S3C830A [SAMSUNG]

8-Bit CMOS Microcontroller; 8位CMOS微控制器
S3C830A
型号: S3C830A
厂家: SAMSUNG    SAMSUNG
描述:

8-Bit CMOS Microcontroller
8位CMOS微控制器

微控制器
文件: 总342页 (文件大小:1658K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
21-S3-C830A/P830A-032002  
USER'S MANUAL  
S3C830A/P830A  
8-Bit CMOS  
Microcontroller  
Revision 1  
NOTIFICATION OF REVISIONS  
ORIGINATOR:  
Samsung Electronics, SOC Development Group, Ki-Heung, South Korea  
S3C830A/P830A Microcontroller  
PRODUCT NAME:  
DOCUMENT NAME:  
S3C830A/P830A User's Manual, Revision 1  
DOCUMENT NUMBER: 21-S3-C830A-03-2002  
EFFECTIVE DATE:  
SUMMARY:  
March, 2002  
As a result of additional product testing and evaluation, some specifications  
published in the S3C830A/P830A User's Manual, Revision 0, have been  
changed.  
These changes for S3C830A/P830A microcontroller, which are described in  
detail in the Revision Descriptions section below, are related to the followings:  
Chapter 4./10. Basic Timer Control Register  
Chapter 20. Operating temperature of Absolute Maximum Ratings  
Chapter 20. Main Oscillator Clock Stabilization Time  
Chapter 20./22. Operating Voltage Range  
DIRECTIONS:  
Please note the changes in your copy (copies) of the S3C830A/P830A User's  
Manual, Revision 0. Or, simply attach the Revision Descriptions of the next page  
to S3C830A/P830A User's Manual, Revision 0.  
REVISION HISTORY  
Revision  
Date  
Remark  
0
November, 2001  
Preliminary Spec for internal release only.  
Reviewed by Min-Su Lee.  
1
March, 2002  
Reviewed by Min-Su Lee.  
REVISION DESCRIPTIONS  
1. BASIC TIMER CONTROL REGISTER  
The contents of BTCON.0 should be changed “Clock Frequency Divider Clear Bit for Basic Timer and Timer0”  
into 'Clock Frequency Divider Clear Bit for all Timers' in the Page 4-6, 10-2.  
2. OPERATING TEMPERATURE  
Operating temperature of absolute maximum ratings (TA) must be changed -40°C into -25°C in the Table 20-1.  
3. ELECTRICAL DATA (Page 20-10)  
Table 20-11. Main Oscillator Clock Stabilization Time (tST1  
)
°
°
(TA = – 25 C to + 85 C, VDD = 3.0 V to 5.5 V)  
Parameter Conditions  
VDD = 4.5V to 5.5V  
Min  
Typ  
Max  
Unit  
Crystal  
10  
mS  
Stabilization occurs when VDD is equal to the  
minimum oscillator voltage range.  
Ceramic  
4
mS  
External clock  
XIN input high and low level width(tXH, tXL)  
111  
1250  
nS  
4. INSTRUCTION CLOCK(Page 20-11, 22-4)  
The minimum frequency of instruction clock must be changed 100kHz into 25kHz in the Figure 20-7 and 22-2.  
S3C830A/P830A  
8-BIT CMOS  
MICROCONTROLLERS  
USER'S MANUAL  
Revision 1  
Important Notice  
The information in this publication has been  
"Typical" parameters can and do vary in different  
applications. All operating parameters, including  
"Typicals" must be validated for each customer  
application by the customer's technical experts.  
carefully checked and is believed to be entirely  
accurate at the time of publication. Samsung  
assumes no responsibility, however, for possible  
errors or omissions, or for any consequences  
resulting from the use of the information contained  
herein.  
Samsung products are not designed, intended, or  
authorized for use as components in systems  
intended for surgical implant into the body, for other  
applications intended to support or sustain life, or for  
any other application in which the failure of the  
Samsung product could create a situation where  
personal injury or death may occur.  
Samsung reserves the right to make changes in its  
products or product specifications with the intent to  
improve function or design at any time and without  
notice and is not required to update this  
documentation to reflect such changes.  
Should the Buyer purchase or use a Samsung  
product for any such unintended or unauthorized  
application, the Buyer shall indemnify and hold  
Samsung and its officers, employees, subsidiaries,  
affiliates, and distributors harmless against all  
claims, costs, damages, expenses, and reasonable  
attorney fees arising out of, either directly or  
indirectly, any claim of personal injury or death that  
may be associated with such unintended or  
unauthorized use, even if such claim alleges that  
Samsung was negligent regarding the design or  
manufacture of said product.  
This publication does not convey to a purchaser of  
semiconductor devices described herein any license  
under the patent rights of Samsung or others.  
Samsung makes no warranty, representation, or  
guarantee regarding the suitability of its products for  
any particular purpose, nor does Samsung assume  
any liability arising out of the application or use of  
any product or circuit and specifically disclaims any  
and all liability, including without limitation any  
consequential or incidental damages.  
S3C830A/P830A 8-Bit CMOS Microcontrollers  
User's Manual, Revision 1  
Publication Number: 21-S3-C830A/P830A-032002  
© 2002 Samsung Electronics  
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in  
any form or by any means, electric or mechanical, by photocopying, recording, or otherwise, without the prior  
written consent of Samsung Electronics.  
Samsung Electronics' microcontroller business has been awarded full ISO-14001  
certification (BSI Certificate No. FM24653). All semiconductor products are designed  
and manufactured in accordance with the highest quality standards and objectives.  
Samsung Electronics Co., Ltd.  
