TS4100 [SILICON]

Precision Measurement;
TS4100
型号: TS4100
厂家: SILICON    SILICON
描述:

Precision Measurement

文件: 总24页 (文件大小:1778K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TS4100/01/02 Data Sheet  
"Rail-to-Rail Plus"™, 1% RON Flatness, 0.8 V to 5.25 V Analog  
Switches/Multiplexers  
KEY FEATURES  
• Low Supply Voltage Operation: 0.8 V to  
5.25 V  
The TS410x family of analog switches and multiplexers consists of the TS4100 8-chan-  
nel analog multiplexer, the TS4101 dual 4-channel analog multiplexer, and the TS4102  
triple single-pole/double-throw (SPDT) switch. These switches are unique because they  
can operate at supply voltages as low as 0.8 V while accepting input signal swings  
above the supply voltage up to 5.25 V ("Rail-to-Rail Plus"™). The on-resistance variation  
over the entire signal swing range is less than 1%, exhibiting excellent linearity and con-  
sistency in dynamic and measurement applications. With a supply current of only 675  
nA, the TS4100-TS4102 family input and output leakage is less than 0.5 nA, both when  
off and when on.  
• On-resistance of 80 Ω  
• "Rail to Rail Plus"™ input/output voltages  
can exceed the supply rails  
• Guaranteed Low Off and On Leakage: ±0.5  
nA  
• Guaranteed Match Between Channels: 9 Ω  
• Guaranteed <1% On-Resistance Variation  
Across Input Voltage  
The TS4100-TS4102 are fully specified over the –40 °C to +85 °C temperature range  
and is available in a low-profile, thermally-enhanced 16-pin 3.3 mm TQFN package with  
an exposed back-side paddle. For best performance, solder exposed back-side paddle  
to PCB ground.  
• TS4100: 8-Channel Switch/Multiplexer  
• TS4101: Two 4-Channel Switches/  
Multiplexers  
• TS4102: Three Single-Pole/Double-Throw  
Switches (SPDT)  
Applications  
• Supply Current: 675 nA  
• Low Voltage Battery-Operated Equipment  
• Precision Measurement  
• 16-Pin, Low-Profile, Thermally Enhanced 3  
mm x 3 mm TQFN Package  
• Analog Signal Processing  
• Communication Circuits  
• Audio Signal Routing  
• Low-Voltage Data-Acquisition Systems  
Functional Block Diagrams  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0  
TS4100/01/02 Data Sheet  
Ordering Information  
1. Ordering Information  
Ordering Part Number  
TS4100ITQ1633  
TS4101ITQ1633  
TS4102ITQ1633  
Note:  
Description  
Package  
8:1 analog multiplexer  
TQFN-16 (3 x 3 mm)  
TQFN-16 (3 x 3 mm)  
TQFN-16 (3 x 3 mm)  
Two 4:1 analog multiplexers  
Three 2:1 SPDT analog switches  
1. Adding the suffix “T” to the part number (e.g., TS4100ITQ1633T) denotes tape and reel.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 1  
TS4100/01/02 Data Sheet  
System Overview  
2. System Overview  
The TS4100 is an 8-channel multiplexer with inputs NO0-NO7 and output COM. A channel can be selected via address pins ADDA,  
ADDB, and ADDC.  
The TS4101 is a dual 4-channel switch/multiplexer with two separate input banks: NO0A-NO3A and NO0B-NO3B with dedicated output  
COMA and COMB, respectively. A channel can be selected via address pins ADDA and ADDB.  
The TS4102 is a triple single-pole/double-throw (SPDT) switch. When ADDA, ADDB, or ADDC is set to a Low state, the output will be  
NCA, NCB, or NCC, respectively. When ADDA, ADDB, or ADDC is set to a High state, the output will be NOA, NOB, or NOC, respec-  
tively. Refer to XREF DIGITAL I/O SETTINGS TABLE  
Unlike similar switch/multiplexer devices, the TS4100-TS4102 input voltage is independent of the supply voltage. This allows the input  
voltage to be greater than the supply voltage while maintaining a flat On-resistance vs. the VNO/VCOM curve. Refer to 3.1 Typical  
Performance Characteristics for more information.  
2.1 Applications Information  
