FDC37C672 [SMSC]

ENHANCED SUPER I/O CONTROLLER WITH FAST IR; 增强的超级I / O控制器,提供快速IR
FDC37C672
型号: FDC37C672
厂家: SMSC CORPORATION    SMSC CORPORATION
描述:

ENHANCED SUPER I/O CONTROLLER WITH FAST IR
增强的超级I / O控制器,提供快速IR

控制器
文件: 总173页 (文件大小:955K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
FDC37C672  
Enhanced Super I/O  
Controller with Fast IR  
Datasheet  
Product Features  
5 Volt Operation  
Serial Ports  
Two Full Function Serial Ports  
PC98/99 and ACPI 1.0 Compliant  
ISA Plug-and-Play Compatible Register Set  
Intelligent Auto Power Management  
High Speed NS16C550A Compatible UARTs with  
Send/Receive 16-Byte FIFOs  
Supports 230k and 460k Baud Programmable Baud  
Rate Generator Modem Control Circuitry  
480 Address and Eight IRQ Options  
Shadowed Write-Only Registers for ACPI Compliance  
System Management Interrupt, Watchdog Timer  
2.88MB Super I/O Floppy Disk Controller  
Infrared Port  
Multiprotocol Infrared Interface  
128-Byte Data FIFO  
IrDA 1.1 Compliant  
TEMIC/HP Module Support  
Consumer IR  
SHARP ASK IR  
Licensed CMOS 765B Floppy Disk Controller  
Software and Register Compatible with SMSC's  
Proprietary 82077AA Compatible Core  
Supports Two Floppy Drives Directly  
Configurable Open Drain/Push-Pull Output Drivers  
Supports Vertical Recording Format  
16-Byte Data FIFO  
480 Address, Up to Eight IRQ and Three DMA  
Options  
100% IBM Compatibility  
Multi-Mode Parallel Port with ChiProtect  
Detects All Overrun and Underrun Conditions  
Standard Mode IBM PC/XT, PC/AT, and PS/2  
Sophisticated Power Control Circuitry (PCC)  
Including Multiple Powerdown Modes for Reduced  
Power Consumption  
Compatible Bidirectional Parallel Port  
Enhanced Parallel Port (EPP) Compatible - EPP 1.7  
and EPP 1.9 (IEEE 1284 Compliant)  
DMA Enable Logic  
IEEE 1284 Compliant Enhanced Capabilities Port  
Data Rate and Drive Control Registers  
(ECP)  
480 Address, Up to Eight IRQ and Three DMA  
ChiProtect Circuitry for Protection Against Damage  
Due to Printer Power-On  
Options  
Floppy Disk Available on Parallel Port Pins  
Enhanced Digital Data Separator  
480 Address, Up to Eight IRQ and Three DMA  
Options  
2 Mbps, 1 Mbps, 500 Kbps, 300 Kbps, 250 Kbps Data  
ISA Host Interface  
Rates  
16-Bit Address Qualification  
8-Bit Data Bus  
IOCHRDY for ECP and Fast IR  
Three 8-Bit DMA Channels  
Eight Direct Parallel IRQs  
Programmable Precompensation Modes  
Keyboard Controller  
8042 Software Compatible  
8 Bit Microcomputer  
2k Bytes of Program ROM  
256 Bytes of Data RAM  
Serial IRQ Option Compatible with Serialized IRQ  
Support for PCI Systems  
Four Open Drain Outputs Dedicated for  
100 Pin QFP and TQFP Packages  
Keyboard/Mouse Interface  
Asynchronous Access to Two Data Registers and  
One Status Register  
Supports Interrupt and Polling Access  
8-Bit Counter Timer  
Port 92 Support  
8042 P12 and P16 Outputs  
SMSC FDC37C672  
Page 1  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
ORDERING INFORMATION  
Order Number(s):  
FDC37C672QFP for 100 pin QFP package  
FDC37C672TQFP for 100 pin TQFP package  
80 Arkay Drive  
Hauppauge, NY 11788  
(631) 435-6000  
FAX (631) 273-3123  
Copyright © SMSC 2004. All rights reserved.  
Circuit diagrams and other information relating to SMSC products are included as a means of illustrating typical applications. Consequently, complete  
information sufficient for construction purposes is not necessarily given. Although the information has been checked and is believed to be accurate, no  
responsibility is assumed for inaccuracies. SMSC reserves the right to make changes to specifications and product descriptions at any time without  
notice. Contact your local SMSC sales office to obtain the latest specifications before placing your product order. The provision of this information does  
not convey to the purchaser of the described semiconductor devices any licenses under any patent rights or other intellectual property rights of SMSC  
or others. All sales are expressly conditional on your agreement to the terms and conditions of the most recently dated version of SMSC's standard  
Terms of Sale Agreement dated before the date of your order (the "Terms of Sale Agreement"). The product may contain design defects or errors  
known as anomalies which may cause the product's functions to deviate from published specifications. Anomaly sheets are available upon request.  
SMSC products are not designed, intended, authorized or warranted for use in any life support or other application where product failure could cause  
or contribute to personal injury or severe property damage. Any and all such uses without prior written approval of an Officer of SMSC and further  
testing and/or modification will be fully at the risk of the customer. Copies of this document or other SMSC literature, as well as the Terms of Sale  
Agreement, may be obtained by visiting SMSC’s website at http://www.smsc.com. SMSC is a registered trademark of Standard Microsystems  
Corporation (“SMSC”). Product names and company names are the trademarks of their respective holders.  
SMSC DISCLAIMS AND EXCLUDES ANY AND ALL WARRANTIES, INCLUDING WITHOUT LIMITATION ANY AND ALL IMPLIED WARRANTIES  
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, AND AGAINST INFRINGEMENT AND THE LIKE, AND ANY AND  
ALL WARRANTIES ARISING FROM ANY COURSE OF DEALING OR USAGE OF TRADE.  
IN NO EVENT SHALL SMSC BE LIABLE FOR ANY DIRECT, INCIDENTAL, INDIRECT, SPECIAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES;  
OR FOR LOST DATA, PROFITS, SAVINGS OR REVENUES OF ANY KIND; REGARDLESS OF THE FORM OF ACTION, WHETHER BASED ON  
CONTRACT; TORT; NEGLIGENCE OF SMSC OR OTHERS; STRICT LIABILITY; BREACH OF WARRANTY; OR OTHERWISE; WHETHER OR  
NOT ANY REMEDY OF BUYER IS HELD TO HAVE FAILED OF ITS ESSENTIAL PURPOSE, AND WHETHER OR NOT SMSC HAS BEEN  
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.  
SMSC FDC37C672  
Page 2  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
FDC37C672 Datasheet Revision History  
REVISION LEVEL  
SECTION/FIGURE/ENTRY  
AND DATE  
CORRECTION  
Rev. 10-29-03  
Ordering Information, page 2  
Update order numbers for QFP and  
TQFP packages.  
Rev. 10-28-03  
Rev. 10-28-03  
Chapter 3 - Description of Pin Functions, page 12  
Added TQFP values.  
Added TQFP values.  
Chapter 4 - Description of Multifunction Pins, page  
15  
Rev. 10-27-03  
Rev. 10-27-03  
Figure 2.2 - FDC37C672 100 Pin TQFP, page 11  
Added TQFP pin layout.  
Added TQFP package outline.  
Figure 23.2 - 100 Pin TQFP Package Outline,  
14X14X1.4 Body, 2 MM Footprint, page 173  
Rev. 10-27-03  
Rev. 06-09-97  
Rev. 06-09-97  
Rev. 06-09-97  
Rev. 06-09-97  
Features - Cover  
Added TQFP package.  
Pin #90 added to Pin-Out.  
Updated section.  
Updated table.  
Updated table.  
Figure 2.1 - FDC37C672 100 Pin QFP, page 10  
Section 6.1.4 - Tape Drive Register (TDR), page 24  
Table 6.3 - Tape Select Bits, page 24  
Table 19.1 - Configuration Registers, page 123  
SMSC FDC37C672  
Page 3  
Rev. 10-29-03  
PRELIMINARY DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
Table of Contents  
FDC37C672 Datasheet Revision History ..................................................................................................3  
Chapter 1  
Chapter 2  
Chapter 3  
3.1  
General Description................................................................................................................9  
Pin Configuration..................................................................................................................10  
Description of Pin Functions ................................................................................................12  
Buffer Type Descriptions............................................................................................................................14  
Description of Multifunction Pins..........................................................................................15  
Functional Description..........................................................................................................17  
Super I/O Registers....................................................................................................................................17  
Host Processor Interface............................................................................................................................17  
Floppy Disk Controller..........................................................................................................18  
FDC Internal Registers...............................................................................................................................18  
Status Register A (SRA) .....................................................................................................................19  
Status Register B (SRB) .....................................................................................................................21  
Digital Output Register (DOR).............................................................................................................23  
Tape Drive Register (TDR) .................................................................................................................24  
Data Rate Select Register (DSR)........................................................................................................26  
Main Status Register...........................................................................................................................29  
Data Register (FIFO)...........................................................................................................................29  
Digital Input Register (DIR) .................................................................................................................31  
Configuration Control Register (CCR).................................................................................................33  
Chapter 4  
Chapter 5  
5.1  
5.2  
Chapter 6  
6.1  
6.1.1  
6.1.2  
6.1.3  
6.1.4  
6.1.5  
6.1.6  
6.1.7  
6.1.8  
6.1.9  
6.1.10  
Status Register Encoding ................................................................................................................34  
6.2  
6.2.1  
6.2.2  
6.3  
6.3.1  
6.3.2  
6.3.3  
RESET .......................................................................................................................................................36  
RESET Pin (Hardware Reset).............................................................................................................36  
DOR Reset vs. DSR Reset (Software Reset) .....................................................................................36  
Modes of Operation....................................................................................................................................36  
PC/AT mode - (IDENT high, MFM a "don't care") ...............................................................................36  
PS/2 mode - (IDENT low, MFM high)..................................................................................................36  
Model 30 mode - (IDENT low, MFM low) ............................................................................................36  
6.4  
6.5  
DMA Transfers...........................................................................................................................................37  
Controller Phases.......................................................................................................................................37  
6.5.1  
Command Phase ................................................................................................................................37  
Execution Phase .................................................................................................................................37  
Data Transfer Termination ..................................................................................................................38  
Result Phase.......................................................................................................................................39  
Command Set/Descriptions .................................................................................................40  
Instruction Set ......................................................................................................................43  
Data Transfer Commands..........................................................................................................................49  
Read Data...........................................................................................................................................49  
Read Deleted Data..............................................................................................................................51  
Read A Track......................................................................................................................................51  
Write Data...........................................................................................................................................52  
Write Deleted Data..............................................................................................................................53  
Verify...................................................................................................................................................53  
Format A Track ...................................................................................................................................54  
Control Commands ....................................................................................................................................55  
Read ID...............................................................................................................................................55  
Recalibrate..........................................................................................................................................55  
Seek....................................................................................................................................................56  
Sense Interrupt Status ........................................................................................................................56  
Sense Drive Status .............................................................................................................................57  
Specify ................................................................................................................................................57  
Configure ............................................................................................................................................58  
Version................................................................................................................................................59  
Relative Seek......................................................................................................................................59  
6.5.2  
6.5.3  
6.5.4  
Chapter 7  
Chapter 8  
8.1  
8.1.1  
8.1.2  
8.1.3  
8.1.4  
8.1.5  
8.1.6  
8.1.7  
8.2  
8.2.1  
8.2.2  
8.2.3  
8.2.4  
8.2.5  
8.2.6  
8.2.7  
8.2.8  
8.2.9  
8.2.10  
Perpendicular Mode ........................................................................................................................60  
8.3  
LOCK .........................................................................................................................................................61  
SMSC FDC37C672  
Page 4  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
8.4  
8.5  
Enhanced DUMPREG................................................................................................................................61  
Compatibility...............................................................................................................................................62  
Serial Port (UART) ...............................................................................................................63  
Register Description...................................................................................................................................63  
Receive Buffer Register (RB)..............................................................................................................64  
Transmit Buffer Register (TB) .............................................................................................................64  
Interrupt Enable Register (IER)...........................................................................................................64  
FIFO Control Register (FCR) ..............................................................................................................65  
Interrupt Identification Register (IIR) ...................................................................................................65  
Line Control Register (LCR)................................................................................................................67  
Modem Control Register (MCR)..........................................................................................................68  
Line Status Register (LSR) .................................................................................................................69  
Modem Status Register (MSR) ...........................................................................................................71  
Chapter 9  
9.1  
9.1.1  
9.1.2  
9.1.3  
9.1.4  
9.1.5  
9.1.6  
9.1.7  
9.1.8  
9.1.9  
9.1.10  
Scratchpad Register (SCR) .............................................................................................................72  
9.2  
Programmable Baud Rate Generator (and Divisor Latches DLH, DLL) .....................................................72  
9.2.1  
Effect Of The Reset on Register File...................................................................................................72  
FIFO Interrupt Mode Operation..................................................................................................................72  
FIFO Polled Mode Operation .....................................................................................................................73  
Notes on Serial Port Operation ..................................................................................................................76  
9.3  
9.4  
9.5  
9.5.1  
FIFO Mode Operation: ........................................................................................................................76  
Chapter 10 Infrared Interface..................................................................................................................78  
Chapter 11 Fast IR..................................................................................................................................79  
Chapter 12 Parallel Port..........................................................................................................................80  
12.1  
12.2  
IBM XT/AT Compatible, Bi-Directional and EPP Modes.........................................................................81  
Extended Capabilities Parallel Port.........................................................................................................87  
Vocabulary.......................................................................................................................................87  
ISA Implementation Standard.................................................................................................................88  
Register Definitions .........................................................................................................................90  
Operation................................................................................................................................................96  
Mode Switching/Software Control....................................................................................................96  
Data Compression...........................................................................................................................97  
Pin Definition ...................................................................................................................................97  
ISA Connections..............................................................................................................................97  
Interrupts .........................................................................................................................................98  
FIFO Operation................................................................................................................................98  
DMA Transfers........................................................................................................................................98  
Programmed I/O Mode or Non-DMA Mode .....................................................................................99  
Programmed I/O - Transfers from the FIFO to the Host ..................................................................99  
Programmed I/O - Transfers from the Host to the FIFO ................................................................100  
Parallel Port Floppy Disk Controller......................................................................................................100  
12.2.1  
12.3  
12.3.1  
12.4  
12.4.1  
12.4.2  
12.4.3  
12.4.4  
12.4.5  
12.4.6  
12.5  
12.5.1  
12.5.2  
12.5.3  
12.6  
Chapter 13 Auto Power Management...................................................................................................102  
Chapter 14 Serial IRQ...........................................................................................................................106  
14.1  
14.1.1  
Serial Interrupts ....................................................................................................................................106  
Timing Diagrams For IRQSER Cycle ............................................................................................106  
IRQSER Cycle Control ..................................................................................................................107  
IRQSER Data Frame.....................................................................................................................108  
Stop Cycle Control.........................................................................................................................108  
Latency..........................................................................................................................................109  
EOI/ISR Read Latency ..................................................................................................................109  
AC/DC Specification Issue ............................................................................................................109  
Reset and Initialization ..................................................................................................................109  
14.1.2  
14.1.3  
14.1.4  
14.1.5  
14.1.6  
14.1.7  
14.1.8  
Chapter 15 GP Index Registers ............................................................................................................110  
Chapter 16 Watch Dog Timer ...............................................................................................................111  
Chapter 17 8042 Keyboard Controller Description ...............................................................................112  
17.1  
Keyboard ISA Interface.........................................................................................................................112  
Keyboard Data Write .....................................................................................................................113  
Keyboard Data Read.....................................................................................................................113  
Keyboard Command Write ............................................................................................................113  
Keyboard Status Read ..................................................................................................................113  
17.1.1  
17.1.2  
17.1.3  
17.1.4  
SMSC FDC37C672  
Page 5  
Rev. 10-29-03  
PRELIMINARY DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
17.1.5  
17.1.6  
17.1.7  
17.1.8  
17.1.9  
CPU-to-Host Communication ........................................................................................................113  
Host-to-CPU Communication ........................................................................................................113  
KIRQ..............................................................................................................................................114  
MIRQ.............................................................................................................................................114  
Gate A20 .......................................................................................................................................114  
External Keyboard and Mouse Interface...............................................................................................114  
Keyboard Power Management .............................................................................................................114  
Soft Power Down Mode.................................................................................................................114  
Hard Power Down Mode ...............................................................................................................115  
Interrupts ..............................................................................................................................................115  
Memory Configurations.........................................................................................................................115  
Register Definitions .......................................................................................................................115  
Status Register..............................................................................................................................115  
External Clock Signal............................................................................................................................116  
Default Reset Conditions......................................................................................................................116  
GATEA20 and Keyboard Reset............................................................................................................116  
Port 92 Fast GATEA20 and Keyboard Reset .......................................................................................117  
Port 92 Register.............................................................................................................................117  
8042 P12 and P16 Functions ........................................................................................................118  
17.2  
17.3  
17.3.1  
17.3.2  
17.4  
17.5  
17.5.1  
17.5.2  
17.6  
17.7  
17.8  
17.9  
17.9.1  
17.9.2  
Chapter 18 System Management Interrupt (SMI).................................................................................120  
18.1  
18.1.1  
18.1.2  
Registers ..............................................................................................................................................120  
SMI Enable Registers....................................................................................................................120  
SMI Status Registers.....................................................................................................................120  
Chapter 19 Configuration......................................................................................................................121  
19.1  
System Elements..................................................................................................................................121  
Primary Configuration Address Decoder .......................................................................................121  
Entering the Configuration State....................................................................................................121  
Exiting the Configuration State ......................................................................................................122  
Configuration Sequence .......................................................................................................................122  
Enter Configuration Mode..............................................................................................................122  
Configuration Mode .......................................................................................................................122  
Exit Configuration Mode ................................................................................................................122  
Programming Example..................................................................................................................123  
Chip Level (Global) Control/Configuration Registers [0x00-0x2F] .................................................125  
Logical Device Configuration/Control Registers [0x30-0xFF] ........................................................128  
Note A. Logical Device IRQ and DMA Operation ..........................................................................132  
SMSC Defined Logical Device Configuration Registers ................................................................132  
19.1.1  
19.1.2  
19.1.3  
19.2  
19.2.1  
19.2.2  
19.2.3  
19.2.4  
19.2.5  
19.2.6  
19.2.7  
19.2.8  
Chapter 20 Operational Description......................................................................................................143  
20.1  
20.2  
Maximum Guaranteed Ratings*............................................................................................................143  
DC Electrical Characteristics ................................................................................................................143  
Chapter 21 Timing Diagrams ................................................................................................................146  
Chapter 22 ECP Parallel Port Timing....................................................................................................164  
Chapter 23 Package Outlines ...............................................................................................................172  
List of Figures  
Figure 2.1 - FDC37C672 100 Pin QFP ........................................................................................................................10  
Figure 2.2 - FDC37C672 100 Pin TQFP ......................................................................................................................11  
Figure 4.1 - FDC37C672 Block Diagram......................................................................................................................16  
Figure 11.1 - IR Interface Block Diagram.....................................................................................................................79  
Figure 17.1 - Keyboard and Mouse Interface.............................................................................................................112  
Figure 17.2 - Gate A20 Turn-On Sequence Timing....................................................................................................119  
Figure 21.1 - IOW Timing for Port 92 .........................................................................................................................147  
Figure 21.2 - Power-Up Timing ..................................................................................................................................147  
Figure 21.3 - ISA Write...............................................................................................................................................148  
Figure 21.4 - ISA Read ..............................................................................................................................................149  
Figure 21.5 - Internal 8042 CPU Timing.....................................................................................................................150  
Figure 21.6 - Input Clock Timing ................................................................................................................................151  
SMSC FDC37C672  
Page 6  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
Figure 21.7 - Reset Timing.........................................................................................................................................151  
Figure 21.8 - DMA Timing (Single Transfer Mode).....................................................................................................152  
Figure 21.9 - DMA Timing (Burst Transfer Mode) ......................................................................................................153  
Figure 21.10 - Disk Drive Timing (At Mode Only).......................................................................................................154  
Figure 21.11 - Serial Port Timing ...............................................................................................................................155  
Figure 21.12 - Parallel Port Timing.............................................................................................................................156  
Figure 21.13 - EPP 1.9 Data or Address Write Cycle.................................................................................................157  
Figure 21.14 - EPP 1.9 Data or Address Read Cycle ................................................................................................159  
Figure 21.15 - EPP 1.7 Data or Address Write Cycle.................................................................................................161  
Figure 21.16 - EPP 1.7 Data or Address Read Cycle ................................................................................................163  
Figure 22.1 - Parallel Port FIFO Timing.......................................................................................................................165  
Figure 22.2 - ECP Parallel Port Forward Timing..........................................................................................................166  
Figure 22.3 - ECP Parallel Port Reverse Timing .........................................................................................................167  
Figure 22.4 - IrDA Receive Timing.............................................................................................................................168  
Figure 22.5 - IrDA Transmit Timing............................................................................................................................169  
Figure 22.6 - Amplitude Shift Keyed IR Receive Timing ............................................................................................170  
Figure 22.7 - Amplitude Shift Keyed IR Transmit Timing ...........................................................................................171  
Figure 23.1 - 100 Pin QFP Package Outline and Parameters .....................................................................................172  
Figure 23.2 - 100 Pin TQFP Package Outline, 14X14X1.4 Body, 2 MM Footprint .......................................................173  
List of Tables  
Table 5.1 - Super I/O Block Addresses.........................................................................................................................17  
Table 6.1 - Status, Data and Control Registers.............................................................................................................18  
Table 6.2 - Drive Activation Values...............................................................................................................................24  
Table 6.3 - Tape Select Bits..........................................................................................................................................24  
Table 6.4 - Internal 2 Drive Decode - Normal................................................................................................................24  
Table 6.5 - Internal 2 Drive Decode - Drives 0 and 1 Swapped .....................................................................................25  
Table 6.6 - Media ID1...................................................................................................................................................26  
Table 6.7 - Media ID0...................................................................................................................................................26  
Table 6.8 - Drive Type ID..............................................................................................................................................26  
Table 6.9 - Precompensation Delays ............................................................................................................................27  
Table 6.10 - Data Rates ...............................................................................................................................................28  
Table 6.11 - DRVDEN Mapping....................................................................................................................................28  
Table 6.12 - Default Precompensation Delays..............................................................................................................28  
Table 6.14 - FIFO Service Delay ....................................................................................................................................30  
Table 6.15 - Status Register 0 ......................................................................................................................................34  
Table 6.16 - Status Register 1 ......................................................................................................................................34  
Table 6.17 - Status Register 2 ......................................................................................................................................35  
Table 6.18 - Status Register 3 ......................................................................................................................................35  
Table 7.1 - Description of Command Symbols..............................................................................................................40  
Table 8.1 - Sector Sizes ...............................................................................................................................................50  
Table 8.2 - Effects of MT and N Bits .............................................................................................................................50  
Table 8.3 - Skip Bit vs Read Data Command................................................................................................................51  
Table 8.4 - Skip Bit vs. Read Deleted Data Command..................................................................................................51  
Table 8.5 - Result Phase Table.....................................................................................................................................52  
Table 8.6 - Verify Command Result Phase Table..........................................................................................................53  
Table 8.7 - Format Fields..............................................................................................................................................54  
Table 8.8 - Typical Values for Formatting......................................................................................................................55  
Table 8.9 - Interrupt Identification..................................................................................................................................57  
Table 8.10 - Drive Control Delays (ms).........................................................................................................................58  
Table 8.11 - Effects of WGATE and GAP Bits...............................................................................................................61  
Table 9.1 - Addressing the Serial Port...........................................................................................................................63  
Table 9.2 - Interrupt Control Table ................................................................................................................................67  
Table 9.3 - Baud Rates Using 1.8462 MHz Clock for <= 38.4K; Using 1.8432MHz Clock for 115.2k; Using 3.6864MHz  
Clock for 230.4k; Using 7.3728 MHz Clock for 460.8k..........................................................................................73  
Table 9.4 - Reset Function Table..................................................................................................................................74  
Table 9.5 - Register Summary for an Individual UART Channel ..................................................................................75  
Table 11.1 - DRVDEN1 MUXING.................................................................................................................................79  
SMSC FDC37C672  
Page 7  
Rev. 10-29-03  
PRELIMINARY DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
Table 12.1 - Parallel Port Connector.............................................................................................................................81  
Table 12.2 - EPP Pin Descriptions................................................................................................................................86  
Table 12.3 - ECP Pin Descriptions................................................................................................................................89  
Table 12.4 - ECP Register Definitions...........................................................................................................................90  
Table 12.5 - Mode Descriptions....................................................................................................................................90  
Table 12.6A - Extended Control Register......................................................................................................................95  
Table 12.7 - Forward Channel Commands (HostAck Low) Reverse Channel Commands (PeripAck Low).................97  
Table 12.8 - FDC Parallel Port Pins ............................................................................................................................101  
Table 13.1 - PC/AT and PS/2 Available Registers.......................................................................................................103  
Table 13.2 - State of System Pins in Auto Powerdown................................................................................................104  
Table 13.3 - State of Floppy Disk Drive Interface Pins in Powerdown..........................................................................104  
Table 14.1 - IRQSER Sampling Periods ....................................................................................................................108  
Table 15.1 - GP Index and Data Register ...................................................................................................................110  
Table 15.2- Index and Data Register Normal (Run) Mode...........................................................................................110  