San #24 Nongseo-Ri, Giheung-Eup  
Yongin-City, Gyeonggi-Do, Korea  
C.P.O. Box #37, Suwon 440-900  
TEL: (82)-(31)-209-1934  
FAX: (82)-(31)-209-1899  
Home Page: http://www.samsungsemi.com  
Printed in the Republic of Korea  
Preface  
The S3C830A/P830A Microcontroller User's Manual is designed for application designers and programmers who  
are using the S3C830A/P830A microcontroller for application development. It is organized in two main parts:  
Part I Programming Model  
Part II Hardware Descriptions  
Part I contains software-related information to familiarize you with the microcontroller's architecture,  
programming model, instruction set, and interrupt structure. It has six chapters:  
Chapter 1  
Chapter 2  
Chapter 3  
Product Overview  
Address Spaces  
Addressing Modes  
Chapter 4  
Chapter 5  
Chapter 6  
Control Registers  
Interrupt Structure  
Instruction Set  
Chapter 1, "Product Overview," is a high-level introduction to S3C830A/P830A with general product descriptions,  
as well as detailed information about individual pin characteristics and pin circuit types.  
Chapter 2, "Address Spaces," describes program and data memory spaces, the internal register file, and register  
addressing. Chapter 2 also describes working register addressing, as well as system stack and user-defined stack  
operations.  
Chapter 3, "Addressing Modes," contains detailed descriptions of the addressing modes that are supported by the  
S3C8-series CPU.  
Chapter 4, "Control Registers," contains overview tables for all mapped system and peripheral control register  
values, as well as detailed one-page descriptions in a standardized format. You can use these easy-to-read,  
alphabetically organized, register descriptions as a quick-reference source when writing programs.  
Chapter 5, "Interrupt Structure," describes the S3C830A/P830A interrupt structure in detail and further prepares  
you for additional information presented in the individual hardware module descriptions in Part II.  
Chapter 6, "Instruction Set," describes the features and conventions of the instruction set used for all S3C8-series  
microcontrollers. Several summary tables are presented for orientation and reference. Detailed descriptions of  
each instruction are presented in a standard format. Each instruction description includes one or more practical  
examples of how to use the instruction when writing an application program.  
A basic familiarity with the information in Part I will help you to understand the hardware module descriptions in  
Part II. If you are not yet familiar with the S3C8-series microcontroller family and are reading this manual for the  
first time, we recommend that you first read Chapters 1–3 carefully. Then, briefly look over the detailed  
information in Chapters 4, 5, and 6. Later, you can reference the information in Part I as necessary.  
Part II "hardware Descriptions," has detailed information about specific hardware components of the  
S3C830A/P830A microcontroller. Also included in Part II are electrical, mechanical, OTP, and development tools  
data. It has 17 chapters:  
Chapter 7  
Clock Circuit  
Chapter 16  
Chapter 17  
Chapter 18  
Chapter 19  
Chapter 20  
Chapter 21  
Chapter 22  
Chapter 23  
Serial I/O Interface  
Low Voltage Reset  
PLL Frequency Synthesizer  
Intermediate Frequency Counter  
Electrical Data  
Mechanical Data  
S3P830A OTP  
Development Tools  
Chapter 8  
Chapter 9  
Chapter 10  
Chapter 11  
Chapter 12  
Chapter 13  
Chapter 14  
Chapter 15  
RESET and Power-Down  
I/O Ports  
Basic Timer and Timer 0  
8-bit Timer 1  
16-bit Timer 2  
Watch Timer  
LCD Controller/Driver  
8-bit Analog-to-Digital Converter  
Two order forms are included at the back of this manual to facilitate customer order for S3C830A/P830A  
microcontrollers: the Mask ROM Order Form, and the Mask Option Selection Form. You can photocopy these  
forms, fill them out, and then forward them to your local Samsung Sales Representative.  
S3C830A/P830A MICROCONTROLLER  
iii  
Table of Contents  
Part I — Programming Model  
Chapter 1  
Product Overview  
S3C8-Series Microcontrollers...................................................................................................................1-1  
S3C830A Microcontroller.........................................................................................................................1-1  
OTP.........................................................................................................................................................1-1  
Features ..................................................................................................................................................1-2  
Block Diagram.........................................................................................................................................1-3  
Pin Assignment........................................................................................................................................1-4  
Pin Descriptions.......................................................................................................................................1-5  
Pin Circuits..............................................................................................................................................1-8  
Chapter 2  
Address Spaces  
Overview.................................................................................................................................................2-1  
Program Memory (ROM) .........................................................................................................................2-2  
Register Architecture ...............................................................................................................................2-3  
Register Page Pointer (PP) .............................................................................................................2-5  
Register Set 1 .................................................................................................................................2-6  
Register Set 2 .................................................................................................................................2-6  
Prime Register Space......................................................................................................................2-7  
Working Registers...........................................................................................................................2-8  
Using the Register Points ................................................................................................................2-9  
Register Addressing.................................................................................................................................2-11  
Common Working Register Area (C0H–CFH)..................................................................................2-13  
4-bit Working Register Addressing...................................................................................................2-14  
8-bit Working Register Addressing...................................................................................................2-16  
System and User Stacks..........................................................................................................................2-18  
Chapter 3  
Addressing Modes  
Overview.................................................................................................................................................3-1  
Register Addressing Mode (R) .................................................................................................................3-2  
Indirect Register Addressing Mode (IR)....................................................................................................3-3  
Indexed Addressing Mode (X)..................................................................................................................3-7  
Direct Address Mode (DA) .......................................................................................................................3-10  
Indirect Address Mode (IA) ......................................................................................................................3-12  
Relative Address Mode (RA)....................................................................................................................3-13  
Immediate Mode (IM) ..............................................................................................................................3-14  
S3C830A/P830A MICROCONTROLLER  
v
Table of Contents (Continued)  
Chapter 4  
Control Registers  
Overview ................................................................................................................................................ 4-1  
Chapter 5  
Interrupt Structure  
Overview ................................................................................................................................................ 5-1  
Interrupt Types ............................................................................................................................... 5-2  
S3C830A Interrupt Structure........................................................................................................... 5-3  
Interrupt Vector Addresses ............................................................................................................. 5-4  
Enable/Disable Interrupt Instructions (EI, DI) .................................................................................. 5-6  
System-Level Interrupt Control Registers........................................................................................ 5-6  