2.1.1 AC Performance Considerations  
2.1.2 Off Isolation  
Like all switch/multiplexer devices, the off-isolation of the device is measured when the device is off (see Figure 2.8 TS4100-TS4102  
Charge Injection Test Setup on page 8). During the OFF state, part of the input signal couples to the output load. To maximize the  
off-isolation, maximize your capacitive load and minimize your resistive load. The trade-off is that this can increase the insertion loss of  
the device so it must be considered when designing a circuit. The insertion loss is measured when the switch/multiplexer is in the ON  
state (see Figure 2.9 TS4100-TS4102 Off-Isolation Test Setup on page 9).  
At 10 kHz, the off-isolation of the TS4100-TS4102 is approximately –88 dB. Refer to the Off-Isolation vs. Frequency plot in 3.1 Typical  
Performance Characteristics.  
2.1.3 Total Harmonic Distortion (THD)  
In audio and data acquisition applications, signal fidelity is of a concern. As a result, the THD parameter of the analog mux/switch be-  
comes an important factor. Many current analog switch/mux devices on the market implement a design that allow for a large variation of  
on-resistance as the input signal is changing. With 1% on-resistance variation over the entire signal swing, the TS4100-TS4102 design  
minimizes THD. At 10 kHz, the TS4100-TS4102 exhibits a THD of 0.15% over the entire signal swing.  
2.1.4 Bandwidth Considerations  
The magnitude of the output resistive load and capacitive load has an impact on the bandwidth of the mux/switch. At dc or close to dc  
input signals, a resistive load has the greatest impact where the output voltage is determined primarily by the voltage divider consisting  
of the switch on-resistance and the output resistive load. To minimize the ON insertion loss, maximize the resistive load.  
As the input frequency increases, the ac impedance of the circuit begins to have an impact on bandwidth of the mux/switch. To counter  
this effect, minimize the load capacitance and any stray capacitance that may be present on the board. Also, ensure a board layout that  
minimizes signal trace lengths.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 2  
TS4100/01/02 Data Sheet  
System Overview  
2.1.5 Programmable Gain Amplifier (PGA) with the TS4100  
Analog signals can vary in amplitude and frequency especially when considering various taypes of sensors such as thermistors, strain  
gauges, and photodiodes. To process the analog signals provided by the sensor, a stand-alone ADC such as a TS7001 or TS7003 can  
be used. However, to take advantage of the resolution of the ADC, the analog signals must be scaled up to the maximum input voltage  
range of the ADC.  
One way to achieve this is by designing a 1.5 V non-inverting programmable gain amplifier (PGA) that incorporates a TS1005 opera-  
tional amplifier and a TS4100 analog multiplexer as shown in the figure below. The gain can be changed from 2 to 8 via address pins  
ADDA, ADDB, and ADDC.  
With the TS4100 connected to ground, the on-resistance of the switch becomes part of the gain of the amplifier and needs to be ac-  
R1  
counted for in the following gain equation: GAIN = 1 +  
RGX + RON  
where RON is 80 Ω (typ) and RGX is the resistor connected to the TS4100 input. Unlike other analog switches, the TS4100 on-resist-  
ance variation over the entire signal swing range is less than 1%. In this circuit, the corresponding gain variation is less than 0.03%  
across all channels. This circuit accommodates an input signal bandwidth of 2.5 kHz to 10 kHz. Also, by connecting the TS4100 to  
ground, internal switching spikes are minimized. Refer to 2.1.7 Charge Pump Effect Considerations.  