Table 17.1 - ISA I/O Address Map ..............................................................................................................................113  
Table 17.2 - Host Interface Flags................................................................................................................................113  
Table 17.3 - Status Register .......................................................................................................................................115  
Table 17.4 - Resets....................................................................................................................................................116  
Table 19.1 - Configuration Registers ..........................................................................................................................123  
Table 19.2 - Chip Level Registers...............................................................................................................................125  
Table 19.3 - Logical Device Registers.........................................................................................................................128  
Table 19.4 - I/O Base Address Configuration Register Description..............................................................................130  
Table 19.5 - Interrupt Select Configuration Register Description .................................................................................131  
Table 19.6 - DMA Channel Select Configuration Register Description.........................................................................131  
Table 19.7 - Floppy Disk Controller, Logical Device 0 [Logical Device Number = 0x00]...............................................133  
Table 19.8 - Parallel Port, Logical Device 3 [Logical Device Number = 0x03]..............................................................134  
Table 19.9 - Serial Port 1, Logical Device 4 [Logical Device Number = 0x04]..............................................................135  
Table 19.10 - Serial Port 2, Logical Device 5 [Logical Device Number = 0x05]............................................................136  
Table 19.11 - KYBD, Logical Device 7 [Logical Device Number = 0x07] .....................................................................137  
Table 19.12 - Auxiliary I/O, Logical Device 8 [Logical Device Number = 0x08] ............................................................137  
Table 19.13 - nRTS MUXING ....................................................................................................................................139  
Table 19.14 - nCTS2 MUXING...................................................................................................................................139  
Table 19.15 - nDTR2 MUXING ..................................................................................................................................139  
Table 19.16 - nDSR2 MUXING ..................................................................................................................................140  
Table 19.17 - nDCD2 MUXING..................................................................................................................................140  
Table 19.18 - nRI2 MUXING ......................................................................................................................................140  
Table 19.19 - DRQ3 MUXING....................................................................................................................................140  
Table 19.20 - nDACK3 MUXING................................................................................................................................141  
Table 19.21 - SER_IRQ MUXING..............................................................................................................................141  
Table 19.22 - PCI_CLK MUXING...............................................................................................................................141  
Table 19.23 - DRVDEN1 MUXING.............................................................................................................................141  
Table 19.24 - Auxiliary I/O, Logical Device 8 [Logical Device Number = 0x08] ............................................................141  
Table 21.1 - ISA Read Timing Parameters ................................................................................................................149  
Table 21.2 - EPP 1.9 Data or Address Cycle Timing Parameters..............................................................................158  
Table 21.3 - EPP 1.9 Data or Address Read Cycle Timing Parameters ....................................................................160  
Table 21.4 - EPP 1.7 Data or Address Write Cycle Parameters ................................................................................162  
Table 21.5 - EPP 1.7 Data or Address Read Cycle Parameters................................................................................163  
Table 23.1 - 100 Pin TQFP Package Parameters .......................................................................................................173  
SMSC FDC37C672  
Page 8  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
Chapter 1 General Description  
The FDC37C672 with Consumer IR and IrDA v1.1 support incorporates a keyboard interface, SMSC's true  
CMOS 765B floppy disk controller, advanced digital data separator, two 16C550 compatible UARTs, one  
Multi-Mode parallel port which includes ChiProtect circuitry plus EPP and ECP, on-chip 24 mA AT bus  
drivers, two floppy direct drive support, Intelligent power management and SMI support. The true CMOS  
765B core provides 100% compatibility with IBM PC/XT and PC/AT architectures in addition to providing  
data overflow and underflow protection. The SMSC advanced digital data separator incorporates SMSC's  
patented data separator technology, allowing for ease of testing and use. Both on-chip UARTs are  
compatible with the NS16C550. The parallel port is compatible with IBM PC/AT architecture, as well as  
IEEE 1284 EPP and ECP. The FDC37C672 incorporates sophisticated power control circuitry (PCC).  
The PCC supports multiple low power down modes.  
The FDC37C672 supports the ISA Plug-and-Play Standard (Version 1.0a) and provides the recommended  
functionality to support Windows '95. The I/O Address, DMA Channel and Hardware IRQ of each logical  
device in the FDC37C672 may be reprogrammed through the internal configuration registers. There are  
480 I/O address location options, 8 parallel IRQs, an optional Serialized IRQ interface, and three DMA  
channels.  
The FDC37C672 does not require any external filter components and is therefore easy to use and offers  
lower system costs and reduced board area. The FDC37C672 is software and register compatible with  
SMSC's proprietary 82077AA core.  
IBM, PC/XT and PC/AT are registered trademarks and PS/2 is a trademark of International Business Machines Corporation. SMSC is  
a registered trademark and Ultra I/O, ChiProtect, and Multi-Mode are trademarks of Standard Microsystems Corporation.  
SMSC FDC37C672  
Page 9  
Rev. 10-29-03  
PRELIMINARY DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
Chapter 2 Pin Configuration  
nACK  
80  
DRVDEN0  
DRVDEN1/IRMODE  
nMTRO  
nDS1  
1
BUSY  
79  
2
PE  
78  
3
SLCT  
77  
4
VSS  
76  
nDS0  
5
PD7  
75  
nMTR1  
VSS  
nDIR  
6
PD6  
74  
7
PD5  
73  
8
PD4  
72  
nSTEP  
nWDATA  
nWGATE  
nHDSEL  
nINDEX  
nTRK0  
nWRTPRT  
nRDATA  
nDSKCHG  
VCC  
9
PD3  
71  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
PD2  
70  
PD1  
69  
PD0  
68  
FDC37C672  
nSLCTIN  
67  
nINIT  
66  
100 PIN QFP  
VCC  
65  
A20M  
64  
KBDRST  
63  
IRTX  
62  
CLOCKI  
SA0  
IRRX  
61  
VSS  
60  
SA1  
MCLKK  
59  
SA2  
MDAT  
58  
SA3  
KCLK  
57  
SA4  
KDAT  
56  
SA5  
IOCHRDY  
55  
SA6  
TC  
54  
SA7  
VCC  
53  
SA8  
DRQ3/P12  
52  
SA9  
nDACK3/P16  
51  
SA10  
Figure 2.1 - FDC37C672 100 Pin QFP  
SMSC FDC37C672  
Page 10  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
SLCT  
VSS  
nMTR0  
nDS1  
1
2
3
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
PD7  
nDS0  
PD6  
nMTR1  
VSS  
nDIR  
4
PD5  
5
PD4  
6
PD3  
PD2  
PD1  
PD0  
nSLCTIN  
nINIT  
VCC  
A20M  
KBDRST  
IRTX  
IRRX  
VSS  
nSTEP  
nWDATA  
nWGATE  
nHDSEL  
nINDEX  
nTRK0  
nWRTPRT  
nRDATA  
nDSKCHG  
VCC  
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
FDC37C672  
100 PIN TQFP  
CLOCKI  
SA0  
MCLK  
MDAT  
KCLK  
KDAT  
IOCHRDY  
TC  
SA1  
SA2  
SA3  
SA4  
SA5  
SA6  
VCC  
SA7  
Figure 2.2 - FDC37C672 100 Pin TQFP  
SMSC FDC37C672  
Page 11  
Rev. 10-29-03  
PRELIMINARY DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
Chapter 3 Description of Pin Functions  
PIN NO.  
BUFFER  
TYPE  
NAME  
TOTAL  
SYMBOL  
QFP/TQFP  
PROCESSOR/HOST INTERFACE (34)  
37:40,  
42:45 /  
35:38,  
40:43  
System Data Bus  
8
SD[0:7]  
IO24  
20:30 /  
18:28  
11-bit System Address Bus  
11  
SA[0:10]  
I
31 / 29  
36 / 34  
55 / 53  
46 / 44  
33 / 31  
Chip Select/SA11 (Note 3.2)  
Address Enable  
I/O Channel Ready  
ISA Reset Drive  
1
1
1
1
1
nCS/SA11  
AEN  
IOCHRDY  
RESET_DRV  
I
I
OD24  
IS  
Serial IRQ/Parallel IRQ_3  
SER_IRQ/  
IO24/O24/  
IRQ3  
D24  
(Note 3.1)  
32 / 30  
PCI Clock for Serial IRQ (33MHz/30MHz)/ Parallel  
IRQ_4  
1
PCI_CLK/  
IRQ4  
IO24/O24/  
OD24  
(Note 3.1)  
50 / 48  
48 / 46  
52 / 50  
47 / 45  
49 / 47  
51 / 49  
DMA Request 1  
DMA Request 2  
DMA Request 3/8042 P12  
DMA Acknowledge 1  
DMA Acknowledge 2  
DMA Acknowledge 3/8042 P16  
1
1
1
1
1
1
DRQ1  
DRQ2  
DRQ3/P12  
nDACK1  
nDACK2  
nDACK3/  
P16  
O24  
O24  
O24/IO24  
I
I
I/IO24  
54 / 52  
34 / 32  
35 / 33  
Terminal Count  
I/O Read  
I/O Write  
1
1
1
TC  
nIOR  
nIOW  
I
I
I
CLOCKS (1)  
19 / 17  
14.318MHz Clock Input  
INFRARED INTERFACE (2)  
Infrared Rx  
1
CLOCKI  
ICLK  
61 / 59  
62 / 60  
1
1
IRRX  
IRTX  
I
Infrared Tx  
O24  
POWER PINS (8)  
18,53,  
65,93 /  
Power  
VCC  
16, 51, 63,  
91  
7,41, 60,76 / Ground  
5, 39, 58, 74  
VSS  
FDD INTERFACE (16)  
16 / 14  
11 / 9  
10 / 8  
Read Disk Data  
Write Gate  
Write Disk Data  
1
1
1
nRDATA  
nWGATE  
nWDATA  
IS  
O24/OD24  
O24/OD24  
SMSC FDC37C672  
Page 12  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
PIN NO.  
BUFFER  
TYPE  
NAME  
TOTAL  
SYMBOL  
QFP/TQFP  
12 /10  
8 / 6  
9 / 7  
17 / 15  
5 / 3  
4 / 2  
Head Select  
Step Direction  
Step Pulse  
Disk Change  
Drive Select 0  
Drive Select 1  
Motor On 0  
Motor On 1  
Write Protected  
Track 0  
Index Pulse Input  
Drive Density Select 0  
1
1
1
1
1
1
1
1
1
1
1
1
1
nHDSEL  
nDIR  
nSTEP  
nDSKCHG  
nDS0  
O24/OD24  
O24/OD24  
O24/OD24  
IS  
O24/OD24  
O24/OD24  
O24/OD24  
O24/OD24  
IS  
nDS1  
3 / 1  
6 / 4  
nMTR0  
nMTR1  
nWRTPRT  
nTRKO  
nINDEX  
DRVDEN0  
15 / 13  
14 / 12  
13 / 11  
1 / 99  
2 / 100  
IS  
IS  
O24/OD24  
Drive Density Select 1/IR Mode Select/IRRX3  
DRVDEN1/  
O24/OD24/O  
IRMODE/  
24/I  
IRRX3  
SERIAL PORT 1 INTERFACE (8)  
84 / 82  
85 / 83  
87 / 85  
88 / 86  
89 / 87  
86 / 84  
91 / 89  
90 / 88  
Receive Serial Data 1  
Transmit Serial Data 1  
Request to Send 1  
Clear to Send 1  
Data Terminal Ready 1  
Data Set Ready 1  
1
1
1
1
1
1
1
1
RXD1  
TXD1  
nRTS1/ SYSOP  
I
O4  
O4/I  
I
nCTS1  
nDTR1  
nDSR1  
nDCD1  
O4  
I
I
I
Data Carrier Detect 1  
Ring Indicator 1  
nRI1  
SERIAL PORT 2 INTERFACE (8)  
95 / 93  
96 / 94  
98 / 96  
Receive Serial Data 2/Infrared Rx  
1
1
1
RXD2/IRRX  
TXD2/IRTX  
I
Transmit Serial Data 2/Infrared Tx  
O24  
Request to Send 2/Sys Addr 12/ Parallel IRQ_5  
nRTS2/SA12/IR  
O4/I/O24/  
Q5  
OD24  
(Note 3.1)  
99 / 97  
Clear to Send 2/Sys Addr 13/ Parallel IRQ_6  
1
1
nCTS2/SA13/IR I/I/O24/ OD24  
Q6  
(Note 3.1)  
100 / 98  
Data Terminal Ready/Sys Addr 14/ Parallel IRQ_7  
nDTR2/SA14/I  
RQ7  
O4/I/O24/  
OD24  
(Note 3.1)  
97 / 95  
94 / 92  
92 / 90  
Data Set Ready 2/Sys Addr 15/ Parallel  
IRQ_10/nSMI  
1
1
1
nDSR2/SA15/I  
RQ10/  
I/I/O24/OD 24  
(Note 3.1)  
nSMI  
Data Carrier Detect 2/8042 P12/ Parallel IRQ_11  
Ring Indicator 2/8042 P16/Parallel IRQ_12  
nDCD2/P12/  
I/IO24/O24/O  
D24  
(Note 3.1)  
IRQ11  
nRI2/P16/  
IRQ12  
I/IO24/O24/O  
D24  
(Note 3.1)  
PARALLEL PORT INTERFACE (17)  
68:75 /  
66:73  
Parallel Port Data Bus  
8
PD[0:7]  
IO24  
SMSC FDC37C672  
Page 13  
Rev. 10-29-03  
PRELIMINARY DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
PIN NO.  
BUFFER  
NAME  
TOTAL  
SYMBOL  
QFP/TQFP  
TYPE  
67 / 65  
66 / 64  
82 / 80  
83 / 81  
79 / 77  
80 / 78  
78 / 76  
77 / 75  
81 / 79  
Printer Select  
Initiate Output  
Auto Line Feed  
Strobe Signal  
Busy Signal  
Acknowledge Handshake  
Paper End  
1
1
1
1
1
1
1
1
1
nSLCTIN  
nINIT  
nALF  
nSTROBE  
BUSY  
nACK  
PE  
SLCT  
nERROR  
OD24/O24  
OD24/O24  
OD24/O24  
OD24/O24  
I
I
I
I
I
Printer Selected  
Error at Printer  
KEYBOARD/MOUSE INTERFACE (6)  
56 / 54  
57 / 55  
58 / 56  
59 / 57  
63 / 61  
Keyboard Data  
Keyboard Clock  
Mouse Data  
Mouse Clock  
Keyboard Reset  
1
1
1
1
1
KDAT  
KCLK  
MDAT  
IOD16P  
IOD16P  
IOD16P  
IOD16P  
O4  
MCLK  
KBDRST  
(Note 3.4)  
A20M  
64 / 62  
Gate A20  
1
O4  
Note 3.1 The interrupt request is output on one of the IRQx signals as an 024 buffer type. If EPP or ECP Mode is  
enabled, this output is pulsed low, then released to allow sharing of interrupts. In this case, the buffer type  
is OD24. Refer to the configuration section for more information.  
Note 3.2 For 12-bit addressing, SA0:SA11 only, nCS should be tied to GND. For 16-bit external address  
qualification, address bits SA11:SA15 can be "ORed" together and applied to nCS. The nCS pin functions  
as SA11 in full 16-bit Internal Address Qualification Mode. CR24.6 controls the FDC37C672 addressing  
modes.  
Note 3.3 The "n" as the first letter of a signal name indicates an "Active Low" signal.  
Note 3.4 KBDRST is active low.  
3.1  
Buffer Type Descriptions  
I
Input, TTL compatible.  
IS  
Input with Schmitt trigger.  
IOD16P  
IO24  
IO4  
Input/Output, 16mA sink, 90uA pull-up.  
Input/Output, 24mA sink, 12mA source.  
Input/Output, 4mA sink, 2mA source.  
Output, 4mA sink, 2mA source.  
Output, 24mA sink, 12mA source.  
Output, Open Drain, 24mA sink.  
Clock Input  
O4  
O24  
OD24  
ICLK  
SMSC FDC37C672  
Page 14  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
Chapter 4 Description of Multifunction Pins  
PIN NO.  
ORIGINAL  
FUNCTION  
ALTERNATE  
FUNCTION 1  
ALTERNATE  
FUNCTION 2  
DEFAULT  
NOTE  
QFP/TQFP  
2 / 100  
32 / 30  
33 / 31  
51 / 49  
52 / 50  
92 / 90  
94 / 92  
95 / 93  
96 / 94  
97 / 95  
98 / 96  
99 / 97  
100 / 98  
DRVDEN1  
PCICLK  
SERIRQ  
nDACK3  
DRQ3  
nRI2  
nDCD2  
RXD2  
IR MODE  
IRQ4  
IRQ3  
8042 P16  
8042 P12  
8042 P16  
8042 P12  
IRRX  
IRTX  
SA15  
SA12  
SA13  
IRRX3  
DRVDEN1  
PCICLK  
SERIRQ  
nDACK3  
DRQ3  
nRI2  
nDCD2  
RXD2  
Note 4.1  
Note 4.2  
Note 4.2  
Note 4.3  
Note 4.3  
Note 4.4  
Note 4.4  
Note 4.5  
Note 4.5  
Note 4.6  
Note 4.6  
Note 4.6  
Note 4.6  
IRQ12  
IRQ11  
TXD2  
TXD2  
nDSR2  
nRTS2  
nCTS2  
nDTR2  
IRQ10  
IRQ5  
IRQ6  
IRQ7  
nDSR2  
nRTS2  
nCTS2  
nDTR2  
SA14  
Note 4.1 Controlled by IRMODSEL(LD8:CRC0.0) and IRRX3SEL(LD8:CRC0.4)  
Note 4.2 Controlled by SERIRQSEL(LD8:CRC0.2)  
Note 4.3 Controlled by DMA3SEL(LD8:CRC0.1)  
Note 4.4 Controlled by 8042COMSEL(LD8:CRC0.3) and SERIRQSEL(LD8:CRC0.2)  
Note 4.5 Controlled by IR Option Register( LD5:CRF1.6)  
Note 4.6 Controlled by 16 bit Address Qual.(CR24.6) and SERIRQSEL(LD8:CRC0.2)  
For more information, refer to Table 19.13 through Table 19.23.  
SMSC FDC37C672  
Page 15  
Rev. 10-29-03  
PRELIMINARY DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
nSMI*  
SMI  
WDT  
PD0-7  
MULTI-MODE  
PARALLEL  
PORT/FDC  
MUX  
BUSY, SLCT, PE,  
nERROR, nACK  
DATA BUS  
SER_IRQ *  
PCI_CLK *  
SERIAL  
IRQ  
nSTB, nSLCTIN,  
nINIT, nALF  
ADDRESS BUS  
nIOR  
nIOW  
CONFIGURATION  
REGISTERS  
TXD1, nCTS1, nRTS1  
RXD1  
16C550  
COMPATIBLE  
SERIAL  
AEN  
PORT 1  
nDSR1, nDCD1, nRI1, nDTR1  
*
SA[0:12] (nCS)  
CONTROL BUS  
SA[13-15]*  
SD[O:7]  
IRR3/Mode  
*
HOST  
CPU  
INTERFACE  
16C550  
COMPATIBLE  
SERIAL  
*
IRRX, IRTX  
WDATA  
TXD2(IRTX), nCTS2, nRTS2 *  
PORT 2 WITH  
INFRARED  
WCLOCK  
DRQ[1:3]*  
*
RXD2(IRRX)  
SMSC  
PROPRIETARY  
DIGITAL  
DATA  
nDSR2, nDCD2, nRI2, nDTR2 *  
nDACK[1:3]*  
TC  
82077  
SEPARATOR  
WITH WRITE  
PRECOM-  
COMPATIBLE  
VERTICAL  
FLOPPYDISK  
PENSATION  
CONTROLLER  
*
IRQ[3:7,10:12]  
CORE  
KCLK  
KDATA  
MCLK  
MDATA  
RCLOCK  
RDATA  
RESET_DRV  
IOCHRDY  
8042  
GATEA20, KBDRST  
P12, P16 *  
CLOCK  
GEN  
*
Denotes Multifunction Pins  
nINDEX  
Vcc  
Vss  
DENSEL  
nDIR nMTR0,1  
nSTEP  
nHDSEL  
nDS0,1  
nTRK0  
nDSKCHG  
nWRPRT  
nWGATE  
nRDATA  
DRVDEN0*  
DRVDEN1  
nWDATA  
ICLOCK  
(14.318)  
Figure 4.1 - FDC37C672 Block Diagram  
SMSC FDC37C672  
Page 16  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
Chapter 5 Functional Description  
5.1  
Super I/O Registers  
The address map, shown below in Table 5.1, shows the addresses of the different blocks of the Super I/O  
immediately after power up. The base addresses of the FDC, serial and parallel ports can be moved via  
the configuration registers. Some addresses are used to access more than one register.  
5.2  
Host Processor Interface  
The host processor communicates with the FDC37C672 through a series of read/write registers. The port  
addresses for these registers are shown in Table 5.1. Register access is accomplished through  
programmed I/O or DMA transfers. All registers are 8 bits wide. All host interface output buffers are  
capable of sinking a minimum of 12 mA.  
Table 5.1 - Super I/O Block Addresses  
LOGICAL  
ADDRESS  
BLOCK NAME  
NOTES  
DEVICE  
Base+(0-5) and +(7)  
Base+(0-7)  
Base1+(0-7)  
Base2+(0-7)  
Floppy Disk  
Serial Port Com 1  
Serial Port Com 2  
0
4
5
IR Support  
Fast IR  
Parallel Port  
SPP  
3
Base+(0-3)  
Base+(0-7)  
EPP  
Base+(0-3), +(400-402)  
Base+(0-7), +(400-402)  
60, 64  
ECP  
ECP+EPP+SPP  
KYBD  
7
Note:  
Refer to the configuration register descriptions for setting the base address  
SMSC FDC37C672  
Page 17  
Rev. 10-29-03  
PRELIMINARY DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
Chapter 6 Floppy Disk Controller  
The Floppy Disk Controller (FDC) provides the interface between a host microprocessor and the floppy  
disk drives. The FDC integrates the functions of the Formatter/Controller, Digital Data Separator, Write  
Precompensation and Data Rate Selection logic for an IBM XT/AT compatible FDC. The true CMOS 765B  
core guarantees 100% IBM PC XT/AT compatibility in addition to providing data overflow and underflow  
protection.  
The FDC is compatible to the 82077AA using SMSC's proprietary floppy disk controller core.  
6.1  
FDC Internal Registers  
The Floppy Disk Controller contains eight internal registers which facilitate the interfacing between the host  
microprocessor and the disk drive. Table 6.1 shows the addresses required to access these registers.  
Registers other than the ones shown are not supported. The rest of the description assumes that the  
primary addresses have been selected.  
Table 6.1 - Status, Data and Control Registers  
(Shown with base addresses of 3F0 and 370)  
PRIMARY  
ADDRESS  
SECONDARY  
R/W  
REGISTER  
ADDRESS  
3F0  
3F1  
3F2  
3F3  
3F4  
3F4  
3F5  
3F6  
3F7  
3F7  
370  
371  
372  
373  
374  
374  
375  
376  
377  
377  
R
R
R/W  
R/W  
R
W
R/W  
Status Register A (SRA)  
Status Register B (SRB)  
Digital Output Register (DOR)  
Tape Drive Register (TSR)  
Main Status Register (MSR)  
Data Rate Select Register (DSR)  
Data (FIFO)  
Reserved  
R
W
Digital Input Register (DIR)  
Configuration Control Register (CCR)  
SMSC FDC37C672  
Page 18  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
6.1.1 Status Register A (SRA)  
Address 3F0 READ ONLY  
This register is read-only and monitors the state of the FINTR pin and several disk interface pins in PS/2  
and Model 30 modes. The SRA can be accessed at any time when in PS/2 mode. In the PC/AT mode the  
data bus pins D0 - D7 are held in a high impedance state for a read of address 3F0.  
PS/2 Mode  
7
6
5
4
3
2
1
0
DIR  
INT  
nDRV2 STEP nTRK0 HDSEL nINDX nWP  
PENDING  
RESET  
COND.  
0
N/A N/A N/A N/A  
0
0
0
BIT 0 DIRECTION  
Active high status indicating the direction of head movement. A logic "1" indicates inward direction; a logic  
"0" indicates outward direction.  
BIT 1 nWRITE PROTECT  
Active low status of the WRITE PROTECT disk interface input. A logic "0" indicates that the disk is write  
protected.  
BIT 2 nINDEX  
Active low status of the INDEX disk interface input.  
BIT 3 HEAD SELECT  
Active high status of the HDSEL disk interface input. A logic "1" selects side 1 and a logic "0" selects side  
0.  
BIT 4 nTRACK 0  
Active low status of the TRK0 disk interface input.  
BIT 5 STEP  
Active high status of the STEP output disk interface output pin.  
BIT 6 nDRV2  
Active low status of the DRV2 disk interface input pin, indicating that a second drive has been installed.  
BIT 7 INTERRUPT PENDING  
Active high bit indicating the state of the Floppy Disk Interrupt output.  
SMSC FDC37C672  
Page 19  
Rev. 10-29-03  
PRELIMINARY DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
PS/2 Model 30 Mode  
7
6
5
4
3
2
1
0
INT  
DRQ STEP TRK0 nHDSEL INDX  
WP  
nDIR  
PENDING  
F/F  
RESET  
COND.  
0
0
0
N/A  
1
N/A  
N/A  
1
BIT 0 nDIRECTION  
Active low status indicating the direction of head movement. A logic "0" indicates inward direction; a logic  
"1" indicates outward direction.  
BIT 1 WRITE PROTECT  
Active high status of the WRITE PROTECT disk interface input. A logic "1" indicates that the disk is write  
protected.  
BIT 2 INDEX  
Active high status of the INDEX disk interface input.  
BIT 3 nHEAD SELECT  
Active low status of the HDSEL disk interface input. A logic "0" selects side 1 and a logic "1" selects side  
0.  
BIT 4 TRACK 0  
Active high status of the TRK0 disk interface input.  
BIT 5 STEP  
Active high status of the latched STEP disk interface output pin. This bit is latched with the STEP output  
going active, and is cleared with a read from the DIR register, or with a hardware or software reset.  
BIT 6 DMA REQUEST  
Active high status of the DRQ output pin.  
BIT 7 INTERRUPT PENDING  
Active high bit indicating the state of the Floppy Disk Interrupt output.  
SMSC FDC37C672  
Page 20  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
6.1.2 Status Register B (SRB)  
Address 3F1 READ ONLY  
This register is read-only and monitors the state of several disk interface pins in PS/2 and Model 30  
modes. The SRB can be accessed at any time when in PS/2 mode. In the PC/AT mode the data bus pins  
D0 - D7 are held in a high impedance state for a read of address 3F1.  
PS/2 Mode  
7
1
6
1
5
4
3
2
1
0
DRIVE WDATA RDATA WGATE MOT  
MOT  
SEL0 TOGGLE TOGGLE  
EN1  
0
EN0  
RESET  
COND.  
1
1
0
0
0
0
0
BIT 0 MOTOR ENABLE 0  
Active high status of the MTR0 disk interface output pin. This bit is low after a hardware reset and  
unaffected by a software reset.  
BIT 1 MOTOR ENABLE 1  
Active high status of the MTR1 disk interface output pin. This bit is low after a hardware reset and  
unaffected by a software reset.  
BIT 2 WRITE GATE  
Active high status of the WGATE disk interface output.  
BIT 3 READ DATA TOGGLE  
Every inactive edge of the RDATA input causes this bit to change state.  
BIT 4 WRITE DATA TOGGLE  
Every inactive edge of the WDATA input causes this bit to change state.  
BIT 5 DRIVE SELECT 0  
Reflects the status of the Drive Select 0 bit of the DOR (address 3F2 bit 0). This bit is cleared after a  
hardware reset and it is unaffected by a software reset.  
BIT 6 RESERVED  
Always read as a logic "1".  
BIT 7 RESERVED  
Always read as a logic "1".  
SMSC FDC37C672  
Page 21  
Rev. 10-29-03  
PRELIMINARY DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
PS/2 Model 30 Mode  
7
6
5
4
3
2
1
0
nDRV2 nDS1  
nDS0 WDATA RDATA WGATE nDS3  
nDS2  
F/F  
0
F/F  
0
F/F  
0
RESET  
COND.  
N/A  
1
1
1
1
BIT 0 nDRIVE SELECT 2  
Active low status of the DS2 disk interface output.  
BIT 1 nDRIVE SELECT 3  
Active low status of the DS3 disk interface output.  
BIT 2 WRITE GATE  
Active high status of the latched WGATE output signal. This bit is latched by the active going edge of  
WGATE and is cleared by the read of the DIR register.  
BIT 3 READ DATA  
Active high status of the latched RDATA output signal. This bit is latched by the inactive going edge of  
RDATA and is cleared by the read of the DIR register.  
BIT 4 WRITE DATA  
Active high status of the latched WDATA output signal. This bit is latched by the inactive going edge of  
WDATA and is cleared by the read of the DIR register. This bit is not gated with WGATE.  
BIT 5 nDRIVE SELECT 0  
Active low status of the DS0 disk interface output.  
BIT 6 nDRIVE SELECT 1  
Active low status of the DS1 disk interface output.  
BIT 7 nDRV2  
Active low status of the DRV2 disk interface input.  
SMSC FDC37C672  
Page 22  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
6.1.3 Digital Output Register (DOR)  
Address 3F2 READ/WRITE  
The DOR controls the drive select and motor enables of the disk interface outputs. It also contains the  
enable for the DMA logic and a software reset bit. The contents of the DOR are unaffected by a software  
reset. The DOR can be written to at any time.  
7
6
5
4
3
2
1
0
MOT  
MOT  
MOT  
MOT DMAEN nRESE DRIVE DRIVE  
EN3  
EN2  
EN1  
EN0  
0
T
0
SEL1  
0
SEL0  
0
RESET  
COND.  
0
0
0
0
BIT 0 and 1 DRIVE SELECT  
These two bits are binary encoded for the four drive selects DS0 -DS3, thereby allowing only one drive to  
be selected at one time.  
BIT 2 nRESET  
A logic "0" written to this bit resets the Floppy disk controller. This reset will remain active until a logic "1"  
is written to this bit. This software reset does not affect the DSR and CCR registers, nor does it affect the  
other bits of the DOR register. The minimum reset duration required is 100ns, therefore toggling this bit by  
consecutive writes to this register is a valid method of issuing a software reset.  
BIT 3 DMAEN  
PC/AT and Model 30 Mode:  
Writing this bit to logic "1" will enable the DRQ, nDACK, TC and FINTR outputs. This bit being a logic "0"  
will disable the nDACK and TC inputs, and hold the DRQ and FINTR outputs in a high impedance state.  
This bit is a logic "0" after a reset and in these modes.  
PS/2 Mode:  
In this mode the DRQ, nDACK, TC and FINTR pins are always enabled. During a reset, the DRQ,  
nDACK, TC, and FINTR pins will remain enabled, but this bit will be cleared to a logic "0".  
BIT 4 MOTOR ENABLE 0  
This bit controls the MTR0 disk interface output. A logic "1" in this bit will cause the output pin to go active.  
BIT 5 MOTOR ENABLE 1  
This bit controls the MTR1 disk interface output. A logic "1" in this bit will cause the output pin to go active.  
BIT 6 MOTOR ENABLE 2  
This bit controls the MTR2 disk interface output. A logic "1" in this bit will cause the output pin to go active.  
SMSC FDC37C672  
Page 23  
Rev. 10-29-03  
PRELIMINARY DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
BIT 7 MOTOR ENABLE 3  
This bit controls the MTR3 disk interface output. A logic "1" in this bit causes the output to go active.  
Table 6.2 - Drive Activation Values  
DRIVE  
DOR VALUE  
1CH  
0
1
2
3
2DH  
4EH  
8FH  
6.1.4 Tape Drive Register (TDR)  
Address 3F3 READ/WRITE  
The Tape Drive Register (TDR) is included for 82077 software compatibility and allows the user to assign  
tape support to a particular drive during initialization. Any future references to that drive automatically  
invokes tape support. The TDR Tape Select bits TDR.[1:0] determine the tape drive number. Table 6.3  
illustrates the Tape Select Bit encoding. Note that drive 0 is the boot device and cannot be assigned tape  
support. The remaining Tape Drive Register bits TDR.[7:2] are tristated when read. The TDR is  
unaffected by a software reset.  
Table 6.3 - Tape Select Bits  
TAPE SEL1  
(TDR.1)  
TAPE SEL0  
(TDR.0)  
DRIVE  
SELECTED  
0
0
1
1
0
1
0
1
None  
1
2
3
Table 6.4 - Internal 2 Drive Decode - Normal  
DRIVE SELECT OUTPUTS  
MOTOR ON OUTPUTS  
(ACTIVE LOW)  
DIGITAL OUTPUT REGISTER  
(ACTIVE LOW)  
Bit 7  
X
X
X
1
Bit 6  
X
X
1
X
Bit 5  
X
1
X
X
Bit 4  
1
X
X
X
Bit1  
0
0
1
1
Bit 0  
nDS1  
nDS0  
nMTR1  
nBIT 5  
nBIT 5  
nBIT 5  
nBIT 5  
nBIT 5  
nMTR0  
nBIT 4  
nBIT 4  
nBIT 4  
nBIT 4  
nBIT 4  
0
1
0
1
X
1
0
1
1
1
0
1
1
1
1
0
0
0
0
X
SMSC FDC37C672  
Page 24  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
Table 6.5 - Internal 2 Drive Decode - Drives 0 and 1 Swapped  
MOTOR ON OUTPUTS  
(ACTIVE LOW)  
DRIVE SELECT OUTPUTS  
(ACTIVE LOW)  
DIGITAL OUTPUT REGISTER  
Bit 7  
X
X
X
1
Bit 6  
X
X
Bit 5  
X
1
Bit 4  
1
X
Bit1  
0
0
Bit 0  
nDS1  
nDS0  
nMTR1  
nMTR0  
nBIT 5  
nBIT 5  
nBIT 5  
nBIT 5  
nBIT 5  
0
1
0
1
X
0
1
1
1
1
1
0
1
1
1
nBIT 4  
nBIT 4  
nBIT 4  
nBIT 4  
nBIT 4  
1
X
X
X
X
X
1
1
0
0
0
0
X
Normal Floppy Mode  
Normal mode. Register 3F3 contains only bits 0 and 1. When this register is read, bits 2 - 7 are a high  
impedance.  
DB7  
DB6  
DB5  
DB4  
DB3  
DB2  
DB1  
DB0  
REG 3F3 Tri-state Tri-state Tri-state Tri-state Tri-state Tri-state tape sel1 tape sel0  
Enhanced Floppy Mode 2 (OS2)  
Register 3F3 for Enhanced Floppy Mode 2 operation.  
DB7  
DB6  
DB5  
DB4  
DB3  
DB2  
DB1  
DB0  
REG 3F3  
Media  
Media  
Drive Type ID  
Floppy Boot Drive  
tape sel1 tape sel0  
ID1  
ID0  
For this mode, MEDIA_ID[1:0] pins are gated into bits 6 and 7 of the 3F3 register. These two bits are not  
affected by a hard or soft reset.  
BIT 7 MEDIA ID 1 READ ONLY (Pin 19) (See Table 6.6)  
BIT 6 MEDIA ID 0 READ ONLY (Pin 20) (See Table 6.7)  
BITS 5 and 4 Drive Type ID - These bits reflect two of the bits of L0-CRF1. Which two bits these are  
depends on the last drive selected in the Digital Output Register (3F2). (See Table 6.8)  
BITS 3 and 2 Floppy Boot Drive - These bits reflect the value of L0-CRF1. Bit 3 = L0-CRF1-B7. Bit 2 =  
L0-CRF1-B6.  
Bits 1 and 0 - Tape Drive Select (READ/WRITE). Same as in Normal and Enhanced Floppy Mode 1.  
Note:  
L0-CRF1-B5 = Logical Device 0, Configuration Register F1, Bit 5  
SMSC FDC37C672  
Page 25  
Rev. 10-29-03  
PRELIMINARY DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
Table 6.6 - Media ID1  
MEDIA ID1  
BIT 7  
L0-CRF1-B5 L0-CRF1-B5  
INPUT  
Pin 19  
= 0  
0
1
= 1  
1
0
0
1
Table 6.7 - Media ID0  
MEDIA ID0  
BIT 6  
INPUT  
Pin 20  
CRF1-B4  
CRF1-B4  
= 0  
0
1
= 1  
1
0
0
1
Table 6.8 - Drive Type ID  
DIGITAL OUTPUT REGISTER REGISTER 3F3 - DRIVE TYPE ID  
Bit 1  
Bit 0  
Bit 5  
Bit 4  
0
0
1
1
0
1
0
1
L0-CRF2 - B1  
L0-CRF2 - B3  
L0-CRF2 - B5  
L0-CRF2 - B7  
L0-CRF2 - B0  
L0-CRF2 - B2  
L0-CRF2 - B4  
L0-CRF2 - B6  
Note:  
L0-CRF2-Bx = Logical Device 0, Configuration Register F2, Bit x.  
6.1.5 Data Rate Select Register (DSR)  
Address 3F4 WRITE ONLY  
This register is write only. It is used to program the data rate, amount of write precompensation, power  
down status, and software reset. The data rate is programmed using the Configuration Control Register  
(CCR) not the DSR, for PC/AT and PS/2 Model 30 and Microchannel applications. Other applications can  
set the data rate in the DSR. The data rate of the floppy controller is the most recent write of either the  
DSR or CCR. The DSR is unaffected by a software reset. A hardware reset will set the DSR to 02H, which  
corresponds to the default precompensation setting and 250 Kbps.  
7
6
5
0
4
3
2
1
0
S/W  
POWER  
PRE-  
PRE-  
PRE-  
DRATE DRATE  
RESET DOWN  
COMP2 COMP1 COMP0 SEL1  
SEL0  
0
RESET  
COND.  
0
0
0
0
0
0
1
SMSC FDC37C672  
Page 26  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
BIT 0 and 1 DATA RATE SELECT  
These bits control the data rate of the floppy controller. See Table 6.10 for the settings corresponding to  
the individual data rates. The data rate select bits are unaffected by a software reset, and are set to 250  
Kbps after a hardware reset.  
BIT 2 through 4 PRECOMPENSATION SELECT  
These three bits select the value of write precompensation that will be applied to the WDATA output  
signal. Table 6.9 shows the precompensation values for the combination of these bits settings. Track 0 is  
the default starting track number to start precompensation. this starting track number can be changed by  
the configure command.  
BIT 5 UNDEFINED  
Should be written as a logic "0".  
BIT 6 LOW POWER  
A logic "1" written to this bit will put the floppy controller into manual low power mode. The floppy  
controller clock and data mode after a software reset or access to the Data Register or Main Status  
Register.  
BIT 7 SOFTWARE RESET  
This active high bit has the same function as the DOR RESET (DOR bit 2) except that this bit is self  
clearing.  
Note:  
The DSR is Shadowed in the Floppy Data Rate Select Shadow Register, LD8:CRC2[7:0]. separator  
circuits will be turned off. The controller will come out of manual low power  
Table 6.9 - Precompensation Delays  
PRECOMP  
432  
PRECOMPENSATION  
DELAY (NSEC)  
<2MBPS  
0.00  
2MBPS*  
0
111  
001  
010  
011  
100  
101  
110  
000  
41.67  
20.8  
83.34  
41.7  
125.00  
166.67  
208.33  
250.00  
Default  
62.5  
83.3  
104.2  
125  
Default  
Default: See Table 6.11  
Note:  
*2Mbps data rate is only available if VCC = 5V.  
SMSC FDC37C672  
Page 27  
Rev. 10-29-03  
PRELIMINARY DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
Table 6.10 - Data Rates  
DATA RATE DATA RATE  
SEL1 SEL0  
DRIVE RATE  
DRATE(1)  
DRT1  
DRT0  
MFM  
1Meg  
500  
FM  
---  
DENSEL  
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
1
0
0
1
1
0
0
1
1
0
0
250  
150  
125  
---  
250  
250  
125  
---  
300  
250  
1Meg  
500  
500  
250  
1Meg  
500  
2Meg  
250  
250  
---  
125  
Drive Rate Table (Recommended) 00 = 360K, 1.2M, 720K, 1.44M and 2.88M Vertical Format  
01 = 3-Mode Drive  
10 = 2 Meg Tape  
Note 1: The DRATE and DENSEL values are mapped onto the DRVDEN pins.  
Table 6.11 - DRVDEN Mapping  
DRVDEN1  
(1)  
DRATE0  
DRVDEN0  
(1)  
DENSEL  
DT1  
DT0  
DRIVE TYPE  
0
0
4/2/1 MB 3.5"  
2/1 MB 5.25" FDDS  
2/1.6/1 MB 3.5" (3-MODE)  
1
0
1
0
1
1
DRATE0  
DRATE0  
DRATE1  
DRATE1  
nDENSEL  
DRATE0  
PS/2  
Table 6.12 - Default Precompensation Delays  
PRECOMPENSATION  
DATA RATE  
DELAYS  
2 Mbps  
(Note 6.1)  
1 Mbps  
500 Kbps  
300 Kbps  
250 Kbps  
20.8 ns  
41.67 ns  
125 ns  
125 ns  
125 ns  
Note 6.1 The 2Mbps data rate is only available if VCC = 5V.  
SMSC FDC37C672  
Page 28  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
6.1.6 Main Status Register  
Address 3F4 READ ONLY  
The Main Status Register is a read-only register and indicates the status of the disk controller. The Main  
Status Register can be read at any time. The MSR indicates when the disk controller is ready to receive  
data via the Data Register. It should be read before each byte transferring to or from the data register  
except in DMA mode. No delay is required when reading the MSR after a data transfer.  
7
6
DIO  
5
4
3
2
1
0
RQM  
NON  
CMD  
DRV3  
DRV2  
DRV1  
DRV0  
DMA  
BUSY  
BUSY  
BUSY  
BUSY  
BUSY  
BIT 0 - 3 DRV x BUSY  
These bits are set to 1s when a drive is in the seek portion of a command, including implied and  
overlapped seeks and recalibrates.  
BIT 4 COMMAND BUSY  
This bit is set to a 1 when a command is in progress. This bit will go active after the command byte has  
been accepted and goes inactive at the end of the results phase. If there is no result phase (Seek,  
Recalibrate commands), this bit is returned to a 0 after the last command byte.  
BIT 5 NON-DMA  
This mode is selected in the SPECIFY command and will be set to a 1 during the execution phase of a  
command. This is for polled data transfers and helps differentiate between the data transfer phase and  
the reading of result bytes.  
BIT 6 DIO  
Indicates the direction of a data transfer once a RQM is set. A 1 indicates a read and a 0 indicates a write  
is required.  
BIT 7 RQM  
Indicates that the host can transfer data if set to a 1. No access is permitted if set to a 0.  
6.1.7 Data Register (FIFO)  
Address 3F5 READ/WRITE  
All command parameter information, disk data and result status are transferred between the host  
processor and the floppy disk controller through the Data Register.  
Data transfers are governed by the RQM and DIO bits in the Main Status Register.  
The Data Register defaults to FIFO disabled mode after any form of reset. This maintains PC/AT  
hardware compatibility. The default values can be changed through the Configure command (enable full  
FIFO operation with threshold control). The advantage of the FIFO is that it allows the system a larger  
SMSC FDC37C672  
Page 29  
Rev. 10-29-03  
PRELIMINARY DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
DMA latency without causing a disk error. Table 6.14 gives several examples of the delays with aFIFO.  
The data is based upon the following formula:  
Threshold # x  
1
x 8  
- 1.5 µs = DELAY  
DATA RATE  
At the start of a command, the FIFO action is always disabled and command parameters must be sent  
based upon the RQM and DIO bit settings. As the command execution phase is entered, the FIFO is  
cleared of any data to ensure that invalid data is not transferred.  
An overrun or underrun will terminate the current command and the transfer of data. Disk writes will  
complete the current sector by generating a 00 pattern and valid CRC. Reads require the host to remove  
the remaining data so that the result phase may be entered.  
Table 6.14 - FIFO Service Delay  
FIFO THRESHOLD  
EXAMPLES  
MAXIMUM DELAY TO SERVICING AT  
2 Mbps* DATA RATE  
1 byte  
2 bytes  
8 bytes  
15 bytes  
1 x 4 µs - 1.5 µs = 2.5 µs  
2 x 4 µs - 1.5 µs = 6.5 µs  
8 x 4 µs - 1.5 µs = 30.5 µs  
15 x 4 µs - 1.5 µs = 58.5 µs  
FIFO THRESHOLD  
EXAMPLES  
MAXIMUM DELAY TO SERVICING AT  
1 Mbps DATA RATE  
1 byte  
2 bytes  
8 bytes  
15 bytes  
1 x 8 µs - 1.5 µs = 6.5 µs  
2 x 8 µs - 1.5 µs = 14.5 µs  
8 x 8 µs - 1.5 µs = 62.5 µs  
15 x 8 µs - 1.5 µs = 118.5 µs  
FIFO THRESHOLD  
EXAMPLES  
MAXIMUM DELAY TO SERVICING AT  
500 Kbps DATA RATE  
1 byte  
2 bytes  
8 bytes  
15 bytes  
1 x 16 µs - 1.5 µs = 14.5 µs  
2 x 16 µs - 1.5 µs = 30.5 µs  
8 x 16 µs - 1.5 µs = 126.5 µs  
15 x 16 µs - 1.5 µs = 238.5 µs  
Note:  
*The 2 Mbps data rate is only available if VCC = 5V.  
SMSC FDC37C672  
Page 30  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
6.1.8 Digital Input Register (DIR)  
Address 3F7 READ ONLY  
This register is read-only in all modes.  
PC-AT Mode  
7
6
5
4
3
2
1
0
DSK  
CHG  
N/A  
RESET  
COND.  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
BIT 0 - 6 UNDEFINED  
The data bus outputs D0 - 6 will remain in a high impedance state during a read of this register.  
BIT 7 DSKCHG  
This bit monitors the pin of the same name and reflects the opposite value seen on the disk cable or the  
value programmed in the Force Disk Change Register (see Configuration Register LD8:CRC1[1:0]).  
PS/2 Mode  
7
6
1
5
1
4
1
3
1
2
1
0
DSK  
DRATE DRATE nHIGH  
CHG  
SEL1  
N/A  
SEL0 nDENS  
N/A  
RESET  
COND.  
N/A  
N/A  
N/A  
N/A  
N/A  
1
BIT 0 nHIGH DENS  
This bit is low whenever the 500 Kbps or 1 Mbps data rates are selected, and high when 250 Kbps and  
300 Kbps are selected.  
BITS 1 - 2 DATA RATE SELECT  
These bits control the data rate of the floppy controller. See Table 6.10 for the settings corresponding to  
the individual data rates. The data rate select bits are unaffected by a software reset, and are set to 250  
Kbps after a hardware reset.  
BITS 3 - 6 UNDEFINED  
Always read as a logic "1"  
BIT 7 DSKCHG  
This bit monitors the pin of the same name and reflects the opposite value seen on the disk cable or the  
value programmed in the Force Disk Change Register (see Configuration Register LD8:CRC1[1:0]).  
SMSC FDC37C672  
Page 31  
Rev. 10-29-03  
PRELIMINARY DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
Model 30 Mode  
7
6
0
5
0
4
0
3
2
1
0
DSK  
DMAEN NOPREC DRATE DRATE  
CHG  
SEL1  
1
SEL0  
0
RESET  
COND.  
N/A  
0
0
0
0
0
BITS 0 - 1 DATA RATE SELECT  
These bits control the data rate of the floppy controller. See Table 6.10 for the settings corresponding to  
the individual data rates. The data rate select bits are unaffected by a software reset, and are set to 250  
Kbps after a hardware reset.  
BIT 2 NOPREC  
This bit reflects the value of NOPREC bit set in the CCR register.  
BIT 3 DMAEN  
This bit reflects the value of DMAEN bit set in the DOR register bit 3.  
BITS 4 - 6 UNDEFINED  
Always read as a logic "0"  
BIT 7 DSKCHG  
This bit monitors the pin of the same name and reflects the opposite value seen on the disk cable or the  
value programmed in the Force Disk Change Register (see Configuration Register LD8:CRC1[1:0]).  
SMSC FDC37C672  
Page 32  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
6.1.9 Configuration Control Register (CCR)  
Address 3F7 WRITE ONLY  
PC/AT and PS/2 Modes  
7
6
5
4
3
2
1
0
DRATE DRATE  
SEL1  
1
SEL0  
0
RESET  
COND.  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
BIT 0 and 1 DATA RATE SELECT 0 and 1  
These bits determine the data rate of the floppy controller. See Table 6.10 for the appropriate values.  
BIT 2 - 7 RESERVED  
Should be set to a logical "0"  
PS/2 Model 30 Mode  
7
6
5
4
3
2
1
0
NOPREC DRATE DRATE  
SEL1  
1
SEL0  
0
RESET  
COND.  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
BIT 0 and 1 DATA RATE SELECT 0 and 1  
These bits determine the data rate of the floppy controller. See Table 6.10 for the appropriate values.  
BIT 2 NO PRECOMPENSATION  
This bit can be set by software, but it has no functionality. It can be read by bit 2 of the DSR when in  
Model 30 register mode. Unaffected by software reset.  
BIT 3 - 7 RESERVED  
Should be set to a logical "0"  
Table 6.11 shows the state of the DENSEL pin. The DENSEL pin is set high after a hardware reset and is  
unaffected by the DOR and the DSR resets.  
SMSC FDC37C672  
Page 33  
Rev. 10-29-03  
PRELIMINARY DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
6.1.10 Status Register Encoding  
During the Result Phase of certain commands, the Data Register contains data bytes that give the status  
of the command just executed.  
Table 6.15 - Status Register 0  
BIT NO.  
SYMBOL  
NAME  
Interrupt Code  
DESCRIPTION  
7,6  
IC  
00 - Normal termination of command. The specified command  
was properly executed and completed without error.  
01 - Abnormal termination of command. Command execution  
was started, but was not successfully completed.  
10 - Invalid command. The requested command could not be  
executed.  
11 - Abnormal termination caused by Polling.  
5
4
SE  
EC  
Seek End  
The FDC completed a Seek, Relative Seek or Recalibrate  
command (used during a Sense Interrupt Command).  
Equipment  
Check  
The TRK0 pin failed to become a "1" after:  
1. 80 step pulses in the Recalibrate command.  
2. The Relative Seek command caused the FDC to step  
outward beyond Track 0.  
3
2
1,0  
Unused. This bit is always "0".  
The current head address.  
The current selected drive.  
H
DS1,0  
Head Address  
Drive Select  
Table 6.16 - Status Register 1  
NAME  
End of Cylinder The FDC tried to access a sector beyond the final sector of the  
track (255D). Will be set if TC is not issued after Read or Write  
Data command.  
BIT NO.  
SYMBOL  
EN  
DESCRIPTION  
7
6
5
Unused. This bit is always "0".  
DE  
OR  
Data Error  
The FDC detected a CRC error in either the ID field or the data  
field of a sector.  
4
Overrun/  
Underrun  
Becomes set if the FDC does not receive CPU or DMA service  
within the required time interval, resulting in data overrun or  
underrun.  
3
2
Unused. This bit is always "0".  
Any one of the following:  
ND  
No Data  
1. Read Data, Read Deleted Data command - the FDC did  
not find the specified sector.  
2. Read ID command - the FDC cannot read the ID field  
without an error.  
3. Read A Track command - the FDC cannot find the proper  
sector sequence.  
WP pin became a "1" while the FDC is executing a Write Data,  
Write Deleted Data, or Format A Track command.  
1
NW  
Not Writable  
SMSC FDC37C672  