Interrupt Processing Control Points................................................................................................. 5-7  
Peripheral Interrupt Control Registers............................................................................................. 5-8  
System Mode Register (SYM)......................................................................................................... 5-9  
Interrupt Mask Register (IMR)......................................................................................................... 5-10  
Interrupt Priority Register (IPR)....................................................................................................... 5-11  
Interrupt Request Register (IRQ) .................................................................................................... 5-13  
Interrupt Pending Function Types................................................................................................... 5-14  
Interrupt Source Polling Sequence.................................................................................................. 5-15  
Interrupt Service Routines .............................................................................................................. 5-15  
Generating Interrupt Vector Addresses ........................................................................................... 5-16  
Nesting of Vectored Interrupts ........................................................................................................ 5-16  
Instruction Pointer (IP).................................................................................................................... 5-16  
Fast Interrupt Processing................................................................................................................ 5-16  
Chapter 6  
Instruction Set  
Overview ................................................................................................................................................ 6-1  
Data Types..................................................................................................................................... 6-1  
Register Addressing........................................................................................................................ 6-1  
Addressing Modes.......................................................................................................................... 6-1  
Flags Register (Flags) .................................................................................................................... 6-6  
Flag Descriptions............................................................................................................................ 6-7  
Instruction Set Notation .................................................................................................................. 6-8  
Condition Codes............................................................................................................................. 6-12  
Instruction Descriptions................................................................................................................... 6-13  
vi  
S3C830A/P830A MICROCONTROLLER  
Table of Contents (Continued)  
Part II Hardware Descriptions  
Chapter 7  
Clock Circuit  
Overview.................................................................................................................................................7-1  
System Clock Circuit .......................................................................................................................7-1  
Clock Status During Power-Down Modes.........................................................................................7-2  
System Clock Control Register (CLKCON)......................................................................................7-3  
Chapter 8  
RESET and Power-Down  
System Reset ..........................................................................................................................................8-1  
Overview.........................................................................................................................................8-1  
Normal Mode Reset Operation ........................................................................................................8-1  
Hardware Reset Values...................................................................................................................8-2  
Power-Down Modes.................................................................................................................................8-5  
Stop Mode.......................................................................................................................................8-5  
Idle Mode ........................................................................................................................................8-6  
Chapter 9  
I/O Ports  
Overview.................................................................................................................................................9-1  
Port Data Registers .........................................................................................................................9-3  
Port 0 ..............................................................................................................................................9-4  
Port 1 ..............................................................................................................................................9-6  
Port 2 ..............................................................................................................................................9-9  
Port 3 ..............................................................................................................................................9-11  
Port 4, 5 ..........................................................................................................................................9-13  
Port 6, 7 ..........................................................................................................................................9-14  
Port 8 ..............................................................................................................................................9-15  
Chapter 10  
Basic Timer and Timer 0  
Overview.................................................................................................................................................10-1  
Basic Timer (BT) .....................................................................................................................................10-1  
Basic Timer Control Register (BTCON) ...........................................................................................10-2  
Basic Timer Function Description....................................................................................................10-3  
8-Bit Timer/Counter 0 ..............................................................................................................................10-5  
Timer/Counter 0 Control Register (T0CON).....................................................................................10-5  
Timer 0 Function Description...........................................................................................................10-8  
S3C830A/P830A MICROCONTROLLER  
vii  
Table of Contents (Continued)  
Chapter 11  
8-bit Timer 1  
Overview ................................................................................................................................................ 11-1  
Function Description....................................................................................................................... 11-1  
Timer 1 Control Register (T1CON) ................................................................................................. 11-2  
Block Diagram................................................................................................................................ 11-3  
Chapter 12  
16-bit Timer 2  
Overview ................................................................................................................................................ 12-1  
Function Description....................................................................................................................... 12-1  
Timer 2 Control Register (T2CON) ................................................................................................. 12-2  
Block Diagram................................................................................................................................ 12-3  
Chapter 13  
Watch Timer  
Overview ................................................................................................................................................ 13-1  
Watch Timer Control Register (WTCON)........................................................................................ 13-2  
Watch Timer Circuit Diagram ......................................................................................................... 13-3  
Chapter 14  
LCD Controller/Driver  
Overview ................................................................................................................................................ 14-1  
LCD Circuit Diagram....................................................................................................................... 14-2  
LCD RAM Address Area................................................................................................................. 14-3  