Figure 2.1. Non-Inverting Programmable Gain Amplifier (PGA) with TS4100  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 3  
TS4100/01/02 Data Sheet  
System Overview  
2.1.6 Switched-Capacitor Voltage Doubler with the TS4102 and TS3004 Timer  
In portable applications, it is a common requirement for a battery to continue to supply power to a circuit when it has discharged to a  
voltage unusable by other devices in the system. To address this, a simple voltage doubler can be designed using two SPDT switches  
in a single TS4102 device and a TS3004 timer as shown in the figure below.  
In this configuration, the TS3003 timer FOUT output provides a 200 Hz (50% Duty Cycle) clock signal to address pin ADDA and ADDB  
that switches between 0 V and VDD. When the clock signal to the address pins ADDA and ADDB is 0 V, capacitor C1 is charged to  
VSUPPLY. When the clock input is VDD, the charge in C1 is passed to C2 and effectively doubles the voltage at NOB to 2 x VSUPPLY.  
Unlike other analog switches, the TS4102 allows the supply voltage to be independent of the common mode input voltage. In this con-  
figuration, the TS4102 allows the supply voltage to be independent of the common mode input voltage. In this configuration, the  
TS4102 and the TS3004 can operate at a supply voltage range of 1.55 V to 5.25 V while the output voltage is 5 V with VSUPPLY = 2.5  
V. With VDD = 1.55 V, the complete circuit consumes only 3 μA of supply current and can drive an output load of up to 48 μA (5% drop  
at VOUT).  
Figure 2.2. Switched-Capacitor Voltage Doubler with TS4102 and TS3004 Timer  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 4  
TS4100/01/02 Data Sheet  
System Overview  
2.1.7 Charge Pump Effect Considerations  
The on-resistance of a MOSFET is inversely proportional to the overdrive voltage in the region where MOSFETS are used as switches.  
Conventional analog switch/multiplexers derive their overdrive voltage directly from the supply voltage and common mode input volt-  
age; hence, the on-resistance varies with the supply voltage or common mode input voltage.  
The TS4100-TS4102 maintains a flat on-resistance that is independent of the supply voltage or common mode input voltage. To ach-  
ieve this, a charge pump scheme is implemented where a constant overdrive voltage is applied across the MOSFET. The charge pump  
is refreshed at a period of 40 μs with a time period variation of up to 2X.  
In applications where input and output impedance is high in the order of MΩs, transients generated by the charge pump can couple to  
the input and output of the device. The pulse width of the spikes is 10-s of nanoseconds. The amplitudes of the spikes are independent  
of the operating conditions, such as temperature, common mode input voltage and supply voltage.  
The figures below show a scope capture of these spikes with an input/output impedance of 1 MΩ and 10 MΩ. With an input/output  
impedance of 1 MΩ and 10 MΩ, the amplitude of the spikes is less than 200 μV and 500 μV, respectively.  
If these spikes are of a concern in the application, placing a 500 pF capacitor to ground at the input or output will suppress the spikes.  
Figure 2.3. Charge Pump Spike (RNO/COM = 1 MΩ)  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 5  
TS4100/01/02 Data Sheet  
System Overview  
Figure 2.4. Charge Pump Spike (RNO/COM = 10 MΩ)  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 6  
TS4100/01/02 Data Sheet  
System Overview  
2.1.8 Power-Up Sequence  
To prevent permanent damage to the ADDA, ADDB, ADDC, and INH pin, the power supply voltage should be applied to the device first  
followed by the voltage to ADDA, ADDB, ADDC, and/or INH. If it is not possible to follow this power-supply sequence, a 500kΩ resistor  