Page 34  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
BIT NO.  
SYMBOL  
MA  
NAME  
Missing  
Address Mark  
DESCRIPTION  
Any one of the following:  
0
1. The FDC did not detect an ID address mark at the  
specified track after encountering the index pulse from the  
IDX pin twice.  
2. The FDC cannot detect a data address mark or a deleted  
data address mark on the specified track.  
Table 6.17 - Status Register 2  
BIT NO.  
SYMBOL  
CM  
NAME  
DESCRIPTION  
Unused. This bit is always "0".  
Any one of the following:  
7
6
Control Mark  
Read Data command - the FDC encountered a deleted data  
address mark.  
Read Deleted Data command - the FDC encountered a data  
address mark.  
The FDC detected a CRC error in the data field.  
5
4
DD  
Data Error in  
Data Field  
WC  
Wrong Cylinder The track address from the sector ID field is different from the  
track address maintained inside the FDC.  
3
2
1
Unused. This bit is always "0".  
Unused. This bit is always "0".  
The track address from the sector ID field is different from the  
track address maintained inside the FDC and is equal to FF  
hex, which indicates a bad track with a hard error according to  
the IBM soft-sectored format.  
BC  
Bad Cylinder  
0
MD  
Missing Data  
Address Mark  
The FDC cannot detect a data address mark or a deleted data  
address mark.  
Table 6.18 - Status Register 3  
NAME  
Unused. This bit is always "0".  
Write Protected Indicates the status of the WP pin.  
Unused. This bit is always "1".  
BIT NO.  
SYMBOL  
DESCRIPTION  
7
6
5
WP  
T0  
4
Track 0  
Indicates the status of the TRK0 pin.  
3
2
1,0  
Unused. This bit is always "1".  
Indicates the status of the HDSEL pin.  
Indicates the status of the DS1, DS0 pins.  
HD  
DS1,0  
Head Address  
Drive Select  
SMSC FDC37C672  
Page 35  
Rev. 10-29-03  
PRELIMINARY DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
6.2  
RESET  
There are three sources of system reset on the FDC: the RESET pin of the FDC, a reset generated via a  
bit in the DOR, and a reset generated via a bit in the DSR. At power on, a Power On Reset initializes the  
FDC. All resets take the FDC out of the power down state.  
All operations are terminated upon a RESET, and the FDC enters an idle state. A reset while a disk write  
is in progress will corrupt the data and CRC.  
On exiting the reset state, various internal registers are cleared, including the Configure command  
information, and the FDC waits for a new command. Drive polling will start unless disabled by a new  
Configure command.  
6.2.1 RESET Pin (Hardware Reset)  
The RESET pin is a global reset and clears all registers except those programmed by the Specify  
command. The DOR reset bit is enabled and must be cleared by the host to exit the reset state.  
6.2.2 DOR Reset vs. DSR Reset (Software Reset)  
These two resets are functionally the same. Both will reset the FDC core, which affects drive status  
information and the FIFO circuits. The DSR reset clears itself automatically while the DOR reset requires  
the host to manually clear it. DOR reset has precedence over the DSR reset. The DOR reset is set  
automatically upon a pin reset. The user must manually clear this reset bit in the DOR to exit the reset  
state.  
6.3  
Modes of Operation  
The FDC has three modes of operation, PC/AT mode, PS/2 mode and Model 30 mode. These are  
determined by the state of the IDENT and MFM bits 6 and 5 respectively of CRxx.  
6.3.1 PC/AT mode - (IDENT high, MFM a "don't care")  
The PC/AT register set is enabled, the DMA enable bit of the DOR becomes valid (FINTR and DRQ can  
be hi Z), and TC and DENSEL become active high signals.  
6.3.2 PS/2 mode - (IDENT low, MFM high)  
This mode supports the PS/2 models 50/60/80 configuration and register set. The DMA bit of the DOR  
becomes a "don't care", (FINTR and DRQ are always valid), TC and DENSEL become active low.  
6.3.3 Model 30 mode - (IDENT low, MFM low)  
This mode supports PS/2 Model 30 configuration and register set. The DMA enable bit of the DOR  
becomes valid (FINTR and DRQ can be hi Z), TC is active high and DENSEL is active low.  
SMSC FDC37C672  
Page 36  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
6.4  
DMA Transfers  
DMA transfers are enabled with the Specify command and are initiated by the FDC by activating the  
FDRQ pin during a data transfer command. The FIFO is enabled directly by asserting nDACK and  
addresses need not be valid.  
Note that if the DMA controller (i.e. 8237A) is programmed to function in verify mode, a pseudo read is  
performed by the FDC based only on nDACK. This mode is only available when the FDC has been  
configured into byte mode (FIFO disabled) and is programmed to do a read. With the FIFO enabled, the  
FDC can perform the above operation by using the new Verify command; no DMA operation is needed.  
The FDC37C672 supports two DMA transfer modes for the FDC: Single Transfer and Burst Transfer. In  
the case of the single transfer, the DMA Req goes active at the start of the DMA cycle, and the DMA Req  
is deasserted after the nDACK. In the case of the burst transfer, the Req is held active until the last  
transfer (independent of nDACK). See timing diagrams for more information.  
Burst mode is enabled via Bit[1] of CRF0 in Logical Device 0. Setting Bit[1]=0 enables burst mode; the  
default is Bit[1]=1, for non-burst mode.  
6.5  
Controller Phases  
For simplicity, command handling in the FDC can be divided into three phases: Command, Execution, and  
Result. Each phase is described in the following sections.  
6.5.1 Command Phase  
After a reset, the FDC enters the command phase and is ready to accept a command from the host. For  
each of the commands, a defined set of command code bytes and parameter bytes has to be written to the  
FDC before the command phase is complete. (Please refer to Table 7.1 for the command set  
descriptions.) These bytes of data must be transferred in the order prescribed.  
Before writing to the FDC, the host must examine the RQM and DIO bits of the Main Status Register.  
RQM and DIO must be equal to "1" and "0" respectively before command bytes may be written. RQM is  
set false by the FDC after each write cycle until the received byte is processed. The FDC asserts RQM  
again to request each parameter byte of the command unless an illegal command condition is detected.  
After the last parameter byte is received, RQM remains "0" and the FDC automatically enters the next  
phase as defined by the command definition.  
The FIFO is disabled during the command phase to provide for the proper handling of the "Invalid  
Command" condition.  
6.5.2 Execution Phase  
All data transfers to or from the FDC occur during the execution phase, which can proceed in DMA or non-  
DMA mode as indicated in the Specify command.  
After a reset, the FIFO is disabled. Each data byte is transferred by an FINT or FDRQ depending on the  
DMA mode. The Configure command can enable the FIFO and set the FIFO threshold value.  
The following paragraphs detail the operation of the FIFO flow control. In these descriptions, <threshold>  
is defined as the number of bytes available to the FDC when service is requested from the host and  
ranges from 1 to 16. The parameter FIFOTHR, which the user programs, is one less and ranges from 0 to  
15.  
SMSC FDC37C672  
Page 37  
Rev. 10-29-03  
PRELIMINARY DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
A low threshold value (i.e. 2) results in longer periods of time between service requests, but requires faster  
servicing of the request for both read and write cases. The host reads (writes) from (to) the FIFO until  
empty (full), then the transfer request goes inactive. The host must be very responsive to the service  
request. This is the desired case for use with a "fast" system.  
A high value of threshold (i.e. 12) is used with a "sluggish" system by affording a long latency period after  
a service request, but results in more frequent service requests.  
Non-DMA Mode - Transfers from the FIFO to the Host  
The FINT pin and RQM bits in the Main Status Register are activated when the FIFO contains (16-  
<threshold>) bytes or the last bytes of a full sector have been placed in the FIFO. The FINT pin can be  
used for interrupt-driven systems, and RQM can be used for polled systems. The host must respond to  
the request by reading data from the FIFO. This process is repeated until the last byte is transferred out of  
the FIFO. The FDC will deactivate the FINT pin and RQM bit when the FIFO becomes empty.  
Non-DMA Mode - Transfers from the Host to the FIFO  
The FINT pin and RQM bit in the Main Status Register are activated upon entering the execution phase of  
data transfer commands. The host must respond to the request by writing data into the FIFO. The FINT  
pin and RQM bit remain true until the FIFO becomes full. They are set true again when the FIFO has  
<threshold> bytes remaining in the FIFO. The FINT pin will also be deactivated if TC and nDACK both go  
inactive. The FDC enters the result phase after the last byte is taken by the FDC from the FIFO (i.e. FIFO  
empty condition).  
DMA Mode - Transfers from the FIFO to the Host  
The FDC activates the DDRQ pin when the FIFO contains (16 - <threshold>) bytes, or the last byte of a full  
sector transfer has been placed in the FIFO. The DMA controller must respond to the request by reading  
data from the FIFO. The FDC will deactivate the DDRQ pin when the FIFO becomes empty. FDRQ goes  
inactive after nDACK goes active for the last byte of a data transfer (or on the active edge of nIOR, on the  
last byte, if no edge is present on nDACK). A data underrun may occur if FDRQ is not removed in time to  
prevent an unwanted cycle.  
DMA Mode - Transfers from the Host to the FIFO.  
The FDC activates the FDRQ pin when entering the execution phase of the data transfer commands. The  
DMA controller must respond by activating the nDACK and nIOW pins and placing data in the FIFO.  
FDRQ remains active until the FIFO becomes full. FDRQ is again set true when the FIFO has <threshold>  
bytes remaining in the FIFO. The FDC will also deactivate the FDRQ pin when TC becomes true (qualified  
by nDACK), indicating that no more data is required. FDRQ goes inactive after nDACK goes active for the  
last byte of a data transfer (or on the active edge of nIOW of the last byte, if no edge is present on  
nDACK). A data overrun may occur if FDRQ is not removed in time to prevent an unwanted cycle.  
6.5.3 Data Transfer Termination  
The FDC supports terminal count explicitly through the TC pin and implicitly through the underrun/overrun  
and end-of-track (EOT) functions. For full sector transfers, the EOT parameter can define the last sector  
to be transferred in a single or multi-sector transfer.  
If the last sector to be transferred is a partial sector, the host can stop transferring the data in mid-sector,  
and the FDC will continue to complete the sector as if a hardware TC was received. The only difference  
between these implicit functions and TC is that they return "abnormal termination" result status. Such  
status indications can be ignored if they were expected.  
Note that when the host is sending data to the FIFO of the FDC, the internal sector count will be complete  
when the FDC reads the last byte from its side of the FIFO. There may be a delay in the removal of the  
SMSC FDC37C672  
Page 38  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
transfer request signal of up to the time taken for the FDC to read the last 16 bytes from the FIFO. The  
host must tolerate this delay.  
6.5.4 Result Phase  
The generation of FINT determines the beginning of the result phase. For each of the commands, a  
defined set of result bytes has to be read from the FDC before the result phase is complete. These bytes  
of data must be read out for another command to start.  
RQM and DIO must both equal "1" before the result bytes may be read. After all the result bytes have  
been read, the RQM and DIO bits switch to "1" and "0" respectively, and the CB bit is cleared, indicating  
that the FDC is ready to accept the next command.  
SMSC FDC37C672  
Page 39  
Rev. 10-29-03  
PRELIMINARY DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
Chapter 7 Command Set/Descriptions  
Commands can be written whenever the FDC is in the command phase. Each command has a unique set  
of needed parameters and status results. The FDC checks to see that the first byte is a valid command  
and, if valid, proceeds with the command. If it is invalid, an interrupt is issued. The user sends a Sense  
Interrupt Status command which returns an invalid command error. Refer to Table 7.1 for explanations of  
the various symbols used. Chapter 8 lists the required parameters and the results associated with each  
command that the FDC is capable of performing.  
Table 7.1 - Description of Command Symbols  
SYMBOL  
NAME  
Cylinder Address  
Data Pattern  
DESCRIPTION  
The currently selected address; 0 to 255.  
The pattern to be written in each sector data field during formatting.  
C
D
D0, D1, D2,  
Drive Select 0-3  
Designates which drives are perpendicular drives on the Perpendicular  
D3  
Mode Command. A "1" indicates a perpendicular drive.  
DIR  
Direction Control  
Disk Drive Select  
If this bit is 0, then the head will step out from the spindle during a relative  
seek. If set to a 1, the head will step in toward the spindle.  
DS0, DS1  
DS1  
DS0  
DRIVE  
drive 0  
drive 1  
drive 2  
drive 3  
0
0
1
1
0
1
0
1
DTL  
Special Sector Size By setting N to zero (00), DTL may be used to control the number of bytes  
transferred in disk read/write commands. The sector size (N = 0) is set to  
128. If the actual sector (on the diskette) is larger than DTL, the remainder  
of the actual sector is read but is not passed to the host during read  
commands; during write commands, the remainder of the actual sector is  
written with all zero bytes. The CRC check code is calculated with the  
actual sector. When N is not zero, DTL has no meaning and should be set  
to FF HEX.  
EC  
Enable Count  
When this bit is "1" the "DTL" parameter of the Verify command becomes  
SC (number of sectors per track).  
EFIFO  
EIS  
Enable FIFO  
This active low bit when a 0, enables the FIFO. A "1" disables the FIFO  
(default).  
Enable Implied Seek When set, a seek operation will be performed before executing any read or  
write command that requires the C parameter in the command phase. A "0"  
disables the implied seek.  
EOT  
GAP  
GPL  
End of Track  
The final sector number of the current track.  
Alters Gap 2 length when using Perpendicular Mode.  
Gap Length  
The Gap 3 size. (Gap 3 is the space between sectors excluding the VCO  
synchronization field).  
H/HDS  
HLT  
Head Address  
Head Load Time  
Selected head: 0 or 1 (disk side 0 or 1) as encoded in the sector ID field.  
The time interval that FDC waits after loading the head and before initializing  
a read or write operation. Refer to the Specify command for actual delays.  
HUT  
Head Unload Time  
The time interval from the end of the execution phase (of a read or write  
command) until the head is unloaded. Refer to the Specify command for  
actual delays.  
LOCK  
Lock defines whether EFIFO, FIFOTHR, and PRETRK parameters of the  
CONFIGURE COMMAND can be reset to their default values by a "software  
Reset". (A reset caused by writing to the appropriate bits of either the DSR  
or DOR)  
SMSC FDC37C672  
Page 40  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
SYMBOL  
MFM  
NAME  
DESCRIPTION  
MFM/FM Mode  
A one selects the double density (MFM) mode. A zero selects single density  
Selector  
(FM) mode.  
MT  
Multi-Track Selector When set, this flag selects the multi-track operating mode. In this mode, the  
FDC treats a complete cylinder under head 0 and 1 as a single track. The  
FDC operates as this expanded track started at the first sector under head 0  
and ended at the last sector under head 1. With this flag set, a multitrack  
read or write operation will automatically continue to the first sector under  
head 1 when the FDC finishes operating on the last sector under head 0.  
N
Sector Size Code  
This specifies the number of bytes in a sector. If this parameter is "00", then  
the sector size is 128 bytes. The number of bytes transferred is determined  
by the DTL parameter. Otherwise the sector size is (2 raised to the "N'th"  
power) times 128. All values up to "07" hex are allowable. "07"h would  
equal a sector size of 16k. It is the user's responsibility to not select  
combinations that are not possible with the drive.  
N
SECTOR SIZE  
128 bytes  
256 bytes  
512 bytes  
1024 bytes  
. . .  
00  
01  
02  
03  
. .  
NCN  
ND  
New Cylinder  
Number  
The desired cylinder number.  
Non-DMA Mode  
When set to 1, indicates that the FDC is to operate in the non-DMA mode.  
In this mode, the host is interrupted for each data transfer. When set to 0,  
the FDC operates in DMA mode, interfacing to a DMA controller by means  
of the DRQ and nDACK signals.  
Flag  
OW  
Overwrite  
The bits D0-D3 of the Perpendicular Mode Command can only be modified if  
OW is set to 1. OW id defined in the Lock command.  
PCN  
POLL  
PRETRK  
R
Present Cylinder  
Number  
Polling Disable  
The current position of the head at the completion of Sense Interrupt Status  
command.  
When set, the internal polling routine is disabled. When clear, polling is  
enabled.  
Precompensation  
Programmable from track 00 to FFH.  
Start Track Number  
Sector Address  
The sector number to be read or written. In multi-sector transfers, this  
parameter specifies the sector number of the first sector to be read or  
written.  
RCN  
SC  
Relative Cylinder  
Number  
Relative cylinder offset from present cylinder as used by the Relative Seek  
command.  
Number of Sectors  
The number of sectors per track to be initialized by the Format command.  
The number of sectors per track to be verified during a Verify command  
when EC is set.  
Per Track  
SK  
Skip Flag  
When set to 1, sectors containing a deleted data address mark will  
automatically be skipped during the execution of Read Data. If Read Deleted  
is executed, only sectors with a deleted address mark will be accessed.  
When set to "0", the sector is read or written the same as the read and write  
commands.  
SRT  
Step Rate Interval  
The time interval between step pulses issued by the FDC. Programmable  
from 0.5 to 8 milliseconds in increments of 0.5 ms at the 1 Mbit data rate.  
Refer to the SPECIFY command for actual delays.  
SMSC FDC37C672  
Page 41  
Rev. 10-29-03  
PRELIMINARY DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
SYMBOL  
NAME  
Status 0  
Status 1  
Status 2  
Status 3  
Write Gate  
DESCRIPTION  
ST0  
Registers within the FDC which store status information after a command  
has been executed. This status information is available to the host during  
the result phase after command execution.  
ST1  
ST2  
ST3  
WGATE  
Alters timing of WE to allow for pre-erase loads in perpendicular drives.  
SMSC FDC37C672  
Page 42  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
Chapter 8 Instruction Set  
READ DATA  
DATA BUS  
PHASE  
Command  
R/W  
W
D7  
D6  
D5  
D4  
0
D3  
0
D2  
D1  
D0  
REMARKS  
Command Codes  
MT MFM SK  
1
1
0
W
0
0
0
0
0
HDS DS1 DS0  
W
──────── C ────────  
Sector ID information prior to  
Command execution.  
W
W
W
W
W
W
──────── H ────────  
──────── R ────────  
──────── N ────────  
─────── EOT ───────  
─────── GPL ───────  
─────── DTL ───────  
Execution  
Result  
Data transfer between the FDD  
and system.  
Status information after Com-  
mand execution.  
R
─────── ST0 ───────  
R
R
R
─────── ST1 ───────  
─────── ST2 ───────  
──────── C ────────  
Sector ID information after Com-  
mand execution.  
R
R
R
──────── H ────────  
──────── R ────────  
──────── N ────────  
READ DELETED DATA  
DATA BUS  
PHASE  
Command  
R/W  
W
D7  
D6  
D5  
D4  
0
D3  
1
D2  
D1  
D0  
0
REMARKS  
MT MFM SK  
1
0
Command Codes  
W
0
0
0
0
0
HDS DS1 DS0  
W
──────── C ────────  
Sector ID information prior to  
Command execution.  
W
W
W
W
W
W
──────── H ────────  
──────── R ────────  
──────── N ────────  
─────── EOT ───────  
─────── GPL ───────  
─────── DTL ───────  
Execution  
Result  
Data transfer between the FDD  
and system.  
Status information after Com-  
mand execution.  
R
─────── ST0 ───────  
R
R
R
─────── ST1 ───────  
─────── ST2 ───────  
──────── C ────────  
Sector ID information after Com-  
mand execution.  
R
R
R
──────── H ────────  
──────── R ────────  
──────── N ────────  
SMSC FDC37C672  
Page 43  
Rev. 10-29-03  
PRELIMINARY DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
WRITE DATA  
DATA BUS  
PHASE  
Command  
R/W  
W
D7  
D6  
D5  
0
D4  
0
D3  
0
D2  
D1  
D0  
REMARKS  
MT MFM  
1
0
1
Command Codes  
W
0
0
0
0
0
HDS DS1 DS0  
W
──────── C ────────  
Sector ID information prior to  
Command execution.  
W
W
W
W
W
W
──────── H ────────  
──────── R ────────  
──────── N ────────  
─────── EOT ───────  
─────── GPL ───────  
─────── DTL ───────  
Execution  
Result  
Data transfer between the FDD  
and system.  
Status information after Com-  
mand execution.  
R
─────── ST0 ───────  
R
R
R
─────── ST1 ───────  
─────── ST2 ───────  
──────── C ────────  
Sector ID information after  
Command execution.  
R
R
R
──────── H ────────  
──────── R ────────  
──────── N ────────  
WRITE DELETED DATA  
DATA BUS  
PHASE  
Command  
R/W  
W
D7  
D6  
D5  
0
0
D4  
0
D3  
1
D2  
0
D1  
0
D0  
REMARKS  
MT MFM  
1
Command Codes  
W
0
0
0
0
HDS  
DS1  
DS0  
W
──────── C ────────  
Sector ID information prior  
to Command execution.  
W
W
W
W
W
W
──────── H ────────  
──────── R ────────  
──────── N ────────  
─────── EOT ───────  
─────── GPL ───────  
─────── DTL ───────  
Execution  
Result  
Data transfer between the  
FDD and system.  
Status information after  
Command execution.  
R
─────── ST0 ───────  
R
R
R
─────── ST1 ───────  
─────── ST2 ───────  
──────── C ────────  
Sector ID information after  
Command execution.  
R
R
R
──────── H ────────  
──────── R ────────  
──────── N ────────  
SMSC FDC37C672  
Page 44  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
READ A TRACK  
DATA BUS  
PHASE  
Command  
R/W  
W
D7  
0
0
D6  
MFM  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
1
DS1  
D0  
0
DS0  
REMARKS  
Command Codes  
W
0
0
0
HDS  
W
──────── C ────────  
Sector ID information prior  
to Command execution.  
W
W
W
W
W
W
──────── H ────────  
──────── R ────────  
──────── N ────────  
─────── EOT ───────  
─────── GPL ───────  
─────── DTL ───────  
Execution  
Result  
Data transfer between the  
FDD and system. FDC  
reads all of cylinders'  
contents from index hole to  
EOT.  
Status information after  
Command execution.  
R
─────── ST0 ───────  
R
R
R
─────── ST1 ───────  
─────── ST2 ───────  
──────── C ────────  
Sector ID information after  
Command execution.  
R
R
R
──────── H ────────  
──────── R ────────  
──────── N ────────  
VERIFY  
DATA BUS  
PHASE  
Command  
R/W  
W
D7  
D6  
D5  
D4  
1
D3  
0
D2  
1
D1  
1
DS1  
D0  
0
DS0  
REMARKS  
MT MFM SK  
Command Codes  
W
EC  
0
0
0
0
HDS  
W
──────── C ────────  
Sector ID information prior  
to Command execution.  
W
W
W
W
W
W
──────── H ────────  
──────── R ────────  
──────── N ────────  
─────── EOT ───────  
─────── GPL ───────  
────── DTL/SC ──────  
Execution  
Result  
No data transfer takes  
place.  
Status information after  
Command execution.  
R
─────── ST0 ───────  
R
R
R
─────── ST1 ───────  
─────── ST2 ───────  
──────── C ────────  
Sector ID information after  
Command execution.  
R
R
R
──────── H ────────  
──────── R ────────  
──────── N ────────  
SMSC FDC37C672  
Page 45  
Rev. 10-29-03  
PRELIMINARY DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
VERSION  
DATA BUS  
PHASE  
Command  
Result  
R/W  
W
R
D7  
0
1
D6  
0
0
D5  
0
0
D4  
1
D3  
0
D2  
0
0
D1  
0
0
D0  
0
0
REMARKS  
Command Code  
1
0
Enhanced Controller  
FORMAT A TRACK  
DATA BUS  
PHASE  
Command  
R/W  
W
D7  
0
0
D6  
MFM  
0
D5  
0
0
D4  
0
D3  
1
D2  
1
D1  
0
D0  
1
DS0  
REMARKS  
Command Codes  
W
0
0
HDS  
DS1  
W
──────── N ────────  
──────── SC ────────  
─────── GPL ───────  
──────── D ────────  
Bytes/Sector  
Sectors/Cylinder  
Gap 3  
W
W
W
Filler Byte  
Execution for  
Each Sector  
Repeat:  
W
──────── C ────────  
Input Sector Parameters  
W
W
W
──────── H ────────  
──────── R ────────  
──────── N ────────  
FDC formats an entire  
cylinder  
Status information after  
Command execution  
Result  
R
─────── ST0 ───────  
R
R
R
R
R
R
─────── ST1 ───────  
─────── ST2 ───────  
────── Undefined ──────  
────── Undefined ──────  
────── Undefined ──────  
────── Undefined ──────  
RECALIBRATE  
DATA BUS  
PHASE  
R/W  
W
W
D7  
0
0
D6  
0
0
D5  
0
0
D4  
0
D3  
0
D2  
1
D1  
1
D0  
1
DS0  
REMARKS  
Command  
Command Codes  
0
0
0
DS1  
Execution  
Head retracted to Track 0  
Interrupt.  
SENSE INTERRUPT STATUS  
DATA BUS  
PHASE  
Command  
Result  
R/W  
W
D7  
0
D6  
0
D5  
0
D4  
D3  
D2  
D1  
D0  
REMARKS  
0
1
0
0
0
Command Codes  
R
─────── ST0 ───────  
Status information at the end of  
each seek operation.  
R
─────── PCN ───────  
SMSC FDC37C672  
Page 46  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
SPECIFY  
DATA BUS  
PHASE  
Command  
R/W  
W
D7  
0
D6  
0
D5  
0
D4  
D3  
D2  
0
D1  
1
D0  
REMARKS  
Command Codes  
0
0
1
W
─── SRT ───  
─── HUT ───  
W
────── HLT ──────  
ND  
SENSE DRIVE STATUS  
DATA BUS  
PHASE  
Command  
R/W  
W
D7  
0
0
D6  
0
0
D5  
0
D4  
D3  
0
D2  
1
D1  
0
DS1  
D0  
0
DS0  
REMARKS  
Command Codes  
0
0
W
0
0
HDS  
Result  
R
─────── ST3 ───────  
Status information about  
FDD  
SEEK  
DATA BUS  
PHASE  
R/W  
W
D7  
0
0
D6  
0
0
D5  
0
D4  
0
D3  
1
D2  
1
D1  
1
DS1  
D0  
1
DS0  
REMARKS  
Command  
Command Codes  
W
0
0
0
HDS  
W
─────── NCN ───────  
Execution  
Head positioned over proper  
cylinder on diskette.  
CONFIGURE  
DATA BUS  
PHASE  
R/W  
W
D7  
0
D6  
0
D5  
0
D4  
1
D3  
0
D2  
0
0
D1  
1
0
D0  
1
0
REMARKS  
Configure Information  
Command  
W
0
0
0
0
0
W
W
0
EIS EFIFO  
POLL  
─── FIFOTHR ───  
Execution  
───────── PRETRK ─────────  
RELATIVE SEEK  
DATA BUS  
PHASE  
Command  
R/W  
W
D7  
1
0
D6  
DIR  
0
D5  
0
0
D4  
0
D3  
1
D2  
1
D1  
1
D0  
1
DS0  
REMARKS  
W
0
0
HDS  
DS1  
W
─────── RCN ───────  
SMSC FDC37C672  
Page 47  
Rev. 10-29-03  
PRELIMINARY DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
DUMPREG  
DATA BUS  
PHASE  
Command  
R/W  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
REMARKS  
W
0
0
0
0
1
1
1
0
*Note:  
Registers  
placed in  
FIFO  
Execution  
Result  
R
R
R
R
R
R
R
R
R
R
────── PCN-Drive 0 ───────  
────── PCN-Drive 1 ───────  
────── PCN-Drive 2 ───────  
────── PCN-Drive 3 ───────  
──── SRT ────  
─────── HLT ───────  
─── HUT ───  
ND  
─────── SC/EOT ───────  
LOCK  
0
0
D3  
D2  
POLL  
D1  
D0  
GAP  
WGATE  
EIS EFIFO  
── FIFOTHR ──  
──────── PRETRK ────────  
READ ID  
DATA BUS  
PHASE  
Command  
R/W  
W
D7  
0
0
D6  
MFM  
0
D5  
0
0
D4  
0
0
D3  
1
0
D2  
0
D1  
1
DS1  
D0  
0
DS0  
REMARKS  
Commands  
W
HDS  
Execution  
The first correct ID  
information on the Cylinder  
is stored in Data Register  
Result  
R
──────── ST0 ────────  
Status information after  
Command execution.  
Disk status after the  
Command has completed  
R
R
R
R
R
R
──────── ST1 ────────  
──────── ST2 ────────  
──────── C ────────  
──────── H ────────  
──────── R ────────  
──────── N ────────  
PERPENDICULAR MODE  
DATA BUS  
PHASE  
Command  
R/W  
W
D7  
0
OW  
D6  
0
0
D5  
0
D3  
D4  
1
D3  
0
D1  
D2  
0
D0  
D1  
1
GAP  
D0  
0
WGATE  
REMARKS  
Command Codes  
D2  
SMSC FDC37C672  
Page 48  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
INVALID CODES  
DATA BUS  
D4 D3  
PHASE  
Command  
R/W  
W
D7  
D6  
D5  
D2  
D1  
D0  
REMARKS  
───── Invalid Codes ─────  
Invalid Command Codes (NoOp -  
FDC goes into Standby State)  
Result  
R
─────── ST0 ───────  
ST0 = 80H  
LOCK  
DATA BUS  
PHASE  
Command  
Result  
R/W  
W
R
D7  
LOCK  
0
D6  
0
0
D5  
0
0
D4  
1
LOCK  
D3  
0
0
D2  
1
0
D1  
0
0
D0  
0
0
REMARKS  
Command Codes  
SC is returned if the last command that was issued was the Format command. EOT is returned if the last  
command was a Read or Write.  
Note:  
These bits are used internally only. They are not reflected in the Drive Select pins. It is the user's  
responsibility to maintain correspondence between these bits and the Drive Select pins (DOR).  
8.1  
Data Transfer Commands  
All of the Read Data, Write Data and Verify type commands use the same parameter bytes and return the  
same results information, the only difference being the coding of bits 0-4 in the first byte.  
An implied seek will be executed if the feature was enabled by the Configure command. This seek is  
completely transparent to the user. The Drive Busy bit for the drive will go active in the Main Status  
Register during the seek portion of the command. If the seek portion fails, it is reflected in the results  
status normally returned for a Read/Write Data command. Status Register 0 (ST0) would contain the error  
code and C would contain the cylinder on which the seek failed.  
8.1.1 Read Data  
A set of nine (9) bytes is required to place the FDC in the Read Data Mode. After the Read Data  
command has been issued, the FDC loads the head (if it is in the unloaded state), waits the specified head  
settling time (defined in the Specify command), and begins reading ID Address Marks and ID fields. When  
the sector address read off the diskette matches with the sector address specified in the command, the  
FDC reads the sector's data field and transfers the data to the FIFO.  
After completion of the read operation from the current sector, the sector address is incremented by one  
and the data from the next logical sector is read and output via the FIFO. This continuous read function is  
called "Multi-Sector Read Operation". Upon receipt of TC, or an implied TC (FIFO overrun/underrun), the  
FDC stops sending data but will continue to read data from the current sector, check the CRC bytes, and  
at the end of the sector, terminate the Read Data Command.  
N determines the number of bytes per sector (see Table 8.1 below). If N is set to zero, the sector size is  
set to 128. The DTL value determines the number of bytes to be transferred. If DTL is less than 128, the  
FDC transfers the specified number of bytes to the host. For reads, it continues to read the entire 128-  
byte sector and checks for CRC errors. For writes, it completes the 128-byte sector by filling in zeros. If N  
is not set to 00 Hex, DTL should be set to FF Hex and has no impact on the number of bytes transferred.  
SMSC FDC37C672  
Page 49  
Rev. 10-29-03  
PRELIMINARY DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
Table 8.1 - Sector Sizes  
N
00  
01  
02  
03  
..  
SECTOR SIZE  
128 bytes  
256 bytes  
512 bytes  
1024 bytes  
...  
07  
16 Kbytes  
The amount of data which can be handled with a single command to the FDC depends upon MT (multi-  
track) and N (number of bytes/sector).  
The Multi-Track function (MT) allows the FDC to read data from both sides of the diskette. For a particular  
cylinder, data will be transferred starting at Sector 1, Side 0 and completing the last sector of the same  
track at Side 1.  
If the host terminates a read or write operation in the FDC, the ID information in the result phase is  
dependent upon the state of the MT bit and EOT byte. Refer to Table 8.2.  
At the completion of the Read Data command, the head is not unloaded until after the Head Unload Time  
Interval (specified in the Specify command) has elapsed. If the host issues another command before the  
head unloads, then the head settling time may be saved between subsequent reads.  
If the FDC detects a pulse on the nINDEX pin twice without finding the specified sector (meaning that the  
diskette's index hole passes through index detect logic in the drive twice), the FDC sets the IC code in  
Status Register 0 to "01" indicating abnormal termination, sets the ND bit in Status Register 1 to "1"  
indicating a sector not found, and terminates the Read Data Command.  
After reading the ID and Data Fields in each sector, the FDC checks the CRC bytes. If a CRC error occurs  
in the ID or data field, the FDC sets the IC code in Status Register 0 to "01" indicating abnormal  
termination, sets the DE bit flag in Status Register 1 to "1", sets the DD bit in Status Register 2 to "1" if  
CRC is incorrect in the ID field, and terminates the Read Data Command. Table 8.3 describes the effect  
of the SK bit on the Read Data command execution and results. Except where noted in Table 8.3, the C or  
R value of the sector address is automatically incremented (see Table 8.5).  
Table 8.2 - Effects of MT and N Bits  
MAXIMUM TRANSFER  
CAPACITY  
FINAL SECTOR READ  
FROM DISK  
26 at side 0 or 1  
26 at side 1  
15 at side 0 or 1  
15 at side 1  
8 at side 0 or 1  
16 at side 1  
MT  
N
0
1
0
1
0
1
1
1
2
2
3
3
256 x 26 = 6,656  
256 x 52 = 13,312  
512 x 15 = 7,680  
512 x 30 = 15,360  
1024 x 8 = 8,192  
1024 x 16 = 16,384  
SMSC FDC37C672  
Page 50  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
Table 8.3 - Skip Bit vs Read Data Command  
RESULTS  
DATA ADDRESS  
SK BIT  
MARK TYPE  
VALUE  
ENCOUNTERED  
DESCRIPTION OF  
RESULTS  
Normal termination.  
SECTOR READ?  
CM BIT OF ST2 SET?  
0
0
Normal Data  
Deleted Data  
Yes  
No  
Address not  
Yes  
Yes  
incremented. Next sector  
not searched for.  
1
1
Normal Data  
Deleted Data  
Yes  
No  
No  
Normal termination.  
Yes  
Normal termination.  
Sector not read  
("skipped").  
8.1.2 Read Deleted Data  
This command is the same as the Read Data command, only it operates on sectors that contain a Deleted  
Data Address Mark at the beginning of a Data Field.  
Table 8.4 describes the effect of the SK bit on the Read Deleted Data command execution and results.  
Except where noted in Table 8.4, the C or R value of the sector address is automatically incremented (see  
Table 8.5).  
Table 8.4 - Skip Bit vs. Read Deleted Data Command  
DATA ADDRESS  
SK BIT  
VALUE  
MARK TYPE  
RESULTS  
ENCOUNTERED  
DESCRIPTION OF  
RESULTS  
SECTOR READ?  
CM BIT OF ST2 SET?  
0
Normal Data  
Yes  
Yes  
Address not  
incremented. Next sector  
not searched for.  
Normal termination.  
0
1
Deleted Data  
Normal Data  
Yes  
No  
No  
Normal termination.  
Sector not read  
("skipped").  
Yes  
Normal termination.  
1
Deleted Data  
Yes  
No  
8.1.3 Read A Track  
This command is similar to the Read Data command except that the entire data field is read continuously  
from each of the sectors of a track. Immediately after encountering a pulse on the nINDEX pin, the FDC  
starts to read all data fields on the track as continuous blocks of data without regard to logical sector  
numbers. If the FDC finds an error in the ID or DATA CRC check bytes, it continues to read data from the  
track and sets the appropriate error bits at the end of the command. The FDC compares the ID  
SMSC FDC37C672  
Page 51  
Rev. 10-29-03  
PRELIMINARY DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
information read from each sector with the specified value in the command and sets the ND flag of Status  
Register 1 to a "1" if there is no comparison. Multi-track or skip operations are not allowed with this  
command. The MT and SK bits (bits D7 and D5 of the first command byte respectively) should always be  
set to "0".  
This command terminates when the EOT specified number of sectors has not been read. If the FDC does  
not find an ID Address Mark on the diskette after the second occurrence of a pulse on the IDX pin, then it  
sets the IC code in Status Register 0 to "01" (abnormal termination), sets the MA bit in Status Register 1 to  
"1", and terminates the command.  
Table 8.5 - Result Phase Table  
FINAL SECTOR  
MT  
HEAD  
ID INFORMATION AT RESULT PHASE  
TRANSFERRED TO  
HOST  
C
H
R
N
0
0
1
0
1
Less than EOT  
Equal to EOT  
Less than EOT  
Equal to EOT  
Less than EOT  
Equal to EOT  
Less than EOT  
Equal to EOT  
NC  
C + 1  
NC  
C + 1  
NC  
NC  
NC  
C + 1  
NC  
NC  
NC  
NC  
NC  
LSB  
NC  
LSB  
R + 1  
01  
R + 1  
01  
R + 1  
01  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
1
R + 1  
01  
Notes:  
NC: No Change, the same value as the one at the beginning of command execution.  
LSB: Least Significant Bit, the LSB of H is complemented.  
8.1.4 Write Data  
After the Write Data command has been issued, the FDC loads the head (if it is in the unloaded state),  
waits the specified head load time if unloaded (defined in the Specify command), and begins reading ID  
fields. When the sector address read from the diskette matches the sector address specified in the  
command, the FDC reads the data from the host via the FIFO and writes it to the sector's data field.  
After writing data into the current sector, the FDC computes the CRC value and writes it into the CRC field  
at the end of the sector transfer. The Sector Number stored in "R" is incremented by one, and the FDC  
continues writing to the next data field. The FDC continues this "Multi-Sector Write Operation". Upon  
receipt of a terminal count signal or if a FIFO over/under run occurs while a data field is being written, then  
the remainder of the data field is filled with zeros. The FDC reads the ID field of each sector and checks  
the CRC bytes. If it detects a CRC error in one of the ID fields, it sets the IC code in Status Register  
0 to "01" (abnormal termination), sets the DE bit of Status Register 1 to "1", and terminates the Write Data  
command.  
The Write Data command operates in much the same manner as the Read Data command. The following  
items are the same. Please refer to the Read Data Command for details:  
Transfer Capacity  
EN (End of Cylinder) bit  
ND (No Data) bit  
Head Load, Unload Time Interval  
ID information when the host terminates the command  
Definition of DTL when N = 0 and when N does not = 0  
SMSC FDC37C672  
Page 52  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
8.1.5 Write Deleted Data  
This command is almost the same as the Write Data command except that a Deleted Data Address Mark  
is written at the beginning of the Data Field instead of the normal Data Address Mark. This command is  
typically used to mark a bad sector containing an error on the floppy disk.  
8.1.6 Verify  
The Verify command is used to verify the data stored on a disk. This command acts exactly like a Read  
Data command except that no data is transferred to the host. Data is read from the disk and CRC is  
computed and checked against the previously-stored value.  
Because data is not transferred to the host, TC (pin 89) cannot be used to terminate this command. By  
setting the EC bit to "1", an implicit TC will be issued to the FDC. This implicit TC will occur when the SC  
value has decremented to 0 (an SC value of 0 will verify 256 sectors). This command can also be  
terminated by setting the EC bit to "0" and the EOT value equal to the final sector to be checked. If EC is  
set to "0", DTL/SC should be programmed to 0FFH. Refer to Table 8.5 and Table 8.6 for information  
concerning the values of MT and EC versus SC and EOT value.  
Definitions:  
# Sectors Per Side = Number of formatted sectors per each side of the disk.  
# Sectors Remaining = Number of formatted sectors left which can be read, including side 1 of the disk if  
MT is set to "1".  
Table 8.6 - Verify Command Result Phase Table  
MT  
EC  
SC/EOT VALUE  
TERMINATION RESULT  
0
0
SC = DTL  
EOT # Sectors Per Side  
Success Termination  
Result Phase Valid  
0
0
0
1
SC = DTL  
Unsuccessful Termination  
Result Phase Invalid  
Successful Termination  
Result Phase Valid  
EOT > # Sectors Per Side  
SC # Sectors Remaining AND  
EOT # Sectors Per Side  
0
1
1
1
1
0
0
1
SC > # Sectors Remaining OR  
EOT > # Sectors Per Side  
SC = DTL  
EOT # Sectors Per Side  
Unsuccessful Termination  
Result Phase Invalid  
Successful Termination  
Result Phase Valid  
SC = DTL  
Unsuccessful Termination  
Result Phase Invalid  
Successful Termination  
Result Phase Valid  
EOT > # Sectors Per Side  
SC # Sectors Remaining AND  
EOT # Sectors Per Side  
1
1
SC > # Sectors Remaining OR  
EOT > # Sectors Per Side  
Unsuccessful Termination  
Result Phase Invalid  
Note:  
If MT is set to "1" and the SC value is greater than the number of remaining formatted sectors on Side 0,  
verifying will continue on Side 1 of the disk.  
SMSC FDC37C672  
Page 53  
Rev. 10-29-03  
PRELIMINARY DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
8.1.7 Format A Track  
The Format command allows an entire track to be formatted. After a pulse from the IDX pin is detected,  
the FDC starts writing data on the disk including gaps, address marks, ID fields, and data fields per the  
IBM System 34 or 3740 format (MFM or FM respectively). The particular values that will be written to the  
gap and data field are controlled by the values programmed into N, SC, GPL, and D which are specified by  
the host during the command phase. The data field of the sector is filled with the data byte specified by D.  
The ID field for each sector is supplied by the host; that is, four data bytes per sector are needed by the  
FDC for C, H, R, and N (cylinder, head, sector number and sector size respectively).  
After formatting each sector, the host must send new values for C, H, R and N to the FDC for the next  
sector on the track. The R value (sector number) is the only value that must be changed by the host after  
each sector is formatted. This allows the disk to be formatted with nonsequential sector addresses  
(interleaving). This incrementing and formatting continues for the whole track until the FDC encounters a  
pulse on the IDX pin again and it terminates the command.  
Table 8.7 contains typical values for gap fields which are dependent upon the size of the sector and the  
number of sectors on each track. Actual values can vary due to drive electronics.  
Table 8.7 - Format Fields  
SYSTEM 34 (DOUBLE DENSITY) FORMAT  
DATA  
GAP4a SYNC  
IAM  
GAP1 SYNC IDAM  
C
Y
L
H
D
S
E
C
N
O
C
R
C
GAP2 SYNC  
AM  
C
R
C
80x  
4E  
12x  
00  
50x  
4E  
12x  
00  
22x  
4E  
12x  
00  
DATA  
DATA  
DATA  
GAP3 GAP 4b  
GAP3 GAP 4b  
GAP3 GAP 4b  
3x FC  
C2  
3x FE  
A1  
3x FB  
A1 F8  
SYSTEM 3740 (SINGLE DENSITY) FORMAT  
DATA  
GAP4a SYNC  
IAM  
FC  
GAP1 SYNC IDAM  
C
Y
L
H
D
S
E
C
N
O
C
R
C
GAP2 SYNC  
AM  
C
R
C
40x  
FF  
6x  
00  
26x  
FF  
6x  
00  
11x  
FF  
6x  
00  
FE  
FB or  
F8  
PERPENDICULAR FORMAT  
DATA  
AM  
GAP4a SYNC  
IAM  
GAP1 SYNC IDAM  
C
Y
L
H
D
S
E
C
N
O
C
R
C
GAP2 SYNC  
C
R
C
80x  
4E  
12x  
00  
50x  
4E  
12x  
00  
41x  
4E  
12x  
00  
3x FC  
C2  
3x FE  
A1  
3x FB  
A1 F8  
SMSC FDC37C672  
Page 54  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
Table 8.8 - Typical Values for Formatting  
FORMAT SECTOR SIZE  
N
SC  
GPL1  
GPL2  
128  
128  
512  
1024  
2048  
4096  
...  
00  
00  
02  
03  
04  
05  
...  
12  
10  
08  
04  
02  
01  
07  
10  
18  
46  
C8  
C8  
09  
19  
30  
87  
FF  
FF  
FM  
5.25"  
Drives  
256  
256  
01  
01  
02  
03  
04  
05  
...  
12  
10  
09  
04  
02  
01  
0A  
20  
2A  
80  
C8  
C8  
0C  
32  
50  
F0  
FF  
FF  
512*  
1024  
2048  
4096  
...  
MFM  
128  
256  
512  
0
1
2
0F  
09  
05  
07  
0F  
1B  
1B  
2A  
3A  
3.5"  
FM  
Drives  
256  
512**  
1024  
1
2
3
0F  
09  
05  
0E  
1B  
35  
36  
54  
74  
MFM  
GPL1 = suggested GPL values in Read and Write commands to avoid splice point  
between data field and ID field of contiguous sections.  
GPL2 = suggested GPL value in Format A Track command.  
*PC/AT values (typical)  
**PS/2 values (typical). Applies with 1.0 MB and 2.0 MB drives.  
Note: All values except sector size are in hex.  
8.2  
Control Commands  
Control commands differ from the other commands in that no data transfer takes place. Three commands  
generate an interrupt when complete: Read ID, Recalibrate, and Seek. The other control commands do  
not generate an interrupt.  