LCD Control Register (LCON), F1H at Bank 0 of Set 1................................................................... 14-4  
LCD Mode Register (LMOD)........................................................................................................... 14-5  
LCD Drive Voltage.......................................................................................................................... 14-7  
LCD COM/SEG Signals.................................................................................................................. 14-7  
viii  
S3C830A/P830A MICROCONTROLLER  
Table of Contents (Continued)  
Chapter 15  
8-bit Analog-to-Digital Converter  
Overview.................................................................................................................................................15-1  
Function Description................................................................................................................................15-1  
Conversion Timing ..........................................................................................................................15-2  
A/D Converter Control Register (ADCON) .......................................................................................15-2  
Internal Reference Voltage Levels...................................................................................................15-3  
Block Diagram.........................................................................................................................................15-3  
Chapter 16  
Serial I/O Interface  
Overview.................................................................................................................................................16-1  
Programming Procedure .................................................................................................................16-1  
SIO0 and SIO1 Control Registers (SIO0CON, SIO1CON)...............................................................16-2  
SIO0 and SIO1 Pre-Scaler Register (SIO0PS, SIO1PS)..................................................................16-4  
SIO0 Block Diagram................................................................................................................................16-5  
Serial I/O Timing Diagram (SIO0, SIO1)..........................................................................................16-6  
Chapter 17  
Low Voltage Reset  
Overview.................................................................................................................................................17-1  
LVREN Pin......................................................................................................................................17-1  
Block Diagram.................................................................................................................................17-1  
Chapter 18  
PLL Frequency Synthesizer  
Overview.................................................................................................................................................18-1  
PLL Frequency Synthesizer Function.......................................................................................................18-2  
PLL Data Register (PLLD) .......................................................................................................................18-3  
Reference Frequency Generator..............................................................................................................18-4  
PLL Mode Register (PLLMOD) ................................................................................................................18-5  
PLL Reference Frequency Selection Register (PLLREF) .........................................................................18-7  
Phase Detector, Charge PUMP, and Unlock Detector..............................................................................18-8  
Using The PLL Frequency Synthesizer ....................................................................................................18-9  
S3C830A/P830A MICROCONTROLLER  
ix  
Table of Contents (Concluded)  
Chapter 19  
Intermediate Frequency Counter  
Overview ................................................................................................................................................ 19-1  
IFC Mode Register (IFMOD)................................................................................................................... 19-2  
IFC Gate Flag Register (PLLREF.5)........................................................................................................ 19-2  
Gate Times............................................................................................................................................. 19-3  
IF Counter (IFC) Operation ..................................................................................................................... 19-6  
Input Pin Configuration ........................................................................................................................... 19-7  
IFC Data Calculation............................................................................................................................... 19-8  
Chapter 20  
Electrical Data  
Overview ................................................................................................................................................ 20-1  
Chapter 21  
Mechanical Data  
Overview ................................................................................................................................................ 21-1  
Chapter 22  
S3P830A OTP  
Overview ................................................................................................................................................ 22-1  
Operating Mode Characteristics...................................................................................................... 22-3  
Chapter 23  
Development Tools  
Overview ................................................................................................................................................ 23-1  
SHINE............................................................................................................................................ 23-1  
SAMA Assembler ........................................................................................................................... 23-1  
SASM88......................................................................................................................................... 23-1  
HEX2ROM...................................................................................................................................... 23-1  
Target Boards................................................................................................................................. 23-1  
TB830A Target Board..................................................................................................................... 23-3  
SMDS2+ Selection (SAM8) ............................................................................................................ 23-5  
Idle LED ......................................................................................................................................... 23-5  
Stop LED........................................................................................................................................ 23-5  
x
S3C830A/P830A MICROCONTROLLER  
List of Figures  
Figure  
Title  
Page  
Number  
Number  
1-1  
1-2  
1-3  
1-4  
1-5  
1-6  
1-7  
1-8  
Block Diagram........................................................................................................1-3  
S3C830A Pin Assignments (100-QFP) ...................................................................1-4  
Pin Circuit Type A ..................................................................................................1-8  
Pin Circuit Type A-2 (EO).......................................................................................1-8  
Pin Circuit Type B (RESET) ...................................................................................1-8  
Pin Circuit Type B-4 ...............................................................................................1-8  
Pin Circuit Type B-5 (CE).......................................................................................1-8  
Pin Circuit Type C ..................................................................................................1-8  
Pin Circuit Type E-4 (P0, P3) .................................................................................1-9  
Pin Circuit Type D-7 (P1)........................................................................................1-9  
Pin Circuit Type F-16 (P2.0-P2.3)...........................................................................1-9  
Pin Circuit Type H (COM0-COM3)..........................................................................1-9  
Pin Circuit Type H-39 .............................................................................................1-10  
Pin Circuit Type H-41 (P4-P8) ................................................................................1-10  
Pin Circuit Type D-4 (P2.4-P2.7) ............................................................................1-10  
1-9  
1-10  
1-11  
1-12  
1-13  
1-14  
1-15  
2-1  
2-2  
2-3  
2-4  
2-5  
2-6  
2-7  
2-8  
Program Memory Address Space...........................................................................2-2  
Internal Register File Organization .........................................................................2-4  