can be placed in series with the digital I/O pins for protection as shown in the figure below. However, if an input voltage is applied be-  
fore applying power to the switch/multiplexer, the device will not be damaged as the inputs are independent of the supply voltage.  
Figure 2.5. Digital I/O Overvoltage Protection  
Figure 2.6. TS4100-TS4102 Address/Enable Turn-On/Off Time Test Setup  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 7  
TS4100/01/02 Data Sheet  
System Overview  
Figure 2.7. TS4100-TS4102 Break-Before-Make Test Setup  
Figure 2.8. TS4100-TS4102 Charge Injection Test Setup  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 8  
TS4100/01/02 Data Sheet  
System Overview  
Figure 2.9. TS4100-TS4102 Off-Isolation Test Setup  
Figure 2.10. TS4100-TS4102 Insertion Loss Test Setup  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 9  
TS4100/01/02 Data Sheet  
System Overview  
Figure 2.11. TS4101 Crosstalk Test Setup  
Figure 2.12. TS4102 Crosstalk Test Setup  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 10  
TS4100/01/02 Data Sheet  
Electrical Characteristics  
3. Electrical Characteristics  
Table 3.1. Recommended Operating Conditions1  
Conditions  
Parameter  
Analog Switch  
Symbol  
Min  
Typ  
Max  
Units  
Analog Signal Range  
On Resistance  
VNO/C, VCOM  
RON  
0
5.25  
105  
135  
90  
V
Ω
Ω
Ω
Ω
%
%
0.8 V ≤ VDD < 1.25 V  
ICOM = 1 mA  
TA = 25 ºC  
TA = 25 ºC  
TA = 25 ºC  
98  
80  
1.25 V ≤ VDD ≤ 5.25 V  
ICOM = 1 mA  
130  
1
On Resistance Flat-  
ness  
RONFLAT  
0 V ≤ VNO/C ≤ 5.25 V  
ICOM = 1 mA2,3  
VDD = 5 V  
1.5  
On-Resistance Match  
Between channels  
ΔRON  
2.25  
9
Ω
VNO/C = 5 V  
ICOM = 1 mA4  
VDD = 5.25 V  
NO/NC Off-Leakage  
Current  
INO/NC(OFF)  
ICOM(OFF)  
ICOM(ON)  
TA = 25 ºC  
TA = 25 ºC  
TA = 25 ºC  
–0.5  
–2  
0.5  
2
nA  
nA  
VNO/C = 0 V or 5.25 V  
VCOM = 0 V or 5.25 V  
INH = 5.25 V5  
VDD = 5.25 V  
TS4100-TS4102  
–0.5  
–2  
0.5  
2
nA  
nA  
COM Off-Leakage  
Current  
VNO/C = 0 V or 5.25 V  
VCOM = 0 V or 5.25 V  
INH = 5.25 V5  
COM On-Leakage  
Current  
VDD = 5.25 V, VNO/C  
VCOM = 5.25 V5  
=
–0.5  
–4  
0.5  
4
nA  
nA  
Digital I/O  
ADDA/B/C, INH Input  
Logic High  
VIH  
VIL  
0.6  
–2  
V
V
ADDA/B/C, INH Input  
Logic Low  
0.2  
2
ADDA/B/C, INH Input  
Leakage Current  
IIH, IIL  
VINH = VADDA/B/C = 0  
or 5.25 V  
nA  
Switch Dynamic Characteristics  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 11  
TS4100/01/02 Data Sheet  
Electrical Characteristics  
Parameter  
Symbol  
Conditions  
VDD = 5.25 V  
Min  
Typ  
Max  
Units  
ADDA/B/C, INH Turn-  
On Time  
tON  
7
9
µs  
RL = 5 kΩ, CL = 35 pF  
ADDA/B/C, INH Turn-  
Off Time  
tOFF  
0.5  
6.5  
0.8  
8.2  
µs  
µs  
See Figure  
2.6 TS4100-TS4102  
Address/Enable Turn-  
On/Off Time Test Set-  
up on page 7  
Break-Before-Make  
Delay  
tBBM  
VNO/C = 5.25 V  
RL = 5 kΩ, CL = 35 pF  
See Figure  
2.7 TS4100-TS4102  
Break-Before-Make  
Test Setup on page 86  
Charge-Injection  
Off-Isolation  
Q
VNO/C = 5.25 V, CL = 1 nF  
10  
pC  
dB  
See Figure 2.8 TS4100-TS4102 Charge Injec-  
tion Test Setup on page 8.  
VISO  
f = 10 kHz, VNO/C = 1 VRMS, RL = 100 kΩ, CL =  
50 pF  
–87  
See Figure 2.9 TS4100-TS4102 Off-Isolation  
Test Setup on page 9.  
TS4101,TS4102  
Crosstalk  
VCT  
f = 10 kHz, VNO/C = 1 VRMS, RL = 100 kΩ  
–77  
dB  
%
See Figure 2.11 TS4101 Crosstalk Test Setup  
on page 10 and Figure 2.12 TS4102 Crosstalk  
Test Setup on page 10.  
Total Harmonic Distor-  
tion  
THD  
f = 10 kHz, VNO/C = 400 mVPP (500 mV Offset)  
CL = 15 pF, RNO/C = RCOM = 600 Ω  
0.16  
675  
Power Supply  
Supply Current  
IQ  
VDD = 5.25 V  
TA = 25 ºC  
765  
950  
5.25  
nA  
nA  
V