8.2.1 Read ID  
The Read ID command is used to find the present position of the recording heads. The FDC stores the  
values from the first ID field it is able to read into its registers. If the FDC does not find an ID address mark  
on the diskette after the second occurrence of a pulse on the nINDEX pin, it then sets the IC code in  
Status Register 0 to "01" (abnormal termination), sets the MA bit in Status Register 1 to "1", and  
terminates the command.  
The following commands will generate an interrupt upon completion. They do not return any result bytes.  
It is highly recommended that control commands be followed by the Sense Interrupt Status command.  
Otherwise, valuable interrupt status information will be lost.  
8.2.2 Recalibrate  
This command causes the read/write head within the FDC to retract to the track 0 position. The FDC  
clears the contents of the PCN counter and checks the status of the nTR0 pin from the FDD. As long as  
the nTR0 pin is low, the DIR pin remains 0 and step pulses are issued. When the nTR0 pin goes high, the  
SMSC FDC37C672  
Page 55  
Rev. 10-29-03  
PRELIMINARY DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
SE bit in Status Register 0 is set to "1" and the command is terminated. If the nTR0 pin is still low after 79  
step pulses have been issued, the FDC sets the SE and the EC bits of Status Register 0 to "1" and  
terminates the command. Disks capable of handling more than 80 tracks per side may require more than  
one Recalibrate command to return the head back to physical Track 0.  
The Recalibrate command does not have a result phase. The Sense Interrupt Status command must be  
issued after the Recalibrate command to effectively terminate it and to provide verification of the head  
position (PCN). During the command phase of the recalibrate operation, the FDC is in the BUSY state, but  
during the execution phase it is in a NON-BUSY state. At this time, another Recalibrate command may be  
issued, and in this manner parallel Recalibrate operations may be done on up to four drives at once.  
Upon power up, the software must issue a Recalibrate command to properly initialize all drives and the  
controller.  
8.2.3 Seek  
The read/write head within the drive is moved from track to track under the control of the Seek command.  
The FDC compares the PCN, which is the current head position, with the NCN and performs the following  
operation if there is a difference:  
PCN < NCN:  
PCN > NCN:  
Direction signal to drive set to  
Direction signal to drive set to  
"1" (step in) and issues step pulses.  
"0" (step out) and issues step pulses.  
The rate at which step pulses are issued is controlled by SRT (Stepping Rate Time) in the Specify  
command. After each step pulse is issued, NCN is compared against PCN, and when NCN = PCN the SE  
bit in Status Register 0 is set to "1" and the command is terminated. During the command phase of the  
seek or recalibrate operation, the FDC is in the BUSY state, but during the execution phase it is in the  
NON-BUSY state. At this time, another Seek or Recalibrate command may be issued, and in this manner,  
parallel seek operations may be done on up to four drives at once.  
Note that if implied seek is not enabled, the read and write commands should be preceded by:  
1. Seek command - Step to the proper track  
2. Sense Interrupt Status command - Terminate the Seek command  
3. Read ID - Verify head is on proper track  
4. Issue Read/Write command.  
The Seek command does not have a result phase. Therefore, it is highly recommended that the Sense  
Interrupt Status command be issued after the Seek command to terminate it and to provide verification of  
the head position (PCN). The H bit (Head Address) in ST0 will always return to a "0". When exiting  
POWERDOWN mode, the FDC clears the PCN value and the status information to zero. Prior to issuing  
the POWERDOWN command, it is highly recommended that the user service all pending interrupts  
through the Sense Interrupt Status command.  
8.2.4 Sense Interrupt Status  
An interrupt signal on FINT pin is generated by the FDC for one of the following reasons:  
1. Upon entering the Result Phase of:  
a. Read Data command  
b. Read A Track command  
c. Read ID command  
d. Read Deleted Data command  
e. Write Data command  
SMSC FDC37C672  
Page 56  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
f. Format A Track command  
g. Write Deleted Data command  
h. Verify command  
2. End of Seek, Relative Seek, or Recalibrate command  
3. FDC requires a data transfer during the execution phase in the non-DMA mode  
The Sense Interrupt Status command resets the interrupt signal and, via the IC code and SE bit of Status  
Register 0, identifies the cause of the interrupt.  
Table 8.9 - Interrupt Identification  
SE  
0
1
IC  
11  
00  
INTERRUPT DUE TO  
Polling  
Normal termination of  
Seek or Recalibrate  
command  
Abnormal termination of  
Seek or Recalibrate  
command  
1
01  
The Seek, Relative Seek, and Recalibrate commands have no result phase. The Sense Interrupt Status  
command must be issued immediately after these commands to terminate them and to provide verification  
of the head position (PCN). The H (Head Address) bit in ST0 will always return a "0". If a Sense Interrupt  
Status is not issued, the drive will continue to be BUSY and may affect the operation of the next command.  
8.2.5 Sense Drive Status  
Sense Drive Status obtains drive status information. It has not execution phase and goes directly to the  
result phase from the command phase. Status Register 3 contains the drive status information.  
8.2.6 Specify  
The Specify command sets the initial values for each of the three internal times. The HUT (Head Unload  
Time) defines the time from the end of the execution phase of one of the read/write commands to the head  
unload state. The SRT (Step Rate Time) defines the time interval between adjacent step pulses. Note that  
the spacing between the first and second step pulses may be shorter than the remaining step pulses. The  
HLT (Head Load Time) defines the time between when the Head Load signal goes high and the read/write  
operation starts. The values change with the data rate speed selection and are documented in Table 8.10.  
The values are the same for MFM and FM.  
SMSC FDC37C672  
Page 57  
Rev. 10-29-03  
PRELIMINARY DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
Table 8.10 - Drive Control Delays (ms)  
HUT  
SRT  
2M  
64  
4
1M  
128  
8
500K 300K 250K  
2M  
4
3.75  
..  
1M  
8
7.5  
..  
1
500K 300K 250K  
0
1
..  
E
F
256  
16  
426  
26.7  
..  
512  
32  
..  
16  
15  
..  
26.7  
25  
32  
30  
..  
..  
..  
..  
..  
56  
60  
112  
120  
224  
240  
373  
400  
448  
480  
0.5  
0.25  
2
3.33  
1.67  
4
0.5  
1
2
HLT  
2M  
64  
0.5  
1
1M  
128  
1
500K  
300K  
426  
3.3  
6.7  
..  
250K  
00  
01  
02  
..  
7F  
7F  
256  
512  
2
4
2
4
8
..  
..  
..  
.
63  
63.5  
126  
127  
252  
254  
420  
423  
504  
508  
The choice of DMA or non-DMA operations is made by the ND bit. When this bit is "1", the non-DMA  
mode is selected, and when ND is "0", the DMA mode is selected. In DMA mode, data transfers are  
signaled by the FDRQ pin. Non-DMA mode uses the RQM bit and the FINT pin to signal data transfers.  
8.2.7 Configure  
The Configure command is issued to select the special features of the FDC. A Configure command need  
not be issued if the default values of the FDC meet the system requirements.  
Configure Default Values:  
EIS - No Implied Seeks  
EFIFO - FIFO Disabled  
POLL - Polling Enabled  
FIFOTHR - FIFO Threshold Set to 1 Byte  
PRETRK - Pre-Compensation Set to Track 0  
EIS - Enable Implied Seek. When set to "1", the FDC will perform a Seek operation before executing a  
read or write command. Defaults to no implied seek.  
EFIFO - A "1" disables the FIFO (default). This means data transfers are asked for on a byte-by-byte  
basis. Defaults to "1", FIFO disabled. The threshold defaults to "1".  
POLL - Disable polling of the drives. Defaults to "0", polling enabled. When enabled, a single interrupt is  
generated after a reset. No polling is performed while the drive head is loaded and the head unload delay  
has not expired.  
FIFOTHR - The FIFO threshold in the execution phase of read or write commands. This is programmable  
from 1 to 16 bytes. Defaults to one byte. A "00" selects one byte; "0F" selects 16 bytes.  
SMSC FDC37C672  
Page 58  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
PRETRK - Pre-Compensation Start Track Number. Programmable from track 0 to 255. Defaults to track 0.  
A "00" selects track 0; "FF" selects track 255.  
8.2.8 Version  
The Version command checks to see if the controller is an enhanced type or the older type (765A). A  
value of 90 H is returned as the result byte.  
8.2.9 Relative Seek  
The command is coded the same as for Seek, except for the MSB of the first byte and the DIR bit.  
DIR  
Head Step Direction Control  
DIR  
0
1
ACTION  
Step Head Out  
Step Head In  
RCN Relative Cylinder Number that determines how many tracks to step the head in or out from the  
current track number.  
The Relative Seek command differs from the Seek command in that it steps the head the absolute number  
of tracks specified in the command instead of making a comparison against an internal register. The Seek  
command is good for drives that support a maximum of 256 tracks. Relative Seeks cannot be overlapped  
with other Relative Seeks. Only one Relative Seek can be active at a time. Relative Seeks may be  
overlapped with Seeks and Recalibrates. Bit 4 of Status Register 0 (EC) will be set if Relative Seek  
attempts to step outward beyond Track 0.  
As an example, assume that a floppy drive has 300 useable tracks. The host needs to read track 300 and  
the head is on any track (0-255). If a Seek command is issued, the head will stop at track 255. If a  
Relative Seek command is issued, the FDC will move the head the specified number of tracks, regardless  
of the internal cylinder position register (but will increment the register). If the head was on track 40 (d), the  
maximum track that the FDC could position the head on using Relative Seek will be 295 (D), the initial  
track + 255 (D). The maximum count that the head can be moved with a single Relative Seek command is  
255 (D).  
The internal register, PCN, will overflow as the cylinder number crosses track 255 and will contain 39 (D).  
The resulting PCN value is thus (RCN + PCN) mod 256. Functionally, the FDC starts counting from 0  
again as the track number goes above 255 (D). It is the user's responsibility to compensate FDC functions  
(precompensation track number) when accessing tracks greater than 255. The FDC does not keep track  
that it is working in an "extended track area" (greater than 255). Any command issued will use the current  
PCN value except for the Recalibrate command, which only looks for the TRACK0 signal. Recalibrate will  
return an error if the head is farther than 79 due to its limitation of issuing a maximum of 80 step pulses.  
The user simply needs to issue a second Recalibrate command. The Seek command and implied seeks  
will function correctly within the 44 (D) track (299-255) area of the "extended track area". It is the user's  
responsibility not to issue a new track position that will exceed the maximum track that is present in the  
extended area.  
To return to the standard floppy range (0-255) of tracks, a Relative Seek should be issued to cross the  
track 255 boundary.  
A Relative Seek can be used instead of the normal Seek, but the host is required to calculate the  
difference between the current head location and the new (target) head location. This may require the  
host to issue a Read ID command to ensure that the head is physically on the track that software assumes  
it to be. Different FDC commands will return different cylinder results which may be difficult to keep track  
of with software without the Read ID command.  
SMSC FDC37C672  
Page 59  
Rev. 10-29-03  
PRELIMINARY DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
8.2.10 Perpendicular Mode  
The Perpendicular Mode command should be issued prior to executing Read/Write/Format commands that  
access a disk drive with perpendicular recording capability. With this command, the length of the Gap2  
field and VCO enable timing can be altered to accommodate the unique requirements of these drives.  
Table 8.11 describes the effects of the WGATE and GAP bits for the Perpendicular Mode command.  
Upon a reset, the FDC will default to the conventional mode (WGATE = 0, GAP = 0).  
Selection of the 500 Kbps and 1 Mbps perpendicular modes is independent of the actual data rate  
selected in the Data Rate Select Register. The user must ensure that these two data rates remain  
consistent.  
The Gap2 and VCO timing requirements for perpendicular recording type drives are dictated by the design  
of the read/write head. In the design of this head, a pre-erase head precedes the normal read/write head  
by a distance of 200 micrometers. This works out to about 38 bytes at a 1 Mbps recording density.  
Whenever the write head is enabled by the Write Gate signal, the pre-erase head is also activated at the  
same time. Thus, when the write head is initially turned on, flux transitions recorded on the media for the  
first 38 bytes will not be preconditioned with the pre-erase head since it has not yet been activated. To  
accommodate this head activation and deactivation time, the Gap2 field is expanded to a length of 41  
bytes. The format field shown in Table 8.7 - Format Fields illustrates the change in the Gap2 field size for  
the perpendicular format.  
On the read back by the FDC, the controller must begin synchronization at the beginning of the sync field.  
For the conventional mode, the internal PLL VCO is enabled (VCOEN) approximately 24 bytes from the  
start of the Gap2 field. But, when the controller operates in the 1 Mbps perpendicular mode (WGATE = 1,  
GAP = 1), VCOEN goes active after 43 bytes to accommodate the increased Gap2 field size. For both  
cases, and approximate two-byte cushion is maintained from the beginning of the sync field for the  
purposes of avoiding write splices in the presence of motor speed variation.  
For the Write Data case, the FDC activates Write Gate at the beginning of the sync field under the  
conventional mode. The controller then writes a new sync field, data address mark, data field, and CRC  
as shown on page 57. With the pre-erase head of the perpendicular drive, the write head must be  
activated in the Gap2 field to insure a proper write of the new sync field. For the 1 Mbps perpendicular  
mode (WGATE = 1, GAP = 1), 38 bytes will be written in the Gap2 space. Since the bit density is  
proportional to the data rate, 19 bytes will be written in the Gap2 field for the 500 Kbps perpendicular mode  
(WGATE = 1, GAP =0).  
It should be noted that none of the alterations in Gap2 size, VCO timing, or Write Gate timing affect normal  
program flow. The information provided here is just for background purposes and is not needed for normal  
operation. Once the Perpendicular Mode command is invoked, FDC software behavior from the user  
standpoint is unchanged.  
The perpendicular mode command is enhanced to allow specific drives to be designated Perpendicular  
recording drives. This enhancement allows data transfers between Conventional and Perpendicular drives  
without having to issue Perpendicular mode commands between the accesses of the different drive types,  
nor having to change write pre-compensation values.  
When both GAP and WGATE bits of the PERPENDICULAR MODE COMMAND are both programmed to  
"0" (Conventional mode), then D0, D1, D2, D3, and D4 can be programmed independently to "1" for that  
drive to be set automatically to Perpendicular mode. In this mode the following set of conditions also  
apply:  
1. The GAP2 written to a perpendicular drive during a write operation will depend upon the programmed  
data rate.  
2. The write pre-compensation given to a perpendicular mode drive will be 0ns.  
3. For D0-D3 programmed to "0" for conventional mode drives any data written will be at the currently  
programmed write pre-compensation.  
SMSC FDC37C672  
Page 60  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
Note:  
Bits D0-D3 can only be overwritten when OW is programmed as a "1".If either GAP or WGATE is a "1"  
then D0-D3 are ignored.  
Software and hardware resets have the following effect on the PERPENDICULAR MODE COMMAND:  
1. "Software" resets (via the DOR or DSR registers) will only clear GAP and WGATE bits to "0". D0-D3  
are unaffected and retain their previous value.  
2. "Hardware" resets will clear all bits  
(GAP, WGATE and D0-D3) to "0", i.e. all conventional mode.  
Table 8.11 - Effects of WGATE and GAP Bits  
PORTION OF  
GAP 2  
LENGTH OF  
WRITTEN BY  
GAP2 FORMAT WRITE DATA  
WGATE GAP  
MODE  
Conventional  
Perpendicular  
(500 Kbps)  
Reserved  
(Conventional)  
Perpendicular  
(1 Mbps)  
FIELD  
22 Bytes  
22 Bytes  
OPERATION  
0 Bytes  
0
0
0
1
19 Bytes  
1
1
0
1
22 Bytes  
41 Bytes  
0 Bytes  
38 Bytes  
8.3  
8.4  
LOCK  
In order to protect systems with long DMA latencies against older application software that can disable the  
FIFO the LOCK Command has been added. This command should only be used by the FDC routines,  
and application software should refrain from using it. If an application calls for the FIFO to be disabled  
then the CONFIGURE command should be used.  
The LOCK command defines whether the EFIFO, FIFOTHR, and PRETRK parameters of the  
CONFIGURE command can be RESET by the DOR and DSR registers. When the LOCK bit is set to logic  
"1" all subsequent "software RESETS by the DOR and DSR registers will not change the previously set  
parameters to their default values. All "hardware" RESET from the RESET pin will set the LOCK bit to  
logic "0" and return the EFIFO, FIFOTHR, and PRETRK to their default values. A status byte is returned  
immediately after issuing a LOCK command. This byte reflects the value of the LOCK bit set by the  
command byte.  
Enhanced DUMPREG  
The DUMPREG command is designed to support system run-time diagnostics and application software  
development and debug. To accommodate the LOCK command and the enhanced PERPENDICULAR  
MODE command the eighth byte of the DUMPREG command has been modified to contain the additional  
data from these two commands.  
SMSC FDC37C672  
Page 61  
Rev. 10-29-03  
PRELIMINARY DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
8.5  
Compatibility  
The FDC37C672 was designed with software compatibility in mind. It is a fully backwards-compatible  
solution with the older generation 765A/B disk controllers. The FDC also implements on-board registers for  
compatibility with the PS/2, as well as PC/AT and PC/XT, floppy disk controller subsystems. After a  
hardware reset of the FDC, all registers, functions and enhancements default to a PC/AT, PS/2 or PS/2  
Model 30 compatible operating mode, depending on how the IDENT and MFM bits are configured by the  
system BIOS.  
SMSC FDC37C672  
Page 62  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
Chapter 9 Serial Port (UART)  
The FDC37C672 incorporates two full function UARTs. They are compatible with the NS16450, the 16450  
ACE registers and the NS16550A. The UARTS perform serial-to-parallel conversion on received  
characters and parallel-to-serial conversion on transmit characters. The data rates are independently  
programmable from 460.8K baud down to 50 baud. The character options are programmable for 1 start; 1,  
1.5 or 2 stop bits; even, odd, sticky or no parity; and prioritized interrupts. The UARTs each contain a  
programmable baud rate generator that is capable of dividing the input clock or crystal by a number from 1  
to 65535. The UARTs are also capable of supporting the MIDI data rate. Refer to the Configuration  
Registers for information on disabling, power down and changing the base address of the UARTs. The  
interrupt from a UART is enabled by programming  
OUT2 of that UART to a logic "1". OUT2 being a logic "0" disables that UART's interrupt. The second  
UART also supports IrDA, HP-SIR, ASK-IR, Fast IR and Consumer IR infrared modes of operation.  
Note:  
The UARTs may be configured to share an interrupt. Refer to the Configuration section for more  
information.  
9.1  
Register Description  
Addressing of the accessible registers of the Serial Port is shown below. The base addresses of the serial  
ports are defined by the configuration registers (see Configuration section). The Serial Port registers are  
located at sequentially increasing addresses above these base addresses. The FDC37C672 contains two  
serial ports, each of which contain a register set as described below.  
Table 9.1 - Addressing the Serial Port  
DLAB  
A2  
A1  
A0  
REGISTER NAME  
(Note  
9.1)  
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
0
1
1
1
0
0
1
1
0
0
0
0
1
0
0
1
0
1
0
1
0
1
Receive Buffer (read)  
Transmit Buffer (write)  
Interrupt Enable (read/write)  
Interrupt Identification (read)  
FIFO Control (write)  
Line Control (read/write)  
Modem Control (read/write)  
Line Status (read/write)  
Modem Status (read/write)  
Scratchpad (read/write)  
Divisor LSB (read/write)  
Divisor MSB (read/write  
X
X
X
X
X
X
X
1
1
Note 9.1 DLAB is Bit 7 of the Line Control Register  
The following section describes the operation of the registers.  
SMSC FDC37C672  
Page 63  
Rev. 10-29-03  
PRELIMINARY DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
9.1.1 Receive Buffer Register (RB)  
Address Offset = 0H, DLAB = 0, READ ONLY  
This register holds the received incoming data byte. Bit 0 is the least significant bit, which is transmitted  
and received first. Received data is double buffered; this uses an additional shift register to receive the  
serial data stream and convert it to a parallel 8 bit word which is transferred to the Receive Buffer register.  
The shift register is not accessible.  
9.1.2 Transmit Buffer Register (TB)  
Address Offset = 0H, DLAB = 0, WRITE ONLY  
This register contains the data byte to be transmitted. The transmit buffer is double buffered, utilizing an  
additional shift register (not accessible) to convert the 8 bit data word to a serial format. This shift register  
is loaded from the Transmit Buffer when the transmission of the previous byte is complete.  
9.1.3 Interrupt Enable Register (IER)  
Address Offset = 1H, DLAB = 0, READ/WRITE  
The lower four bits of this register control the enables of the five interrupt sources of the Serial Port  
interrupt. It is possible to totally disable the interrupt system by resetting bits 0 through 3 of this register.  
Similarly, setting the appropriate bits of this register to a high, selected interrupts can be enabled.  
Disabling the interrupt system inhibits the Interrupt Identification Register and disables any Serial Port  
interrupt out of the FDC37C672. All other system functions operate in their normal manner, including the  
Line Status and MODEM Status Registers. The contents of the Interrupt Enable Register are described  
below.  
Bit 0  
This bit enables the Received Data Available Interrupt (and timeout interrupts in the FIFO mode) when set  
to logic "1".  
Bit 1  
This bit enables the Transmitter Holding Register Empty Interrupt when set to logic "1".  
Bit 2  
This bit enables the Received Line Status Interrupt when set to logic "1". The error sources causing the  
interrupt are Overrun, Parity, Framing and Break. The Line Status Register must be read to determine the  
source.  
Bit 3  
This bit enables the MODEM Status Interrupt when set to logic "1". This is caused when one of the  
Modem Status Register bits changes state.  
Bits 4 through 7  
These bits are always logic "0".  
SMSC FDC37C672  
Page 64  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
9.1.4 FIFO Control Register (FCR)  
Address Offset = 2H, DLAB = X, WRITE  
This is a write only register at the same location as the IIR. This register is used to enable and clear the  
FIFOs, set the RCVR FIFO trigger level.  
Note:  
DMA is not supported. The UART1 and UART2 FCR’s are shadowed in the UART1 FIFO Control Shadow  
Register (LD8:CRC3[7:0]) and UART2 FIFO Control Shadow Register (LD8:CRC4[7:0]).  
Bit 0  
Setting this bit to a logic "1" enables both the XMIT and RCVR FIFOs. Clearing this bit to a logic "0"  
disables both the XMIT and RCVR FIFOs and clears all bytes from both FIFOs. When changing from FIFO  
Mode to non-FIFO (16450) mode, data is automatically cleared from the FIFOs. This bit must be a 1 when  
other bits in this register are written to or they will not be properly programmed.  
Bit 1  
Setting this bit to a logic "1" clears all bytes in the RCVR FIFO and resets its counter logic to 0. The shift  
register is not cleared. This bit is self-clearing.  
Bit 2  
Setting this bit to a logic "1" clears all bytes in the XMIT FIFO and resets its counter logic to 0. The shift  
register is not cleared. This bit is self-clearing.  
Bit 3  
Writing to this bit has no effect on the operation of the UART. The RXRDY and TXRDY pins are not  
available on this chip.  
Bit 4,5  
Reserved  
Bit 6,7  
These bits are used to set the trigger level for the RCVR FIFO interrupt.  
9.1.5 Interrupt Identification Register (IIR)  
Address Offset = 2H, DLAB = X, READ  
RCVR FIFO  
BIT 7  
BIT 6  
TRIGGER LEVEL  
(BYTES)  
0
0
1
1
0
1
0
1
1
4
8
14  
By accessing this register, the host CPU can determine the highest priority interrupt and its source. Four  
levels of priority interrupt exist. They are in descending order of priority:  
SMSC FDC37C672  
Page 65  
Rev. 10-29-03  
PRELIMINARY DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
1. Receiver Line Status (highest priority)  
2. Received Data Ready  
3. Transmitter Holding Register Empty  
4. MODEM Status (lowest priority)  
Information indicating that a prioritized interrupt is pending and the source of that interrupt is stored in the  
Interrupt Identification Register (refer to Interrupt Control Table). When the CPU accesses the IIR, the  
Serial Port freezes all interrupts and indicates the highest priority pending interrupt to the CPU. During this  
CPU access, even if the Serial Port records new interrupts, the current indication does not change until  
access is completed. The contents of the IIR are described below.  
Bit 0  
This bit can be used in either a hardwired prioritized or polled environment to indicate whether an interrupt  
is pending. When bit 0 is a logic "0", an interrupt is pending and the contents of the IIR may be used as a  
pointer to the appropriate internal service routine. When bit 0 is a logic "1", no interrupt is pending.  
Bits 1 and 2  
These two bits of the IIR are used to identify the highest priority interrupt pending as indicated by the  
Interrupt Control Table.  
Bit 3  
In non-FIFO mode, this bit is a logic "0". In FIFO mode this bit is set along with bit 2 when a timeout  
interrupt is pending.  
Bits 4 and 5  
These bits of the IIR are always logic "0".  
Bits 6 and 7  
These two bits are set when the FIFO CONTROL Register bit 0 equals 1.  
SMSC FDC37C672  
Page 66  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
Table 9.2 - Interrupt Control Table  
INTERRUPT SET AND RESET FUNCTIONS  
FIFO  
MODE  
ONLY  
INTERRUPT  
IDENTIFICATION  
REGISTER  
PRIORITY  
LEVEL  
INTERRUPT  
SOURCE  
None  
INTERRUPT  
BIT 3  
BIT 2 BIT 1 BIT 0  
INTERRUPT TYPE  
RESET CONTROL  
0
0
0
1
0
1
1
0
-
None  
-
Highest  
Receiver Line Status Overrun Error, Parity Reading the Line  
Error, Framing Error Status Register  
or Break Interrupt  
0
1
1
1
0
0
0
0
Second  
Second  
Received Data  
Receiver Data  
Read Receiver  
Buffer or the FIFO  
drops below the  
trigger level.  
Available  
Available  
Character Timeout  
Indication  
No Characters Have Reading the  
Been Removed Receiver Buffer  
From or Input to the Register  
RCVR FIFO during  
the last 4 Char times  
and there is at least  
1 char in it during  
this time  
0
0
0
0
1
0
0
0
Third  
Transmitter Holding Transmitter Holding Reading the IIR  
Register Empty  
Register Empty  
Register (if Source  
of Interrupt) or  
Writing the  
Transmitter Holding  
Register  
Fourth  
MODEM Status  
Clear to Send or  
Data Set Ready or  
Ring Indicator or  
Data Carrier Detect  
Reading the  
MODEM Status  
Register  
9.1.6 Line Control Register (LCR)  
Address Offset = 3H, DLAB = 0, READ/WRITE  
This register contains the format information of the serial line. The bit definitions are:  
Bits 0 and 1  
These two bits specify the number of bits in each transmitted or received serial character. The encoding of  
bits 0 and 1 is as follows:  
BIT 1  
BIT 0  
WORD LENGTH  
5 Bits  
0
0
1
1
0
1
0
1
6 Bits  
7 Bits  
8 Bits  
The Start, Stop and Parity bits are not included in the word length.  
SMSC FDC37C672  
Page 67  
Rev. 10-29-03  
PRELIMINARY DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
Bit 2  
This bit specifies the number of stop bits in each transmitted or received serial character. The following  
table summarizes the information.  
NUMBER OF  
STOP BITS  
BIT 2  
WORD LENGTH  
0
1
1
1
1
--  
1
1.5  
2
2
2
5 bits  
6 bits  
7 bits  
8 bits  
Note:  
The receiver will ignore all stop bits beyond the first, regardless of the number used in transmitting.  
Bit 3  
Parity Enable bit. When bit 3 is a logic "1", a parity bit is generated (transmit data) or checked (receive  
data) between the last data word bit and the first stop bit of the serial data. (The parity bit is used to  
generate an even or odd number of 1s when the data word bits and the parity bit are summed).  
Bit 4  
Even Parity Select bit. When bit 3 is a logic "1" and bit 4 is a logic "0", an odd number of logic "1"'s is  
transmitted or checked in the data word bits and the parity bit. When bit 3 is a logic "1" and bit 4 is a logic  
"1" an even number of bits is transmitted and checked.  
Bit 5  
Stick Parity bit. When bit 3 is a logic "1" and bit 5 is a logic "1", the parity bit is transmitted and then  
detected by the receiver in the opposite state indicated by bit 4.  
Bit 6  
Set Break Control bit. When bit 6 is a logic "1", the transmit data output (TXD) is forced to the Spacing or  
logic "0" state and remains there (until reset by a low level bit 6) regardless of other transmitter activity.  
This feature enables the Serial Port to alert a terminal in a communications system.  
Bit 7  
Divisor Latch Access bit (DLAB). It must be set high (logic "1") to access the Divisor Latches of the Baud  
Rate Generator during read or write operations. It must be set low (logic "0") to access the Receiver  
Buffer Register, the Transmitter Holding Register, or the Interrupt Enable Register.  
9.1.7 Modem Control Register (MCR)  
Address Offset = 4H, DLAB = X, READ/WRITE  
This 8 bit register controls the interface with the MODEM or data set (or device emulating a MODEM). The  
contents of the MODEM control register are described below.  
Bit 0  
This bit controls the Data Terminal Ready (nDTR) output. When bit 0 is set to a logic "1", the nDTR output  
is forced to a logic "0". When bit 0 is a logic "0", the nDTR output is forced to a logic "1".  
SMSC FDC37C672  
Page 68  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
Bit 1  
This bit controls the Request To Send (nRTS) output. Bit 1 affects the nRTS output in a manner identical  
to that described above for bit 0.  
Bit 2  
This bit controls the Output 1 (OUT1) bit. This bit does not have an output pin and can only be read or  
written by the CPU.  
Bit 3  
Output 2 (OUT2). This bit is used to enable an UART interrupt. When OUT2 is a logic "0", the serial port  
interrupt output is forced to a high impedance state - disabled. When OUT2 is a logic "1", the serial port  
interrupt outputs are enabled.  
Bit 4  
This bit provides the loopback feature for diagnostic testing of the Serial Port. When bit 4 is set to logic  
"1", the following occur:  
1. The TXD is set to the Marking State(logic "1").  
2. The receiver Serial Input (RXD) is disconnected.  
3. The output of the Transmitter Shift Register is "looped back" into the Receiver Shift Register input.  
4. All MODEM Control inputs (nCTS, nDSR, nRI and nDCD) are disconnected.  
5. The four MODEM Control outputs (nDTR, nRTS, OUT1 and OUT2) are internally connected to the  
four MODEM Control inputs (nDSR, nCTS, RI, DCD).  
6. The Modem Control output pins are forced inactive high.  
7. Data that is transmitted is immediately received.  
This feature allows the processor to verify the transmit and receive data paths of the Serial Port. In the  
diagnostic mode, the receiver and the transmitter interrupts are fully operational. The MODEM Control  
Interrupts are also operational but the interrupts' sources are now the lower four bits of the MODEM  
Control Register instead of the MODEM Control inputs. The interrupts are still controlled by the Interrupt  
Enable Register.  
Bits 5 through 7  
These bits are permanently set to logic zero.  
9.1.8 Line Status Register (LSR)  
Address Offset = 5H, DLAB = X, READ/WRITE  
Bit 0  
Data Ready (DR). It is set to a logic "1" whenever a complete incoming character has been received and  
transferred into the Receiver Buffer Register or the FIFO. Bit 0 is reset to a logic "0" by reading all of the  
data in the Receive Buffer Register or the FIFO.  
Bit 1  
Overrun Error (OE). Bit 1 indicates that data in the Receiver Buffer Register was not read before the next  
character was transferred into the register, thereby destroying the previous character. In FIFO mode, an  
overrun error will occur only when the FIFO is full and the next character has been completely received in  
the shift register, the character in the shift register is overwritten but not transferred to the FIFO. The OE  
SMSC FDC37C672  
Page 69  
Rev. 10-29-03  
PRELIMINARY DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
indicator is set to a logic "1" immediately upon detection of an overrun condition, and reset whenever the  
Line Status Register is read.  
Bit 2  
Parity Error (PE). Bit 2 indicates that the received data character does not have the correct even or odd  
parity, as selected by the even parity select bit. The PE is set to a logic "1" upon detection of a parity error  
and is reset to a logic "0" whenever the Line Status Register is read. In the FIFO mode this error is  
associated with the particular character in the FIFO it applies to. This error is indicated when the  
associated character is at the top of the FIFO.  
Bit 3  
Framing Error (FE). Bit 3 indicates that the received character did not have a valid stop bit. Bit 3 is set to  
a logic "1" whenever the stop bit following the last data bit or parity bit is detected as a zero bit (Spacing  
level). The FE is reset to a logic "0" whenever the Line Status Register is read. In the FIFO mode this  
error is associated with the particular character in the FIFO it applies to. This error is indicated when the  
associated character is at the top of the FIFO. The Serial Port will try to resynchronize after a framing  
error. To do this, it assumes that the framing error was due to the next start bit, so it samples this 'start' bit  
twice and then takes in the 'data'.  
Bit 4  
Break Interrupt (BI). Bit 4 is set to a logic "1" whenever the received data input is held in the Spacing state  
(logic "0") for longer than a full word transmission time (that is, the total time of the start bit + data bits +  
parity bits + stop bits). The BI is reset after the CPU reads the contents of the Line Status Register. In the  
FIFO mode this error is associated with the particular character in the FIFO it applies to. This error is  
indicated when the associated character is at the top of the FIFO. When break occurs only one zero  
character is loaded into the FIFO. Restarting after a break is received, requires the serial data (RXD) to be  
logic "1" for at least 1/2 bit time.  
Note:  
Bits 1 through 4 are the error conditions that produce a Receiver Line Status Interrupt whenever any of the  
corresponding conditions are detected and the interrupt is enabled.  
Bit 5  
Transmitter Holding Register Empty (THRE). Bit 5 indicates that the Serial Port is ready to accept a new  
character for transmission. In addition, this bit causes the Serial Port to issue an interrupt when the  
Transmitter Holding Register interrupt enable is set high. The THRE bit is set to a logic "1" when a  
character is transferred from the Transmitter Holding Register into the Transmitter Shift Register. The bit is  
reset to logic "0" whenever the CPU loads the Transmitter Holding Register. In the FIFO mode this bit is  
set when the XMIT FIFO is empty, it is cleared when at least 1 byte is written to the XMIT FIFO. Bit 5 is a  
read only bit.  
Bit 6  
Transmitter Empty (TEMT). Bit 6 is set to a logic "1" whenever the Transmitter Holding Register (THR)  
and Transmitter Shift Register (TSR) are both empty. It is reset to logic "0" whenever either the THR or  
TSR contains a data character. Bit 6 is a read only bit. In the FIFO mode this bit is set whenever the THR  
and TSR are both empty,  
Bit 7  
This bit is permanently set to logic "0" in the 450 mode. In the FIFO mode, this bit is set to a logic "1"  
when there is at least one parity error, framing error or break indication in the FIFO. This bit is cleared  
when the LSR is read if there are no subsequent errors in the FIFO.  
SMSC FDC37C672  
Page 70  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
9.1.9 Modem Status Register (MSR)  
Address Offset = 6H, DLAB = X, READ/WRITE  
This 8 bit register provides the current state of the control lines from the MODEM (or peripheral device). In  
addition to this current state information, four bits of the MODEM Status Register (MSR) provide change  
information. These bits are set to logic "1" whenever a control input from the MODEM changes state.  
They are reset to logic "0" whenever the MODEM Status Register is read.  
Bit 0  
Delta Clear To Send (DCTS). Bit 0 indicates that the nCTS input to the chip has changed state since the  
last time the MSR was read.  
Bit 1  
Delta Data Set Ready (DDSR). Bit 1 indicates that the nDSR input has changed state since the last time  
the MSR was read.  
Bit 2  
Trailing Edge of Ring Indicator (TERI). Bit 2 indicates that the nRI input has changed from logic "0" to  
logic "1".  
Bit 3  
Delta Data Carrier Detect (DDCD). Bit 3 indicates that the nDCD input to the chip has changed state.  
Note:  
Whenever bit 0, 1, 2, or 3 is set to a logic "1", a MODEM Status Interrupt is generated.  
Bit 4  
This bit is the complement of the Clear To Send (nCTS) input. If bit 4 of the MCR is set to logic "1", this bit  
is equivalent to nRTS in the MCR.  
Bit 5  
This bit is the complement of the Data Set Ready (nDSR) input. If bit 4 of the MCR is set to logic "1", this  
bit is equivalent to DTR in the MCR.  
Bit 6  
This bit is the complement of the Ring Indicator (nRI) input. If bit 4 of the MCR is set to logic "1", this bit is  
equivalent to OUT1 in the MCR.  
Bit 7  
This bit is the complement of the Data Carrier  
Detect (nDCD) input. If bit 4 of the MCR is set to logic "1", this bit is equivalent to OUT2 in the MCR.  
SMSC FDC37C672  
Page 71  
Rev. 10-29-03  
PRELIMINARY DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
9.1.10 Scratchpad Register (SCR)  
Address Offset =7H, DLAB =X, READ/WRITE  
This 8 bit read/write register has no effect on the operation of the Serial Port. It is intended as a  
scratchpad register to be used by the programmer to hold data temporarily.  
9.2  
Programmable Baud Rate Generator (and Divisor Latches DLH,  
DLL)  
The Serial Port contains a programmable Baud Rate Generator that is capable of taking any clock input  
(DC to 3 MHz) and dividing it by any divisor from 1 to 65535. This output frequency of the Baud Rate  
Generator is 16x the Baud rate. Two 8 bit latches store the divisor in 16 bit binary format. These Divisor  
Latches must be loaded during initialization in order to insure desired operation of the Baud Rate  
Generator. Upon loading either of the Divisor Latches, a 16 bit Baud counter is immediately loaded. This  
prevents long counts on initial load. If a 0 is loaded into the BRG registers the output divides the clock by  
the number 3. If a 1 is loaded the output is the inverse of the input oscillator. If a two is loaded the output  
is a divide by 2 signal with a 50% duty cycle. If a 3 or greater is loaded the output is low for 2 bits and high  
for the remainder of the count. The input clock to the BRG is a 1.8462 MHz clock.  
Table 9.3 shows the baud rates possible with a 1.8462 MHz crystal.  
9.2.1 Effect Of The Reset on Register File  
The Reset Function Table (Table 9.4) details the effect of the Reset input on each of the registers of the  
Serial Port.  
9.3  
FIFO Interrupt Mode Operation  
When the RCVR FIFO and receiver interrupts are enabled (FCR bit 0 = "1", IER bit 0 = "1"), RCVR  
interrupts occur as follows:  
A. The receive data available interrupt will be issued when the FIFO has reached its programmed trigger  
level; it is cleared as soon as the FIFO drops below its programmed trigger level.  
B. The IIR receive data available indication also occurs when the FIFO trigger level is reached. It is  
cleared when the FIFO drops below the trigger level.  
C. The receiver line status interrupt (IIR=06H), has higher priority than the received data available  
(IIR=04H) interrupt.  
D. The data ready bit (LSR bit 0)is set as soon as a character is transferred from the shift register to the  
RCVR FIFO. It is reset when the FIFO is empty.  
When RCVR FIFO and receiver interrupts are enabled, RCVR FIFO timeout interrupts occur as follows:  
A. A FIFO timeout interrupt occurs if all the following conditions exist:  
-
-
At least one character is in the FIFO.  
The most recent serial character received was longer than 4 continuous character times ago. (If 2  
stop bits are programmed, the second one is included in this time delay).  
The most recent CPU read of the FIFO was longer than 4 continuous character times ago.  
-
This will cause a maximum character received to interrupt issued delay of 160 msec at 300 BAUD with a  
12 bit character.  
B. Character times are calculated by using the RCLK input for a clock signal (this makes the delay  
proportional to the baud rate).  
SMSC FDC37C672  
Page 72  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
C. When a timeout interrupt has occurred it is cleared and the timer reset when the CPU reads one  
character from the RCVR FIFO.  
D. When a timeout interrupt has not occurred the timeout timer is reset after a new character is received  
or after the CPU reads the RCVR FIFO.  
When the XMIT FIFO and transmitter interrupts are enabled (FCR bit 0 = "1", IER bit 1 = "1"), XMIT  
interrupts occur as follows:  
A. The transmitter holding register interrupt (02H) occurs when the XMIT FIFO is empty; it is cleared as  
soon as the transmitter holding register is written to (1 of 16 characters may be written to the XMIT  
FIFO while servicing this interrupt) or the IIR is read.  
B. The transmitter FIFO empty indications will be delayed 1 character time minus the last stop bit time  
whenever the following occurs: THRE=1 and there have not been at least two bytes at the same time  
in the transmitter FIFO since the last THRE=1. The transmitter interrupt after changing FCR0 will be  
immediate, if it is enabled.  
Character timeout and RCVR FIFO trigger level interrupts have the same priority as the current received  
data available interrupt; XMIT FIFO empty has the same priority as the current transmitter holding register  
empty interrupt.  
9.4  
FIFO Polled Mode Operation  
With FCR bit 0 = "1" resetting IER bits 0, 1, 2 or 3 or all to zero puts the UART in the FIFO Polled Mode of  
operation. Since the RCVR and XMITTER are controlled separately, either one or both can be in the  
polled mode of operation. In this mode, the user's program will check RCVR and XMITTER status via the  
LSR. LSR definitions for the FIFO Polled Mode are as follows:  