Register Page Pointer (PP) ....................................................................................2-5  
Set 1, Set 2, Prime Area Register, and LCD Data Register Map.............................2-7  
8-Byte Working Register Areas (Slices)..................................................................2-8  
Contiguous 16-Byte Working Register Block...........................................................2-9  
Non-Contiguous 16-Byte Working Register Block...................................................2-10  
16-Bit Register Pair ................................................................................................2-11  
Register File Addressing.........................................................................................2-12  
Common Working Register Area............................................................................2-13  
4-Bit Working Register Addressing.........................................................................2-15  
4-Bit Working Register Addressing Example ..........................................................2-15  
8-Bit Working Register Addressing.........................................................................2-16  
8-Bit Working Register Addressing Example ..........................................................2-17  
Stack Operations....................................................................................................2-18  
2-9  
2-10  
2-11  
2-12  
2-13  
2-14  
2-15  
3-1  
3-2  
3-3  
3-4  
3-5  
3-6  
3-7  
3-8  
Register Addressing ...............................................................................................3-2  
Working Register Addressing .................................................................................3-2  
Indirect Register Addressing to Register File ..........................................................3-3  
Indirect Register Addressing to Program Memory...................................................3-4  
Indirect Working Register Addressing to Register File ............................................3-5  
Indirect Working Register Addressing to Program or Data Memory ........................3-6  
Indexed Addressing to Register File .......................................................................3-7  
Indexed Addressing to Program or Data Memory with Short Offset ........................3-8  
Indexed Addressing to Program or Data Memory ...................................................3-9  
Direct Addressing for Load Instructions...................................................................3-10  
Direct Addressing for Call and Jump Instructions....................................................3-11  
Indirect Addressing.................................................................................................3-12  
Relative Addressing ...............................................................................................3-13  
Immediate Addressing............................................................................................3-14  
3-9  
3-10  
3-11  
3-12  
3-13  
3-14  
S3C830A/P830A MICROCONTROLLER  
xi  
List of Figures (Continued)  
Figure  
Title  
Page  
Number  
Number  
4-1  
Register Description Format .................................................................................. 4-4  
5-1  
5-2  
5-3  
5-4  
5-5  
5-6  
5-7  
5-8  
5-9  
S3C8-Series Interrupt Types.................................................................................. 5-2  
S3C830A Interrupt Structure.................................................................................. 5-3  
ROM Vector Address Area..................................................................................... 5-4  
Interrupt Function Diagram.................................................................................... 5-7  
System Mode Register (SYM)................................................................................ 5-9  
Interrupt Mask Register (IMR)................................................................................ 5-10  
Interrupt Request Priority Groups........................................................................... 5-11  
Interrupt Priority Register (IPR).............................................................................. 5-12  
Interrupt Request Register (IRQ) ........................................................................... 5-13  
6-1  
System Flags Register (FLAGS)............................................................................ 6-6  
7-1  
7-2  
7-3  
7-4  
7-5  
Main Oscillator Circuit (Crystal or Ceramic Oscillator) ........................................... 7-1  
Main Oscillator Circuit (External Oscillator)........................................................... 7-1  
System Clock Circuit Diagram............................................................................... 7-2  
System Clock Control Register (CLKCON) ............................................................ 7-3  
STOP Control Register (STPCON)........................................................................ 7-4  
9-1  
9-2  
9-3  
9-4  
9-5  
9-6  
9-7  
9-8  
Port 0 High-Byte Control Register (P0CONH)........................................................ 9-4  
Port 0 Low-Byte Control Register (P0CONL).......................................................... 9-5  
Port 0 Pull-up Control Register (P0PUR) ............................................................... 9-5  
Port 1 High-Byte Control Register (P1CONH)........................................................ 9-7  
Port 1 Low-Byte Control Register (P1CONL).......................................................... 9-7  
Port 1 Interrupt Control Register (P1INT)............................................................... 9-8  
Port 1 Interrupt Pending Register (P1PND)............................................................ 9-8  
Port 2 High-Byte Control Register (P2CONH)........................................................ 9-9  
Port 2 Low-Byte Control Register (P2CONL).......................................................... 9-10  
Port 3 High-Byte Control Register (P3CONH)........................................................ 9-11  
Port 3 Low-Byte Control Register (P3CONL).......................................................... 9-12  
Port 3 Pull-up Control Register (P3PUR) ............................................................... 9-12  
Port Group 0 Control Register (PG0CON) ............................................................. 9-13  
Port Group 1 Control Register (PG1CON) ............................................................. 9-14  
Port Group 2 Control Register (PG2CON) ............................................................. 9-15  
9-9  
9-10  
9-11  
9-12  
9-13  
9-14  
9-15  
xii  
S3C830A/P830A MICROCONTROLLER  
List of Figures (Continued)  
Page  
Title  
Page  
Number  
Number  
10-1  
10-2  
10-3  
10-4  
10-5  
10-6  
10-7  
10-8  
Basic Timer Control Register (BTCON) ..................................................................10-2  
Basic Timer Block Diagram ....................................................................................10-4  
Timer 0 Control Register (T0CON) .........................................................................10-6  
Timer 0 Interrupt Pending Register (INTPND).........................................................10-7  
Simplified Timer 0 Function Diagram: Interval Timer Mode....................................10-8  
Simplified Timer 0 Function Diagram: PWM Mode.................................................10-9  
Simplified Timer 0 Function Diagram: Capture Mode .............................................10-10  
Timer 0 Block Diagram...........................................................................................10-11  
11-1  
11-2  
Timer 1 Control Register (T1CON) .........................................................................11-2  
Timer 1 Functional Block Diagram..........................................................................11-3  
12-1  
12-2  
Timer 2 Control Register (T2CON) .........................................................................12-2  
Timer 2 Functional Block Diagram..........................................................................12-3  
13-1  
13-2  
Watch Timer Control Register (WTCON) ...............................................................13-2  
Watch Timer Circuit Diagram .................................................................................13-3  
14-1  
14-2  
14-3  
14-4  
14-5  
14-6  
14-7  
LCD Function Diagram...........................................................................................14-1  
LCD Circuit Diagram ..............................................................................................14-2  
LCD Display Data RAM Organization .....................................................................14-3  
Select/No-Select Bias Signals in Static Display Mode.............................................14-7  
Select/No-Select Bias Signals in 1/2 Duty, 1/2 Bias Display Mode..........................14-8  
Select/No-Select Bias Signals in 1/3 Duty, 1/3 Bias Display Mode..........................14-8  
Voltage Dividing Resistor Circuit Diagram..............................................................14-9  
15-1  
15-2  
15-3  
15-4  
A/D Converter Control Register (ADCON) ..............................................................15-2  
A/D Converter Data Register (ADDATA).................................................................15-3  
A/D Converter Functional Block Diagram ...............................................................15-3  
Recommended A/D Converter Circuit for Highest Absolute Accuracy.....................15-4  