VNO/C = 0 or VDD  
Supply Voltage  
VDD  
0.8  
Note:  
1. VDD = 0.8 V to 5.25 V; INH = GND unless otherwise specified; TA= –40 °C to +85 °C. Typical values are at TA = +25 °C; All  
specifications are 100% tested at TA = +85°C. Specification limits over temperature (TA = TMIN to TMAX) are guaranteed by device  
characterization, not production tested.  
2. On-Resistance Flatness is defined by the following equation: (RON0.5V – RON5.25V / RON0.5V) x 100.  
3. Tested at VNO/C = 0.5 V and VNO/C = 5.25 V and guaranteed by design from VNO/C = 0 V to VNO/C = 5.25 V.  
4. ΔRON=RONMAX−RONMIN  
5. Leakage parameters are guaranteed by correlation at TA = 25 ºC and are 100% tested at the maximum rated hot operating tem-  
perature.  
6. tBBM = tON − tOFF. Not production tested.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 12  
TS4100/01/02 Data Sheet  
Electrical Characteristics  
Table 3.2. Absolute Maximum Ratings1  
Parameter  
Supply Voltage  
Symbol  
Conditions  
Min  
–0.3  
–0.3  
–0.3  
Max  
+5.5  
Units  
VDD  
VNO/C, VCOM  
VADDA/B/C, VINH  
INO/C, ICOM  
PD  
V
V
Analog Signal Voltage  
Digital Signal Voltage  
Analog Peak Current  
Continuous Power Dissipation  
+5.5  
VDD + 0.3  
±15  
mA  
TA = +70 °C2  
1398  
mW  
Operating Temperature  
Storage Temperature  
–40  
–65  
+85  
+150  
+300  
°C  
°C  
°C  
Lead Temperature (Soldering,  
10 s)  
ESD Tolerance  
Human Body Model  
Machine Model  
Note:  
1000  
200  
V
V
1. Electrical and thermal stresses beyond those listed in this table may cause permanent damage to the device. These are stress  
ratings only and functional operation of the device at these or any other condition beyond those indicated in the operational sec-  
tions of the specifications is not implied. Exposure to any absolute maximum rating conditions for extended periods may affect  
device reliability and lifetime.  
2. Derate at 17.5 mW/°C above +70 °C.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 13  
TS4100/01/02 Data Sheet  
Electrical Characteristics  
3.1 Typical Performance Characteristics  
For the following graphs, VDD = 5.25 V, CL = 0 pF, RL = No load, INH = Low, unless otherwise noted. Values are at TA = 25 °C unless  
otherwise noted.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 14  
TS4100/01/02 Data Sheet  
Electrical Characteristics  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 15  
TS4100/01/02 Data Sheet  
Electrical Characteristics  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 16  
TS4100/01/02 Data Sheet  
Pin Descriptions  
4. Pin Descriptions  
NO6  
16  
NO2B  
16  
NCB  
16  
NO4  
15  
VDD  
14  
NO2  
13  
NO0B VDD NO2A  
NOB VDD COMB  
15  
14  
13  
15  
14  
13  
12  
11  
10  
9
12  
11  
10  
9
12  
11  
10  
9
1
2
3
4
NO1  
NO0  
NO3  
ADDA  
1
2
3
4
NO1A  
1
2
3
4
COMC  
NOC  
COM  
NO7  
NO5  
INH  
COMB  
NO3B  
NO1B  
INH  
NOA  
COMA COMA  
TS4100  
TS4101  
TS4102  
NCA  
INH  
NO0A  
NO3A  
NCC  
ADDA  
7
7
7
6
6
6
5
5
5
8
8
8
NC  
ADDB  
NC  
ADDA  
NC  
ADDB  
ADDC  
ADDB  
ADDC  
GND  
GND  
GND  
Table 4.1. Pin Functions  
Pin  
Pin Name  
TS4101  
Function  
TS4100  
TS4102  
NOA  
1
COM  
NO7  
NO5  
8-channel switch/multiplexer output  
COMB  
NO3B  
4-channel switch/multiplexer "B" output  
Single-Pole/Double-Throw Switch (SPDT) "A" normally open input.  
8-channel switch/multiplexer input.  
2
3
4
4-channel switch/multiplexer "B" input.  
COMA  
NCA  
Single-Pole/Double-Throw Switch (SPDT) "A" output.  
8-channel switch/multiplexer input  
NO1B  
INH  
4-channel switch/multiplexer "B" input.  
Single-Pole/Double-Throw Switch (SPDT) "A" normally closed input.  
Enable digital I/O input. To enable the switch/multiplexer, connect to  