Bit 0=1 as long as there is one byte in the RCVR FIFO.  
Bits 1 to 4 specify which error(s) have occurred. Character error status is handled the same way as when  
in the interrupt mode, the IIR is not affected since EIR bit 2=0.  
Bit 5 indicates when the XMIT FIFO is empty.  
Bit 6 indicates that both the XMIT FIFO and shift register are empty.  
Bit 7 indicates whether there are any errors in the RCVR FIFO.  
There is no trigger level reached or timeout condition indicated in the FIFO Polled Mode, however, the  
RCVR and XMIT FIFOs are still fully capable of holding characters.  
Table 9.3 - Baud Rates Using 1.8462 MHz Clock for <= 38.4K; Using 1.8432MHz Clock for 115.2k; Using  
3.6864MHz Clock for 230.4k; Using 7.3728 MHz Clock for 460.8k  
PERCENT ERROR DIFFERENCE BETWEEN  
DESIRED  
BAUD RATE  
CRXX:  
BIT 7 OR 6  
DIVISOR USED TO  
DESIRED AND ACTUAL  
GENERATE 16X CLOCK  
(Note 9.2)  
50  
75  
110  
134.5  
150  
300  
600  
1200  
1800  
2304  
1536  
1047  
857  
768  
384  
192  
96  
0.001  
-
-
X
X
X
X
X
X
X
X
X
0.004  
-
-
-
-
-
64  
SMSC FDC37C672  
Page 73  
Rev. 10-29-03  
PRELIMINARY DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
PERCENT ERROR DIFFERENCE BETWEEN  
DESIRED  
BAUD RATE  
CRXX:  
BIT 7 OR 6  
DIVISOR USED TO  
DESIRED AND ACTUAL  
GENERATE 16X CLOCK  
(Note 9.2)  
2000  
2400  
3600  
4800  
7200  
58  
48  
32  
24  
16  
12  
6
3
2
0.005  
-
-
-
-
-
-
0.030  
0.16  
0.16  
0.16  
0.16  
X
X
X
X
X
X
X
X
X
X
1
9600  
19200  
38400  
57600  
115200  
230400  
460800  
1
32770  
32769  
1
Note 9.2 The percentage error for all baud rates, except where indicated otherwise, is 0.2%.  
Table 9.4 - Reset Function Table  
REGISTER/SIGNAL  
Interrupt Enable Register  
Interrupt Identification Reg.  
FIFO Control  
RESET CONTROL  
RESET  
RESET STATE  
All bits low  
RESET  
RESET  
Bit 0 is high; Bits 1 - 7 low  
All bits low  
Line Control Reg.  
MODEM Control Reg.  
Line Status Reg.  
MODEM Status Reg.  
TXD1, TXD2  
INTRPT (RCVR errs)  
INTRPT (RCVR Data Ready)  
INTRPT (THRE)  
OUT2B  
RESET  
RESET  
RESET  
RESET  
All bits low  
All bits low  
All bits low except 5, 6 high  
Bits 0 - 3 low; Bits 4 - 7 input  
High  
Low  
Low  
Low  
RESET  
RESET/Read LSR  
RESET/Read RBR  
RESET/ReadIIR/Write THR  
RESET  
High  
RTSB  
DTRB  
RESET  
RESET  
High  
High  
OUT1B  
RESET  
High  
RCVR FIFO  
RESET/  
All Bits Low  
FCR1*FCR0/_FCR0  
RESET/  
XMIT FIFO  
All Bits Low  
FCR1*FCR0/_FCR0  
SMSC FDC37C672  
Page 74  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
Note 9.3 DLAB is Bit 7 of the Line Control Register (ADDR = 3).  
Note 9.4 Bit 0 is the least significant bit. It is the first bit serially transmitted or received.  
Note 9.5 When operating in the XT mode, this bit will be set any time that the transmitter shift register is empty.  
Note 9.6 This bit no longer has a pin associated with it.  
Note 9.7 When operating in the XT mode, this register is not available.  
Note 9.8 These bits are always zero in the non-FIFO mode.  
Note 9.9 Writing a one to this bit has no effect. DMA modes are not supported in this chip.  
Note 9.10 The UART1 and UART2 FCR’s are shadowed in the UART1 FIFO Control Shadow Register (runtime  
register at offset 0x20) and UART2 FIFO Control Shadow Register (runtime register at offset 0x21).  
9.5  
Notes on Serial Port Operation  
9.5.1 FIFO Mode Operation:  
GENERAL  
The RCVR FIFO will hold up to 16 bytes regardless of which trigger level is selected.  
TX AND RX FIFO OPERATION  
The Tx portion of the UART transmits data through TXD as soon as the CPU loads a byte into the Tx  
FIFO. The UART will prevent loads to the Tx FIFO if it currently holds 16 characters. Loading to the  
Tx FIFO will again be enabled as soon as the next character is transferred to the Tx shift register. These  
capabilities account for the largely autonomous operation of the Tx.  
The UART starts the above operations typically with a Tx interrupt. The chip issues a Tx interrupt  
whenever the Tx FIFO is empty and the Tx interrupt is enabled, except in the following instance. Assume  
that the Tx FIFO is empty and the CPU starts to load it. When the first byte enters the FIFO the Tx FIFO  
empty interrupt will transition from active to inactive. Depending on the execution speed of the service  
routine software, the UART may be able to transfer this byte from the FIFO to the shift register before the  
CPU loads another byte. If this happens, the Tx FIFO will be empty again and typically the UART's  
interrupt line would transition to the active state. This could cause a system with an interrupt control unit to  
record a Tx FIFO empty condition, even though the CPU is currently servicing that interrupt. Therefore,  
after the first byte has been loaded into the FIFO the UART will wait one serial character  
transmission time before issuing a new Tx FIFO empty interrupt. This one character Tx interrupt  
delay will remain active until at least two bytes have been loaded into the FIFO, concurrently.  
When the Tx FIFO empties after this condition, the Tx interrupt will be activated without a one  
character delay.  
Rx support functions and operation are quite different from those described for the transmitter. The Rx  
FIFO receives data until the number of bytes in the FIFO equals the selected interrupt trigger level. At that  
time if Rx interrupts are enabled, the UART will issue an interrupt to the CPU. The Rx FIFO will continue  
to store bytes until it holds 16 of them. It will not accept any more data when it is full. Any more data  
entering the Rx shift register will set the Overrun Error flag. Normally, the FIFO depth and the  
programmable trigger levels will give the CPU ample time to empty the Rx FIFO before an overrun occurs.  
SMSC FDC37C672  
Page 76  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
One side-effect of having a Rx FIFO is that the selected interrupt trigger level may be above the data level  
in the FIFO. This could occur when data at the end of the block contains fewer bytes than the trigger level.  
No interrupt would be issued to the CPU and the data would remain in the UART. To prevent the  
software from having to check for this situation the chip incorporates a timeout interrupt.  
The timeout interrupt is activated when there is a least one byte in the Rx FIFO, and neither the CPU nor  
the Rx shift register has accessed the Rx FIFO within 4 character times of the last byte. The timeout  
interrupt is cleared or reset when the CPU reads the Rx FIFO or another character enters it.  
These FIFO related features allow optimization of CPU/UART transactions and are especially useful given  
the higher baud rate capability (256 kbaud).  
SMSC FDC37C672  
Page 77  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
Chapter 10 Infrared Interface  
The infrared interface provides a two-way wireless communications port using infrared as a transmission  
medium. Two IR implementations have been provided for the second UART in this chip (logical device 5),  
IrDA and Amplitude Shift Keyed IR. The IR transmission can use the standard UART2 TXD2 and RXD2  
pins or optional IRTX and IRRX pins. These can be selected through the configuration registers.  
IrDA allows serial communication at baud rates up to 4 Mbps. Each word is sent serially beginning with a  
zero value start bit. A zero is signaled by sending a single IR pulse at the beginning of the serial bit time.  
A one is signaled by sending no IR pulse during the bit time. Please refer to the AC timing for the  
parameters of these pulses and the IrDA waveform.  
The Amplitude Shift Keyed IR allows serial communication at baud rates up to 19.2K Baud. Each word is  
sent serially beginning with a zero value start bit. A zero is signaled by sending a 500KHz waveform for  
the duration of the serial bit time. A one is signaled by sending no transmission during the bit time. Please  
refer to the AC timing for the parameters of the ASK-IR waveform.  
If the Half Duplex option is chosen, there is a time-out when the direction of the transmission is changed.  
This time-out starts at the last bit transferred during a transmission and blocks the receiver input until the  
timeout expires. If the transmit buffer is loaded with more data before the time-out expires, the timer is  
restarted after the new byte is transmitted. If data is loaded into the transmit buffer while a character is  
being received, the transmission will not start until the time-out expires after the last receive bit has been  
received. If the start bit of another character is received during this time-out, the timer is restarted after the  
new character is received. The IR half duplex time-out is programmable via CRF2 in Logical Device 5. This  
register allows the time-out to be programmed to any value between 0 and 10msec in 100usec  
increments.  
SMSC FDC37C672  
Page 78  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
Chapter 11 Fast IR  
The following is a description of the top level connection for the Fast IR block in the FDC37C672. Refer to  
the Infrared Communications Controller Specification for more information on Fast IR.  
There are two types of transceiver modules used for Fast IR: one has a mode pin (IR Mode) to control it,  
and the other has a second receive data channel (IRRX3). The FDC37C672 has two configuration bits that  
can be used for these signals. These are IRMODESEL and IRRX3SEL. The following table illustrates the  
selection of the functions.  
Table 11.1 - DRVDEN1 MUXING  
MUX CONTROLS  
STATE OF  
IRMODESEL  
(LD8:CRC0.0)  
IRRX3SEL  
(LD8:CRC0.4)  
SELECTED  
FUNCTION  
PIN NAME  
UNCONNECTED  
INPUTS  
DRVDEN1  
0
1
1
X
0
1
DRVDEN1 (default)  
IRMODE (Note 11.1)  
IRRX3  
-
-
0
Note 11.1 IRRX3SEL Default (0).  
The figure below is the IR interface block diagram.  
TXD  
RXD  
IRT  
TX1  
TX2  
RA  
0
CO  
RX1  
TV  
1
AS  
0
IR  
RX2  
IrD  
1
IRR  
FIR  
aux  
CO  
DRVDE  
1
0
IRMOD  
G.P.  
FAS  
FAST  
DRV_DEN  
IRRX3SE  
FD  
IRMODESE  
Figure 11.1 - IR Interface Block Diagram  
SMSC FDC37C672  
Page 79  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
Chapter 12 Parallel Port  
The FDC37C672 incorporates an IBM XT/AT compatible parallel port. This supports the optional PS/2  
type bi-directional parallel port (SPP), the Enhanced Parallel Port (EPP) and the Extended Capabilities  
Port (ECP) parallel port modes. Refer to the Configuration Registers for information on disabling, power  
down, changing the base address of the parallel port, and selecting the mode of operation.  
The FDC37C672 also provides a mode for support of the floppy disk controller on the parallel port.  
The parallel port also incorporates SMSC's ChiProtect circuitry, which prevents possible damage to the  
parallel port due to printer power-up.  
The functionality of the Parallel Port is achieved through the use of eight addressable ports, with their  
associated registers and control gating. The control and data port are read/write by the CPU, the status  
port is read/write in the EPP mode. The address map of the Parallel Port is shown below:  
DATA PORT  
BASE ADDRESS + 00H  
BASE ADDRESS + 01H  
BASE ADDRESS + 02H  
BASE ADDRESS + 03H  
EPP DATA PORT 0  
EPP DATA PORT 1  
EPP DATA PORT 2  
EPP DATA PORT 3  
BASE ADDRESS + 04H  
BASE ADDRESS + 05H  
BASE ADDRESS + 06H  
BASE ADDRESS + 07H  
STATUS PORT  
CONTROL PORT  
EPP ADDR PORT  
The bit map of these registers is:  
D0  
PD0  
TMOUT  
D1  
PD1  
0
D2  
PD2  
0
nINIT  
PD2  
D3  
D4  
PD4  
SLCT  
IRQE  
PD4  
D5  
PD5  
PE  
PCD  
PD5  
D6  
PD6  
nACK nBUSY  
0
D7  
PD7  
NOTE  
Note 12.1  
Note 12.1  
Note 12.1  
DATA PORT  
PD3  
nERR  
SLC  
STATUS PORT  
CONTROL PORT  
EPP ADDR PORT  
STROBE AUTOFD  
0
AD7  
Note 12.2  
Note 12.3  
Note 12.2  
Note 12.3  
Note 12.2  
Note 12.3  
Note 12.2  
Note 12.3  
Note 12.2  
Note 12.3  
PD0  
PD0  
PD0  
PD0  
PD0  
PD1  
PD1  
PD1  
PD1  
PD1  
PD3  
PD6  
EPP DATA PORT 0  
EPP DATA PORT 1  
EPP DATA PORT 2  
EPP DATA PORT 3  
PD2  
PD2  
PD2  
PD2  
PD3  
PD3  
PD3  
PD3  
PD4  
PD4  
PD4  
PD4  
PD5  
PD5  
PD5  
PD5  
PD6  
PD6  
PD6  
PD6  
PD7  
PD7  
PD7  
PD7  
Note 12.1 These registers are available in all modes.  
Note 12.2 These registers are only available in EPP mode.  
Note 12.3 For EPP mode, IOCHRDY must be connected to the ISA bus.  
SMSC FDC37C672  
Page 80  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
Table 12.1 - Parallel Port Connector  
HOST  
PIN NUMBER  
STANDARD  
nStrobe  
PData<0:7>  
nAck  
Busy  
PE  
EPP  
ECP  
CONNECTOR  
1
nWrite  
PData<0:7>  
Intr  
nStrobe  
2-9  
10  
11  
12  
PData<0:7>  
nAck  
Busy, PeriphAck(3)  
nWait  
(NU)  
PError,  
nAckReverse(3)  
Select  
nAutoFd,  
13  
14  
Select  
nAutofd  
(NU)  
nDatastb  
HostAck(3)  
nFault(1)  
nPeriphRequest(3)  
nInit(1)  
nReverseRqst(3)  
nSelectIn(1,3)  
15  
16  
17  
nError  
nInit  
(NU)  
(NU)  
nSelectin  
nAddrstrb  
(1) = Compatible Mode  
(3) = High Speed Mode  
Note:  
For the cable interconnection required for ECP support and the Slave Connector pin numbers, refer to the  
IEEE 1284 Extended Capabilities Port Protocol and ISA Standard, Rev. 1.14, July 14, 1993. This  
document is available from Microsoft.  
12.1 IBM XT/AT Compatible, Bi-Directional and EPP Modes  
DATA PORT  
ADDRESS OFFSET = 00H  
The Data Port is located at an offset of '00H' from the base address. The data register is cleared at  
initialization by RESET. During a WRITE operation, the Data Register latches the contents of the data bus  
with the rising edge of the nIOW input. The contents of this register are buffered (non inverting) and output  
onto the PD0 - PD7 ports. During a READ operation in SPP mode, PD0 - PD7 ports are buffered (not  
latched) and output to the host CPU.  
STATUS PORT  
ADDRESS OFFSET = 01H  
The Status Port is located at an offset of '01H' from the base address. The contents of this register are  
latched for the duration of an nIOR read cycle. The bits of the Status Port are defined as follows:  
BIT 0 TMOUT - TIME OUT  
This bit is valid in EPP mode only and indicates that a 10 usec time out has occurred on the EPP bus. A  
logic O means that no time out error has occurred; a logic 1 means that a time out error has been  
detected. This bit is cleared by a RESET. Writing a one to this bit clears the time out status bit. On a  
write, this bit is self clearing and does not require a write of a zero. Writing a zero to this bit has no effect.  
BITS 1, 2 - are not implemented as register bits, during a read of the Printer Status Register these bits are  
a low level.  
SMSC FDC37C672  
Page 81  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
BIT 3 nERR - nERROR  
The level on the nERROR input is read by the CPU as bit 3 of the Printer Status Register. A logic 0  
means an error has been detected; a logic 1 means no error has been detected.  
BIT 4 SLCT - PRINTER SELECTED STATUS  
The level on the SLCT input is read by the CPU as bit 4 of the Printer Status Register. A logic 1 means  
the printer is on line; a logic 0 means it is not selected.  
BIT 5 PE - PAPER END  
The level on the PE input is read by the CPU as bit 5 of the Printer Status Register. A logic 1 indicates a  
paper end; a logic 0 indicates the presence of paper.  
BIT 6 nACK - nACKNOWLEDGE  
The level on the nACK input is read by the CPU as bit 6 of the Printer Status Register. A logic 0 means  
that the printer has received a character and can now accept another. A logic 1 means that it is still  
processing the last character or has not received the data.  
BIT 7 nBUSY - nBUSY  
The complement of the level on the BUSY input is read by the CPU as bit 7 of the Printer Status Register.  
A logic 0 in this bit means that the printer is busy and cannot accept a new character. A logic 1 means that  
it is ready to accept the next character.  
CONTROL PORT  
ADDRESS OFFSET = 02H  
The Control Port is located at an offset of '02H' from the base address. The Control Register is initialized  
by the RESET input, bits 0 to 5 only being affected; bits 6 and 7 are hard wired low.  
BIT 0 STROBE - STROBE  
This bit is inverted and output onto the nSTROBE output.  
BIT 1 AUTOFD - AUTOFEED  
This bit is inverted and output onto the nAUTOFD output. A logic 1 causes the printer to generate a line  
feed after each line is printed. A logic 0 means no autofeed.  
BIT 2 nINIT - nINITIATE OUTPUT  
This bit is output onto the nINIT output without inversion.  
BIT 3 SLCTIN - PRINTER SELECT INPUT  
This bit is inverted and output onto the nSLCTIN output. A logic 1 on this bit selects the printer; a logic 0  
means the printer is not selected.  
BIT 4 IRQE - INTERRUPT REQUEST ENABLE  
The interrupt request enable bit when set to a high level may be used to enable interrupt requests from the  
Parallel Port to the CPU. An interrupt request is generated on the IRQ port by a positive going nACK  
input. When the IRQE bit is programmed low the IRQ is disabled.  
SMSC FDC37C672  
Page 82  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
BIT 5 PCD - PARALLEL CONTROL DIRECTION  
Parallel Control Direction is not valid in printer mode. In printer mode, the direction is always out  
regardless of the state of this bit. In bi-directional, EPP or ECP mode, a logic 0 means that the printer port  
is in output mode (write); a logic 1 means that the printer port is in input mode (read).  
Bits 6 and 7 during a read are a low level, and cannot be written.  
EPP ADDRESS PORT  
ADDRESS OFFSET = 03H  
The EPP Address Port is located at an offset of '03H' from the base address. The address register is  
cleared at initialization by RESET. During a WRITE operation, the contents of DB0-DB7 are buffered (non  
inverting) and output onto the PD0 - PD7 ports, the leading edge of nIOW causes an EPP ADDRESS  
WRITE cycle to be performed, the trailing edge of IOW latches the data for the duration of the EPP write  
cycle. During a READ operation, PD0 - PD7 ports are read, the leading edge of IOR causes an EPP  
ADDRESS READ cycle to be performed and the data output to the host CPU, the deassertion of  
ADDRSTB latches the PData for the duration of the IOR cycle. This register is only available in EPP  
mode.  
EPP DATA PORT 0  
ADDRESS OFFSET = 04H  
The EPP Data Port 0 is located at an offset of '04H' from the base address. The data register is cleared at  
initialization by RESET. During a WRITE operation, the contents of DB0-DB7 are buffered (non inverting)  
and output onto the PD0 - PD7 ports, the leading edge of nIOW causes an EPP DATA WRITE cycle to be  
performed, the trailing edge of IOW latches the data for the duration of the EPP write cycle. During a  
READ operation, PD0 - PD7 ports are read, the leading edge of IOR causes an EPP READ cycle to be  
performed and the data output to the host CPU, the deassertion of DATASTB latches the PData for the  
duration of the IOR cycle. This register is only available in EPP mode.  
EPP DATA PORT 1  
ADDRESS OFFSET = 05H  
The EPP Data Port 1 is located at an offset of '05H' from the base address. Refer to EPP DATA PORT 0  
for a description of operation. This register is only available in EPP mode.  
EPP DATA PORT 2  
ADDRESS OFFSET = 06H  
The EPP Data Port 2 is located at an offset of '06H' from the base address. Refer to EPP DATA PORT 0  
for a description of operation. This register is only available in EPP mode.  
EPP DATA PORT 3  
ADDRESS OFFSET = 07H  
The EPP Data Port 3 is located at an offset of '07H' from the base address. Refer to EPP DATA PORT 0  
for a description of operation. This register is only available in EPP mode.  
SMSC FDC37C672  
Page 83  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
EPP 1.9 OPERATION  
When the EPP mode is selected in the configuration register, the standard and bi-directional modes are  
also available. If no EPP Read, Write or Address cycle is currently executing, then the PDx bus is in the  
standard or bi-directional mode, and all output signals (STROBE, AUTOFD, INIT) are as set by the SPP  
Control Port and direction is controlled by PCD of the Control port.  
In EPP mode, the system timing is closely coupled to the EPP timing. For this reason, a watchdog timer is  
required to prevent system lockup. The timer indicates if more than 10usec have elapsed from the start of  
the EPP cycle (nIOR or nIOW asserted) to nWAIT being deasserted (after command). If a time-out  
occurs, the current EPP cycle is aborted and the time-out condition is indicated in Status bit 0.  
During an EPP cycle, if STROBE is active, it overrides the EPP write signal forcing the PDx bus to always  
be in a write mode and the nWRITE signal to always be asserted.  
Software Constraints  
Before an EPP cycle is executed, the software must ensure that the control register bit PCD is a logic "0"  
(i.e. a 04H or 05H should be written to the Control port). If the user leaves PCD as a logic "1", and  
attempts to perform an EPP write, the chip is unable to perform the write (because PCD is a logic "1") and  
will appear to perform an EPP read on the parallel bus, no error is indicated.  
EPP 1.9 Write  
The timing for a write operation (address or data) is shown in timing diagram EPP Write Data or Address  
cycle. IOCHRDY is driven active low at the start of each EPP write and is released when it has been  
determined that the write cycle can complete. The write cycle can complete under the following  
circumstances:  
1. If the EPP bus is not ready (nWAIT is active low) when nDATASTB or nADDRSTB goes active then  
the write can complete when nWAIT goes inactive high.  
2. If the EPP bus is ready (nWAIT is inactive high) then the chip must wait for it to go active low before  
changing the state of nDATASTB, nWRITE or nADDRSTB. The write can complete once nWAIT is  
determined inactive.  
Write Sequence of operation  
1. The host selects an EPP register, places data on the SData bus and drives nIOW active.  
2. The chip drives IOCHRDY inactive (low).  
3. If WAIT is not asserted, the chip must wait until WAIT is asserted.  
4. The chip places address or data on PData bus, clears PDIR, and asserts nWRITE.  
5. Chip asserts nDATASTB or nADDRSTRB indicating that PData bus contains valid information, and  
the WRITE signal is valid.  
6. Peripheral deasserts nWAIT, indicating that any setup requirements have been satisfied and the chip  
may begin the termination phase of the cycle.  
7. a. The chip deasserts nDATASTB or nADDRSTRB, this marks the beginning of the termination  
phase. If it has not already done so, the peripheral should latch the information byte now.  
b. The chip latches the data from the SData bus for the PData bus and asserts (releases) IOCHRDY  
allowing the host to complete the write cycle.  
8. Peripheral asserts nWAIT, indicating to the host that any hold time requirements have been satisfied  
and acknowledging the termination of the cycle.  
9. Chip may modify nWRITE and nPDATA in preparation for the next cycle.  
EPP 1.9 Read  
The timing for a read operation (data) is shown in timing diagram EPP Read Data cycle. IOCHRDY is  
driven active low at the start of each EPP read and is released when it has been determined that the read  
cycle can complete. The read cycle can complete under the following circumstances:  
SMSC FDC37C672  
Page 84  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
1. If the EPP bus is not ready (nWAIT is active low) when nDATASTB goes active then the read can  
complete when nWAIT goes inactive high.  
2. If the EPP bus is ready (nWAIT is inactive high) then the chip must wait for it to go active low before  
changing the state of WRITE or before nDATASTB goes active. The read can complete once nWAIT  
is determined inactive.  
Read Sequence of Operation  
1. The host selects an EPP register and drives nIOR active.  
2. The chip drives IOCHRDY inactive (low).  
3. If WAIT is not asserted, the chip must wait until WAIT is asserted.  
4. The chip tri-states the PData bus and deasserts nWRITE.  
5. Chip asserts nDATASTB or nADDRSTRB indicating that PData bus is tri-stated, PDIR is set and the  
nWRITE signal is valid.  
6. Peripheral drives PData bus valid.  
7. Peripheral deasserts nWAIT, indicating that PData is valid and the chip may begin the termination  
phase of the cycle.  
8. a. The chip latches the data from the PData bus for the SData bus and deasserts nDATASTB or  
nADDRSTRB. This marks the beginning of the termination phase.  
b. The chip drives the valid data onto the SData bus and asserts (releases) IOCHRDY allowing the  
host to complete the read cycle.  
9. Peripheral tri-states the PData bus and asserts nWAIT, indicating to the host that the PData bus is tri-  
stated.  
10. Chip may modify nWRITE, PDIR and nPDATA in preparation for the next cycle.  
EPP 1.7 OPERATION  
When the EPP 1.7 mode is selected in the configuration register, the standard and bi-directional modes  
are also available. If no EPP Read, Write or Address cycle is currently executing, then the PDx bus is in  
the standard or bi-directional mode, and all output signals (STROBE, AUTOFD, INIT) are as set by the  
SPP Control Port and direction is controlled by PCD of the Control port.  
In EPP mode, the system timing is closely coupled to the EPP timing. For this reason, a watchdog timer is  
required to prevent system lockup. The timer indicates if more than 10usec have elapsed from the start of  
the EPP cycle (nIOR or nIOW asserted) to the end of the cycle nIOR or nIOW deasserted). If a time-out  
occurs, the current EPP cycle is aborted and the time-out condition is indicated in Status bit 0.  
Software Constraints  
Before an EPP cycle is executed, the software must ensure that the control register bits D0, D1 and D3  
are set to zero. Also, bit D5 (PCD) is a logic "0" for an EPP write or a logic "1" for and EPP read.  
EPP 1.7 Write  
The timing for a write operation (address or data) is shown in timing diagram EPP 1.7 Write Data or  
Address cycle. IOCHRDY is driven active low when nWAIT is active low during the EPP cycle. This can  
be used to extend the cycle time. The write cycle can complete when nWAIT is inactive high.  
Write Sequence of Operation  
1. The host sets PDIR bit in the control register to a logic "0". This asserts nWRITE.  
2. The host selects an EPP register, places data on the SData bus and drives nIOW active.  
3. The chip places address or data on PData bus.  
4. Chip asserts nDATASTB or nADDRSTRB indicating that PData bus contains valid information, and  
the WRITE signal is valid.  
5. If nWAIT is asserted, IOCHRDY is deasserted until the peripheral deasserts nWAIT or a time-out  
occurs.  
SMSC FDC37C672  
Page 85  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
6. When the host deasserts nIOW the chip deasserts nDATASTB or nADDRSTRB and latches the data  
from the SData bus for the PData bus.  
7. Chip may modify nWRITE, PDIR and nPDATA in preparation of the next cycle.  
EPP 1.7 Read  
The timing for a read operation (data) is shown in timing diagram EPP 1.7 Read Data cycle. IOCHRDY is  
driven active low when nWAIT is active low during the EPP cycle. This can be used to extend the cycle  
time. The read cycle can complete when nWAIT is inactive high.  
Read Sequence of Operation  
1. The host sets PDIR bit in the control register to a logic "1". This deasserts nWRITE and tri-states the  
PData bus.  
2. The host selects an EPP register and drives nIOR active.  
3. Chip asserts nDATASTB or nADDRSTRB indicating that PData bus is tri-stated, PDIR is set and the  
nWRITE signal is valid.  
4. If nWAIT is asserted, IOCHRDY is deasserted until the peripheral deasserts nWAIT or a time-out  
occurs.  
5. The Peripheral drives PData bus valid.  
6. The Peripheral deasserts nWAIT, indicating that PData is valid and the chip may begin the termination  
phase of the cycle.  
7. When the host deasserts nIOR the chip deasserts nDATASTB or nADDRSTRB.  
8. Peripheral tri-states the PData bus.  
9. Chip may modify nWRITE, PDIR and nPDATA in preparation of the next cycle.  
Table 12.2 - EPP Pin Descriptions  
EPP  
EPP NAME  
nWrite  
Address/Data  
TYPE  
EPP DESCRIPTION  
SIGNAL  
nWRITE  
PD<0:7>  
INTR  
O
I/O  
I
This signal is active low. It denotes a write operation.  
Bi-directional EPP byte wide address and data bus.  
Interrupt  
This signal is active high and positive edge triggered. (Pass through  
with no inversion, Same as SPP.)  
WAIT  
nWait  
I
This signal is active low. It is driven inactive as a positive  
acknowledgement from the device that the transfer of data is  
completed. It is driven active as an indication that the device is ready  
for the next transfer.  
DATASTB  
RESET  
nData Strobe  
nReset  
O
O
O
This signal is active low. It is used to denote data read or write  
operation.  
This signal is active low. When driven active, the EPP device is reset  
to its initial operational mode.  
ADDRSTB  
nAddress Strobe  
This signal is active low. It is used to denote address read or write  
operation.  
PE  
SLCT  
Paper End  
Printer Selected  
Status  
I
I
Same as SPP mode.  
Same as SPP mode.  
nERR  
PDIR  
Error  
I
O
Same as SPP mode.  
Parallel Port  
This output shows the direction of the data transfer on the parallel port  
bus. A low means an output/write condition and a high means an  
input/read condition. This signal is normally a low (output/write)  
unless PCD of the control register is set or if an EPP read cycle is in  
progress.  
Direction  
SMSC FDC37C672  
Page 86  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
Notes:  
SPP and EPP can use 1 common register.  
nWrite is the only EPP output that can be over-ridden by SPP control port during an EPP cycle. For correct EPP  
read cycles, PCD is required to be a low.  
12.2 Extended Capabilities Parallel Port  
ECP provides a number of advantages, some of which are listed below. The individual features are  
explained in greater detail in the remainder of this section.  
High performance half-duplex forward and reverse channel  
Interlocked handshake, for fast reliable transfer  
Optional single byte RLE compression for improved throughput (64:1)  
Channel addressing for low-cost peripherals  
Maintains link and data layer separation  
Permits the use of active output drivers  
Permits the use of adaptive signal timing  
Peer-to-peer capability  
12.2.1 Vocabulary  
The following terms are used in this document:  
assert:  
When a signal asserts it transitions to a "true" state, when a signal deasserts it transitions to a  
"false" state.  
forward: Host to Peripheral communication.  
reverse: Peripheral to Host communication  
Pword:  
A port word; equal in size to the width of the ISA interface. For this implementation, PWord is  
always 8 bits.  
1
0
A high level.  
A low level.  
These terms may be considered synonymous:  
PeriphClk, nAck  
HostAck, nAutoFd  
PeriphAck, Busy  
nPeriphRequest, nFault  
nReverseRequest, nInit  
nAckReverse, PError  
Xflag, Select  
ECPMode, nSelectln  
HostClk, nStrobe  
Reference Document: IEEE 1284 Extended Capabilities Port Protocol and ISA Interface Standard, Rev  
1.14, July 14, 1993. This document is available from Microsoft.  
SMSC FDC37C672  
Page 87  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
The bit map of the Extended Parallel Port registers is:  
D7  
PD7  
Addr/RLE  
D6  
PD6  
D5  
PD5  
D4  
PD4  
D3  
PD3  
D2  
PD2  
D1  
PD1  
D0  
PD0  
NOTE  
data  
ecpAFifo  
Address or RLE field  
Note  
12.5  
dsr  
nBusy  
0
nAck  
0
PError  
Select  
nFault  
0
0
0
Note  
12.4  
dcr  
Direction  
ackIntEn SelectIn  
nInit  
autofd  
strobe  
Note  
12.4  
cFifo  
ecpDFifo  
tFifo  
Parallel Port Data FIFO  
ECP Data FIFO  
Test FIFO  
Note  
12.5  
Note  
12.5  
Note  
12.5  
cnfgA  
cnfgB  
ecr  
0
0
0
1
0
0
0
0
compress intrValue  
Parallel Port IRQ  
Parallel Port DMA  
MODE  
nErrIntrEn dmaEn serviceIntr  
full  
empty  
Note 12.4 These registers are available in all modes.  
Note 12.5 All FIFOs use one common 16 byte FIFO.  
Note 12.6 The ECP Parallel Port Config Reg B reflects the IRQ and DRQ selected by the Configuration Registers.  
12.3 ISA Implementation Standard  
This specification describes the standard ISA interface to the Extended Capabilities Port (ECP). All ISA  
devices supporting ECP must meet the requirements contained in this section or the port will not be  
supported by Microsoft. For a description of the ECP Protocol, please refer to the IEEE 1284 Extended  
Capabilities Port Protocol and ISA Interface Standard, Rev. 1.14, July 14, 1993. This document is  
available from Microsoft.  
Description  
The port is software and hardware compatible with existing parallel ports so that it may be used as a  
standard LPT port if ECP is not required. The port is designed to be simple and requires a small number of  
gates to implement. It does not do any "protocol" negotiation, rather it provides an automatic high  
burst-bandwidth channel that supports DMA for ECP in both the forward and reverse directions.  
Small FIFOs are employed in both forward and reverse directions to smooth data flow and improve the  
maximum bandwidth requirement. The size of the FIFO is 16 bytes deep. The port supports an automatic  
handshake for the standard parallel port to improve compatibility mode transfer speed.  
The port also supports run length encoded (RLE) decompression (required) in hardware. Compression is  
accomplished by counting identical bytes and transmitting an RLE byte that indicates how many times the  
next byte is to be repeated. Decompression simply intercepts the RLE byte and repeats the following byte  
the specified number of times. Hardware support for compression is optional.  
SMSC FDC37C672  
Page 88  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
Table 12.3 - ECP Pin Descriptions  
DESCRIPTION  
NAME  
nStrobe  
TYPE  
O
During write operations nStrobe registers data or address into the slave on the  
asserting edge (handshakes with Busy).  
PData 7:0  
nAck  
I/O  
I
Contains address or data or RLE data.  
Indicates valid data driven by the peripheral when asserted. This signal  
handshakes with nAutoFd in reverse.  
PeriphAck (Busy)  
I
I
This signal deasserts to indicate that the peripheral can accept data. This signal  
handshakes with nStrobe in the forward direction. In the reverse direction this  
signal indicates whether the data lines contain ECP command information or data.  
The peripheral uses this signal to flow control in the forward direction. It is an  
"interlocked" handshake with nStrobe. PeriphAck also provides command  
information in the reverse direction.  
Used to acknowledge a change in the direction the transfer (asserted = forward).  
The peripheral drives this signal low to acknowledge nReverseRequest. It is an  
"interlocked" handshake with nReverseRequest. The host relies upon  
nAckReverse to determine when it is permitted to drive the data bus.  
PError  
(nAckReverse)  
Select  
I
Indicates printer on line.  
nAutoFd  
(HostAck)  
O
Requests a byte of data from the peripheral when asserted, handshaking with  
nAck in the reverse direction. In the forward direction this signal indicates whether  
the data lines contain ECP address or data. The host drives this signal to flow  
control in the reverse direction. It is an "interlocked" handshake with nAck. HostAck  
also provides command information in the forward phase.  
nFault  
(nPeriphRequest)  
I
Generates an error interrupt when asserted. This signal provides a mechanism for  
peer-to-peer communication. This signal is valid only in the forward direction.  
During ECP Mode the peripheral is permitted (but not required) to drive this pin low  
to request a reverse transfer. The request is merely a "hint" to the host; the host  
has ultimate control over the transfer direction. This signal would be typically used  
to generate an interrupt to the host CPU.  
nInit  
O
O
Sets the transfer direction (asserted = reverse, deasserted = forward). This pin is  
driven low to place the channel in the reverse direction. The peripheral is only  
allowed to drive the bi-directional data bus while in ECP Mode and HostAck is low  
and nSelectIn is high.  
nSelectIn  
Always deasserted in ECP mode.  
SMSC FDC37C672  
Page 89  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
12.3.1 Register Definitions  
The register definitions are based on the standard IBM addresses for LPT. All of the standard printer ports  
are supported. The additional registers attach to an upper bit decode of the standard LPT port definition to  
avoid conflict with standard ISA devices. The port is equivalent to a generic parallel port interface and may  
be operated in that mode. The port registers vary depending on the mode field in the ecr. The table below  
lists these dependencies. Operation of the devices in modes other that those specified is undefined.  
Table 12.4 - ECP Register Definitions  
NAME  
ADDRESS (Note 12.7)  
+000h R/W  
+000h R/W  
+001h R/W  
+002h R/W  
+400h R/W  
+400h R/W  
+400h R/W  
+400h R  
ECP MODES  
FUNCTION  
Data Register  
ECP FIFO (Address)  
Status Register  
data  
000-001  
011  
All  
ecpAFifo  
dsr  
dcr  
All  
Control Register  
cFifo  
ecpDFifo  
tFifo  
010  
011  
110  
111  
111  
All  
Parallel Port Data FIFO  
ECP FIFO (DATA)  
Test FIFO  
Configuration Register A  
Configuration Register B  
Extended Control Register  
cnfgA  
cnfgB  
ecr  
+401h R/W  
+402h R/W  
Note 12.7 These addresses are added to the parallel port base address as selected by configuration register or  
jumpers.  
Note 12.8 All addresses are qualified with AEN. Refer to the AEN pin definition.  
Table 12.5 - Mode Descriptions  
MODE  
000  
001  
010  
011  
100  
101  
110  
111  
DESCRIPTION (Note 12.9)  
SPP mode  
PS/2 Parallel Port mode  
Parallel Port Data FIFO mode  
ECP Parallel Port mode  
EPP mode (If this option is enabled in the configuration registers)  
(Reserved)  
Test mode  
Configuration mode  
Note 12.9 Refer to ECR Register Description  
DATA and ecpAFifo PORT  
ADDRESS OFFSET = 00H  
Modes 000 and 001 (Data Port)  
The Data Port is located at an offset of '00H' from the base address. The data register is cleared at  
initialization by RESET. During a WRITE operation, the Data Register latches the contents of the data bus  
on the rising edge of the nIOW input. The contents of this register are buffered (non inverting) and output  
SMSC FDC37C672  
Page 90  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
onto the PD0 - PD7 ports. During a READ operation, PD0 - PD7 ports are read and output to the host  
CPU.  
Mode 011 (ECP FIFO - Address/RLE)  
A data byte written to this address is placed in the FIFO and tagged as an ECP Address/RLE. The  
hardware at the ECP port transmits this byte to the peripheral automatically. The operation of this register  
is only defined for the forward direction (direction is 0). Refer to the ECP Parallel Port Forward Timing  
Diagram, located in the Timing Diagrams section of this data sheet .  
DEVICE STATUS REGISTER (dsr)  
ADDRESS OFFSET = 01H  
The Status Port is located at an offset of '01H' from the base address. Bits 0 - 2 are not implemented as  
register bits, during a read of the Printer Status Register these bits are a low level. The bits of the Status  
Port are defined as follows:  
BIT 3 nFault  
The level on the nFault input is read by the CPU as bit 3 of the Device Status Register.  
BIT 4 Select  
The level on the Select input is read by the CPU as bit 4 of the Device Status Register.  
BIT 5 PError  
The level on the PError input is read by the CPU as bit 5 of the Device Status Register. Printer Status  
Register.  
BIT 6 nAck  
The level on the nAck input is read by the CPU as bit 6 of the Device Status Register.  
BIT 7 nBusy  
The complement of the level on the BUSY input is read by the CPU as bit 7 of the Device Status Register.  
DEVICE CONTROL REGISTER (dcr)  
ADDRESS OFFSET = 02H  
The Control Register is located at an offset of '02H' from the base address. The Control Register is  
initialized to zero by the RESET input, bits 0 to 5 only being affected; bits 6 and 7 are hard wired low.  
BIT 0 STROBE - STROBE  
This bit is inverted and output onto the nSTROBE output.  
BIT 1 AUTOFD - AUTOFEED  
This bit is inverted and output onto the nAUTOFD output. A logic 1 causes the printer to generate a line  
feed after each line is printed. A logic 0 means no autofeed.  
SMSC FDC37C672  
Page 91  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
BIT 2 nINIT - nINITIATE OUTPUT  
This bit is output onto the nINIT output without inversion.  
BIT 3 SELECTIN  
This bit is inverted and output onto the nSLCTIN output. A logic 1 on this bit selects the printer; a logic 0  
means the printer is not selected.  
BIT 4 ackIntEn - INTERRUPT REQUEST ENABLE  
The interrupt request enable bit when set to a high level may be used to enable interrupt requests from the  
Parallel Port to the CPU due to a low to high transition on the nACK input. Refer to the description of the  
interrupt under Operation, Interrupts.  
BIT 5 DIRECTION  
If mode=000 or mode=010, this bit has no effect and the direction is always out regardless of the state of  
this bit. In all other modes, Direction is valid and a logic 0 means that the printer port is in output mode  
(write); a logic 1 means that the printer port is in input mode (read).  
BITS 6 and 7 during a read are a low level, and cannot be written.  
cFifo (Parallel Port Data FIFO)  
ADDRESS OFFSET = 400h  
Mode = 010  
Bytes written or DMAed from the system to this FIFO are transmitted by a hardware handshake to the  
peripheral using the standard parallel port protocol. Transfers to the FIFO are byte aligned. This mode is  
only defined for the forward direction.  
ecpDFifo (ECP Data FIFO)  
ADDRESS OFFSET = 400H  
Mode = 011  
Bytes written or DMAed from the system to this FIFO, when the direction bit is 0, are transmitted by a  
hardware handshake to the peripheral using the ECP parallel port protocol. Transfers to the FIFO are byte  
aligned.  
Data bytes from the peripheral are read under automatic hardware handshake from ECP into this FIFO  
when the direction bit is 1. Reads or DMAs from the FIFO will return bytes of ECP data to the system.  
tFifo (Test FIFO Mode)  
ADDRESS OFFSET = 400H  
Mode = 110  
Data bytes may be read, written or DMAed to or from the system to this FIFO in any direction. Data in the  
tFIFO will not be transmitted to the to the parallel port lines using a hardware protocol handshake.  
However, data in the tFIFO may be displayed on the parallel port data lines.  
SMSC FDC37C672  
Page 92  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
The tFIFO will not stall when overwritten or underrun. If an attempt is made to write data to a full tFIFO,  
the new data is not accepted into the tFIFO. If an attempt is made to read data from an empty tFIFO, the  
last data byte is re-read again. The full and empty bits must always keep track of the correct FIFO state.  
The tFIFO will transfer data at the maximum ISA rate so that software may generate performance metrics.  
The FIFO size and interrupt threshold can be determined by writing bytes to the FIFO and checking the full  
and serviceIntr bits.  
The writeIntrThreshold can be determined by starting with a full tFIFO, setting the direction bit to 0 and  
emptying it a byte at a time until serviceIntr is set. This may generate a spurious interrupt, but will indicate  
that the threshold has been reached.  
The readIntrThreshold can be determined by setting the direction bit to 1 and filling the empty tFIFO a byte at  
a time until serviceIntr is set. This may generate a spurious interrupt, but will indicate that the threshold has  
been reached.  
Data bytes are always read from the head of tFIFO regardless of the value of the direction bit. For example if  
44h, 33h, 22h is written to the FIFO, then reading the tFIFO will return 44h, 33h, 22h in the same order as  
was written.  
cnfgA (Configuration Register A)  
ADDRESS OFFSET = 400H  
Mode = 111  
This register is a read only register. When read, 10H is returned. This indicates to the system that this is  
an 8-bit implementation. (PWord = 1 byte)  
cnfgB (Configuration Register B)  
ADDRESS OFFSET = 401H  
Mode = 111  
BIT 7 compress  
