

MB9AF144NBPQC-G-JNE2

32-bit ARM® Cortex®-M3 FM3 Microcontroller
CYPRESS

MB9AF154MB

This document states the current technical specifications regarding
SPANSION

MB9AF154MBBGL-GE1

32-bit ARM® Cortex®-M3 FM3 Microcontroller
CYPRESS

MB9AF154MBPMC-G-JNE2

32-bit ARM® Cortex®-M3 FM3 Microcontroller
CYPRESS

MB9AF154NB

This document states the current technical specifications regarding
SPANSION

MB9AF154NBBGL-GE1

32-bit ARM® Cortex®-M3 FM3 Microcontroller
CYPRESS