GND. To disable, connect to VDD. Refer to the "Digital I/O Overvoltage  
Protection" section of the data sheet.  
5
6
7
NC  
No Connect.  
GND  
Ground. Connect this pin to the system's clean analog ground plane.  
ADDC  
ADDC  
Address "C" digital I/O input. Refer to the "Digital I/O Overvoltage Protec-  
tion" section of the datasheet.  
ADDB  
ADDA  
NO3A  
NO0A  
Address "B" digital I/O input. Refer to the "Digital I/O Overvoltage Protec-  
tion" section of the datasheet.  
8
9
ADDB  
ADDA  
NO3  
ADDB  
ADDA  
Address "A" digital I/O input. Refer to the "Digital I/O Overvoltage Protec-  
tion" section of the datasheet.  
4-channel switch/multiplexer "A" input.  
10  
8-channel switch/multiplexer input.  
4-channel switch/multiplexer "A" input.  
NCC  
Single-Pole/Double-Throw Switch (SPDT) "C" normally closed input.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 17  
TS4100/01/02 Data Sheet  
Pin Descriptions  
Pin  
Pin Name  
TS4101  
Function  
TS4100  
TS4102  
NOC  
11  
NO0  
8-channel switch/multiplexer input.  
4-channel switch/multiplexer "A" output.  
COMA  
NO1A  
Single-Pole/Double-Throw Switch (SPDT) "C" normally open input.  
8-channel switch/multiplexer input.  
12  
13  
NO1  
NO2  
4-channel switch/multiplexer "A" input  
COMC  
COMB  
Single-Pole/Double-Throw Switch (SPDT) "C" output.  
8-channel switch/multiplexer input.  
NO2A  
VDD  
4-channel switch/multiplexer "A" input.  
Single-Pole/Double-Throw Switch (SPDT) "B" output.  
14  
15  
Power Supply Voltage Input. Bypass this pin with a 1μF cerarnic coupling  
capacitor in close proximity to the TS4100-TS4102.  
NO4  
NO6  
8-channel switch/multiplexer input.  
NO0B  
4-channel switch/multiplexer "B' input.  
NOB  
Single-Pole/Double-Throw Switch (SPDT) "B" normally open input.  
8-channel switch/multiplexer input  
16  
NO2B  
4-channel switch/multiplexer "B" input.  
NCB  
Single-Pole/Double-Throw Switch (SPDT) "B" normally closed input.  
EP  
For best electrical and thermal performance, solder exposed paddle to  
GND.  
4.1 Digital I/O Settings  
Table 4.2. Digital I/O Settings  
INH  
Address Bits  
ADDB  
TS4100  
COM  
TS4101  
TS4102  
ADDC  
(TS4100 and  
ADDA  
COMA  
COMB  
Output  
COMA  
Output  
COMB  
Output  
COMC  
Output  
Output  
Output  
TS4102 Only)  
1
0
0
0
0
0
0
0
0
X
0
0
0
0
1
1
1
1
X
0
0
1
1
0
0
1
1
X
0
1
0
1
0
1
0
1
Switch Open  
NO0  
NO1  
NO2  
NO3  
NO4  
NO5  
NO6  
NO7  
NO0A  
NO1A  
NO2A  
NO3A  
NO0A  
NO1A  
NO2A  
NO3A  
NO0B  
NO1B  
NO2B  
NO3B  
NO0B  
NO1B  
NO2B  
NO3B  
NCA  
NOA  
NCA  
NOA  
NCA  
NOA  
NCA  
NOA  
NCB  
NCB  
NOB  
NOB  
NCB  
NCB  
NOB  
NOB  
NCC  
NCC  
NCC  
NCC  
NOC  
NOC  
NOC  
NOC  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 18  
TS4100/01/02 Data Sheet  
Packaging  
5. Packaging  
5.1 TS410x Package Dimensions  
Figure 5.1. 3x3 mm 16-QFN Package Diagram  
Dimension  
Min  
0.70  
0.00  
0.20  
Nom  
0.75  
Max  
0.85  
0.05  
0.30  
A
A1  
b
0.25  
D
3.00 BSC.  
1.80  
D2  
1.75  
1.85  
e
0.50 BSC.  
3.00 BSC.  
1.80  
E
E2  
1.75  
0.30  
1.85  
0.40  
0.05  
0.05  
0.05  
0.10  
L
0.35  
aaa  
bbb  
ccc  
ddd  
Note:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 19  
TS4100/01/02 Data Sheet  
Packaging  
5.2 TS410x Top Marking  
TS4100 Top Marking  
Table 5.1. TS4100 Top Marking Explanation  
Mark Method:  
Pin 1 Mark:  
Laser  
Circle = 0.5 mm Diameter (Low-  
er-Left Corner)  
Font Size:  
0.50 mm (20 mils)  
Product ID  
Line 1 Mark Format:  
Line 2 Mark Format:  
Line 3 Mark Format:  
e.g., "T4100"  
TTTT = Mfg Code  
YY = Year  
Manufacturing Code from the Assembly Purchase Order Form.  
Assigned by the Assembly House. Corresponds to the year and  
work week of the assembly release.  