This bit is read only. During a read it is a low level. This means that this chip does not support hardware  
RLE compression. It does support hardware de-compression!  
BIT 6 intrValue  
Returns the value on the ISA iRq line to determine possible conflicts.  
BITS [3:0] Parallel Port IRQ  
Refer to Table 12.6B.  
BITS [2:0] Parallel Port DMA  
Refer to Table 12.6C.  
ecr (Extended Control Register)  
ADDRESS OFFSET = 402H  
Mode = all  
SMSC FDC37C672  
Page 93  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
This register controls the extended ECP parallel port functions.  
BITS 7,6,5  
These bits are Read/Write and select the Mode.  
BIT 4 nErrIntrEn  
Read/Write (Valid only in ECP Mode)  
1: Disables the interrupt generated on the asserting edge of nFault.  
0: Enables an interrupt pulse on the high to low edge of nFault. Note that an interrupt will be generated if  
nFault is asserted (interrupting) and this bit is written from a 1 to a 0. This prevents interrupts from  
being lost in the time between the read of the ecr and the write of the ecr.  
BIT 3 dmaEn  
Read/Write  
1: Enables DMA (DMA starts when serviceIntr is 0).  
0: Disables DMA unconditionally.  
BIT 2 serviceIntr  
Read/Write  
1: Disables DMA and all of the service interrupts.  
0: Enables one of the following 3 cases of interrupts. Once one of the 3 service interrupts has occurred  
serviceIntr bit shall be set to a 1 by hardware. It must be reset to 0 to re-enable the interrupts. Writing  
this bit to a 1 will not cause an interrupt.  
case dmaEn=1:  
During DMA (this bit is set to a 1 when terminal count is reached).  
case dmaEn=0 direction=0:  
This bit shall be set to 1 whenever there are writeIntrThreshold or more bytes free in the FIFO.  
case dmaEn=0 direction=1:  
This bit shall be set to 1 whenever there are readIntrThreshold or more valid bytes to be read from the  
FIFO.  
BIT 1 full  
Read only  
1: The FIFO cannot accept another byte or the FIFO is completely full.  
0: The FIFO has at least 1 free byte.  
SMSC FDC37C672  
Page 94  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
BIT 0 empty  
Read only  
1: The FIFO is completely empty.  
0: The FIFO contains at least 1 byte of data.  
Table 12.6A - Extended Control Register  
R/W  
MODE  
000:  
Standard Parallel Port Mode . In this mode the FIFO is reset and common collector drivers are used on the  
control lines (nStrobe, nAutoFd, nInit and nSelectIn). Setting the direction bit will not tri-state the output  
drivers in this mode.  
001:  
010:  
011:  
PS/2 Parallel Port Mode. Same as above except that direction may be used to tri-state the data lines and  
reading the data register returns the value on the data lines and not the value in the data register. All  
drivers have active pull-ups (push-pull).  
Parallel Port FIFO Mode. This is the same as 000 except that bytes are written or DMAed to the FIFO. FIFO  
data is automatically transmitted using the standard parallel port protocol. Note that this mode is only useful  
when direction is 0. All drivers have active pull-ups (push-pull).  
ECP Parallel Port Mode. In the forward direction (direction is 0) bytes placed into the ecpDFifo and bytes  
written to the ecpAFifo are placed in a single FIFO and transmitted automatically to the peripheral using  
ECP Protocol. In the reverse direction (direction is 1) bytes are moved from the ECP parallel port and  
packed into bytes in the ecpDFifo. All drivers have active pull-ups (push-pull).  
100:  
Selects EPP Mode: In this mode, EPP is selected if the EPP supported option is selected in configuration  
register L3-CRF0. All drivers have active pull-ups (push-pull).  
101:  
110:  
Reserved  
Test Mode. In this mode the FIFO may be written and read, but the data will not be transmitted on the  
parallel port. All drivers have active pull-ups (push-pull).  
111:  
Configuration Mode. In this mode the confgA, confgB registers are accessible at 0x400 and 0x401. All  
drivers have active pull-ups (push-pull).  
Table 12.6B  
CONFIG REG B  
Table 12.6C  
CONFIG REG B  
IRQ SELECTED  
BITS 5:3  
110  
DMA SELECTED  
BITS 2:0  
011  
15  
3
14  
11  
101  
100  
2
1
010  
001  
10  
9
011  
010  
All Others  
000  
7
001  
5
111  
000  
All Others  
SMSC FDC37C672  
Page 95  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
12.4 Operation  
12.4.1 Mode Switching/Software Control  
Software will execute P1284 negotiation and all operation prior to a data transfer phase under  
programmed I/O control (mode 000 or 001). Hardware provides an automatic control line handshake,  
moving data between the FIFO and the ECP port only in the data transfer phase (modes 011 or 010).  
Setting the mode to 011 or 010 will cause the hardware to initiate data transfer.  
If the port is in mode 000 or 001 it may switch to any other mode. If the port is not in mode 000 or 001 it  
can only be switched into mode 000 or 001. The direction can only be changed in mode 001.  
Once in an extended forward mode the software should wait for the FIFO to be empty before switching  
back to mode 000 or 001. In this case all control signals will be deasserted before the mode switch. In an  
ecp reverse mode the software waits for all the data to be read from the FIFO before changing back to  
mode 000 or 001. Since the automatic hardware ecp reverse handshake only cares about the state of the  
FIFO it may have acquired extra data which will be discarded. It may in fact be in the middle of a transfer  
when the mode is changed back to 000 or 001. In this case the port will deassert nAutoFd independent of  
the state of the transfer. The design shall not cause glitches on the handshake signals if the software  
meets the constraints above.  
ECP Operation  
Prior to ECP operation the Host must negotiate on the parallel port to determine if the peripheral supports  
the ECP protocol. This is a somewhat complex negotiation carried out under program control in mode 000.  
After negotiation, it is necessary to initialize some of the port bits. The following are required:  
Set Direction = 0, enabling the drivers.  
Set strobe = 0, causing the nStrobe signal to default to the deasserted state.  
Set autoFd = 0, causing the nAutoFd signal to default to the deasserted state.  
Set mode = 011 (ECP Mode)  
ECP address/RLE bytes or data bytes may be sent automatically by writing the ecpAFifo or ecpDFifo  
respectively.  
Note that all FIFO data transfers are byte wide and byte aligned. Address/RLE transfers are byte-wide  
and only allowed in the forward direction.  
The host may switch directions by first switching to mode = 001, negotiating for the forward or reverse  
channel, setting direction to 1 or 0, then setting mode = 011. When direction is 1 the hardware shall  
handshake for each ECP read data byte and attempt to fill the FIFO. Bytes may then be read from the  
ecpDFifo as long as it is not empty.  
ECP transfers may also be accomplished (albeit slowly) by handshaking individual bytes under program  
control in mode = 001, or 000.  
Termination from ECP Mode  
Termination from ECP Mode is similar to the termination from Nibble/Byte Modes. The host is permitted to  
terminate from ECP Mode only in specific well-defined states. The termination can only be executed while  
the bus is in the forward direction. To terminate while the channel is in the reverse direction, it must first  
be transitioned into the forward direction.  
SMSC FDC37C672  
Page 96  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
Command/Data  
ECP Mode supports two advanced features to improve the effectiveness of the protocol for some  
applications. The features are implemented by allowing the transfer of normal 8 bit data or 8 bit  
commands.  
When in the forward direction, normal data is transferred when HostAck is high and an 8 bit command is  
transferred when HostAck is low.  
The most significant bit of the command indicates whether it is a run-length count (for compression) or a  
channel address.  
When in the reverse direction, normal data is transferred when PeriphAck is high and an 8 bit command is  
transferred when PeriphAck is low. The most significant bit of the command is always zero. Reverse  
channel addresses are seldom used and may not be supported in hardware.  
Table 12.7 - Forward Channel Commands (HostAck Low)  
Reverse Channel Commands (PeripAck Low)  
D7  
0
1
D[6:0]  
Run-Length Count (0-127) (mode 0011 0X00 only)  
Channel Address (0-127)  
12.4.2 Data Compression  
The ECP port supports run length encoded (RLE) decompression in hardware and can transfer  
compressed data to a peripheral. Run length encoded (RLE) compression in hardware is not supported.  
To transfer compressed data in ECP mode, the compression count is written to the ecpAFifo and the data  
byte is written to the ecpDFifo.  
Compression is accomplished by counting identical bytes and transmitting an RLE byte that indicates how  
many times the next byte is to be repeated. Decompression simply intercepts the RLE byte and repeats  
the following byte the specified number of times. When a run-length count is received from a peripheral,  
the subsequent data byte is replicated the specified number of times. A run-length count of zero specifies  
that only one byte of data is represented by the next data byte, whereas a run-length count of 127  
indicates that the next byte should be expanded to 128 bytes. To prevent data expansion, however,  
run-length counts of zero should be avoided.  
12.4.3 Pin Definition  
The drivers for nStrobe, nAutoFd, nInit and nSelectIn are open-collector in mode 000 and are push-pull in  
all other modes.  
12.4.4 ISA Connections  
The interface can never stall causing the host to hang. The width of data transfers is strictly controlled on  
an I/O address basis per this specification. All FIFO-DMA transfers are byte wide, byte aligned and end on  
a byte boundary. (The PWord value can be obtained by reading Configuration Register A, cnfgA,  
described in the next section.) Single byte wide transfers are always possible with standard or PS/2 mode  
using program control of the control signals.  
SMSC FDC37C672  
Page 97  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
12.4.5 Interrupts  
The interrupts are enabled by serviceIntr in the ecr register.  
serviceIntr = 1  
serviceIntr = 0  
Disables the DMA and all of the service interrupts.  
Enables the selected interrupt condition. If the interrupting condition is valid, then the  
interrupt is generated immediately when this bit is changed from a 1 to a 0. This can  
occur during Programmed I/O if the number of bytes removed or added from/to the FIFO  
does not cross the threshold.  
The interrupt generated is ISA friendly in that it must pulse the interrupt line low, allowing for interrupt  
sharing. After a brief pulse low following the interrupt event, the interrupt line is tri-stated so that other  
interrupts may assert.  
An interrupt is generated when:  
1. For DMA transfers: When serviceIntr is 0, dmaEn is 1 and the DMA TC is received.  
2. For Programmed I/O:  
a. When serviceIntr is 0, dmaEn is 0, direction is 0 and there are writeIntrThreshold or more free  
bytes in the FIFO. Also, an interrupt is generated when serviceIntr is cleared to 0 whenever there  
are writeIntrThreshold or more free bytes in the FIFO.  
b. When serviceIntr is 0, dmaEn is 0, direction is 1 and there are readIntrThreshold or more bytes in  
the FIFO. Also, an interrupt is generated when serviceIntr is cleared to 0 whenever there are  
readIntrThreshold or more bytes in the FIFO.  
3. When nErrIntrEn is 0 and nFault transitions from high to low or when nErrIntrEn is set from 1 to 0 and  
nFault is asserted.  
4. When ackIntEn is 1 and the nAck signal transitions from a low to a high.  
12.4.6 FIFO Operation  
The FIFO threshold is set in the chip configuration registers. All data transfers to or from the parallel port  
can proceed in DMA or Programmed I/O (non-DMA) mode as indicated by the selected mode. The FIFO  
is used by selecting the Parallel Port FIFO mode or ECP Parallel Port Mode. (FIFO test mode will be  
addressed separately.) After a reset, the FIFO is disabled. Each data byte is transferred by a  
Programmed I/O cycle or PDRQ depending on the selection of DMA or Programmed I/O mode.  
The following paragraphs detail the operation of the FIFO flow control. In these descriptions, <threshold>  
ranges from 1 to 16. The parameter FIFOTHR, which the user programs, is one less and ranges from 0 to  
15.  
A low threshold value (i.e. 2) results in longer periods of time between service requests, but requires faster  
servicing of the request for both read and write cases. The host must be very responsive to the service  
request. This is the desired case for use with a "fast" system. A high value of threshold (i.e. 12) is used  
with a "sluggish" system by affording a long latency period after a service request, but results in more  
frequent service requests.  
12.5 DMA Transfers  
DMA transfers are always to or from the ecpDFifo, tFifo or CFifo. DMA utilizes the standard PC DMA  
services. To use the DMA transfers, the host first sets up the direction and state as in the programmed I/O  
case. Then it programs the DMA controller in the host with the desired count and memory address. Lastly  
it sets dmaEn to 1 and serviceIntr to 0. The ECP requests DMA transfers from the host by activating the  
PDRQ pin. The DMA will empty or fill the FIFO using the appropriate direction and mode. When the  
terminal count in the DMA controller is reached, an interrupt is generated and serviceIntr is asserted,  
SMSC FDC37C672  
Page 98  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
disabling DMA. In order to prevent possible blocking of refresh requests dReq shall not be asserted for  
more than 32 DMA cycles in a row. The FIFO is enabled directly by asserting nPDACK and addresses  
need not be valid. PINTR is generated when a TC is received. PDRQ must not be asserted for more than  
32 DMA cycles in a row. After the 32nd cycle, PDRQ must be kept unasserted until nPDACK is  
deasserted for a minimum of 350nsec. (Note: The only way to properly terminate DMA transfers is with a  
TC.)  
DMA may be disabled in the middle of a transfer by first disabling the host DMA controller. Then setting  
serviceIntr to 1, followed by setting dmaEn to 0, and waiting for the FIFO to become empty or full.  
Restarting the DMA is accomplished by enabling DMA in the host, setting dmaEn to 1, followed by setting  
serviceIntr to 0.  
DMA Mode - Transfers from the FIFO to the Host  
(Note: In the reverse mode, the peripheral may not continue to fill the FIFO if it runs out of data to transfer,  
even if the chip continues to request more data from the peripheral.)  
The ECP activates the PDRQ pin whenever there is data in the FIFO. The DMA controller must respond  
to the request by reading data from the FIFO. The ECP will deactivate the PDRQ pin when the FIFO  
becomes empty or when the TC becomes true (qualified by nPDACK), indicating that no more data is  
required. PDRQ goes inactive after nPDACK goes active for the last byte of a data transfer (or on the  
active edge of nIOR, on the last byte, if no edge is present on nPDACK). If PDRQ goes inactive due to the  
FIFO going empty, then PDRQ is active again as soon as there is one byte in the FIFO. If PDRQ goes  
inactive due to the TC, then PDRQ is active again when there is one byte in the FIFO, and serviceIntr has  
been re-enabled. (Note: A data underrun may occur if PDRQ is not removed in time to prevent an  
unwanted cycle.)  
12.5.1 Programmed I/O Mode or Non-DMA Mode  
The ECP or parallel port FIFOs may also be operated using interrupt driven programmed I/O. Software  
can determine the writeIntrThreshold, readIntrThreshold, and FIFO depth by accessing the FIFO in Test  
Mode.  
Programmed I/O transfers are to the ecpDFifo at 400H and ecpAFifo at 000H or from the ecpDFifo located  
at 400H, or to/from the tFifo at 400H. To use the programmed I/O transfers, the host first sets up the  
direction and state, sets dmaEn to 0 and serviceIntr to 0.  
The ECP requests programmed I/O transfers from the host by activating the PINTR pin. The programmed  
I/O will empty or fill the FIFO using the appropriate direction and mode.  
Note:  
A threshold of 16 is equivalent to a threshold of 15. These two cases are treated the same.  
12.5.2 Programmed I/O - Transfers from the FIFO to the Host  
In the reverse direction an interrupt occurs when serviceIntr is 0 and readIntrThreshold bytes are available  
in the FIFO. If at this time the FIFO is full it can be emptied completely in a single burst, otherwise  
readIntrThreshold bytes may be read from the FIFO in a single burst.  
readIntrThreshold = (16-<threshold>) data bytes in FIFO  
An interrupt is generated when serviceIntr is 0 and the number of bytes in the FIFO is greater than or  
equal to (16-<threshold>). (If the threshold = 12, then the interrupt is set whenever there are 4-16 bytes in  
the FIFO.) The PINT pin can be used for interrupt-driven systems. The host must respond to the request  
by reading data from the FIFO. This process is repeated until the last byte is transferred out of the FIFO.  
SMSC FDC37C672  
Page 99  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
If at this time the FIFO is full, it can be completely emptied in a single burst, otherwise a minimum of (16-  
<threshold>) bytes may be read from the FIFO in a single burst.  
12.5.3 Programmed I/O - Transfers from the Host to the FIFO  
In the forward direction an interrupt occurs when serviceIntr is 0 and there are writeIntrThreshold or more  
bytes free in the FIFO. At this time if the FIFO is empty it can be filled with a single burst before the empty  
bit needs to be re-read. Otherwise it may be filled with writeIntrThreshold bytes.  
writeIntrThreshold = (16-<threshold>) free bytes in FIFO  
An interrupt is generated when serviceIntr is 0 and the number of bytes in the FIFO is less than or equal to  
<threshold>. (If the threshold = 12, then the interrupt is set whenever there are 12 or less bytes of data in  
the FIFO.) The PINT pin can be used for interrupt-driven systems. The host must respond to the request  
by writing data to the FIFO. If at this time the FIFO is empty, it can be completely filled in a single burst,  
otherwise a minimum of (16-<threshold>) bytes may be written to the FIFO in a single burst. This process  
is repeated until the last byte is transferred into the FIFO.  
12.6 Parallel Port Floppy Disk Controller  
In this mode, the Floppy Disk Control signals are available on the parallel port pins. When this mode is  
selected, the parallel port is not available. There are two modes of operation, PPFD1 and PPFD2. These  
modes can be selected in the Parallel Port Mode Register, as defined in the Parallel Port Mode Register,  
Logical Device 3, at 0xF1. PPFD1 has only drive 1 on the parallel port pins; PPFD2 has drive 0 and 1 on  
the parallel port pins.  
When the PPFDC is selected the following pins are set as follows:  
1. nPDACK: high-Z  
2. PDRQ: not ECP = high-Z, ECP & dmaEn = 0, ECP & not dmaEn = high-Z  
3. PINTR: not active, this is hi-Z or Low depending on settings.  
Note:  
nPDACK, PDRQ and PINTR refer to the nDACK, DRQ and IRQ chosen for the parallel port.  
The following parallel port pins are read as follows by a read of the parallel port register:  
1. Data Register (read) = last Data Register (write)  
2. Control Register read as "cable not connected" STROBE, AUTOFD and SLC = 0 and nINIT =1  
3. Status Register reads: nBUSY = 0, PE = 0, SLCT = 0, nACK = 1, nERR = 1.  
The following FDC pins are all in the high impedance state when the PPFDC is actually selected by the  
drive select register:  
1. nWDATA, DENSEL, nHDSEL, nWGATE, nDIR, nSTEP, nDS1, nDS0, nMTR0, nMTR1.  
2. If PPFDx is selected, then the parallel port can not be used as a parallel port until "Normal" mode is  
selected.  
The FDC signals are muxed onto the Parallel Port pins as shown in Table 12.8.  
SMSC FDC37C672  
Page 100  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
Table 12.8 - FDC Parallel Port Pins  
CONNECTOR  
CHIP PIN #  
PIN #  
SPP MODE  
PIN DIRECTION  
FDC MODE  
PIN DIRECTION  
1
83  
68  
69  
70  
71  
72  
73  
74  
75  
80  
79  
78  
77  
82  
81  
66  
67  
nSTROBE  
PD0  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
(nDS0)  
nINDEX  
nTRK0  
I/(O) Note 12.10  
2
3
4
5
6
7
8
9
I
I
I
I
I
I
PD1  
PD2  
PD3  
PD4  
PD5  
PD6  
PD7  
nACK  
BUSY  
PE  
SLCT  
nALF  
nERROR  
nINIT  
nSLCTIN  
nWP  
nRDATA  
nDSKCHG  
nMEDIA_ID0  
(nMTR0)  
MEDIA_ID1  
nDS1  
I/(O) Note 12.10  
I
10  
11  
12  
13  
14  
15  
16  
17  
O
O
O
O
O
O
O
O
I
I
I
nMTR1  
nWDATA  
nWGATE  
DRVDEN0  
nHDSEL  
nDIR  
I/O  
I
I/O  
I/O  
nSTEP  
Note 12.10 These pins are outputs in mode PPFD2, inputs in mode PPFD1.  
SMSC FDC37C672  
Page 101  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
Chapter 13 Auto Power Management  
Power management capabilities are provided for the following logical devices: floppy disk, UART 1, UART  
2 and the parallel port. For each logical device, two types of power management are provided; direct  
powerdown and auto powerdown.  
FDC Power Management  
Direct power management is controlled by CR22. Refer to CR22 for more information.  
Auto Power Management is enabled by CR23-B0. When set, this bit allows FDC to enter powerdown  
when all of the following conditions have been met:  
1. The motor enable pins of register 3F2H are inactive (zero).  
2. The part must be idle; MSR=80H and INT = 0 (INT may be high even if MSR = 80H due to polling  
interrupts).  
3. The head unload timer must have expired.  
4. The Auto powerdown timer (10msec) must have timed out.  
An internal timer is initiated as soon as the auto powerdown command is enabled. The part is then  
powered down when all the conditions are met.  
Disabling the auto powerdown mode cancels the timer and holds the FDC block out of auto powerdown.  
DSR From Powerdown  
If DSR powerdown is used when the part is in auto powerdown, the DSR powerdown will override the auto  
powerdown. However, when the part is awakened from DSR powerdown, the auto powerdown will once  
again become effective.  
Wake Up From Auto Powerdown  
If the part enters the powerdown state through the auto powerdown mode, then the part can be awakened  
by reset or by appropriate access to certain registers.  
If a hardware or software reset is used then the part will go through the normal reset sequence. If the  
access is through the selected registers, then the FDC resumes operation as though it was never in  
powerdown. Besides activating the RESET pin or one of the software reset bits in the DOR or DSR, the  
following register accesses will wake up the part:  
1. Enabling any one of the motor enable bits in the DOR register (reading the DOR does not awaken the  
part).  
2. A read from the MSR register.  
3. A read or write to the Data register.  
Once awake, the FDC will reinitiate the auto powerdown timer for 10 ms. The part will powerdown again  
when all the powerdown conditions are satisfied.  
Register Behavior  
Table 13.1 reiterates the AT and PS/2 (including Model 30) configuration registers available. It also shows  
the type of access permitted. In order to maintain software transparency, access to all the registers must  
be maintained. As Table 13.1 shows, two sets of registers are distinguished based on whether their  
access results in the part remaining in powerdown state or exiting it.  
SMSC FDC37C672  
Page 102  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
Access to all other registers is possible without awakening the part. These registers can be accessed  
during powerdown without changing the status of the part. A read from these registers will reflect the true  
status as shown in the register description in the FDC description. A write to the part will result in the part  
retaining the data and subsequently reflecting it when the part awakens. Accessing the part during  
powerdown may cause an increase in the power consumption by the part. The part will revert back to its  
low power mode when the access has been completed.  
Pin Behavior  
The FDC37C672 is specifically designed for portable PC systems in which power conservation is a  
primary concern. This makes the behavior of the pins during powerdown very important.  
The pins of the FDC37C672 can be divided into two major categories: system interface and floppy disk  
drive interface. The floppy disk drive pins are disabled so that no power will be drawn through the part as  
a result of any voltage applied to the pin within the part's power supply range. Most of the system  
interface pins are left active to monitor system accesses that may wake up the part.  
System Interface Pins  
Table 12.8 gives the state of the system interface pins in the powerdown state. Pins unaffected by the  
powerdown are labeled "Unchanged". Input pins are "Disabled" to prevent them from causing currents  
internal to the FDC37C672 when they have indeterminate input values.  
Table 13.1 - PC/AT and PS/2 Available Registers  
BASE + ADDRESS  
AVAILABLE REGISTERS  
PC-AT PS/2 (MODEL 30)  
Access to these registers DOES NOT wake up the part  
ACCESS PERMITTED  
00H  
01H  
02H  
03H  
04H  
06H  
07H  
07H  
----  
----  
SRA  
SRB  
R
R
R/W  
---  
W
---  
R
W
DOR (Note 13.1) DOR (Note 13.1)  
--- ---  
DSR (Note 13.1) DSR (Note 13.1)  
---  
DIR  
CCR  
---  
DIR  
CCR  
Access to these registers wakes up the part  
04H  
05H  
MSR  
Data  
MSR  
Data  
R
R/W  
Note 13.1 Writing to the DOR or DSR does not wake up the part, however, writing any of the motor enable bits or  
doing a software reset (via DOR or DSR reset bits) will wake up the part  
SMSC FDC37C672  
Page 103  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
Table 13.2 - State of System Pins in Auto Powerdown  
SYSTEM PINS STATE IN AUTO POWERDOWN  
INPUT PINS  
nIOR  
nIOW  
Unchanged  
Unchanged  
Unchanged  
Unchanged  
Unchanged  
Unchanged  
Unchanged  
SA[0:9]  
SD[0:7]  
RESET_DRV  
DACKx  
TC  
Output Pins  
IRQx  
SD[0:7]  
DRQx  
Unchanged (low)  
Unchanged  
Unchanged (low)  
FDD Interface Pins  
All pins in the FDD interface which can be connected directly to the floppy disk drive itself are either  
DISABLED or TRISTATED.  
Pins used for local logic control or part programming are unaffected. Table 13.3 depicts the state of the  
floppy disk drive interface pins in the powerdown state.  
Table 13.3 - State of Floppy Disk Drive Interface Pins in Powerdown  
FDD Pins  
State in Auto Powerdown  
Input Pins  
nRDATA  
nWPROT  
nTR0  
nINDEX  
nDSKCHG  
Input  
Input  
Input  
Input  
Input  
Output Pins  
nMTR[0:1]  
nDS[0:1]  
nDIR  
Tristated  
Tristated  
Active  
nSTEP  
Active  
nWDATA  
nWGATE  
nHDSEL  
DRVDEN[0:1]  
Tristated  
Tristated  
Active  
Active  
UART Power Management  
Direct power management is controlled by CR22. Refer to CR22 for more information.  
Auto Power Management is enabled by CR23-B4 and B5. When set, these bits allow the following auto  
power management operations:  
SMSC FDC37C672  
Page 104  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
1. The transmitter enters auto powerdown when the transmit buffer and shift register are empty.  
2. The receiver enters powerdown when the following conditions are all met:  
a. Receive FIFO is empty  
b. The receiver is waiting for a start bit.  
Note:  
While in powerdown the Ring Indicator interrupt is still valid and transitions when the RI input changes.  
Exit Auto Powerdown  
The transmitter exits powerdown on a write to the XMIT buffer. The receiver exits auto powerdown when  
RXDx changes state.  
Parallel Port  
Direct power management is controlled by CR22. Refer to CR22 for more information.  
Auto Power Management is enabled by CR23-B3. When set, this bit allows the ECP or EPP logical  
parallel port blocks to be placed into powerdown when not being used.  
The EPP logic is in powerdown under any of the following conditions:  
1. EPP is not enabled in the configuration registers.  
2. EPP is not selected through ecr while in ECP mode.  
The ECP logic is in powerdown under any of the following conditions:  
1. ECP is not enabled in the configuration registers.  
2. SPP, PS/2 Parallel port or EPP mode is selected through ecr while in ECP mode.  
Exit Auto Powerdown  
The parallel port logic can change powerdown modes when the ECP mode is changed through the ecr  
register or when the parallel port mode is changed through the configuration registers.  
SMSC FDC37C672  
Page 105  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
Chapter 14 Serial IRQ  
The SMI is enabled onto the SMI frame of the Serial IRQ via bit 6 of SMI Enable Register 2 and onto the  
SMI pin via bit 7 of the SMI Enable Register 2.  
14.1 Serial Interrupts  
The FDC37C672 will support the serial interrupt to transmit interrupt information to the host system. The  
serial interrupt scheme adheres to the Serial IRQ Specification for PCI Systems, Version 6.0.  
14.1.1 Timing Diagrams For IRQSER Cycle  
PCICLK = 33Mhz_IN pin  
IRQSER = SIRQ pin  
A. Start Frame timing with source sampled a low pulse on IRQ1  
START FRAME  
IRQ0 FRAME IRQ1 FRAME IRQ2 FRAME  
SL  
or  
H
R
T
S
R
T
S
R
T
S
R
T
H
PCICLK  
START1  
IRQSER  
IRQ1 Host Controller  
None  
IRQ1  
None  
Drive Source  
H=Host Control  
SL=Slave Control  
S=Sample  
R=Recovery  
T=Turn-around  
Note1:  
Start Frame pulse can be 4-8 clocks wide.  
SMSC FDC37C672  
Page 106  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
B. Stop Frame Timing with Host using 17 IRQSER sampling period  
IRQ14  
FRAME  
R
IRQ15  
FRAME  
R
IOCHCK#  
FRAME  
STOP FRAME  
NEXT CYCLE  
I 2  
S
T
S
T
S
R
T
H
R
T
PCICLK  
IRQSER  
Driver  
1
3
START  
STOP  
Host Controller  
None  
IRQ15  
None  
H=Host Control  
R=Recovery  
T=Turn-around  
S=Sample  
I= Idle.  
Note 1  
Note 2  
Note 3  
Stop pulse is 2 clocks wide for Quiet mode, 3 clocks wide for Continuous mode.  
There may be none, one or more Idle states during the Stop Frame.  
The next IRQSER cycle’s Start Frame pulse may or may not start immediately after the turn-around clock  
of the Stop Frame.  
14.1.2 IRQSER Cycle Control  
There are two modes of operation for the IRQSER Start Frame.  
1. Quiet (Active) Mode: Any device may initiate a Start Frame by driving the IRQSER low for one clock,  
while the IRQSER is Idle. After driving low for one clock the IRQSER must immediately be tri-stated  
without at any time driving high. A Start Frame may not be initiated while the IRQSER is Active. The  
IRQSER is Idle between Stop and Start Frames. The IRQSER is Active between Start and Stop  
Frames. This mode of operation allows the IRQSER to be Idle when there are no IRQ/Data transitions  
which should be most of the time.  
Once a Start Frame has been initiated the Host Controller will take over driving the IRQSER low in the  
next clock and will continue driving the IRQSER low for a programmable period of three to seven  
clocks. This makes a total low pulse width of four to eight clocks. Finally, the Host Controller will  
drive the IRQSER back high for one clock, then tri-state.  
Any IRQSER Device (i.e., The FDC37C672) which detects any transition on an IRQ/Data line for  
which it is responsible must initiate a Start Frame in order to update the Host Controller unless the  
IRQSER is already in an IRQSER Cycle and the IRQ/Data transition can be delivered in that IRQSER  
Cycle.  
2. Continuous (Idle) Mode: Only the Host controller can initiate a Start Frame to update IRQ/Data line  
information. All other IRQSER agents become passive and may not initiate a Start Frame. IRQSER  
will be driven low for four to eight clocks by Host Controller. This mode has two functions. It can be  
used to stop or idle the IRQSER or the Host Controller can operate IRQSER in a continuous mode by  
initiating a Start Frame at the end of every Stop Frame.  
An IRQSER mode transition can only occur during the Stop Frame. Upon reset, IRQSER bus is  
defaulted to Continuous mode, therefore only the Host controller can initiate the first Start Frame.  
Slaves must continuously sample the Stop Frames pulse width to determine the next IRQSER Cycle’s  
mode.  
SMSC FDC37C672  
Page 107  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
14.1.3 IRQSER Data Frame  
Once a Start Frame has been initiated, the FDC37C672 will watch for the rising edge of the Start Pulse  
and start counting IRQ/Data Frames from there. Each IRQ/Data Frame is three clocks: Sample phase,  
Recovery phase, and Turn-around phase. During the Sample phase the FDC37C672 must drive the  
IRQSER (SIRQ pin) low, if and only if, its last detected IRQ/Data value was low. If its detected IRQ/Data  
value is high, IRQSER must be left tri-stated. During the Recovery phase the FDC37C672 must drive the  
SERIRQ high, if and only if, it had driven the IRQSER low during the previous Sample Phase. During the  
Turn-around Phase the FDC37C672 must tri-state the SERIRQ. The FDC37C672 will drive the IRQSER  
line low at the appropriate sample point if its associated IRQ/Data line is low, regardless of which device  
initiated the Start Frame.  
The Sample Phase for each IRQ/Data follows the low to high transition of the Start Frame pulse by a  
number of clocks equal to the IRQ/Data Frame times three, minus one. (e.g.: The IRQ5 Sample clock is  
the sixth IRQ/Data Frame, (6 x 3) - 1 = 17th clock after the rising edge of the Start Pulse.)  
Table 14.1 - IRQSER Sampling Periods  
IRQSER PERIOD  
SIGNAL SAMPLED  
Not Used  
IRQ1  
# OF CLOCKS PAST START  
1
2
2
5
3
nSMI/IRQ2  
8
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
IRQ3  
IRQ4  
IRQ5  
IRQ6  
IRQ7  
IRQ8  
IRQ9  
IRQ10  
IRQ11  
IRQ12  
IRQ13  
IRQ14  
11  
14  
17  
20  
23  
26  
29  
32  
35  
38  
41  
44  
47  
IRQ15  
The SIRQ data frame will now support IRQ2 from a logical device, previously IRQSER Period 3 was  
reserved for use by the System Management Interrupt (nSMI). When using Period 3 for IRQ2 the user  
should mask off the SMI via the SMI Enable Register. Likewise, when using Period 3 for nSMI the user  
should not configure any logical devices as using IRQ2.  
IRQSER Period 14 is used to transfer IRQ13. Logical devices 0 (FDC), 3 (Par Port), 4 (Ser Port 1), 5 (Ser  
Port 2), 6 (RTC), and 7 (KBD) shall have IRQ13 as a choice for their primary interrupt.  
14.1.4 Stop Cycle Control  
Once all IRQ/Data Frames have completed the Host Controller will terminate IRQSER activity by initiating  
a Stop Frame. Only the Host Controller can initiate the Stop Frame. A Stop Frame is indicated when the  
IRQSER is low for two or three clocks. If the Stop Frame’s low time is two clocks then the next IRQSER  
Cycle’s sampled mode is the Quiet mode; and any IRQSER device may initiate a Start Frame in the  
second clock or more after the rising edge of the Stop Frame’s pulse. If the Stop Frame’s low time is three  
clocks then the next IRQSER Cycle’s sampled mode is the Continuous mode; and only the Host Controller  
may initiate a Start Frame in the second clock or more after the rising edge of the Stop Frame’s pulse.  
SMSC FDC37C672  
Page 108  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
14.1.5 Latency  
Latency for IRQ/Data updates over the IRQSER bus in bridge-less systems with the minimum IRQ/Data  
Frames of seventeen, will range up to 96 clocks (3.84µS with a 25MHz PCI Bus or 2.88uS with a 33MHz  
PCI Bus). If one or more PCI to PCI Bridge is added to a system, the latency for IRQ/Data updates from  
the secondary or tertiary buses will be a few clocks longer for synchronous buses, and approximately  
double for asynchronous buses.  
14.1.6 EOI/ISR Read Latency  
Any serialized IRQ scheme has a potential implementation issue related to IRQ latency. IRQ latency could  
cause an EOI or ISR Read to precede an IRQ transition that it should have followed. This could cause a  
system fault. The host interrupt controller is responsible for ensuring that these latency issues are  
mitigated. The recommended solution is to delay EOIs and ISR Reads to the interrupt controller by the  
same amount as the IRQSER Cycle latency in order to ensure that these events do not occur out of order.  
14.1.7 AC/DC Specification Issue  
All IRQSER agents must drive / sample IRQSER synchronously related to the rising edge of PCI bus  
clock. IRQSER (SIRQ) pin uses the electrical specification of PCI bus. Electrical parameters will follow  
PCI spec. section 4, sustained tri-state.  
14.1.8 Reset and Initialization  
The IRQSER bus uses RESET_DRV as its reset signal. The IRQSER pin is tri-stated by all agents while  
RESET_DRV is active. With reset, IRQSER Slaves are put into the (continuous) IDLE mode. The Host  
Controller is responsible for starting the initial IRQSER Cycle to collect system’s IRQ/Data default values.  
The system then follows with the Continuous/Quiet mode protocol (Stop Frame pulse width) for  
subsequent IRQSER Cycles. It is Host Controller’s responsibility to provide the default values to 8259’s  
and other system logic before the first IRQSER Cycle is performed. For IRQSER system suspend,  
insertion, or removal application, the Host controller should be programmed into Continuous (IDLE) mode  
first. This is to guarantee IRQSER bus is in IDLE state before the system configuration changes.  
SMSC FDC37C672  
Page 109  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
Chapter 15 GP Index Registers  
The Watchdog Timer Control, SMI Enable and SMI Status Registers can be accessed by the host when  
the chip is in the normal run mode if CR03 Bit[7]=1. The host uses GP Index and Data register to access  
these registers. The Power on default GP Index and Data registers are 0xEA and 0xEB respectively. In  
configuration mode the GP Index address may be programmed to reside on addresses 0xE0, 0xE2, 0xE4  
or 0xEA. The GP Data address is automatically set to the Index address + 1. Upon exiting the  
configuration mode the new GP Index and Data registers are used to access registers WDT_CTRL, SMI  
Enable and SMI Status Registers.  
To access these registers when in normal (run) mode, the host should perform an IOW of the Register  
Index to the GP Index register (at 0xEX) to select the Register and then read or write the Data register (at  
Index+1) to access the register.  
The WDT_CTRL, SMI Enable and SMI Status registers can also be accessed by the host when in the  
configuration state through Logical Device 8.  
Table 15.1 - GP Index and Data Register  
REGISTER  
GP Index  
GP Data  
ADDRESS (R/W)  
0xE0, E2, E4, EA  
Index address + 1  
NORMAL (RUN) MODE  
0x01-0x0F  
Access to Watchdog Timer Control,  
SMI Enable and SMI Status  
Registers (see Table 15.2)  
Table 15.2- Index and Data Register Normal (Run) Mode  
INDEX  
NORMAL (RUN) MODE  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
Reserved  
Reserved  
Access to Watchdog Timer Control (L8 - CRF4)  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Access to SMI Enable Register 1 (L8-CRB4)  
Access to SMI Enable Register 2 (L8-CRB5)  
Access to SMI Status Register 1 (L8-CRB6)  
Access to SMI Status Register 2 (L8-CRB7)  
Note:  
These registers can also be accessed through the configuration registers at L8 - CRxx shown in the table  
above.  
SMSC FDC37C672  
Page 110  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
Chapter 16 Watch Dog Timer  
The FDC37C672 contains a Watch Dog Timer (WDT). The Watch Dog Time-out status bit may be mapped  
to an interrupt through the WDT_CFG Configuration Register.  
The FDC37C672's WDT has a programmable time-out ranging from 1 to 255 minutes with one minute  
resolution, or 1 to 255 seconds with 1 second resolution. The units of the WDT timeout value are selected  
via bit[7] of the WDT_TIMEOUT register (LD8:CRF1.7). The WDT time-out value is set through the  
WDT_VAL Configuration register. Setting the WDT_VAL register to 0x00 disables the WDT function (this  
is its power on default). Setting the WDT_VAL to any other non-zero value will cause the WDT to reload  
and begin counting down from the value loaded. When the WDT count value reaches zero the counter  
stops and sets the Watchdog time-out status bit in the WDT_CTRL Configuration Register.  
Note:  
Regardless of the current state of the WDT, the WDT time-out status bit can be directly set or cleared by  
the Host CPU.  
There are three system events which can reset the WDT, these are a Keyboard Interrupt, a Mouse  
Interrupt, or I/O reads/writes to address 0x201 (the internal or an external Joystick Port). The effect on the  
WDT for each of these system events may be individually enabled or disabled through bits in the  
WDT_CFG configuration register. When a system event is enabled through the WDT_CFG register, the  
occurrence of that event will cause the WDT to reload the value stored in WDT_VAL and reset the WDT  
time-out status bit if set. If all three system events are disabled the WDT will inevitably time out.  
The Watch Dog Timer may be configured to generate an interrupt on the rising edge of the Time-out status  
bit. The WDT interrupt is mapped to an interrupt channel through the WDT_CFG Configuration Register.  
When mapped to an interrupt the interrupt request pin reflects the value of the WDT time-out status bit.  
The host may force a Watch Dog time-out to occur by writing a "1" to bit 2 of the WDT_CTRL (Force WD  
Time-out) Configuration Register. Writing a "1" to this bit forces the WDT count value to zero and sets bit 0 of  
the WDT_CTRL (Watch Dog Status). Bit 2 of the WDT_CTRL is self-clearing.  
SMSC FDC37C672  
Page 111  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
Chapter 17 8042 Keyboard Controller Description  
The FDC37C672 is a Super I/O and Universal Keyboard Controller that is designed for intelligent keyboard  
management in desktop computer applications. The Super I/O supports a Floppy Disk Controller, two  
16550 type serial ports one ECP/EPP Parallel Port.  
The Universal Keyboard Controller uses an 8042 microcontroller CPU core. This section concentrates on  
the FDC37C672 enhancements to the 8042. For general information about the 8042, refer to the "Hard-  
ware Description of the 8042" in the 8-Bit Embedded Controller Handbook.  
8042A  
LS05  
P27  
KDAT  
KCLK  
MCLK  
MDAT  
P10  
P26  
TST0  
P23  
TST1  
P22  
P11  
Figure 17.1 - Keyboard and Mouse Interface  
Notes:  
KIRQ is the Keyboard IRQ  
MIRQ is the Mouse IRQ  
Port 21 is used to create a GATEA20 signal from the FDC37C672.  
17.1 Keyboard ISA Interface  
The FDC37C672 ISA interface is functionally compatible with the 8042 style host interface. It consists of  
the D0-7 data bus; the nIOR, nIOW and the Status register, Input Data register, and Output Data register.  
Table 17.1 shows how the interface decodes the control signals. In addition to the above signals, the host  
interface includes keyboard and mouse IRQs.  
SMSC FDC37C672  
Page 112  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
Table 17.1 - ISA I/O Address Map  
ISA ADDRESS  
NIOW  
NIOR  
BLOCK  
KDATA  
KDATA  
KDCTL  
KDCTL  
FUNCTION (Note 17.1)  
Keyboard Data Write (C/D=0)  
Keyboard Data Read  
Keyboard Command Write (C/D=1)  
Keyboard Status Read  
0x60  
0
1
0
1
1
0
1
0
0x64  
Note 17.1 These registers consist of three separate 8 bit registers. Status, Data/Command Write and Data Read.  
17.1.1 Keyboard Data Write  
This is an 8 bit write only register. When written, the C/D status bit of the status register is cleared to zero  
and the IBF bit is set.  
17.1.2 Keyboard Data Read  
This is an 8 bit read only register. If enabled by "ENABLE FLAGS", when read, the KIRQ output is cleared  
and the OBF flag in the status register is cleared. If not enabled, the KIRQ and/or AUXOBF1 must be  
cleared in software.  
17.1.3 Keyboard Command Write  
This is an 8 bit write only register. When written, the C/D status bit of the status register is set to one and  
the IBF bit is set.  
17.1.4 Keyboard Status Read  
This is an 8 bit read only register. Refer to the description of the Status Register for more information.  
17.1.5 CPU-to-Host Communication  
The FDC37C672 CPU can write to the Output Data register via register DBB. A write to this register auto-  