16-1  
16-2  
16-3  
16-4  
16-5  
16-6  
16-7  
Serial I/O Module Control Register (SIO0CON)......................................................16-2  
Serial I/O Module Control Register (SIO1CON)......................................................16-3  
SIO0 Pre-scaler Register (SIO0PS)........................................................................16-4  
SIO1 Pre-scaler Register (SIO1PS)........................................................................16-4  
SIO0 Functional Block Diagram..............................................................................16-5  
SIO1 Functional Block Diagram..............................................................................16-5  
Serial I/O Timing in Transmit/Receive Mode  
(Tx at falling, SIO0CON.4 or SIO1CON.4 = 0)........................................................16-6  
Serial I/O Timing in Transmit/Receive Mode  
16-8  
(Tx at rising, SIO0CON.4 or SIO1CON.4 = 0)........................................................16-6  
S3C830A/P830A MICROCONTROLLER  
xiii  
List of Figures (Concluded)  
Page  
Title  
Page  
Number  
Number  
17-1  
Low Voltage Reset Block Diagram......................................................................... 17-1  
18-1  
18-2  
18-3  
Block Diagram of the PLL Frequency Synthesizer ................................................. 18-1  
PLL Register Configuration.................................................................................... 18-3  
Reference Frequency Generator............................................................................ 18-4  
19-1  
19-2  
19-3  
19-4  
19-5  
IF Counter Block Diagram ..................................................................................... 19-1  
Gate Timing (1,4, or 8 ms)..................................................................................... 19-3  
Gate Timing (When Open) .................................................................................... 19-4  
Gate Timing (1-ms Error)....................................................................................... 19-5  
AMIF and FMIF Pin Configuration ......................................................................... 19-7  
20-1  
20-2  
20-3  
20-4  
20-5  
20-6  
20-7  
Input Timing for External Interrupts (Ports 1) ......................................................... 20-5  
Input Timing for RESET ........................................................................................ 20-5  
Stop Mode Release Timing Initiated by RESET..................................................... 20-6  
Stop Mode Release Timing Initiated by Interrupts.................................................. 20-7  
Serial Data Transfer Timing................................................................................... 20-9  
Clock Timing Measurement at XIN ........................................................................ 20-11  
Operating Voltage Range ...................................................................................... 20-11  
21-1  
Package Dimensions (100-QFP-1420C) ................................................................ 21-1  
22-1  
22-2  
S3P830A Pin Assignments (100-Pin QFP Package).............................................. 22-2  
Operating Voltage Range ...................................................................................... 22-4  
23-1  
23-2  
23-3  
23-4  
SMDS Product Configuration (SMDS2+) ............................................................... 23-2  
TB830A Target Board Configuration..................................................................... 23-3  
50-Pin Connectors (J101, J102) for TB830A.......................................................... 23-6  
S3C830/F830 Probe Adapter Cables for 100-QFP Package .................................. 23-6  
xiv  
S3C830A/P830A MICROCONTROLLER  
List of Tables  
Table  
Title  
Page  
Number  
Number  
1-1  
2-1  
S3C830A Pin Descriptions......................................................................................1-5  
S3C830A Register Type Summary.........................................................................2-3  
4-1  
4-2  
4-3  
Set 1 Registers.......................................................................................................4-1  
Set 1, Bank 0 Registers..........................................................................................4-2  
Set 1, Bank 1 Registers..........................................................................................4-3  
5-1  
5-2  
5-3  
Interrupt Vectors.....................................................................................................5-5  
Interrupt Control Register Overview........................................................................5-6  
Interrupt Source Control and Data Registers...........................................................5-8  
6-1  
6-2  
6-3  
6-4  
6-5  
6-6  
Instruction Group Summary....................................................................................6-2  
Flag Notation Conventions .....................................................................................6-8  
Instruction Set Symbols..........................................................................................6-8  
Instruction Notation Conventions............................................................................6-9  
Opcode Quick Reference .......................................................................................6-10  
Condition Codes.....................................................................................................6-12  
8-1  
8-2  
8-3  
S3C830A Set 1 Register and Values after RESET..................................................8-2  
S3C830A Set 1, Bank 0 Register Values after RESET ...........................................8-3  
S3C830A Set 1, Bank 1 Register Values after RESET ...........................................8-4  
9-1  
9-2  
S3C830A Port Configuration Overview...................................................................9-2  
Port Data Register Summary..................................................................................9-3  
14-1  
14-2  
14-3  
14-4  
14-5  
LCD Control Register (LCON) Organization............................................................14-4  
LCD Clock Signal (LCDCK) Frame Frequency .......................................................14-5  
LCD Mode Control Register (LMOD) Organization, F2H at Bank 0 of Set 1............14-6  
Maximum Number of Display Digits per Duty Cycle................................................14-6  
LCD Drive Voltage Values......................................................................................14-7  
18-1  
18-2  
PLLMOD Organization ...........................................................................................18-6  
PLLREF Register Organization...............................................................................18-7  
S3C830A/P830A MICROCONTROLLER  
xv  
List of Tables (Continued)  
Table  
Title  
Page  
Number  
Number  
19-1  
19-2  
IFMOD Organization.............................................................................................. 19-2  
IF Counter Frequency Characteristics.................................................................... 19-6  
20-1  
20-2  
20-3  
20-4  
20-5  
20-6  
20-7  
20-8  
20-9  
20-10  
20-11  
Absolute Maximum Ratings................................................................................... 20-2  
D.C. Electrical Characteristics ............................................................................... 20-2  
A.C. Electrical Characteristics................................................................................ 20-5  
Input/Output Capacitance...................................................................................... 20-6  
Data Retention Supply Voltage in Stop Mode ........................................................ 20-6  
A/D Converter Electrical Characteristics................................................................ 20-7  
PLL Electrical Characteristics ................................................................................ 20-8  
Low Voltage Reset Electrical Characteristics ......................................................... 20-8  
Synchronous SIO Electrical Characteristics........................................................... 20-9  
Main Oscillator Frequency (fx)............................................................................... 20-10  
Main Oscillator Clock Stabilization Time (tST1) ...................................................... 20-10  
22-1  
22-2  
22-3  
Descriptions of Pins Used to Read/Write the EPROM............................................ 22-3  
Comparison of S3P830A and S3C830A Features.................................................. 22-3  
Operating Mode Selection Criteria......................................................................... 22-3  
23-1  
23-2  
Power Selection Settings for TB830A .................................................................... 23-4  
The SMDS2+ Tool Selection Setting ..................................................................... 23-5  
xvi  
S3C830A/P830A MICROCONTROLLER  
List of Programming Tips  
Description  
Chapter 2:  
Page  
Number  
Address Spaces  
Using the Page Pointer for RAM clear (Page 0, Page1).......................................................................2-5  
Setting the Register Pointers ...............................................................................................................2-9  
Using the RPs to Calculate the Sum of a Series of Registers...............................................................2-10  