WW = Work Week  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 20  
TS4100/01/02 Data Sheet  
Revision History  
6. Revision History  
Revision 1.0  
February 24, 2016  
• Initial external release.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 21  
Table of Contents  
1. Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
2. System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
2.1 Applications Information . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
2.1.1 AC Performance Considerations . . . . . . . . . . . . . . . . . . . . . . . 2  
2.1.2 Off Isolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
2.1.3 Total Harmonic Distortion (THD) . . . . . . . . . . . . . . . . . . . . . . . 2  
2.1.4 Bandwidth Considerations . . . . . . . . . . . . . . . . . . . . . . . . . 2  
2.1.5 Programmable Gain Amplifier (PGA) with the TS4100. . . . . . . . . . . . . . . . 3  
2.1.6 Switched-Capacitor Voltage Doubler with the TS4102 and TS3004 Timer . . . . . . . . . 4  
2.1.7 Charge Pump Effect Considerations. . . . . . . . . . . . . . . . . . . . . . 5  
2.1.8 Power-Up Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
3. Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
3.1 Typical Performance Characteristics . . . . . . . . . . . . . . . . . . . . . .14  
4. Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
4.1 Digital I/O Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
5. Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
5.1 TS410x Package Dimensions . . . . . . . . . . . . . . . . . . . . . . . .19  
5.2 TS410x Top Marking . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
6. Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Table of Contents 22  
Smart.  
Connected.  
Energy-Friendly.  
Products  
www.silabs.com/products  
Quality  
www.silabs.com/quality  
Support and Community  
community.silabs.com  
Disclaimer  
Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using  
or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and  
"Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories reserves the right to  
make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the  
included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses  
granted hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent  
of Silicon Laboratories. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant  
personal injury or death. Silicon Laboratories products are not designed or authorized for military applications. Silicon Laboratories products shall under no circumstances be used in  
weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.  
Trademark Information  
Silicon Laboratories Inc.® , Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®,  
EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®, Gecko®,  
ISOmodem®, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress® and others are trademarks or registered trademarks of Silicon Laborato-  
ries Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand  
names mentioned herein are trademarks of their respective holders.  
Silicon Laboratories Inc.  
400 West Cesar Chavez  
Austin, TX 78701  
USA  
http://www.silabs.com  

相关型号:

TS4100ITQ1633

Precision Measurement
SILICON

TS4101ITQ1633

Precision Measurement
SILICON

TS4102ITQ1633

Precision Measurement
SILICON

TS4148

0.5AMPS High Speed Switching Diode
TSC

TS4148-1206-R7T4

0.3 AMPS High Speed Switching Diode
ETC

TS4148-RXG

500mW High Speed SMD Switching Diode
TSC

TS4148C

TS4148C
TSC

TS4148CRZG

200mW High Speed SMD Switching Diode
TSC

TS4148RW

350mW High Speed SMD Switching Diode
TSC

TS4148RWG

350mW High Speed SMD Switching Diode
TSC

TS4148RX

400mW High Speed SMD Switching Diode
TSC

TS4148RXG

400mW High Speed SMD Switching Diode
TSC