matically sets Bit 0 (OBF) in the Status register. See Table 17.2.  
Table 17.2 - Host Interface Flags  
8042 INSTRUCTION  
FLAG  
OUT DBB  
Set OBF, and, if enabled, the KIRQ output signal goes high  
17.1.6 Host-to-CPU Communication  
The host system can send both commands and data to the Input Data register. The CPU differentiates  
between commands and data by reading the value of Bit 3 of the Status register. When bit 3 is "1", the  
CPU interprets the register contents as a command. When bit 3 is "0", the CPU interprets the register  
contents as data. During a host write operation, bit 3 is set to "1" if SA2 = 1 or reset to "0" if SA2 = 0.  
SMSC FDC37C672  
Page 113  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
17.1.7 KIRQ  
If "EN FLAGS" has been executed and P24 is set to a one: the OBF flag is gated onto KIRQ. The KIRQ  
signal can be connected to system interrupt to signify that the FDC37C672 CPU has written to the output  
data register via "OUT DBB,A". If P24 is set to a zero, KIRQ is forced low. On power-up, after a valid RST  
pulse has been delivered to the device, KIRQ is reset to 0. KIRQ will normally reflects the status of writes  
"DBB". (KIRQ is normally selected as IRQ1 for keyboard support.)  
If "EN FLAGS” has not been executed: KIRQ can be controlled by writing to P24. Writing a zero to P24  
forces KIRQ low; a high forces KIRQ high.  
17.1.8 MIRQ  
If "EN FLAGS" has been executed and P25 is set to a one:; IBF is inverted and gated onto MIRQ. The  
MIRQ signal can be connected to system interrupt to signify that the FDC37C672 CPU has read the DBB  
register.  
If "EN FLAGS” has not been executed, MIRQ is controlled by P25. Writing a zero to P25 forces MIRQ low,  
a high forces MIRQ high. (MIRQ is normally selected as IRQ12 for mouse support.)  
17.1.9 Gate A20  
A general purpose P21 is used as a software controlled Gate A20 or user defined output.  
17.2 External Keyboard and Mouse Interface  
Industry-standard PC-AT-compatible keyboards employ a two-wire, bidirectional TTL interface for data  
transmission. Several sources also supply PS/2 mouse products that employ the same type of interface.  
To facilitate system expansion, the FDC37C672 provides four signal pins that may be used to implement  
this interface directly for an external keyboard and mouse.  
The FDC37C672 has four high-drive, open-drain output, bidirectional port pins that can be used for external  
serial interfaces, such as ISA external keyboard and PS/2-type mouse interfaces. They are KCLK, KDAT,  
MCLK, and MDAT. P26 is inverted and output as KCLK. The KCLK pin is connected to TEST0. P27 is inverted  
and output as KDAT. The KDAT pin is connected to P10. P23 is inverted and output as MCLK. The MCLK pin is  
connected to TEST1. P22 is inverted and output as MDAT. The MDAT pin is connected to P11.  
Note:  
External pull-ups may be required.  
17.3 Keyboard Power Management  
The keyboard provides support for two power-saving modes: soft powerdown mode and hard powerdown  
mode. In soft powerdown mode, the clock to the ALU is stopped but the timer/counter and interrupts are  
still active. In hard power down mode the clock to the 8042 is stopped.  
17.3.1 Soft Power Down Mode  
This mode is entered by executing a HALT instruction. The execution of program code is halted until  
either RESET is driven active or a data byte is written to the DBBIN register by a master CPU. If this  
mode is exited using the interrupt, and the IBF interrupt is enabled, then program execution resumes with  
SMSC FDC37C672  
Page 114  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
a CALL to the interrupt routine, otherwise the next instruction is executed. If it is exited using RESET then  
a normal reset sequence is initiated and program execution starts from program memory location 0.  
17.3.2 Hard Power Down Mode  
This mode is entered by executing a STOP instruction. The oscillator is stopped by disabling the oscillator  
driver cell. When either RESET is driven active or a data byte is written to the DBBIN register by a master  
CPU, this mode will be exited (as above). However, as the oscillator cell will require an initialization time,  
either RESET must be held active for sufficient time to allow the oscillator to stabilize. Program execution  
will resume as above.  
17.4 Interrupts  
The FDC37C672 provides the two 8042 interrupts. IBF and the Timer/Counter Overflow.  
17.5 Memory Configurations  
The FDC37C672 provides 2K of on-chip ROM and 256 bytes of on-chip RAM.  
17.5.1 Register Definitions  
Host I/F Data Register  
The Input Data register and Output Data register are each 8 bits wide. A write to this 8 bit register will load  
the Keyboard Data Read Buffer, set the OBF flag and set the KIRQ output if enabled. A read of this  
register will read the data from the Keyboard Data or Command Write Buffer and clear the IBF flag. Refer  
to the KIRQ and Status register descriptions for more information.  
Host I/F Status Register  
The Status register is 8 bits wide. Table 17.3 shows the contents of the Status register.  
Table 17.3 - Status Register  
D7  
UD  
D6  
UD  
D5  
UD  
D4  
UD  
D3  
C/D  
D2  
UD  
D1  
IBF  
D0  
OBF  
17.5.2 Status Register  
This register is cleared on a reset. This register is read-only for the Host and read/write by the FDC37C672  
CPU.  
UD  
Writable by FDC37C672 CPU. These bits are user-definable.  
C/D  
(Command Data) -This bit specifies whether the input data register contains data or a command  
(0 = data, 1 = command). During a host data/command write operation, this bit is set to "1" if SA2  
= 1 or reset to "0" if SA2 = 0.  
IBF  
(Input Buffer Full) - This flag is set to 1 whenever the host system writes data into the input data  
register. Setting this flag activates the FDC37C672 CPU's nIBF (MIRQ) interrupt if enabled.  
SMSC FDC37C672  
Page 115  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
When the FDC37C672 CPU reads the input data register (DBB), this bit is automatically reset  
and the interrupt is cleared. There is no output pin associated with this internal signal.  
OBF  
(Output Buffer Full) - This flag is set to whenever the FDC37C672 CPU write to the output data  
register (DBB). When the host system reads the output data register, this bit is automatically  
reset.  
17.6 External Clock Signal  
The FDC37C672 Keyboard Controller clock source is a 12 MHz clock generated from a 14.318 MHz clock.  
The reset pulse must last for at least 24 16 Mhz clock periods. The pulse-width requirement applies to  
both internally (Vcc POR) and externally generated reset signals. In powerdown mode, the external clock  
signal is not loaded by the chip.  
17.7 Default Reset Conditions  
The FDC37C672 has one source of reset: an external reset via the RESET_DRV pin. Refer to Table 17.4  
for the effect of each type of reset on the internal registers.  
Table 17.4 - Resets  
DESCRIPTION  
KCLK  
KDAT  
MCLK  
MDAT  
HARDWARE RESET (RESET)  
Weak High  
Weak High  
Weak High  
Weak High  
N/A  
Host I/F Data Reg  
Host I/F Status Reg  
00H  
Note:  
N/A: Not Applicable  
17.8 GATEA20 and Keyboard Reset  
The FDC37C672 provides two options for GateA20 and Keyboard Reset: 8042 Software Generated  
GateA20 and KRESET and Port 92 Fast GateA20 and KRESET.  
SMSC FDC37C672  
Page 116  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
17.9 Port 92 Fast GATEA20 and Keyboard Reset  
17.9.1 Port 92 Register  
This port can only be read or written if Port 92 has been enabled via bit 2 of the KRST_GA20 Register  
(Logical Device 7, 0xF0) set to 1.  
This register is used to support the alternate reset (nALT_RST) and alternate A20 (ALT_A20) functions.  
Name  
Port 92  
92h  
24h  
Read/Write  
8 bits  
Location  
Default Value  
Attribute  
Size  
PORT 92 REGISTER  
BIT  
7:6  
5
4
3
FUNCTION  
Reserved. Returns 00 when read.  
Reserved. Returns a 1 when read.  
Reserved. Returns a 0 when read.  
Reserved. Returns a 0 when read.  
Reserved. Returns a 1 when read.  
2
1
ALT_A20 Signal control. Writing a 0 to this bit causes the ALT_A20 signal to  
be driven low. Writing a 1 to this bit causes the ALT_A20 signal to be driven  
high.  
0
Alternate System Reset. This read/write bit provides an alternate system reset  
function. This function provides an alternate means to reset the system CPU  
to effect a mode switch from Protected Virtual Address Mode to the Real  
Address Mode. This provides a faster means of reset than is provided by the  
Keyboard controller. This bit is set to a 0 by a system reset. Writing a 1 to this  
bit will cause the nALT_RST signal to pulse active (low) for a minimum of 1 µs  
after a delay of 500 ns. Before another nALT_RST pulse can be generated,  
this bit must be written back to a 0.  
NGATEA20  
8042  
P21  
0
0
1
SYSTEM  
ALT_A20  
NA20M  
0
1
0
1
0
1
1
1
1
Bit 0 of Port 92, which generates the nALT_RST signal, is used to reset the CPU under program control.  
This signal is AND’ed together externally with the reset signal (nKBDRST) from the keyboard controller to  
provide a software means of resetting the CPU. This provides a faster means of reset than is provided by  
the keyboard controller. Writing a 1 to bit 0 in the Port 92 Register causes this signal to pulse low for a  
minimum of 6µs, after a delay of a minimum of 14µs. Before another nALT_RST pulse can be generated,  
bit 0 must be set to 0 either by a system reset of a write to Port 92. Upon reset, this signal is driven  
inactive high (bit 0 in the Port 92 Register is set to 0).  
SMSC FDC37C672  
Page 117  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
If Port 92 is enabled, i.e., bit 2 of KRST_GA20 is set to 1, then a pulse is generated by writing a 1 to bit 0  
of the Port 92 Register and this pulse is AND’ed with the pulse generated from the 8042. This pulse is  
output on pin KRESET and its polarity is controlled by the GPI/O polarity configuration.  
14us  
6us  
8042  
P20  
KRST  
KBDRST  
KRST_GA20  
Bit 2  
P92  
nALT_RST  
6us  
Bit 0  
Pulse  
Gen  
Note: When Port 92 is disabled,  
writes are ignored and reads  
return undefined values.  
14us  
KRESET Generation  
Bit 1 of Port 92, the ALT_A20 signal, is used to force nA20M to the CPU low for support of real mode  
compatible software. This signal is externally OR’ed with the A20GATE signal from the keyboard  
controller and CPURST to control the nA20M input of the CPU. Writing a 0 to bit 1 of the Port 92 Register  
forces ALT_A20 low. ALT_A20 low drives nA20M to the CPU low, if A20GATE from the keyboard  
controller is also low. Writing a 1 to bit 1 of the Port 92 Register forces ALT_A20 high. ALT_A20 high  
drives nA20M to the CPU high, regardless of the state of A20GATE from the keyboard controller. Upon  
reset, this signal is driven low.  
17.9.2 8042 P12 and P16 Functions  
8042 functions P12 and P16 are implemented as in a true 8042 part. Reference the 8042 spec for all  
timing. A port signal of 0 drives the output to 0. A port signal of 1 causes the port enable signal to drive the  
output to 1 within 20-30nsec. After several (# TBD) clocks, the port enable goes away and the internal  
90µA pull-up maintains the output signal as 1.  
In 8042 mode, the pins can be programmed as open drain. When programmed in open drain mode, the  
port enables do not come into play. If the port signal is 0 the output will be 0. If the port signal is 1, the  
output tristates: an external pull-up can pull the pin high, and the pin can be shared i.e., P12 and nSMI can  
be externally tied together. In 8042 mode, the pins cannot be programmed as input nor inverted through  
the GP configuration registers.  
SMSC FDC37C672  
Page 118  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
0ns  
250ns  
500ns  
CLK  
AEN  
nAEN  
64=I/O Addr  
n64  
nIOW  
nA  
DD1  
nDD1  
nCNTL  
nIOW'  
nIOW+n64  
AfterD1  
nAfterD1  
60=I/O Addr  
n60  
nIOW+n60=B  
nAfterD1+B  
D[1]  
GA20  
Figure 17.2 - Gate A20 Turn-On Sequence Timing  
When writing to the command and data port with hardware speedup, the IOW timing shown in the figure  
titled “IOW Timing for Port 92” in the Timing Diagrams Section is used. This setup time is only required to  
be met when using hardware speedup; the data must be valid a minimum of 0 nsec from the leading edge  
of the write and held throughout the entire write cycle.  
SMSC FDC37C672  
Page 119  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
Chapter 18 System Management Interrupt (SMI)  
The FDC37C672 implements a group nSMI output pin. The System Management Interrupt is a non-  
maskable interrupt with the highest priority level used for transparent power management. The nSMI  
group interrupt output consists of the enabled interrupts from each of the functional blocks in the chip. The  
interrupts are enabled onto the group nSMI output via the SMI Enable Registers 1 and 2. The nSMI output  
is then enabled onto the group nSMI output pin via bit[7] in the SMI Enable Register 2.  
The logic equation for the nSMI output is as follows:  
nSMI = (EN_PINT and IRQ_PINT) or (EN_U2INT and IRQ_U2INT) or (EN_U1INT and IRQ_U1INT) or  
(EN_FINT and IRQ_FINT) or (EN_WDT and IRQ_WDT) or (EN_MINT and IRQ_MINT) or  
(EN_KINT and IRQ_KINT) or (EN_IRINT and IRQ_IRINT)  
18.1 Registers  
The following registers can be accessed when in configuration mode at Logical Device 8, Registers B4-B7  
and when not in configuration they can be accessed through the Index and Data Register (refer to Table  
15.2).  
18.1.1 SMI Enable Registers  
SMI Enable Register 1  
(Configuration Register B4, Logical Device 8)  
This register is used to enable the different interrupt sources onto the group nSMI output.  
SMI Enable Register 2  
(Configuration Register B5, Logical Device 8)  
This register is used to enable additional interrupt sources onto the group nSMI output. This register is also  
used to enable the group nSMI output onto the nSMI Serial/Parallel IRQ pin and the routing of 8042 P12  
internally to nSMI.  
18.1.2 SMI Status Registers  
SMI Status Register 1  
(Configuration Register B6, Logical Device 8)  
This register is used to read the status of the SMI input events.  
The status bit gets set whether or not the interrupt is enabled onto the group SMI output.  
SMI Status Register 2  
Note:  
(Configuration Register B7, Logical Device 8)  
SMSC FDC37C672  
Page 120  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
Chapter 19 Configuration  
The Configuration of the FDC37C672 is very flexible and is based on the configuration architecture  
implemented in typical Plug-and-Play components. The FDC37C672 is designed for motherboard  
applications in which the resources required by their components are known. With its flexible resource  
allocation architecture, the FDC37C672 allows the BIOS to assign resources at POST.  
19.1 System Elements  
19.1.1 Primary Configuration Address Decoder  
After a hard reset (RESET_DRV pin asserted) or Vcc Power On Reset the FDC37C672 is in the Run  
Mode with all logical devices disabled. The logical devices may be configured through two standard  
Configuration I/O Ports (INDEX and DATA) by placing the FDC37C672 into Configuration Mode. The  
BIOS uses these configuration ports to initialize the logical devices at POST. The INDEX and DATA ports  
are only valid when the FDC37C672 is in Configuration Mode.  
The SYSOPT pin is latched on the falling edge of the RESET_DRV or on Vcc Power On Reset to  
determine the configuration register's base address. The SYSOPT pin is used to select the CONFIG  
PORT's I/O address at power-up. Once powered up the configuration port base address can be changed  
through configuration registers CR26 and CR27. The SYSOPT pin is a hardware configuration pin  
which is shared with the nRTS1 signal on pin 87. During reset this pin is a weak active low signal which  
sinks 30µA.  
Note:  
All I/O addresses are qualified with AEN.  
The INDEX and DATA ports are effective only when the chip is in the Configuration State.  
SYSOPT= 0  
SYSOPT= 1  
PORT NAME  
(PULL-DOWN RESISTOR)  
REFER TO Note 19.1  
0x03F0  
TYPE  
Write  
Read/Write  
Read/Write  
(10K PULL-UP RESISTOR)  
0x0370  
0x0370  
CONFIG PORT (Note 19.2)  
INDEX PORT (Note 19.2)  
DATA PORT  
0x03F0  
INDEX PORT + 1  
Note 19.1 If using TTL RS232 drivers use 1K pull-down. If using CMOS RS232 drivers use 10K pull-down.  
Note 19.2 The configuration port base address can be relocated through CR26 and CR27.  
19.1.2 Entering the Configuration State  
The device enters the Configuration State when the following Config Key is successfully written to the  
CONFIG PORT.  
Config Key = < 0x55 >  
SMSC FDC37C672  
Page 121  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
19.1.3 Exiting the Configuration State  
The device exits the Configuration State when the following Config Key is successfully written to the  
CONFIG PORT.  
Config Key = < 0xAA>  
19.2 Configuration Sequence  
To program the configuration registers, the following sequence must be followed:  
1. Enter Configuration Mode  
2. Configure the Configuration Registers  
3. Exit Configuration Mode.  
19.2.1 Enter Configuration Mode  
To place the chip into the Configuration State the Config Key is sent to the chip's CONFIG PORT. The  
config key consists of 0x55 written to the CONFIG PORT. Once the configuration key is received correctly  
the chip enters into the Configuration State. (The auto Config ports are enabled.)  
19.2.2 Configuration Mode  
The system sets the logical device information and activates desired logical devices through the INDEX  
and DATA ports. In configuration mode, the INDEX PORT is located at the CONFIG PORT address and  
the DATA PORT is at INDEX PORT address + 1.  
The desired configuration registers are accessed in two steps:  
a. Write the index of the Logical Device Number Configuration Register (i.e., 0x07) to the INDEX PORT  
and then write the number of the desired logical device to the DATA PORT  
b. Write the address of the desired configuration register within the logical device to the INDEX PORT  
and then write or read the configuration register through the DATA PORT.  
Note:  
If accessing the Global Configuration Registers, step (a) is not required.  
19.2.3 Exit Configuration Mode  
To exit the Configuration State the system writes 0xAA to the CONFIG PORT. The chip returns to the  
RUN State.  
Note:  
Only two states are defined (Run and Configuration). In the Run State the chip will always be ready to  
enter the Configuration State.  
SMSC FDC37C672  
Page 122  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
19.2.4 Programming Example  
The following is an example of a configuration program in Intel 8086 assembly language.  
;--------------------------------------------------.  
; ENTER CONFIGURATION MODE |  
;--------------------------------------------------'  
MOV  
MOV  
OUT  
DX,3F0H  
AX,055H  
DX,AL  
;--------------------------------------------------.  
; CONFIGURE REGISTER CRE0,  
; LOGICAL DEVICE 8  
|
|
;--------------------------------------------------'  
MOV  
MOV  
OUT  
MOV  
MOV  
OUT  
;
DX,3F0H  
AL,07H  
DX,AL ; Point to LD# Config Reg  
DX,3F1H  
AL, 08H  
DX,AL ; Point to Logical Device 8  
MOV  
MOV  
OUT  
MOV  
MOV  
OUT  
DX,3F0H  
AL,E0H  
DX,AL ; Point to CRE0  
DX,3F1H  
AL,02H  
DX,AL ; Update CRE0  
;-------------------------------------------------.  
; EXIT CONFIGURATION MODE  
|
;-------------------------------------------------'  
MOV  
MOV  
OUT  
DX,3F0H  
AX,0AAH  
DX,AL  
Notes:  
1. HARD RESET: RESET_DRV pin asserted  
2. SOFT RESET: Bit 0 of Configuration Control register set to one  
3. All host accesses are blocked for 500µs after Vcc POR (see Power-up Timing Diagram)  
Table 19.1 - Configuration Registers  
INDEX  
TYPE  
HARD RESET  
VCC POR  
SOFT RESET  
CONFIGURATION REGISTER  
GLOBAL CONFIGURATION REGISTERS  
0x02  
0x03  
0x07  
0x20  
0x21  
0x22  
0x23  
0x24  
0x26  
W
0x00  
0x03  
0x00  
-
-
-
-
-
Config Control  
Index Address  
Logical Device Number  
Device ID - hard wired  
Device Rev - hard wired  
Power Control  
Power Mgmt  
OSC  
Configuration Port Address Byte 0  
R/W  
R/W  
R
0x00  
0x40  
Current Revision  
R
R/W  
R/W  
R/W  
R/W  
0x00  
0x00  
0x04  
-
-
-
-
0x00  
-
-
-
Sysopt=0: 0xF0  
Sysopt=1: 0x70  
Sysopt=0: 0x03  
Sysopt=1: 0x03  
0x27  
R/W  
-
-
Configuration Port Address Byte 1  
SMSC FDC37C672  
Page 123  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
INDEX  
0x2B  
0x2C  
0x2D  
0x2E  
0x2F  
TYPE  
R/W  
R/W  
R/W  
R/W  
R/W  
HARD RESET  
VCC POR  
0x00  
SOFT RESET  
CONFIGURATION REGISTER  
TEST 4  
TEST 5  
TEST 1  
TEST 2  
TEST 3  
-
-
-
-
-
-
-
-
-
-
0x00  
0x00  
0x00  
0x00  
LOGICAL DEVICE 0 CONFIGURATION REGISTERS (FDD)  
0x30  
0x60,  
0x61  
0x70  
0x74  
0xF0  
0xF1  
0xF2  
0xF4  
0xF5  
R/W  
R/W  
0x00  
0x03,  
0xF0  
0x06  
0x02  
0x0E  
0x00  
0xFF  
0x00  
0x00  
-
-
0x00  
0x03,0xF0  
Activate  
Primary Base I/O Address  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
-
-
-
-
-
-
-
0x06  
0x02  
Primary Interrupt Select  
DMA Channel Select  
FDD Mode Register  
FDD Option Register  
FDD Type Register  
FDD0  
-
-
-
-
-
FDD1  
LOGICAL DEVICE 1 CONFIGURATION REGISTERS (RESERVED)  
LOGICAL DEVICE 2 CONFIGURATION REGISTERS (RESERVED)  
LOGICAL DEVICE 3 CONFIGURATION REGISTERS (Parallel Port)  
0x30  
0x60,  
0x61  
0x70  
0x74  
0xF0  
0xF1  
R/W  
R/W  
0x00  
0x00,  
0x00  
0x00  
0x04  
0x3C  
0x00  
-
-
0x00  
0x00,0x00  
Activate  
Primary Base I/O Address  
R/W  
R/W  
R/W  
R/W  
-
-
-
-
0x00  
0x04  
-
-
Primary Interrupt Select  
DMA Channel Select  
Parallel Port Mode Register  
Parallel Port Mode Register 2  
LOGICAL DEVICE 4 CONFIGURATION REGISTERS (Serial Port 1)  
0x30  
0x60,  
0x61  
0x70  
0xF0  
R/W  
R/W  
0x00  
0x00,  
0x00  
0x00  
0x00  
-
-
0x00  
0x00,0x00  
Activate  
Primary Base I/O Address  
R/W  
R/W  
-
-
0x00  
-
Primary Interrupt Select  
Serial Port 1 Mode Register  
LOGICAL DEVICE 5 CONFIGURATION REGISTERS (Serial Port 2)  
0x30  
0x60,  
0x61  
0x62,  
0x63  
0x70  
0x74  
0xF0  
0xF1  
0xF2  
R/W  
R/W  
0x00  
0x00,  
0x00  
0x00,  
0x00  
0x00  
0x04  
0x00  
0x02  
0x03  
-
-
0x00  
0x00,0x00  
Activate  
Primary Base I/O Address  
R/W  
-
0x00,0x00  
Fast IR Base I/O Address  
R/W  
R/W  
R/W  
R/W  
R/W  
-
-
-
-
-
0x00  
0x04  
-
-
-
Primary Interrupt Select  
DMA Channel Select  
Serial Port 2 Mode Register  
IR Options Register  
IR Half Duplex Timeout  
LOGICAL DEVICE 6 CONFIGURATION REGISTERS (RESERVED)  
LOGICAL DEVICE 7 CONFIGURATION REGISTERS (Keyboard)  
0x30  
0x70  
R/W  
R/W  
0x00  
0x00  
-
-
0x00  
0x00  
Activate  
Primary Interrupt Select  
SMSC FDC37C672  
Page 124  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
INDEX  
0x72  
0xF0  
TYPE  
R/W  
R/W  
HARD RESET  
0x00  
VCC POR  
SOFT RESET  
CONFIGURATION REGISTER  
Second Interrupt Select  
KRESET and GateA20 Select  
-
-
0x00  
0x00  
LOGICAL DEVICE 8 CONFIGURATION REGISTERS (Aux I/O)  
0x30  
0xB4  
0xB5  
0xB6  
0xB7  
0xC0  
0xC1  
0xC2  
0xC3  
0xC4  
0xF1  
0xF2  
0xF3  
0xF4  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
0x00  
-
0x00  
Activate  
-
-
-
0x00  
0x00  
0x00  
0x00  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
SMI Enable Register 1  
SMI Enable Register 2  
SMI Status Register 1  
SMI Status Register 2  
Pin Multiplex Controls  
Force Disk Change  
Floppy Data Rate Select Shadow  
UART1 FIFO Control Shadow  
UART2 FIFO Control Shadow  
WDT_TIME_OUT  
-
0x06  
0x03  
-
-
-
0x00  
0x00  
0x00  
-
R
R
R/W  
R/W  
R/W  
R/W  
Note 19.3  
WDT_VAL  
WDT_CFG  
WDT_CTRL  
0x00  
0xF6 : FB  
-
-
-
Reserved  
LOGICAL DEVICE 9 CONFIGURATION REGISTERS (RESERVED)  
Note 19.3 This register contains some bits which are read or write only.  
19.2.5 Chip Level (Global) Control/Configuration Registers [0x00-0x2F]  
The chip-level (global) registers lie in the address range [0x00-0x2F]. The design MUST use all 8 bits of  
the ADDRESS Port for register selection. All unimplemented registers and bits ignore writes and return  
zero when read.  
The INDEX PORT is used to select a configuration register in the chip. The DATA PORT is then used to  
access the selected register. These registers are accessible only in the Configuration Mode.  
Table 19.2 - Chip Level Registers  
REGISTER  
ADDRESS  
DESCRIPTION  
Chip (Global) Control Registers  
STATE  
0x00 -0x01  
0x02 W  
Reserved - Writes are ignored, reads return 0.  
Config Control  
The hardware automatically clears this bit after the write,  
C
there is no need for software to clear the bits.  
Bit 0 = 1: Soft Reset. Refer to the "Configuration  
Default = 0x00  
Registers" table for the soft reset value for each register.  
on Vcc POR or  
Reset_Drv  
SMSC FDC37C672  
Page 125  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
REGISTER  
Index Address  
ADDRESS  
0x03 R/W  
DESCRIPTION  
STATE  
Bit[7]  
= 1 Enable WDT_CTRL and SMI Enable and SMI Status  
Register access when not in configuration mode  
Default = 0x03  
= 0 Disable WDT_CTRL and SMI Enable and SMI  
Status Register access when not in configuration  
mode (Default)  
on Vcc POR or  
Reset_Drv  
Bits [6:2]  
Reserved - Writes are ignored, reads return 0.  
Bits[1:0]  
Sets GP index register address when in Run mode (not in  
Configuration Mode).  
= 11 0xEA (Default)  
= 10 0xE4  
= 01 0xE2  
= 00 0xE0  
0x04 - 0x06 Reserved - Writes are ignored, reads return 0.  
Logical Device #  
Default = 0x00  
0x07 R/W  
A write to this register selects the current logical device.  
This allows access to the control and configuration  
registers for each logical device.  
C
on Vcc POR or  
Note: The Activate command operates only on the  
Reset_Drv  
selected logical device.  
Card Level Reserved  
Device ID  
0x08 - 0x1F Reserved - Writes are ignored, reads return 0.  
Chip Level, SMSC Defined  
0x20 R  
A read only register which provides device identification.  
C
C
C
Bits[7:0] = 0x40 when read.  
Hard wired  
= 0x40  
Device Rev  
0x21 R  
A read only register which provides device revision  
information. Bits[7:0] = 0x01 when read.  
Hard wired  
= 0x01  
PowerControl  
0x22 R/W  
Bit[0] FDC Power  
Bit[1] Reserved  
Default = 0x00.  
Bit[2] Reserved  
on Vcc POR or  
Reset_Drv hardware  
signal  
Bit[3] Parallel Port Power  
Bit[4] Serial Port 1 Power  
Bit[5] Serial Port 2 Power  
Bit[6] Reserved  
Bit[7] Reserved (read as 0)  
= 0 Power off or disabled  
= 1 Power on or enabled  
SMSC FDC37C672  
Page 126  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
REGISTER  
Power Mgmt  
ADDRESS  
0x23 R/W  
DESCRIPTION  
STATE  
Bit[0] FDC  
C
Bit[1] Reserved  
Bit[2] Reserved  
Bit[3] Parallel Port  
Bit[4] Serial Port 1  
Bit[5] Serial Port 2  
Default = 0x00.  
on Vcc POR or  
Reset_Drv hardware  
signal  
Bit[6:7] Reserved (read as 0)  
= 0 Intelligent Pwr Mgmt off  
= 1 Intelligent Pwr Mgmt on  
OSC  
0x24 R/W  
C
Bit[0] Reserved  
Bit [1] PLL Control  
= 0 PLL is on (backward Compatible)  
= 1 PLL is off  
Bits[3:2] OSC  
Default = 0x04, on Vcc  
POR or Reset_Drv  
hardware signal.  
= 01 Osc is on, BRG clock is on.  
= 10 Same as above (01) case.  
= 00 Osc is on, BRG Clock Enabled.  
= 11 Osc is off, BRG clock is disabled.  
Bit [5:4] Reserved, set to zero  
Bit [6] 16-Bit Address Qualification  
= 0 12-Bit Address Qualification  
= 1 16-Bit Address Qualification  
Bit[7] Reserved  
Chip Level  
0x25  
0x26  
Reserved - Writes are ignored, reads return 0.  
Vendor Defined  
Configuration Address  
Bit[7:1] Configuration Address Bits [7:1]  
Bit[0] = 0  
See Note 19.4  
C
C
Byte 0  
Default  
=0xF0 (Sysopt=0)  
=0x70 (Sysopt=1)  
on Vcc POR or  
Reset_Drv  
Configuration Address  
Byte 1  
0x27  
0x28  
Bit[7:0] Configuration Address Bits [15:8]  
See Note 19.4  
Default = 0x03  
on Vcc POR or  
Reset_Drv  
Default = 0x00  
Bits[7:0] Reserved - Writes are ignored, reads return 0.  
on VCC POR and  
Hard Reset  
Chip Level  
Vendor Defined  
TEST 4  
0x29 -0x2A Reserved - Writes are ignored, reads return 0.  
0x2B R/W  
Test Modes: Reserved for SMSC. Users should not write  
to this register, may produce undesired results.  
C
Default = 0x00, on Vcc  
POR  
SMSC FDC37C672  
Page 127  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
REGISTER  
TEST 5  
ADDRESS  
0x2C R/W  
DESCRIPTION  
STATE  
Test Modes: Reserved for SMSC. Users should not write  
C
C
C
C
to this register, may produce undesired results.  
Default = 0x00, on Vcc  
POR  
TEST 1  
0x2D R/W  
0x2E R/W  
0x2F R/W  
Test Modes: Reserved for SMSC. Users should not write  
to this register, may produce undesired results.  
Default = 0x00, on Vcc  
POR  
TEST 2  
Test Modes: Reserved for SMSC. Users should not write  
to this register, may produce undesired results.  
Default = 0x00, on Vcc  
POR  
TEST 3  
Test Modes: Reserved for SMSC. Users should not write  
to this register, may produce undesired results.  
Default = 0x00, on Vcc  
POR  
Note 19.4 To allow the selection of the configuration address to a user defined location, these Configuration Address  
Bytes are used. There is no restriction on the address chosen, except that A0 is 0, that is, the address  
must be on an even byte boundary. As soon as both bytes are changed, the configuration space is moved  
to the specified location with no delay (Note: Write byte 0, then byte 1; writing CR27 changes the base  
address).  
The configuration address is only reset to its default address upon a Hard Reset or Vcc POR.  
Note:  
The default configuration address is either 3F0 or 370, as specified by the SYSOPT pin.  
This change affects SMSC Mode only.  
19.2.6 Logical Device Configuration/Control Registers [0x30-0xFF]  
Used to access the registers that are assigned to each logical unit. This chip supports nine logical units  
and has nine sets of logical device registers. The six logical devices are Floppy, Parallel, Serial 1, Serial  
2, Keyboard Controller, and Auxiliary_I/O. A separate set (bank) of control and configuration registers  
exists for each logical device and is selected with the Logical Device # Register (0x07).  
The INDEX PORT is used to select a specific logical device register. These registers are then accessed  
through the DATA PORT.  
The Logical Device registers are accessible only when the device is in the Configuration State. The logical  
register addresses are shown in the table below.  
Table 19.3 - Logical Device Registers  
LOGICAL DEVICE  
ADDRESS  
DESCRIPTION  
STATE  
REGISTER  
Activate (Note 19.5)  
(0x30)  
Bits[7:1] Reserved, set to zero.  
Bit[0]  
C
Default = 0x00  
on Vcc POR or Reset_Drv  
= 1 Activates the logical device currently selected  
through the Logical Device # register.  
= 0 Logical device currently selected is inactive  
Reserved - Writes are ignored, reads return 0.  
Logical Device Control  
(0x31-0x37)  
C
SMSC FDC37C672  
Page 128  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
LOGICAL DEVICE  
REGISTER  
Logical Device Control  
ADDRESS  
DESCRIPTION  
STATE  
(0x38-0x3f)  
Vendor Defined - Reserved - Writes are ignored,  
reads return 0.  
C
Memory Base Address  
I/O Base Address  
(0x40-0x5F)  
(0x60-0x6F)  
Reserved - Writes are ignored, reads return 0.  
C
C
Registers 0x60 and 0x61 set the base address for  
the device. If more than one base address is  
required, the second base address is set by  
registers 0x62 and 0x63.  
(see Device Base I/O  
Address Table)  
0x60,2,... =  
addr[15:8]  
Refer to Table 19.12 for the number of base  
address registers used by each device.  
Default = 0x00  
on Vcc POR or Reset_Drv  
0x61,3,... =  
addr[7:0]  
Unused registers will ignore writes and return zero  
when read.  
Interrupt Select  
(0x70,0x72)  
0x70 is implemented for each logical device. Refer  
to Interrupt Configuration Register description. Only  
the keyboard controller uses Interrupt Select  
register 0x72. Unused register (0x72) will ignore  
writes and return zero when read. Interrupts default  
to edge high (ISA compatible).  
C
Defaults :  
0x70 = 0x00,  
on Vcc POR or Reset_Drv  
0x72 = 0x00,  
on Vcc POR or Reset_Drv  
(0x71,0x73)  
(0x74,0x75)  
Reserved - not implemented. These register  
locations ignore writes and return zero when read.  
DMA Channel Select  
Only 0x74 is implemented for FDC, Serial Port 2  
and Parallel port. 0x75 is not implemented and  
ignores writes and returns zero when read. Refer to  
DMA Channel Configuration.  
C
Default = 0x04  
on Vcc POR or Reset_Drv  
32-Bit Memory Space  
(0x76-0xA8)  
(0xA9-0xDF)  
(0xE0-0xFE)  
0xFF  
Reserved - not implemented. These register  
Configuration  
locations ignore writes and return zero when read.  
Logical Device  
Reserved - not implemented. These register  
C
C
C
locations ignore writes and return zero when read.  
Logical Device Configuration  
Reserved  
Reserved - Vendor Defined (see SMSC defined  
Logical Device Configuration Registers).  
Reserved  
Note 19.5 A logical device will be active and powered up according to the following equation:  
DEVICE ON (ACTIVE) = (Activate Bit SET or Pwr/Control Bit SET).  
The Logical device's Activate Bit and its Pwr/Control Bit are linked such that setting or clearing one sets or  
clears the other. If the I/O Base Addr of the logical device is not within the Base I/O range as shown in the  
Logical Device I/O map, then read or write is not valid and is ignored.  
SMSC FDC37C672  
Page 129  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
Table 19.4 - I/O Base Address Configuration Register Description  
LOGICAL  
DEVICE  
NUMBER  
0x00  
BASE I/O  
RANGE  
LOGICAL  
DEVICE  
REGISTER  
INDEX  
FIXED  
BASE OFFSETS  
(Note 19.6)  
FDC  
0x60,0x61  
[0x100:0x0FF8]  
+0 : SRA  
+1 : SRB  
+2 : DOR  
+3 : TSR  
ON 8 BYTE BOUNDARIES  
+4 : MSR/DSR  
+5 : FIFO  
+7 : DIR/CCR  
+0 : Data|ecpAfifo  
+1 : Status  
0x03  
Parallel  
Port  
0x60,0x61  
[0x100:0x0FFC]  
ON 4 BYTE BOUNDARIES  
(EPP Not supported)  
or  
+2 : Control  
+3 : EPP Address  
+4 : EPP Data 0  
+5 : EPP Data 1  
+6 : EPP Data 2  
+7 : EPP Data 3  
+400h : cfifo|ecpDfifo|tfifo |cnfgA  
+401h : cnfgB  
+402h : ecr  
[0x100:0x0FF8]  
ON 8 BYTE BOUNDARIES  
(all modes supported,  
EPP is only available when the  
base address is on an 8-byte  
boundary)  
0x04  
0x05  
Serial Port 1  
Serial Port 2  
0x60,0x61  
0x60,0x61  
0x62,0x63  
[0x100:0x0FF8]  
+0 : RB/TB|LSB div  
+1 : IER|MSB div  
+2 : IIR/FCR  
ON 8 BYTE BOUNDARIES  
+3 : LCR  
+4 : MSR  
+5 : LSR  
+6 : MSR  
+7 : SCR  
[0x100:0x0FF8]  
+0 : RB/TB|LSB div  
+1 : IER|MSB div  
+2 : IIR/FCR  
ON 8 BYTE BOUNDARIES  
+3 : LCR  
+4 : MSR  
+5 : LSR  
+6 : MSR  
+7 : SCR  
[0x100:0x0FF8]  
ON 8 BYTE BOUNDARIES  
+0 : Fast IR Registers  
+1 : Fast IR Registers  
+2 : Fast IR Registers  
+3 : Fast IR Registers  
+4 : Fast IR Registers  
+5 : Fast IR Registers  
+6 : Fast IR Registers  
+7 : Fast IR Registers  
0x06  
0x07  
Reserved  
KYBD  
n/a  
Not Relocatable  
Fixed Base Address: 60,64  
+0 : Data Register  
+4 : Command/Status Reg.  
0x09  
Reserved  
SMSC FDC37C672  
Page 130  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
Note 19.6 This chip uses ISA address bits [A11:A0] to decode the base address of each of its logical devices.  
Table 19.5 - Interrupt Select Configuration Register Description  
NAME  
Interrupt Request  
REG INDEX  
0x70 (R/W)  
DEFINITION  
STATE  
Bits[3:0] selects which interrupt level is used for Interrupt 0.  
C
Level  
0x00= no interrupt selected.  
0x01= IRQ1  
Select 0  
0x02= IRQ2/nSMI  
0x03= IRQ3  
Default = 0x00  
on Vcc POR or  
0x04= IRQ4  
Reset_Drv  
0x05= IRQ6  
0x06= IRQ7  
0x07= IRQ7  
0x08= IRQ8  
0x09= IRQ9  
0x0A= IRQ10  
0x0B= IRQ11  
0x0C= IRQ12  
0x0D= IRQ13  
0x0E= IRQ14  
0x0F= IRQ15  
Notes:  
All interrupts are edge high (except ECP/EPP)  
nSMI is active low  
Notes:  
An Interrupt is activated by setting the Interrupt Request Level Select 0 register to a non-zero value AND:  
for the FDC logical device by setting DMAEN, bit D3 of the Digital Output Register.  
for the PP logical device by setting IRQE, bit D4 of the Control Port and in addition  
for the PP logical device in ECP mode by clearing serviceIntr, bit D2 of the ecr.  
for the Serial Port logical device by setting any combination of bits D0-D3 in the IER  
and by setting the OUT2 bit in the UART's Modem Control (MCR) Register.  
for the RTC by (refer to the RTC section of this spec.)  
for the KYBD by (refer to the KYBD controller section of this spec.)  
IRQ pins must tri-state if not used/selected by any Logical Device. Refer to Section 19.2.7 - Note A. Logical  
Device IRQ and DMA Operation.  
nSMI must be disabled to use IRQ2.  
All IRQ’s are available in Serial IRQ mode. Only IRQ[3:7] and IRQ[10:12] are available in Parallel IRQ mode.  
Table 19.6 - DMA Channel Select Configuration Register Description  
NAME  
DMA Channel  
REG INDEX  
0x74 (R/W)  
DEFINITION  
Bits[2:0] select the DMA Channel.  
STATE  
C
Select  
0x00= Reserved  
0x01= DMA1  
0x02= DMA2  
0x03= DMA3  
Default = 0x04  
on Vcc POR or  
Reset_Drv  
0x04-0x07= No DMA active  
SMSC FDC37C672  
Page 131  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
Notes:  
A DMA channel is activated by setting the DMA Channel Select register to [0x01-0x03] AND :  
for the FDC logical device by setting DMAEN, bit D3 of the Digital Output Register.  
for the PP logical device in ECP mode by setting dmaEn, bit D3 of the ecr.  
for the UART 2 logical device, by setting the DMA Enable bit. Refer to the IRCC specification.  
DMAREQ pins must tri-state if not used/selected by any Logical Device. Refer to Section 19.2.7 - Note A. Logical  
Device IRQ and DMA Operation.  
19.2.7 Note A. Logical Device IRQ and DMA Operation  
1. IRQ and DMA Enable and Disable: Any time the IRQ or DACK for a logical block is disabled by a  
register bit in that logical block, the IRQ and/or DACK must be disabled. This is in addition to the IRQ  
and DACK disabled by the Configuration Registers (active bit or address not valid).  
a. FDC: For the following cases, the IRQ and DACK used by the FDC are disabled (high  
impedance). Will not respond to the DREQ  
Digital Output Register (Base+2) bit D3 (DMAEN) set to "0".  
The FDC is in power down (disabled).  
b. Serial Port 1 and 2:  
Modem Control Register (MCR) Bit D2 (OUT2) - When OUT2 is a logic "0", the serial port  
interrupt is forced to a high impedance state - disabled.  
c. Parallel Port:  
i. SPP and EPP modes: Control Port (Base+2) bit D4 (IRQE) set to "0", IRQ is disabled (high  
impedance).  
ii. ECP Mode:  
(1) (DMA) dmaEn from ecr register. See table.  
(2) IRQ - See table.  
MODE  
IRQ PIN  
PDREQ PIN  
(FROM ECR REGISTER)  
CONTROLLED BY CONTROLLED BY  
000  
001  
010  
011  
100  
101  
110  
111  
PRINTER  
SPP  
FIFO  
ECP  
EPP  
RES  
TEST  
CONFIG  
IRQE  
IRQE  
(on)  
dmaEn  
dmaEn  
dmaEn  
dmaEn  
dmaEn  
dmaEn  
dmaEn  
dmaEn  
(on)  
IRQE  
IRQE  
(on)  
IRQE  
d. Keyboard Controller: Refer to the KBD section of this spec.  
19.2.8 SMSC Defined Logical Device Configuration Registers  
The SMSC Specific Logical Device Configuration  
Registers reset to their default values only on hard resets generated by Vcc or VTR POR (as shown) or  
the RESET_DRV signal. These registers are not affected by soft resets.  
SMSC FDC37C672  
Page 132  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
Table 19.7 - Floppy Disk Controller, Logical Device 0 [Logical Device Number = 0x00]  
NAME  
FDD Mode Register  
REG INDEX  
0xF0 R/W  
DEFINITION  
STATE  
Bit[0] Floppy Mode  
C
= 0 Normal Floppy Mode (default)  
= 1 Enhanced Floppy Mode 2 (OS2)  
Bit[1] FDC DMA Mode  
Default = 0x0E  
on Vcc POR or  
Reset_Drv  
= 0 Burst Mode is enabled  
= 1 Non-Burst Mode (default)  
Bit[3:2] Interface Mode  
= 11 AT Mode (default)  
= 10 (Reserved)  
= 01 PS/2  
= 00 Model 30  
Bit[4] Swap Drives 0,1 Mode  
= 0 No swap (default)  
= 1 Drive and Motor sel 0 and 1 are swapped.  
Bit[5] Reserved, set to zero  
Bit[6] FDC Output Type Control  
= 0 FDC outputs are OD24 open drain (default)  
= 1 FDC outputs are O24 push-pull  
Bit[7] FDC Output Control  
= 0 FDC outputs active (default)  
= 1 FDC outputs tri-stated  
Note: Bits 6 & 7 do not affect the parallel port FDC pins.  
FDD Option Register  
Default = 0x00  
0xF1 R/W  
Bits[1:0] Reserved, set to zero  
Bits[3:2] Density Select  
C
= 00 Normal (default)  
on Vcc POR or  
= 01 Normal (reserved for users)  
= 10 1 (forced to logic "1")  
= 11 0 (forced to logic "0")  
Bit[4] Media ID 0 Polarity  
= 0: Don’t invert (default)  
= 1: Invert  
Reset_Drv  
Bit[5] Media ID 1 Polarity  
= 0: Don’t invert (default)  
= 1: Invert  
Bits[7:6] Boot Floppy  
= 00 FDD 0 (default)  
= 01 FDD 1  
= 10 Reserved (neither drive A or B is a boot drive).  
= 11 Reserved (neither drive A or B is a boot drive).  
Bits[1:0] Floppy Drive A Type  
Bits[3:2] Floppy Drive B Type  
FDD Type Register  
Default = 0xFF  
0xF2 R/W  
C
Bits[5:4] Reserved (could be used to store Floppy Drive C  
type)  
on Vcc POR or  
Reset_Drv  
Bits[7:6] Reserved (could be used to store Floppy Drive D  
type)  
Note: The FDC37C672 supports two floppy drives  
0xF3 R  
Reserved, Read as 0 (read only)  
C
SMSC FDC37C672  
Page 133  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
NAME  
REG INDEX  
0xF4 R/W  
DEFINITION  
Bits[1:0] Drive Type Select: DT1, DT0  
Bits[2] Read as 0 (read only)  
Bits[4:3] Data Rate Table Select: DRT1, DRT0  
Bits[5] Read as 0 (read only)  
Bits[6] Precompensation Disable PTS  
STATE  
FDD0  
C
Default = 0x00  
on Vcc POR or  
Reset_Drv  
=0  
=1  
Use Precompensation  
No Precompensation  
Bits[7] Read as 0 (read only)  
FDD1  
0xF5 R/W  
Refer to definition and default for 0xF4  
C
Table 19.8 - Parallel Port, Logical Device 3 [Logical Device Number = 0x03]  
NAME  
PP Mode Register  
REG INDEX  
0xF0 R/W  
DEFINITION  
Bits[2:0] Parallel Port Mode  
STATE  
C
= 100 Printer Mode (default)  
= 000 Standard and Bi-directional (SPP) Mode  
= 001 EPP-1.9 and SPP Mode  
= 101 EPP-1.7 and SPP Mode  
= 010 ECP Mode  
Default = 0x3C  
on Vcc POR or  
Reset_Drv  
= 011 ECP and EPP-1.9 Mode  
= 111 ECP and EPP-1.7 Mode  
Bit[6:3] ECP FIFO Threshold  
0111b (default)  
Bit[7] PP Interrupt Type  
Not valid when the parallel port is in the Printer Mode  
(100) or the Standard & Bi-directional Mode (000).  
= 1  
= 0  
Pulsed Low, released to high-Z.  
IRQ follows nACK when parallel port in EPP Mode or  
[Printer,SPP, EPP] under ECP.  
IRQ level type when the parallel port is in ECP, TEST, or  
Centronics FIFO Mode.  
PP Mode Register 2  
Default = 0x00  
0xF1 R/W  
Bits[1:0] PPFDC - muxed PP/FDC control  
= 00 Normal Parallel Port Mode  
= 01 PPFD1: Drive 0 is on the FDC pins  
Drive 1 is on the Parallel port pins  
Drive 2 is on the FDC pins  
on Vcc POR or  
Reset_Drv  
Drive 3 is on the FDC pins  
= 10 PPFD2: Drive 0 is on the Parallel port pins  
Drive 1 is on the Parallel port pins  
Drive 2 is on the FDC pins  
Drive 3 is on the FDC pins  
Bits[7:2] Reserved. Set to zero.  
SMSC FDC37C672  
Page 134  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
Table 19.9 - Serial Port 1, Logical Device 4 [Logical Device Number = 0x04]  
NAME  
Serial Port 1  
REG INDEX  
0xF0 R/W  
DEFINITION  
STATE  
Bit[0] MIDI Mode  
C
Mode Register  
= 0 MIDI support disabled (default)  
= 1 MIDI support enabled  
Default = 0x00  
on Vcc POR or  
Reset_Drv  
Bit[1] High Speed  
= 0 High Speed Disabled(default)  
= 1 High Speed Enabled  
Bit[6:2] Reserved, set to zero  
Bit[7]: Share IRQ  
=0  
=1  
UARTS use different IRQs  
UARTS share a common IRQ  
See Note 19.7 below.  
Note 19.7 To properly share and IRQ,  
1. Configure UART1 (or UART2) to use the desired IRQ pin.  
2. Configure UART2 (or UART1) to use No IRQ selected.  
3. Set the share IRQ bit.  
Note: If both UARTs are configured to use different IRQ pins and the share IRQ bit is set, then both of the  
UART IRQ pins will assert when either UART generates an interrupt.  
SMSC FDC37C672  
Page 135  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
Table 19.10 - Serial Port 2, Logical Device 5 [Logical Device Number = 0x05]  
NAME  
Serial Port 2  
REG INDEX  
0xF0 R/W  
DEFINITION  
STATE  
Bit[0] MIDI Mode  
C
Mode Register  
= 0 MIDI support disabled (default)  
= 1 MIDI support enabled  
Bit[1] High Speed  
Default = 0x00  
on Vcc POR or  
Reset_Drv  