Addressing the Common Working Register Area.................................................................................2-14  
Standard Stack Operations Using PUSH and POP ..............................................................................2-19  
S3C830A/P830A MICROCONTROLLER  
xvii  
List of Register Descriptions  
Register  
Identifier  
Full Register Name  
Page  
Number  
ADCON  
BTCON  
CLKCON  
FLAGS  
IFMOD  
IMR  
A/D Converter Control Register..............................................................................4-5  
Basic Timer Control Register..................................................................................4-6  
System Clock Control Register...............................................................................4-7  
System Flags Register ...........................................................................................4-8  
IF Counter Mode Register ......................................................................................4-9  
Interrupt Mask Register ..........................................................................................4-10  
Interrupt Pending Register......................................................................................4-11  
Instruction Pointer (High Byte) ...............................................................................4-12  
Instruction Pointer (Low Byte) ................................................................................4-12  
Interrupt Priority Register........................................................................................4-13  
Interrupt Request Register......................................................................................4-14  
LCD Control Register .............................................................................................4-15  
LCD Mode Control Register....................................................................................4-16  
Port 0 Control Register (High Byte) ........................................................................4-17  
Port 0 Control Register (Low Byte) .........................................................................4-18  
Port 0 Pull-up Control Register...............................................................................4-19  
Port 1 Control Register (High Byte) ........................................................................4-20  
Port 1 Control Register (Low Byte) .........................................................................4-21  
Port 1 Interrupt Control Register.............................................................................4-22  
Port 1 Interrupt Pending Register ...........................................................................4-23  
Port 2 Control Register (High Byte) ........................................................................4-24  
Port 2 Control Register (Low Byte) .........................................................................4-25  
Port 3 Control Register (High Byte) ........................................................................4-26  
Port 3 Control Register (Low Byte) .........................................................................4-27  
Port 3 Pull-up Control Register...............................................................................4-28  
INTPND  
IPH  
IPL  
IPR  
IRQ  
LCON  
LMOD  
P0CONH  
P0CONL  
P0PUR  
P1CONH  
P1CONL  
P1INT  
P1PND  
P2CONH  
P2CONL  
P3CONH  
P3CONL  
P3PUR  
S3C830A/P830A MICROCONTROLLER  
xix  
List of Register Descriptions (Continued)  
Register  
Identifier  
Full Register Name  
Page  
Number  
PG0CON  
PG1CON  
PG2CON  
PLLMOD  
PLLREF  
PP  
Port Group 0 Control Register ................................................................................4-29  
Port Group 1 Control Register ................................................................................4-30  
Port Group 2 Control Register ................................................................................4-31  
PLL Mode Register.................................................................................................4-32  
PLL Reference Frequency Selection Register.........................................................4-33  
Register Page Pointer.............................................................................................4-34  
Register Pointer 0...................................................................................................4-35  
Register Pointer 1...................................................................................................4-35  
SIO0 Control Register ............................................................................................4-36  
SIO1 Control Register ............................................................................................4-37  
Stack Pointer (High Byte) .......................................................................................4-38  
Stack Pointer (Low Byte) ........................................................................................4-38  
Stop Control Register .............................................................................................4-39  
System Mode Register ...........................................................................................4-40  
Timer 0 Control Register ........................................................................................4-41  
Timer 1 Control Register ........................................................................................4-42  
Timer 2 Control Register ........................................................................................4-43  
Watch Timer Control Register ................................................................................4-44  
RP0  
RP1  
SIO0CON  
SIO1CON  
SPH  
SPL  
STPCON  
SYM  
T0CON  
T1CON  
T2CON  
WTCON  
xx  
S3C830A/P830A MICROCONTROLLER  
List of Instruction Descriptions  
Instruction  
Mnemonic  
Full Register Name  
Page  
Number  
ADC  
ADD  
AND  
BAND  
BCP  
BITC  
BITR  
BITS  
BOR  
BTJRF  
BTJRT  
BXOR  
CALL  
CCF  
CLR  
Add with Carry........................................................................................................6-14  
Add ........................................................................................................................6-15  
Logical AND...........................................................................................................6-16  
Bit AND..................................................................................................................6-17  
Bit Compare...........................................................................................................6-18  
Bit Complement .....................................................................................................6-19  
Bit Reset ................................................................................................................6-20  
Bit Set....................................................................................................................6-21  
Bit OR....................................................................................................................6-22  
Bit Test, Jump Relative on False............................................................................6-23  
Bit Test, Jump Relative on True .............................................................................6-24  
Bit XOR..................................................................................................................6-25  
Call Procedure .......................................................................................................6-26  
Complement Carry Flag .........................................................................................6-27  
Clear......................................................................................................................6-28  
Complement...........................................................................................................6-29  
Compare................................................................................................................6-30  
Compare, Increment, and Jump on Equal ..............................................................6-31  
Compare, Increment, and Jump on Non-Equal.......................................................6-32  
Decimal Adjust.......................................................................................................6-33  
Decrement .............................................................................................................6-35  
Decrement Word....................................................................................................6-36  
Disable Interrupts ...................................................................................................6-37  
Divide (Unsigned)...................................................................................................6-38  
Decrement and Jump if Non-Zero ..........................................................................6-39  
Enable Interrupts....................................................................................................6-40  
Enter......................................................................................................................6-41  
Exit ........................................................................................................................6-42  
Idle Operation ........................................................................................................6-43  