= 0 High Speed disabled(default)  
= 1 High Speed enabled  
Bit[7:2] Reserved, set to zero  
Bit[0] Receive Polarity  
IR Option Register  
Default = 0x02  
0xF1 R/W  
C
= 0  
= 1  
Active High (Default)  
Active Low  
on Vcc POR or  
Bit[1] Transmit Polarity  
Reset_Drv  
= 0  
= 1  
Active High  
Active Low (Default)  
Bit[2] Duplex Select  
= 0  
= 1  
Full Duplex (Default)  
Half Duplex  
Bits[5:3] IR Mode  
= 000 Standard (Default)  
= 001 IrDA  
= 010 ASK-IR  
= 011 Reserved  
= 1xx Reserved  
Bit[6] IR Location Mux  
= 0  
= 1  
Use Serial port TX2 and RX2 (Default)  
Use alternate IRRX (pin 61) and IRTX (pin 62)  
Bit[7] Reserved, write 0.  
Bits [7:0]  
IR Half Duplex Timeout  
Default = 0x03  
0xF2  
These bits set the half duplex time-out for the IR port. This  
value is 0 to 10msec in 100usec increments.  
0= blank during transmit/receive  
1= blank during transmit/receive + 100usec  
. . .  
on Vcc POR or  
Reset_Drv  
SMSC FDC37C672  
Page 136  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
Table 19.11 - KYBD, Logical Device 7 [Logical Device Number = 0x07]  
NAME  
KRST_GA20  
REG INDEX  
0xF0  
DEFINITION  
KRESET and GateA20 Select  
Bit[7] Polarity Select for P12  
= 0 P12 active low (default)  
= 1 P12 active high  
Bits[6:3] Reserved  
STATE  
R/W  
Default = 0x00  
on Vcc POR or  
Reset_Drv  
Bit[2] Port 92 Select  
= 0 Port 92 Disabled  
= 1 Port 92 Enabled  
Bit[1] Reserved  
Bit[0] Reserved  
Reserved - read as ‘0’  
0xF1 -  
0xFF  
Table 19.12 - Auxiliary I/O, Logical Device 8 [Logical Device Number = 0x08]  
NAME  
SMI Enable Register  
REG INDEX  
0xB4 R/W  
DEFINITION  
STATE  
This register is used to enable the different interrupt sources  
C
1
onto the group nSMI output.  
1=Enable  
Default = 0x00  
on Vcc POR  
0=Disable  
Bit[0] Reserved  
Bit[1] EN_PINT  
Bit[2] EN_U2INT  
Bit[3] EN_U1INT  
Bit[4] EN_FINT  
Bit[5] Reserved  
Bit[6] Reserved  
Bit[7] EN_WDT  
SMI Enable Register  
2
0xB5 R/W  
This register is used to enable the different interrupt sources  
onto the group nSMI output, and the group nSMI output  
onto the nSMI GPI/O pin.  
C
Default = 0x00  
on Vcc POR  
Unless otherwise noted,  
1=Enable  
0=Disable  
Bit[0] EN_MINT  
Bit[1] EN_KINT  
Bit[2] EN_IRINT  
Bit[3] Reserved  
Bit[4] EN_P12: Enable 8042 P1.2 to route internally to  
nSMI. 0=Do not route to nSMI, 1=Enable routing to nSMI.  
Bit[5] Reserved  
Bit[6] EN_SMI_S: Enables nSMI Interrupt onto Serial IRQ.  
Bit[7] EN_SMI_P: Enables nSMI Interrupt onto Parallel  
Interrupt Pin IRQ10. 0=SMI pin floats, 1=Output onto nSMI  
GPI/O pin.  
SMSC FDC37C672  
Page 137  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
NAME  
SMI Status Register 1  
REG INDEX  
0xB6 R/W  
DEFINITION  
STATE  
This register is used to read the status of the SMI inputs.  
C
Default = 0x00  
on Vcc POR  
The following bits must be cleared at their source.  
Bit[0] Reserved  
Bit[1] PINT (Parallel Port Interrupt)  
Bit[2] U2INT (UART 2 Interrupt)  
Bit[3] U1INT (UART 1 Interrupt)  
Bit[4] FINT (Floppy Disk Controller Interrupt)  
Bit[5] Reserved  
Bit[6] Reserved  
Bit[7] WDT (Watch Dog Timer)  
SMI Status Register 2  
0xB7 R/W  
This register is used to read the status of the SMI inputs.  
Bit[0] MINT: Mouse Interrupt. Cleared at source.  
Bit[1] KINT: Keyboard Interrupt. Cleared at source.  
C
Default = 0x00  
on Vcc POR  
Bit[2] IRINT: This bit is set by a transition on the IR pin  
(RDX2 or IRRX as selected in CR L5-F1-B6 i.e., after the  
MUX). Cleared by a read of this register.  
Bit[3] Reserved  
Bit[4] P12: 8042 P1.2. Cleared at source  
Bit[7:5] Reserved  
Default = 0x00  
0xB8 R/W  
0xC0  
Bits[7:0] Reserved  
C
on VTR POR  
Pin Multiplex Controls  
Bit[0] IR Mode Select  
Bit[1] DMA 3 Select  
Bit[2] Serial IRQ Select  
Bit[3] 8042 Select  
Default = 0x06 on Vcc  
POR  
Bit[4] IRRX 3 Select  
Bit[5:7] Reserved  
Force Disk Change  
0xC1  
(R/W)  
Bit[0] Force Change 0  
Bit[1] Force Change 1  
Bit[7:2] Reserved  
C,R  
Default = 0x03 on Vcc  
POR  
Force Change[1:0] can be written to 1 but are not clearable  
by software.  
Force Change 1 is cleared on nSTEP and nDS1 Force  
Change 0 is cleared on nSTEP and nDS0  
DSKCHG (FDC DIR Register, Bit 7) = (nDS0 AND Force  
Change 0) OR (nDS1 AND Force Change 1) OR nDSKCHG  
Floppy Data Rate  
Select Shadow  
0xC2  
(R)  
Bit[0] Data Rate Select 0  
Bit[1] Data Rate Select 1  
Bit[2] PRECOMP 0  
Bit[3] PRECOMP 1  
Bit[4] PRECOMP 2  
Bit[5] Reserved  
C
Bit[6] Power Down  
Bit[7] Soft Reset  
SMSC FDC37C672  
Page 138  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
NAME  
REG INDEX  
DEFINITION  
STATE  
UART1 FIFO Control  
0xC3  
Bit[0] FIFO Enable  
C
Shadow  
Bit[1] RCVR FIFO Reset  
Bit[2] XMIT FIFO Reset  
Bit[3] DMA Mode Select  
Bit[5:4] Reserved  
Bit[6] RCVR Trigger (LSB)  
Bit[7] RCVR Trigger (MSB)  
Bit[0] FIFO Enable  
Bit[1] RCVR FIFO Reset  
Bit[2] XMIT FIFO Reset  
Bit[3] DMA Mode Select  
Bit[5:4] Reserved  
UART2 FIFO Control  
Shadow  
0xC4  
C
Bit[6] RCVR Trigger (LSB)  
Bit[7] RCVR Trigger (MSB)  
Table 19.13 - nRTS MUXING  
MUX CONTROLS  
STATE OF  
SERIRQSEL  
PIN  
16 BIT ADDRESS QUAL.  
SELECTED FUNCTION  
UNCONNECTED  
INPUTS  
NAME  
(CR24.6)  
(LD8:CRC0.2)  
nRTS2  
0
0
1
1
1
0
1
0
nRTS2 (default)  
IRQ5  
-
-
0
-
SA12  
Reserved  
Table 19.14 - nCTS2 MUXING  
MUX CONTROLS  
STATE OF  
UNCONNECTED  
INPUTS  
SERIRQSEL  
PIN  
16 BIT ADDRESS  
QUAL. (CR24.6)  
SELECTED FUNCTION  
NAME  
(LD8:CRC0.2)  
nCTS2  
0
0
1
1
1
0
1
0
nCTS2 (default)  
IRQ6  
1
-
0
-
SA13  
Reserved  
Table 19.15 - nDTR2 MUXING  
MUX CONTROLS  
STATE OF  
UNCONNECTED  
INPUTS  
SERIRQSEL  
PIN  
16 BIT ADDRESS  
QUAL. (CR24.6)  
SELECTED FUNCTION  
NAME  
(LD8:CRC0.2)  
nDTR2  
0
0
1
1
1
0
1
0
nDTR2 (default)  
IRQ7  
-
-
0
-
SA14  
Reserved  
SMSC FDC37C672  
Page 139  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
Table 19.16 - nDSR2 MUXING  
MUX CONTROLS  
STATE OF  
SERIRQSEL  
PIN  
16 BIT ADDRESS  
QUAL. (CR24.6)  
SELECTED FUNCTION  
UNCONNECTED  
INPUTS  
NAME  
(LD8:CRC0.2)  
nDSR2  
0
0
1
0
nDSR2 (default)  
IRQ10  
1
-
(Note 19.8)  
SA15  
Reserved  
1
1
1
0
0
-
Note 19.8 LD8:CRB5.7 controls the IRQ10/nSMI interrupt mux.  
Table 19.17 - nDCD2 MUXING  
MUX CONTROLS  
STATE OF  
UNCONNECTED  
INPUTS  
8042COMSEL.  
SERIRQSEL  
(LD8:CRC0.2)  
PIN  
SELECTED FUNCTION  
NAME  
(LD8:CRC0.3)  
nDCD2  
0
0
1
1
1
0
1
0
nDCD2 (default)  
IRQ11  
1
-
-
P12  
Reserved  
-
Table 19.18 - nRI2 MUXING  
SERIRQSEL  
MUX CONTROLS  
STATE OF  
UNCONNECTED  
INPUTS  
8042COMSEL.  
(LD8:CRC0.3)  
PIN  
SELECTED FUNCTION  
NAME  
(LD8:CRC0.2)  
nRI2  
0
0
1
1
1
0
1
0
nRI2 (default)  
IRQ12  
P16  
Reserved  
1
-
-
-
Table 19.19 - DRQ3 MUXING  
MUX CONTROL  
STATE OF  
UNCONNECTED  
INPUTS  
PIN NAME  
DMA3SEL  
SELECTED FUNCTION  
(LD8:CRC0.1)  
DRQ3  
1
0
DRQ3 (default)  
P12  
-
-
SMSC FDC37C672  
Page 140  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
Table 19.20 - nDACK3 MUXING  
MUX CONTROL  
STATE OF  
UNCONNECTED  
INPUTS  
PIN NAME  
DMA3SEL  
SELECTED FUNCTION  
(LD8:CRC0.1)  
nDACK3  
1
0
nDACK3 (default)  
P16  
1
-
Table 19.21 - SER_IRQ MUXING  
MUX CONTROL  
STATE OF  
UNCONNECTED  
INPUTS  
PIN NAME  
SERIRQSEL  
SELECTED FUNCTION  
(LD8:CRC0.2)  
SER_IRQ  
1
0
SER_IRQ (default)  
IRQ3  
1
-
Table 19.22 - PCI_CLK MUXING  
MUX CONTROL  
STATE OF  
UNCONNECTED  
INPUTS  
PIN NAME  
SERIRQSEL  
SELECTED FUNCTION  
(LD8:CRC0.2)  
PCI_CLK  
1
0
PCI_CLK (default)  
IRQ4  
1
-
Table 19.23 - DRVDEN1 MUXING  
MUX CONTROLS  
STATE OF  
UNCONNECTED  
INPUTS  
IRMODESEL  
IRRX3SEL  
(LD8:CRC0.4)  
SELECTED  
FUNCTION  
PIN NAME  
(LD8:CRC0.0)  
DRVDEN1  
0
1
-
0
DRVDEN1 (default)  
IRMODE  
-
-
(Note 19.9)  
IRRX3  
1
1
0
Note 19.9 IRRX3SEL Default (0).  
Table 19.24 - Auxiliary I/O, Logical Device 8 [Logical Device Number = 0x08]  
NAME  
WDT_TIME_OUT  
REG INDEX  
DEFINITION  
STATE  
0xF1  
Bit[0] Reserved  
Bit[1] Reserved  
C
Default = 0x00  
Bits[6:2] Reserved, = 00000  
Bit[7] WDT Time-out Value Units Select  
= 0 Minutes (default)  
on Vcc POR or  
Reset_Drv  
= 1 Seconds  
SMSC FDC37C672  
Page 141  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
NAME  
WDT_VAL  
REG INDEX  
DEFINITION  
Watch-dog Timer Time-out Value  
STATE  
0xF2  
C
Binary coded, units = minutes(default) or seconds, selectable  
via Bit[7] of Reg 0xF1, LD 8.  
Default = 0x00  
0x00 Time out disabled  
on Vcc POR or  
Reset_Drv  
0x01 Time-out = 1 minute (second)  
0xFF Time-out = 255 minutes (seconds)  
Watch-dog timer Configuration  
Bit[0] Joy-stick Enable  
WDT_CFG  
0xF3  
C
Default = 0x00  
=1  
WDT is reset upon an I/O read or write of the Game  
Port  
on Vcc POR or  
Reset_Drv  
=0  
WDT is not affected by I/O reads or writes to the Game  
Port.  
Bit[1] Keyboard Enable  
=1  
=0  
WDT is reset upon a Keyboard interrupt.  
WDT is not affected by Keyboard interrupts.  
Bit[2] Mouse Enable  
=1  
=0  
WDT is reset upon a Mouse interrupt  
WDT is not affected by Mouse interrupts.  
Bit[3] Reserved  
Bits[7:4] WDT Interrupt Mapping  
1111 = IRQ15  
0011 = IRQ3  
0010 = Invalid  
0001 = IRQ1  
0000 = Disable  
Watch-dog timer Control  
Bit[0] Watch-dog Status Bit, R/W  
WDT_CTRL  
0xF4  
C
Default = 0x00  
=1  
=0  
WD timeout occurred  
WD timer counting  
Cleared by VTR POR  
Bit[1] Reserved  
Bit[2] Force Timeout, W  
=1  
Bit[3] P20 Force Timeout Enable, R/W  
Forces WD timeout event; this bit is self-clearing  
= 1 Allows rising edge of P20, from the Keyboard  
Controller, to force the WD timeout event. A WD  
timeout event may still be forced by setting the Force  
Timeout Bit, bit 2.  
= 0 P20 activity does not generate the WD timeout event.  
Note: The P20 signal will remain high for a minimum of 1us  
and can remain high indefinitely. Therefore, when P20  
forced timeouts are enabled, a self-clearing edge-  
detect circuit is used to generate a signal which is  
ORed with the signal generated by the Force Timeout  
Bit.  
Bit[7:4] Reserved. Set to 0  
SMSC FDC37C672  
Page 142  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
Chapter 20 Operational Description  
20.1 Maximum Guaranteed Ratings*  
Operating Temperature Range ..................................................................................................0oC to +70oC  
Storage Temperature Range .................................................................................................. -55o to +150oC  
Lead Temperature Range (soldering, 10 seconds).............................................................................+325oC  
Positive Voltage on any pin, with respect to Ground.........................................................................Vcc+0.3V  
Negative Voltage on any pin, with respect to Ground ............................................................................ -0.3V  
Maximum Vcc............................................................................................................................................ +7V  
*Stresses above those listed above could cause permanent damage to the device. This is a stress rating  
only and functional operation of the device at any other condition above those indicated in the operation  
sections of this specification is not implied.  
Note:  
When powering this device from laboratory or system power supplies, it is important that the Absolute  
Maximum Ratings not be exceeded or device failure can result. Some power supplies exhibit voltage  
spikes on their outputs when the AC power is switched on or off. In addition, voltage transients on the AC  
power line may appear on the DC output. If this possibility exists, it is suggested that a clamp circuit be  
used.  
20.2 DC Electrical Characteristics  
(TA = 0°C - 70°C, Vcc = +5 V ± 10%)  
PARAMETER  
I Type Input Buffer  
SYMBOL  
MIN  
TYP  
MAX  
UNITS  
COMMENTS  
Low Input Level  
VILI  
VIHI  
0.8  
V
V
TTL Levels  
High Input Level  
2.0  
IS Type Input Buffer  
Low Input Level  
High Input Level  
VILIS  
VIHIS  
VHYS  
0.8  
0.4  
V
V
Schmitt Trigger  
Schmitt Trigger  
2.2  
Schmitt Trigger Hysteresis  
ICLK Input Buffer  
250  
500  
mV  
Low Input Level  
VILCK  
VIHCK  
V
V
High Input Level  
ICLK2 Input Buffer  
2.2  
Input Level  
mV  
V P - P  
SMSC FDC37C672  
Page 143  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
PARAMETER  
Input Leakage  
(All I and IS buffers)  
SYMBOL  
MIN  
TYP  
MAX  
UNITS  
COMMENTS  
Low Input Leakage  
IIL  
-10  
+10  
+10  
4.0  
1000  
100  
V
IN = 0  
IN = VCC  
µA  
High Input Leakage  
VBAT  
IIH  
-10  
2.4  
V
µA  
V
nA  
nA  
3.0  
250  
IBAT  
Standby Current  
Input Leakage  
VCC=VSS=0  
VCC=5V, VBAT=3V  
O4 Type Buffer  
Low Output Level  
High Output Level  
Output Leakage  
O8SR Type Buffer  
Low Output Level  
High Output Level  
Output Leakage  
Rise Time  
VOL  
VOH  
IOL  
0.4  
+10  
0.4  
V
V
I
I
OL = 4 mA  
2.4  
-10  
OH = -2 mA  
V
IN = 0 to VCC  
µA  
(Note 20.1)  
VOL  
VOH  
IOL  
V
V
I
I
OL = 8 mA  
2.4  
-10  
5
OH = -8 mA  
+10  
V
IN = 0 to VCC  
µA  
ns  
ns  
(Note 20.1)  
TRT  
TFL  
Fall Time  
5
O24 Type Buffer  
Low Output Level  
High Output Level  
Output Leakage  
O16SR Type Buffer  
Low Output Level  
High Output Level  
Output Leakage  
Rise Time  
VOL  
VOH  
IOL  
0.4  
+10  
0.4  
V
V
I
I
OL = 24 mA  
OH = -12 mA  
2.4  
-10  
VIN = 0 to VCC  
(Note 20.1)  
µA  
VOL  
VOH  
IOL  
V
V
I
I
OL = 16 mA  
OH = -16 mA  
2.4  
-10  
5
+10  
V
IN = 0 to VCC  
µA  
ns  
ns  
(Note 20.1)  
TRT  
TFL  
Fall Time  
5
SMSC FDC37C672  
Page 144  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
PARAMETER  
SYMBOL  
MIN  
TYP  
MAX  
UNITS  
COMMENTS  
OD16P Type Buffer  
Low Output Level  
Output Leakage  
VOL  
IOL  
0.4  
V
I
I
OL = 16 mA  
OH = 90 µA  
-10  
+10  
µA  
VIN = 0 to VCC  
(Note 20.1)  
OD24 Type Buffer  
Low Output Level  
Output Leakage  
VOL  
IOL  
0.4  
V
IOL = 24 mA  
+10  
VIN = 0 to VCC  
µA  
(Note 20.1)  
OD48 Type Buffer  
Low Output Level  
Output Leakage  
VOL  
IOL  
0.4  
V
IOL = 48 mA  
+10  
VIN = 0 to VCC  
µA  
(Note 20.1)  
OCLK2 Type Buffer  
Low Output Level  
High Output Level  
Output Leakage  
VOL  
VOH  
IOL  
IIL  
0.4  
V
V
I
I
OL = 2 mA  
3.5  
-10  
OH = -2 mA  
+10  
± 10  
± 10  
± 10  
90  
VIN = 0 to VCC  
(Note 20.1)  
VCC = 0V  
V
µA  
µA  
µA  
µA  
mA  
ChiProtect  
(SLCT, PE, BUSY, nACK, nERROR)  
IN = 6V Max  
Backdrive  
IIL  
VCC = 0V  
IN = 6V Max  
VCC = 0V  
IN = 6V Max  
All outputs open.  
(nSTROBE, nAUTOFD, nINIT, nSLCTIN)  
V
Backdrive  
IIL  
(PD0-PD7)  
V
Supply Current Active  
ICCI  
4.5  
70  
Note 20.1 All output leakages are measured with the current pins in high impedance  
Note 20.2 Output leakage is measured with the low driving output off, either for a high level output or a high  
impedance state.  
Note 20.3 KBCLK, KBDATA, MCLK, MDATA contain 90uA min pull-ups.  
CAPACITANCE TA = 25°C; fc = 1MHz; VCC = 5V  
LIMITS  
TYP  
PARAMETER  
Clock Input Capacitance  
Input Capacitance  
SYMBOL  
CIN  
CIN  
COUT  
MIN  
MAX  
20  
10  
UNIT  
pF  
pF  
TEST CONDITION  
All pins except pin  
under test tied to AC  
ground  
Output Capacitance  
20  
pF  
SMSC FDC37C672  
Page 145  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
Chapter 21 Timing Diagrams  
For the Timing Diagrams shown, the following capacitive loads are used.  
CAPACITANCE  
TOTAL (PF)  
NAME  
SD[0:7]  
IOCHRDY  
IRQ[3:7,10:12]  
DRQ[1:3]  
nWGATE  
nWDATA  
nHDSEL  
nDIR  
240  
240  
120  
120  
240  
240  
240  
240  
240  
240  
240  
240  
100  
100  
100  
100  
100  
100  
240  
240  
240  
240  
240  
240  
240  
240  
240  
nSTEP  
nDS[1:0]  
nMTR[1:0]  
DRVDEN[1:0]  
TXD1  
nRTS1  
nDTR1  
TXD2  
nRTS2  
nDTR2  
PD[0:7]  
nSLCTIN  
nINIT  
nALF  
nSTB  
KDAT  
KCLK  
MDAT  
MCLK  
SMSC FDC37C672  
Page 146  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
t3  
SAx  
t4  
SD<7:0>  
t1  
t5  
t2  
nIOW  
Figure 21.1 - IOW Timing for Port 92  
IOW TIMING  
NAME  
DESCRIPTION  
MIN  
40  
0
10  
0
TYP  
MAX  
UNITS  
ns  
ns  
ns  
ns  
t1  
t2  
t3  
t4  
t5  
SAx Valid to nIOW Asserted  
SDATA Valid to nIOW Asserted  
nIOW Asserted to SAx Invalid  
nIOW Deasserted to DATA Invalid  
nIOW Deasserted to nIOW or nIOR Asserted  
100  
ns  
t 1  
t 2  
V c c  
t 3  
A ll H o s t  
A c c e s s e s  
Figure 21.2 - Power-Up Timing  
NAME  
DESCRIPTION  
Vcc Slew from 4.5V to 0V  
MIN  
TYP  
MAX  
UNITS  
µs  
t1  
t2  
t3  
300  
100  
125  
Vcc Slew from 0V to 4.5V  
µs  
All Host Accesses After Powerup (Note 21.1)  
500  
µs  
Note 21.1 Internal write-protection period after Vcc passes 4.5 volts on power-up  
SMSC FDC37C672  
Page 147  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
t10  
AEN  
t3  
SA[x], nCS  
t2  
t1  
t4  
t6  
nIOW  
SD[x]  
t5  
t7  
DATA VALID  
FINTR  
PINTR  
IBF  
t8  
t9  
Figure 21.3 - ISA Write  
NAME  
t1  
t2  
DESCRIPTION  
SA[x], nCS and AEN valid to nIOW asserted  
nIOW asserted to nIOW deasserted  
MIN  
10  
80  
TYP  
MAX  
UNITS  
ns  
ns  
t3  
t4  
nIOW asserted to SA[x], nCS invalid  
SD[x] Valid to nIOW deasserted  
10  
45  
ns  
ns  
t5  
SD[x] Hold from nIOW deasserted  
0
ns  
t6  
t7  
t8  
t9  
nIOW deasserted to nIOW asserted  
25  
10  
ns  
ns  
ns  
ns  
nIOW deasserted to FINTR deasserted (Note 21.2)  
nIOW deasserted to PINTER deasserted (Note 21.3)  
IBF (internal signal) asserted from nIOW deasserted  
nIOW deasserted to AEN invalid  
55  
260  
40  
t10  
ns  
Note 21.2 FINTR refers to the IRQ used by the floppy disk.  
Note 21.3 PINTR refers to the IRQ used by the parallel port  
SMSC FDC37C672  
Page 148  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
t13  
AEN  
t3  
SA[x], nCS  
t1  
t7  
t2  
t6  
nIOR  
t4  
t5  
SD[x]  
PD[x], nERROR,  
DATA VALID  
PE, SLCT, ACK, BUSY  
t10  
FINTER  
PINTER  
t9  
t11  
t12  
PCOBF  
AUXOBF1  
nIOR/nIOW  
t8  
Figure 21.4 - ISA Read  
Table 21.1 - ISA Read Timing Parameters  
DESCRIPTION  
SA[x], nCS and AEN valid to nIOR asserted  
nIOR asserted to nIOR deasserted  
NAME  
t1  
t2  
MIN  
10  
50  
TYP  
MAX  
UNITS  
ns  
ns  
t3  
t4  
t5  
t6  
nIOR asserted to SA[x], nCS invalid  
nIOR asserted to Data Valid  
Data Hold/float from nIOR deasserted  
nIOR deasserted  
10  
ns  
ns  
ns  
ns  
50  
25  
10  
25  
t8  
t8  
t7  
t9  
t10  
t11  
t12  
t13  
nIOR asserted after nIOW deasserted  
nIOR/nIOR, nIOW/nIOW transfers from/to ECP FIFO  
Parallel Port setup to nIOR asserted  
nIOR asserted to PINTER deasserted  
nIOR deasserted to FINTER deasserted  
nIOR deasserted to PCOBF deasserted (Note 21.6, Note 21.8)  
nIOR deasserted to AUXOBF1 deasserted (Note 21.7, Note 21.8)  
nIOW deasserted to AEN invalid  
80  
150  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
20  
55  
260  
80  
80  
10  
Note 21.4 FINTR refers to the IRQ used by the floppy disk.  
Note 21.5 PINTR refers to the IRQ used by the parallel port.  
Note 21.6 PCOBF is used for the Keyboard IRQ.  
Note 21.7 AUXOBF1 is used for the Mouse IRQ.  
Note 21.8 Applies only if deassertion is performed in hardware.  
SMSC FDC37C672  
Page 149  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
t2  
t1  
PCOBF  
AUXOBF1  
nWRT  
t3  
IBF  
nRD  
Figure 21.5 - Internal 8042 CPU Timing  
DESCRIPTION  
nWRT deasserted to AUXOBF1 asserted (Note 21.9, Note 21.10)  
nWRT deasserted to PCOBF asserted (Note 21.9, Note 21.11)  
nRD deasserted to IBF deasserted (Note 21.9)  
NAME  
MIN  
TYP  
MAX  
40  
40  
UNITS  
ns  
ns  
t1  
t2  
t3  
40  
ns  
Note 21.9 IBF, nWRT and nRD are internal signals.  
Note 21.10 PCOBF is used for the Keyboard IRQ.  
Note 21.11 AUXOBF1 is used for the Mouse IRQ.  
SMSC FDC37C672  
Page 150  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
t1  
t2  
t2  
CLOCKI  
Figure 21.6 - Input Clock Timing  
NAME  
DESCRIPTION  
Clock Cycle Time for 14.318MHZ  
Clock High Time/Low Time for 14.318MHz  
Clock Cycle Time for 32KHZ  
Clock High Time/Low Time for 32KHz  
Clock Rise Time/Fall Time (not shown)  
MIN  
TYP  
70  
35  
31.25  
16.53  
MAX  
UNITS  
ns  
ns  
µs  
µs  
t1  
t2  
t1  
t2  
5
ns  
t4  
RESET_DRV  
Figure 21.7 - Reset Timing  
NAME  
t4  
DESCRIPTION  
RESET width (Note 21.12)  
MIN  
1.5  
TYP  
MAX  
UNITS  
µs  
Note 21.12 The RESET width is dependent upon the processor clock. The RESET must be active while the clock is  
running and stable.  
SMSC FDC37C672  
Page 151  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
t15  
AEN  
t16  
t3  
t2  
FDRQ,  
PDRQ  
t1  
t4  
nDACK  
t12  
t14  
t11  
t6  
t5  
t8  
nIOR  
or  
nIOW  
t10  
t9  
t7  
DATA  
(DO-D7)  
DATA VALID  
t13  
TC  
Figure 21.8 - DMA Timing (Single Transfer Mode)  
NAME  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
DESCRIPTION  
MIN  
0
TYP  
MAX  
UNITS  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
nDACK Delay Time from FDRQ High  
DRQ Reset Delay from nIOR or nIOW  
FDRQ Reset Delay from nDACK Low  
nDACK Width  
nIOR Delay from FDRQ High  
nIOW Delay from FDRQ High  
Data Access Time from nIOR Low  
Data Set Up Time to nIOW High  
Data to Float Delay from nIOR High  
Data Hold Time from nIOW High  
nDACK Set Up to nIOW/nIOR Low  
nDACK Hold after nIOW/nIOR High  
TC Pulse Width  
100  
100  
150  
0
0
100  
60  
40  
10  
10  
5
10  
60  
40  
10  
t9  
t10  
t11  
t12  
t13  
t14  
t15  
t16  
AEN Set Up to nIOR/nIOW  
AEN Hold from nDACK  
TC Active to PDRQ Inactive  
100  
SMSC FDC37C672  
Page 152  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
t15  
AEN  
t16  
t2  
t3  
FDRQ,  
PDRQ  
t1  
t4  
nDACK  
t12  
t14  
t6  
t11  
t8  
t5  
nIOR  
or  
nIOW  
t10  
t9  
t7  
DATA  
(DO-D7)  
DATA VALID  
DATA VALID  
t13  
TC  
Figure 21.9 - DMA Timing (Burst Transfer Mode)  
NAME  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
DESCRIPTION  
MIN  
0
TYP  
MAX  
UNITS  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
nDACK Delay Time from FDRQ High  
DRQ Reset Delay from nIOR or nIOW  
FDRQ Reset Delay from nDACK Low  
nDACK Width  
nIOR Delay from FDRQ High  
nIOW Delay from FDRQ High  
Data Access Time from nIOR Low  
Data Set Up Time to nIOW High  
Data to Float Delay from nIOR High  
Data Hold Time from nIOW High  
nDACK Set Up to nIOW/nIOR Low  
nDACK Hold after nIOW/nIOR High  
TC Pulse Width  
100  
100  
150  
0
0
100  
60  
40  
10  
10  
5
10  
60  
40  
10  
t9  
t10  
t11  
t12  
t13  
t14  
t15  
t16  
AEN Set Up to nIOR/nIOW  
AEN Hold from nDACK  
TC Active to PDRQ Inactive  
100  
SMSC FDC37C672  
Page 153  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
t3  
nDIR  
t4  
t1  
t2  
nSTEP  
t5  
nDS0-3  
nINDEX  
t6  
t7  
t8  
nRDATA  
nWDATA  
nIOW  
t9  
t9  
nDS0-1,  
MTR0-1  
Figure 21.10 - Disk Drive Timing (At Mode Only)  
NAME  
t1  
t2  
t3  
t4  
t5  
t6  
DESCRIPTION  
nDIR Set Up to STEP Low  
nSTEP Active Time Low  
nDIR Hold Time after nSTEP  
nSTEP Cycle Time  
nDS0-1 Hold Time from nSTEP Low  
MIN  
TYP  
4
24  
96  
132  
20  
2
MAX  
UNITS  
X*  
X*  
X*  
X*  
X*  
X*  
nINDEX Pulse Width  
t7  
t8  
t9  
nRDATA Active Time Low  
nWDATA Write Data Width Low  
nDS0-1, MTRO-1 from End of nIOW  
40  
.5  
25  
ns  
Y*  
ns  
Notes:  
*X specifies one MCLK period and Y specifies one WCLK period.  
MCLK = 16 x Data Rate (at 500 kb/s MCLK = 8 MHz)  
WCLK = 2 x Data Rate (at 500 kb/s WCLK = 1 MHz)  
SMSC FDC37C672  
Page 154  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
nIOW  
t1  
nRTSx,  
nDTRx  
t5  
IRQx  
nCTSx,  
nDSRx,  
nDCDx  
t6  
t2  
t4  
IRQx  
nIOW  
t3  
IRQx  
nIOR  
nRIx  
Figure 21.11 - Serial Port Timing  
NAME  
DESCRIPTION  
nRTSx, nDTRx Delay from nIOW  
IRQx Active Delay from nCTSx, nDSRx, nDCDx  
IRQx Inactive Delay from nIOR (Leading Edge)  
IRQx Inactive Delay from nIOW (Trailing Edge)  
IRQx Inactive Delay from nIOW  
MIN  
TYP  
MAX  
200  
100  
120  
125  
100  
100  
UNITS  
ns  
ns  
ns  
ns  
ns  
ns  
t1  
t2  
t3  
t4  
t5  
t6  
10  
IRQx Active Delay from nRIx  
SMSC FDC37C672  
Page 155  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
PD0- PD7  
nIOW  
t6  
t1  
nINIT, nSTROBE.  
nAUTOFD, SLCTIN  
nACK  
t2  
nPINTR  
(SPP)  
t4  
t3  
PINTR  
(ECP or EPP Enabled)  
nFAULT (ECP)  
nERROR  
(ECP)  
t5  
t2  
t3  
PINTR  
Figure 21.12 - Parallel Port Timing  
NAME  
DESCRIPTION  
MIN  
TYP  
MAX  
100  
60  
300  
105  
105  
100  
UNITS  
ns  
ns  
ns  
ns  
t1  
t2  
t3  
t4  
t5  
t6  
PD0-7, nINIT, nSTROBE, nAUTOFD Delay from nIOW  
PINTR Delay from nACK, nFAULT  
PINTR Active Low in ECP and EPP Modes  
PINTR Delay from nACK  
nERROR Active to PINTR Active  
PD0 - PD7 Delay from IOW Active  
200  
ns  
ns  
Note:  
PINTR refers to the IRQ used by the parallel port.  
SMSC FDC37C672  
Page 156  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
t18  
t9  
A0-A10  
SD<7:0>  
t17  
t8  
t12  
t19  
nIOW  
t10  
t11  
IOCHRDY  
t13  
t22  
t20  
t2  
t5  
nWRITE  
PD<7:0>  
t1  
t16  
t3  
t14  
t4  
nDATAST  
nADDRSTB  
t15  
t6  
t7  
nWAIT  
PDIR  
t21  
Figure 21.13 - EPP 1.9 Data or Address Write Cycle  
SMSC FDC37C672  
Page 157  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
Table 21.2 - EPP 1.9 Data or Address Cycle Timing Parameters  
NAME  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
DESCRIPTION  
nIOW Asserted to PDATA Valid  
nWAIT Asserted to nWRITE Change (Note 21.13)  
MIN  
0
60  
5
60  
0
10  
0
10  
0
TYP  
MAX  
50  
185  
35  
UNITS  
ns  
ns  
ns  
ns  
ns  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
nWRITE to Command Asserted  
nWAIT Deasserted to Command Deasserted (Note 21.13)  
nWAIT Asserted to PDATA Invalid (Note 21.13)  
Time Out  
Command Deasserted to nWAIT Asserted  
SDATA Valid to nIOW Asserted  
190  
12  
t9  
nIOW Deasserted to DATA Invalid  
t10  
t11  
t12  
t13  
t14  
t15  
t16  
t17  
t18  
t19  
t20  
t21  
t22  
nIOW Asserted to IOCHRDY Asserted  
nWAIT Deasserted to IOCHRDY Deasserted (Note 21.13)  
IOCHRDY Deasserted to nIOW Deasserted  
nIOW Asserted to nWRITE Asserted  
nWAIT Asserted to Command Asserted (Note 21.13)  
Command Asserted to nWAIT Deasserted  
PDATA Valid to Command Asserted  
Ax Valid to nIOW Asserted  
0
24  
160  
60  
10  
0
60  
0
10  
40  
10  
40  
60  
0
70  
210  
10  
nIOW Asserted to Ax Invalid  
nIOW Deasserted to nIOW or nIOR Asserted  
nWAIT Asserted to nWRITE Asserted (Note 21.13)  
nWAIT Asserted to PDIR Low  
185  
PDIR Low to nWRITE Asserted  
0
Note 21.13 nWAIT must be filtered to compensate for ringing on the parallel bus cable. WAIT is considered to have  
settled after it does not transition for a minimum of 50 nsec.  
SMSC FDC37C672  
Page 158  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
t20  
t12  
A0-A10  
t19  
t11  
t22  
IOR  
t13  
SD<7:0>  
t18  
t10  
t8  
IOCHRDY  
t24  
t23  
t27  
t17  
PDIR  
t9  
t21  
nWRITE  
PData bus driven  
by peripheral  
t2  
t25  
t5  
t4  
t16  
PD<7:0>  
t28  
t26  
t1  
t14  
t3  
DATASTB  
ADDRSTB  
t15  
t7  
t6  
nWAIT  
Figure 21.14 - EPP 1.9 Data or Address Read Cycle  
SMSC FDC37C672  
Page 159  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
Table 21.3 - EPP 1.9 Data or Address Read Cycle Timing Parameters  
NAME  
t1  
t2  
DESCRIPTION  
PDATA Hi-Z to Command Asserted  
nIOR Asserted to PDATA Hi-Z  
MIN  
0
0
TYP  
MAX  
30  
50  
UNITS  
ns  
ns  
t3  
t4  
t5  
t6  
nWAIT Deasserted to Command Deasserted (Note 21.14)  
Command Deasserted to PDATA Hi-Z  
Command Asserted to PDATA Valid  
PDATA Hi-Z to nWAIT Deasserted  
60  
0
0
0
180  
ns  
ns  
ns  
µs  
ns  
t7  
PDATA Valid to nWAIT Deasserted  
0
t8  
t9  
nIOR Asserted to IOCHRDY Asserted  
nWRITE Deasserted to nIOR Asserted (Note 21.15)  
nWAIT Deasserted to IOCHRDY Deasserted (Note 21.14)  
IOCHRDY Deasserted to nIOR Deasserted  
nIOR Deasserted to SDATA Hi-Z (Hold Time)  
PDATA Valid to SDATA Valid  
nWAIT Asserted to Command Asserted  
Time Out  
nWAIT Deasserted to PDATA Driven (Note 21.14)  
0
0
60  
0
0
0
0
10  
60  
60  
24  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
ns  
t10  
t11  
t12  
t13  
t14  
t15  
t16  
t17  
160  
40  
75  
195  
12  
190  
190  
nWAIT Deasserted to nWRITE Modified (Note 21.14, Note  
ns  
21.15)  
t18  
t19  
t20  
t21  
t22  
t23  
t24  
t25  
t26  
t27  
t28  
SDATA Valid to IOCHRDY Deasserted (Note 21.16)  
Ax Valid to nIOR Asserted  
nIOR Deasserted to Ax Invalid  
nWAIT Asserted to nWRITE Deasserted  
nIOR Deasserted to nIOW or nIOR Asserted  
nWAIT Asserted to PDIR Set (Note 21.14)  
PDATA Hi-Z to PDIR Set  
nWAIT Asserted to PDATA Hi-Z (Note 21.14)  
PDIR Set to Command  
nWAIT Deasserted to PDIR Low (Note 21.14)  
nWRITE Deasserted to Command  
0
40  
10  
0
40  
60  
0
60  
0
60  
1
85  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
10  
185  
185  
180  
20  
180  
Note 21.14 nWAIT is considered to have settled after it does not transition for a minimum of 50 ns.  
Note 21.15 When not executing a write cycle, EPP nWRITE is inactive high.  
Note 21.16 85 is true only if t7 = 0.  
SMSC FDC37C672  
Page 160  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
t18  
t9  
A0-A10  
SD<7:0>  
nIOW  
t17  
t8  
t6  
t19  
t12  
t10  
t20  
t11  
IOCHRDY  
nWRITE  
t2  
t5  
t13  
t1  
PD<7:0>  
t16  
t3  
t4  
nDATAST  
nADDRSTB  
t21  
nWAIT  
PDIR  
Figure 21.15 - EPP 1.7 Data or Address Write Cycle  
SMSC FDC37C672  
Page 161  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
Table 21.4 - EPP 1.7 Data or Address Write Cycle Parameters  
NAME  
t1  
t2  
t3  
t4  
t5  
t6  
t8  
t9  
t10  
t11  
t12  
t13  
t16  
t17  
t18  
t19  
t20  
t21  
DESCRIPTION  
nIOW Asserted to PDATA Valid  
Command Deasserted to nWRITE Change  
nWRITE to Command  
nIOW Deasserted to Command Deasserted (Note 21.18)  
Command Deasserted to PDATA Invalid  
Time Out  
MIN  
0
0
TYP  
MAX  
50  
40  
35  
50  
UNITS  
ns  
ns  
ns  
ns  
5
50  
10  
10  
0
ns  
12  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
ns  
ns  
ns  
SDATA Valid to nIOW Asserted  
nIOW Deasserted to DATA Invalid  
nIOW Asserted to IOCHRDY Asserted  
nWAIT Deasserted to IOCHRDY Deasserted  
IOCHRDY Deasserted to nIOW Deasserted  
nIOW Asserted to nWRITE Asserted  
PDATA Valid to Command Asserted  
Ax Valid to nIOW Asserted  
0
24  
40  
10  
0
10  
40  
10  
100  
50  
35  
nIOW Deasserted to Ax Invalid  
nIOW Deasserted to nIOW or nIOR Asserted  
nWAIT Asserted to IOCHRDY Deasserted  
Command Deasserted to nWAIT Deasserted  
45  
0
Note 21.17 nWRITE is controlled by clearing the PDIR bit to "0" in the control register before performing an EPP  
Write.  
Note 21.18 The number is only valid if nWAIT is active when IOW goes active.  
SMSC FDC37C672  
Page 162  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
t20  
t12  
A0-A10  
t15  
t11  
t22  
t19  
nIOR  
t13  
SD<7:0>  
t8  
t10  
t3  
IOCHRDY  
nWRITE  
t5  
t4  
PD<7:0>  
t23  
t2  
nDATASTB  
nADDRSTB  
t21  
nWAIT  
PDIR  
Figure 21.16 - EPP 1.7 Data or Address Read Cycle  
Table 21.5 - EPP 1.7 Data or Address Read Cycle Parameters  
NAME  
t2  
t3  
t4  
t5  
DESCRIPTION  
MIN  
TYP  
MAX  
50  
40  
UNITS  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
ns  
ns  
ns  
nIOR Deasserted to Command Deasserted  
nWAIT Asserted to IOCHRDY Deasserted  
Command Deasserted to PDATA Hi-Z  
Command Asserted to PDATA Valid  
nIOR Asserted to IOCHRDY Asserted  
nWAIT Deasserted to IOCHRDY Deasserted  
IOCHRDY Deasserted to nIOR Deasserted  
nIOR Deasserted to SDATA High-Z (Hold Time)  
PDATA Valid to SDATA Valid  
0
0
0
t8  
24  
50  
t10  
t11  
t12  
t13  
t15  
t19  
t20  
t21  
t22  
t23  
0
0
40  
40  
12  
Time Out  
10  
40  
10  
0
Ax Valid to nIOR Asserted  
nIOR Deasserted to Ax Invalid  
Command Deasserted to nWAIT Deasserted  
nIOR Deasserted to nIOW or nIOR Asserted  
nIOR Asserted to Command Asserted  
40  
ns  
ns  
55  
Note:  
WRITE is controlled by setting the PDIR bit to "1" in the control register before performing an EPP Read.  
SMSC FDC37C672  
Page 163  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
Chapter 22 ECP Parallel Port Timing  
Parallel Port FIFO (Mode 101)  
The standard parallel port is run at or near the peak 500KBytes/sec allowed in the forward direction using  
DMA. The state machine does not examine nACK and begins the next transfer based on Busy. Refer to  
Figure 22.2.  
ECP Parallel Port Timing  
The timing is designed to allow operation at approximately 2.0 Mbytes/sec over a 15ft cable. If a shorter  
cable is used then the bandwidth will increase.  
Forward-Idle  
When the host has no data to send it keeps HostClk (nStrobe) high and the peripheral will leave PeriphClk  
(Busy) low.  
Forward Data Transfer Phase  
The interface transfers data and commands from the host to the peripheral using an interlocked PeriphAck  
and HostClk. The peripheral may indicate its desire to send data to the host by asserting nPeriphRequest.  
The Forward Data Transfer Phase may be entered from the Forward-Idle Phase. While in the Forward  
Phase the peripheral may asynchronously assert the nPeriphRequest (nFault) to request that the channel  
be reversed. When the peripheral is not busy it sets PeriphAck (Busy) low. The host then sets HostClk  
(nStrobe) low when it is prepared to send data. The data must be stable for the specified setup time prior  
to the falling edge of HostClk. The peripheral then sets  
PeriphAck (Busy) high to acknowledge the handshake. The host then sets HostClk (nStrobe) high. The  
peripheral then accepts the data and sets PeriphAck (Busy) low,  
completing the transfer. This sequence is shown in Figure 22.2.  
The timing is designed to provide 3 cable round-trip times for data setup if Data is driven simultaneously  
with HostClk (nStrobe).  
Reverse-Idle Phase  
The peripheral has no data to send and keeps PeriphClk high. The host is idle and keeps HostAck low.  
Reverse Data Transfer Phase  
The interface transfers data and commands from the peripheral to the host using an interlocked HostAck  
and PeriphClk.  
The Reverse Data Transfer Phase may be entered from the Reverse-Idle Phase. After the previous byte  
has been accepted the host sets HostAck (nALF) low. The peripheral then sets PeriphClk (nACK) low  
when it has data to send. The data must be stable for the specified setup time prior to the falling edge of  
PeriphClk. When the host is ready to accept a byte it sets HostAck (nALF) high to acknowledge the  
handshake. The peripheral then sets PeriphClk (nACK) high. After the host has accepted the data it sets  
HostAck (nALF) low, completing the transfer. This sequence is shown in Figure 22.3.  
SMSC FDC37C672  
Page 164  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
Output Drivers  
To facilitate higher performance data transfer, the use of balanced CMOS active drivers for critical signals  
(Data, HostAck, HostClk, PeriphAck, PeriphClk) are used ECP Mode. Because the use of active drivers  
can present compatibility problems in Compatible Mode (the control signals, by tradition, are specified as  
open-collector), the drivers are dynamically changed from open-collector to totem-pole. The timing for the  
dynamic driver change is specified in then IEEE 1284 Extended Capabilities Port Protocol and ISA  
Interface Standard, Rev. 1.14, July 14, 1993, available from Microsoft. The dynamic driver change must  
be implemented properly to prevent glitching the outputs.  
t6  
t3  
PDATA  
t1  
t2  
t5  
nSTROBE  
BUSY  
t4  
Figure 22.1 - Parallel Port FIFO Timing  
NAME  
t1  
t2  
DESCRIPTION  
DATA Valid to nSTROBE Active  
nSTROBE Active Pulse Width  
DATA Hold from nSTROBE Inactive (Note 22.1)  
MIN  
TYP  
MAX  
UNITS  
ns  
ns  
600  
600  
450  
t3  
ns  
t4  
t5  
t6  
nSTROBE Active to BUSY Active  
BUSY Inactive to nSTROBE Active  
BUSY Inactive to PDATA Invalid (Note 22.1)  
500  
ns  
ns  
ns  
680  
80  
Note 22.1 The data is held until BUSY goes inactive or for time t3, whichever is longer. This only applies if another  
data transfer is pending. If no other data transfer is pending, the data is held indefinitely.  
SMSC FDC37C672  
Page 165  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
t3  
t4  
nAUTOFD  
PDATA<7:0>  
t2  
t1  
t7  
t8  
nSTROBE  
BUSY  
t6  
t5  
t6  
Figure 22.2 - ECP Parallel Port Forward Timing  
NAME  
DESCRIPTION  
nAUTOFD Valid to nSTROBE Asserted  
PDATA Valid to nSTROBE Asserted  
MIN  
0
0
TYP  
MAX  
60  
60  
UNITS  
ns  
ns  
t1  
t2  
t3  
BUSY Deasserted to nAUTOFD Changed  
80  
180  
ns  
(Note 22.2, Note 22.3)  
t4  
t5  
t6  
t7  
BUSY Deasserted to PDATA Changed (Note 22.2, Note 22.3)  
nSTROBE Deasserted to Busy Asserted  
nSTROBE Deasserted to Busy Deasserted  
80  
0
0
180  
ns  
ns  
ns  
ns  
BUSY Deasserted to nSTROBE Asserted (Note 22.2, Note  
80  
200  
180  
22.3)  
t8  
BUSY Asserted to nSTROBE Deasserted (Note 22.3)  
80  
ns  
Note 22.2 Maximum value only applies if there is data in the FIFO waiting to be written out.  
Note 22.3 BUSY is not considered asserted or deasserted until it is stable for a minimum of 75 to 130 ns.  
SMSC FDC37C672  
Page 166  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
t2  
PDATA<7:0>  
t1  
t5  
t6  
nACK  
t4  
t3  
t4  
nAUTOFD  
Figure 22.3 - ECP Parallel Port Reverse Timing  
NAME  
DESCRIPTION  
PDATA Valid to nACK Asserted  
MIN  
0
0
TYP  
MAX  
UNITS  
ns  
ns  
t1  
t2  
t3  
nAUTOFD Deasserted to PDATA Changed  
nACK Asserted to nAUTOFD Deasserted  
(Note 22.4, Note 22.5)  
nACK Deasserted to nAUTOFD Asserted (Note 22.5)  
nAUTOFD Asserted to nACK Asserted  
nAUTOFD Deasserted to nACK Deasserted  
80  
200  
200  
ns  
t4  
t5  
t6  
80  
0
0
ns  
ns  
ns  
Note 22.4 Maximum value only applies if there is room in the FIFO and terminal count has not been received. ECP  
can stall by keeping nAUTOFD low.  
Note 22.5 nACK is not considered asserted or deasserted until it is stable for a minimum of 75 to 130 ns.  
SMSC FDC37C672  
Page 167  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
DATA  
0
1
0
1
0
0
1
1
0
1
1
t2  
t1  
t2  
t1  
IRRX  
n IRRX  
Parameter  
min  
typ  
max  
units  
t1 Pulse Width at 115kbaud  
t1 Pulse Width at 57.6kbaud  
t1 Pulse Width at 38.4kbaud  
t1 Pulse Width at 19.2kbaud  
t1 Pulse Width at 9.6kbaud  
t1 Pulse Width at 4.8kbaud  
t1 Pulse Width at 2.4kbaud  
t2 Bit Time at 115kbaud  
t2 Bit Time at 57.6kbaud  
t2 Bit Time at 38.4kbaud  
t2 Bit Time at 19.2kbaud  
t2 Bit Time at 9.6kbaud  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.6  
3.22  
4.8  
9.7  
19.5  
39  
2.71  
3.69  
5.53  
11.07  
22.13  
44.27  
88.55  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
78  
8.68  
17.4  
26  
52  
104  
208  
416  
t2 Bit Time at 4.8kbaud  
t2 Bit Time at 2.4kbaud  
Notes:  
1. Receive Pulse Detection Criteria: A received pulse is considered detected if the  
received pulse is a minimum of 1.41µs.  
2. IRRX: L5, CRF1 Bit 0: 1 = RCV active low  
nIRRX: L5, CRF1 Bit 0: 0 = RCV active high (default)  
Figure 22.4 - IrDA Receive Timing  
SMSC FDC37C672  
Page 168  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
DATA  
0
1
0
1
0
0
1
1
1
1
0
t2  
t1  
t1  
t2  
IRTX  
n IRTX  
Parameter  
min  
typ  
max  
units  
t1  
t1  
t1  
t1  
t1  
t1  
t1  
t2  
t2  
t2  
t2  
t2  
t2  
t2  
Pulse Width at 115kbaud  
Pulse Width at 57.6kbaud  
Pulse Width at 38.4kbaud  
Pulse Width at 19.2kbaud  
Pulse Width at 9.6kbaud  
Pulse Width at 4.8kbaud  
Pulse Width at 2.4kbaud  
Bit Time at 115kbaud  
Bit Time at 57.6kbaud  
Bit Time at 38.4kbaud  
Bit Time at 19.2kbaud  
Bit Time at 9.6kbaud  
1.41  
1.41  
1.41  
1.41  
1.41  
1.41  
1.41  
1.6  
3.22  
4.8  
9.7  
19.5  
39  
2.71  
3.69  
5.53  
11.07  
22.13  
44.27  
88.55  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
78  
8.68  
17.4  
26  
52  
104  
208  
416  
Bit Time at 4.8kbaud  
Bit Time at 2.4kbaud  
Notes:  
1. IrDA @ 115k is HPSIR compatible. IrDA @ 2400 will allow compatibility with HP95LX  
and 48SX.  
2. IRTX: L5, CRF1 Bit 1: 1 = XMIT active low (default)  
nIRTX: L5, CRF1 Bit 1: 0 = XMIT active high  
Figure 22.5 - IrDA Transmit Timing  
SMSC FDC37C672  
Page 169  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
DATA  
0
1
0
1
0
0
1
1
0
1
1
t1  
t2  
IRRX  
n IRRX  
t3  
t4  
MIRRX  
t5 t6  
nMIRRX  
Parameter  
min  
typ  
max  
units  
t1  
t2  
t3  
t4  
t5  
t6  
Modulated Output Bit Time  
Off Bit Time  
Modulated Output "On"  
Modulated Output "Off"  
Modulated Output "On"  
Modulated Output "Off"  
µs  
µs  
µs  
µs  
µs  
µs  
0.8  
0.8  
0.8  
0.8  
1
1
1
1
1.2  
1.2  
1.2  
1.2  
Notes:  
1. IRRX: L5, CRF1 Bit 0: 1 = RCV active low  
nIRRX: L5, CRF1 Bit 0: 0 = RCV active high (default)  
MIRRX, nMIRRX are the modulated outputs  
Figure 22.6 - Amplitude Shift Keyed IR Receive Timing  
SMSC FDC37C672  
Page 170  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
DATA  
0
1
0
1
0
0
1
1
0
1
1
t1  
t2  
IRTX  
n
t3 t4  
t5 t6  
MIRTX  
nMIRTX  
Parameter  
min  
typ  
max  
units  
t1  
t2  
t3  
t4  
t5  
t6  
Modulated Output Bit Time  
Off Bit Time  
Modulated Output "On"  
Modulated Output "Off"  
Modulated Output "On"  
Modulated Output "Off"  
µs  
µs  
µs  
µs  
µs  
µs  
0.8  
0.8  
0.8  
0.8  
1
1
1
1
1.2  
1.2  
1.2  
1.2  
Notes:  
1. IRTX: L5, CRF1 Bit 1: 1 = XMIT active low (default)  
nIRTX: L5, CRF1 Bit 1: 0 = XMIT active high  
MIRTX, nMIRTX are the modulated outputs  
Figure 22.7 - Amplitude Shift Keyed IR Transmit Timing  
SMSC FDC37C672  
Page 171  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
Chapter 23 Package Outlines  
D
D1  
e
E
E1  
W
A
A2  
TD/TE  
H
0
0.10  
A1  
L
-C-  
L1  
M IN  
2.80  
0.1  
2.57  
23.4  
19.9  
17.4  
13.9  
0.1  
M AX  
3.15  
0.45  
2.87  
24.15  
20.1  
18.15  
14.1  
0.2  
M IN  
.110  
.004  
.101  
.921  
.783  
.685  
.547  
.004  
.026  
.071  
M AX  
DIM  
A
A1  
A2  
D
D1  
E
Notes:  
.124  
.018  
.113  
.951  
.791  
.715  
.555  
.008  
.037  
.102  
1) Coplanarity is 0.100m m (.004") maxim um.  
2) Tolerance on the position of the leads is  
0.200m m (.008") maxim um.  
3) Package body dim ensions D1 and E1 do not  
include the mold protrusion. Maxim um m old  
protrusion is 0.25m m (.010").  
4) Dimensions TD and TE are im portant for testing  
by robotic handler. Only above com binations of (1)  
or (2) are acceptable.  
5) Controlling dim ension: millim eter. Dim ensions  
in inches for reference only and not necessarily  
accurate.  
E1  
H
L
0.65  
1.8  
0.95  
2.6  
L1  
e
0.65 BSC  
.0256 BSC  
0°  
.2  
12°  
.4  
22.2  
16.2  
22.76  
16.82  
0°  
.008  
.858  
.622  
.874  
.641  
12°  
.016  
.874  
.638  
.896  
.662  
0
W
21.8  
15.8  
22.21  
16.27  
TD(1)  
TE(1)  
TD(2)  
TE(2)  
Figure 23.1 - 100 Pin QFP Package Outline and Parameters  
SMSC FDC37C672  
Page 172  
Rev. 10-29-03  
DATASHEET  
Enhanced Super I/O Controller with Fast IR  
Datasheet  
Figure 23.2 - 100 Pin TQFP Package Outline, 14X14X1.4 Body, 2 MM Footprint  
Table 23.1 - 100 Pin TQFP Package Parameters  
MIN  
NOMINAL  
MAX  
1.60  
0.15  
1.45  
16.20  
14.10  
16.20  
14.10  
0.20  
0.75  
~
REMARKS  
A
A1  
A2  
D
~
~
Overall Package Height  
Standoff  
0.05  
1.35  
15.80  
13.90  
15.80  
13.90  
0.09  
0.45  
~
~
~
Body Thickness  
X Span  
~
D1  
E
~
X body Size  
~
Y Span  
E1  
H
~
Y body Size  
~
Lead Frame Thickness  
Lead Foot Length  
Lead Length  
L
0.60  
L1  
e
1.00  
0.50 Basic  
Lead Pitch  
Lead Foot Angle  
Lead Width  
0o  
0.17  
0.08  
0.08  
~
~
0.22  
~
~
~
7o  
0.27  
~
0.20  
0.08  
θ
W
R1  
R2  
ccc  
Lead Shoulder Radius  
Lead Foot Radius  
Coplanarity  
Notes:  
1. Controlling Unit: millimeter.  
2. Tolerance on the position of the leads is ± 0.04 mm maximum.  
3. Package body dimensions D1 and E1 do not include the mold protrusion.  
Maximum mold protrusion is 0.25 mm.  
4. Dimension for foot length L measured at the gauge plane 0.25 mm above the seating plane.  
5. Details of pin 1 identifier are optional but must be located within the zone indicated.  
SMSC FDC37C672  
Page 173  
Rev. 10-29-03  
DATASHEET  

相关型号:

FDC37C672-MS

Multifunction Peripheral, CMOS, PQFP100, ROHS COMPLIANT, QFP-100
SMSC

FDC37C672QFP

ENHANCED SUPER I/O CONTROLLER WITH FAST IR
SMSC

FDC37C672TQFP

ENHANCED SUPER I/O CONTROLLER WITH FAST IR
SMSC

FDC37C67X

ENHANCED SUPER I/O CONTROLLER WITH FAST IR
SMSC

FDC37C67XQFP

Micro Peripheral IC, CMOS, PQFP100
SMSC

FDC37C68X

Peripheral (Multifunction) Controller
ETC

FDC37C75LJP

Floppy Disk Controller
ETC

FDC37C77

Peripheral IC
ETC

FDC37C78

Floppy Disk Controller
SMSC

FDC37C78-HT

Floppy Disk Controller
MICROCHIP

FDC37C78TQFP

Floppy Disk Drive, 0.25MBps, CMOS, PQFP48, TQFP-48
SMSC

FDC37C78_07

Floppy Disk Controller
SMSC