Increment...............................................................................................................6-44  
Increment Word .....................................................................................................6-45  
Interrupt Return......................................................................................................6-46  
Jump......................................................................................................................6-47  
Jump Relative........................................................................................................6-48  
Load.......................................................................................................................6-49  
Load Bit..................................................................................................................6-51  
COM  
CP  
CPIJE  
CPIJNE  
DA  
DEC  
DECW  
DI  
DIV  
DJNZ  
EI  
ENTER  
EXIT  
IDLE  
INC  
INCW  
IRET  
JP  
JR  
LD  
LDB  
S3C830A/P830A MICROCONTROLLER  
xxi  
List of Instruction Descriptions (Continued)  
Instruction  
Mnemonic  
Full Register Name  
Page  
Number  
LDC/LDE  
LDCD/LDED  
LDCI/LDEI  
LDCPD/LDEPD  
LDCPI/LDEPI  
LDW  
Load Memory .........................................................................................................6-52  
Load Memory and Decrement ................................................................................6-54  
Load Memory and Increment..................................................................................6-55  
Load Memory with Pre-Decrement .........................................................................6-56  
Load Memory with Pre-Increment...........................................................................6-57  
Load Word .............................................................................................................6-58  
Multiply (Unsigned).................................................................................................6-59  
Next .......................................................................................................................6-60  
No Operation..........................................................................................................6-61  
Logical OR .............................................................................................................6-62  
Pop from Stack.......................................................................................................6-63  
Pop User Stack (Decrementing) .............................................................................6-64  
Pop User Stack (Incrementing)...............................................................................6-65  
Push to Stack .........................................................................................................6-66  
Push User Stack (Decrementing)............................................................................6-67  
Push User Stack (Incrementing) .............................................................................6-68  
Reset Carry Flag ....................................................................................................6-69  
Return ....................................................................................................................6-70  
Rotate Left .............................................................................................................6-71  
Rotate Left through Carry .......................................................................................6-72  
Rotate Right ...........................................................................................................6-73  
Rotate Right through Carry.....................................................................................6-74  
Select Bank 0.........................................................................................................6-75  
Select Bank 1.........................................................................................................6-76  
Subtract with Carry.................................................................................................6-77  
Set Carry Flag........................................................................................................6-78  
Shift Right Arithmetic..............................................................................................6-79  
Set Register Pointer ...............................................................................................6-80  
Stop Operation.......................................................................................................6-81  
Subtract..................................................................................................................6-82  
Swap Nibbles .........................................................................................................6-83  
Test Complement under Mask................................................................................6-84  
Test under Mask.....................................................................................................6-85  
Wait for Interrupt ....................................................................................................6-86  
Logical Exclusive OR .............................................................................................6-87  
MULT  
NEXT  
NOP  
OR  
POP  
POPUD  
POPUI  
PUSH  
PUSHUD  
PUSHUI  
RCF  
RET  
RL  
RLC  
RR  
RRC  
SB0  
SB1  
SBC  
SCF  
SRA  
SRP/SRP0/SRP1  
STOP  
SUB  
SWAP  
TCM  
TM  
WFI  
XOR  
xxii  
S3C830A/P830A MICROCONTROLLER  
S3C830A/P830A  
PRODUCT OVERVIEW  
1
PRODUCT OVERVIEW  
S3C8-SERIES MICROCONTROLLERS  
Samsung's S3C8 series of 8-bit single-chip CMOS microcontrollers offers a fast and efficient CPU, a wide range  
of integrated peripherals, and various mask-programmable ROM sizes. Among the major CPU features are:  
— Efficient register-oriented architecture  
— Selectable CPU clock sources  
— Idle and Stop power-down mode release by interrupt  
— Built-in basic timer with watchdog function  
A sophisticated interrupt structure recognizes up to eight interrupt levels. Each level can have one or more  
interrupt sources and vectors. Fast interrupt processing (within a minimum of four CPU clocks) can be assigned  
to specific interrupt levels.  
S3C830A MICROCONTROLLER  
The S3C830A single-chip microcontroller are fabricated using the highly advanced CMOS process. Its design is  
based on the powerful SAM88RC CPU core. Stop and idle (power-down) modes were implemented to reduce  
power consumption.  
The S3C830A is a microcontroller with a 48K-byte mask-programmable ROM embedded.  
The S3P830A is a microcontroller with a 48K-byte one-time-programmable ROM embedded.  
Using the SAM88RC modular design approach, the following peripherals were integrated with the SAM88RC  
CPU core:  
— Large number of programable I/O ports (Total 72 pins)  
— PLL frequency synthesizer  
— 16-bits intermediate frequency counter  
— Two synchronous SIO modules  
— Two 8-bit timer/counters  
— One 16-bit timer/counter  
— Low voltage reset  
— A/D converter with 4 selectable input pins  
OTP  
The S3C830A microcontroller is also available in OTP (One Time Programmable) version, S3P830A.  
The S3P830A microcontroller has an on-chip 48K-byte one-time-programmable EPROM instead of masked  
ROM. The S3P830A is comparable to S3C830A, both in function and in pin configuration.  
1-1  
PRODUCT OVERVIEW  
S3C830A/P830A  
FEATURES  
CPU  
Two 8-bit Serial I/O Interface  
SAM88RC CPU core  
8-bit transmit/receive mode  
8-bit receive mode  
Selectable baud rate or external clock source  
Memory  
2064-byte internal register file (including LCD  
display RAM)  
48K-byte internal program memory area  
PLL Frequency Synthesizer  
VIN level: 300mVpp (minimum)  
AMVCO range: 0.5 MHz–30 MHz  
FMVCO range: 30 MHz–150 MHz  
Instruction Set  
78 instructions  
Idle and Stop instructions  
16-Bit Intermediate Frequency (IF) Counter  
VIN level: 300mVpp (minimum)  
72 I/O Pins  
AMIF range: 100 kHz–1 MHz  
FMIF range: 5 MHz–15 MHz  
32 normal I/O pins  
40 pins sharing with LCD segment signals  
LCD Controller/Driver  
Interrupts  
40 segments and 4 common terminals  
4/3/2 common and static selectable  
Internal or external resistor circuit for LCD bias  
8 interrupt levels and 17 internal sources  
Fast interrupt processing feature  
8-Bit Basic Timer  
Low Voltage Reset (LVR)  
Watchdog timer function  
4 kinds of clock source  
Low voltage check to make system reset  
VLVR: 3.5 V (typical)  
Timer/Counter 0  
Two Power-Down Modes  
Programmable 8-bit internal timer  
External event counter function  
PWM and capture function  
Idle mode: only CPU clock stops  
Stop mode: system clock and CPU clock stop  
Oscillation Source  
Crystal or ceramic for system clock (fx)  
Timer/Counter 1  
Programmable 8-bit interval timer  
External event counter function  
Instruction Execution Time  
890 ns at 4.5 MHz (minimum)  
Timer/Counter 2  
Programmable 16-bit interval timer  
External event counter function  
Operating Temperature Range  
–25 °C to +85 °C  
Watch Timer  
Operating Voltage Range  
Interval Time: 50ms, 0.5s, 1.0s at 4.5 MHz  
1/1.5/3/6 kHz buzzer output selectable  
3.0 V to 5.5 V at 0.4 MHz–4.5 MHz  
4.5 V to 5.5 V in PLL/IFC block  
Analog to Digital Converter  
Package Type  
100-pin QFP package  
4-channel analog input  
8-bit conversion resolution  
1-2  
S3C830A/P830A  
PRODUCT OVERVIEW  
BLOCK DIAGRAM  
P1.0-P1.7/  
INT0-INT7  
RESET  
CE  
XIN  
XOUT  
P0.0  
OSC  
P0.1/T0CLK  
P0.2/T0CAP  
P0.3/T0OUT/T0PWM  
P0.4/T1CLK  
P0.5/T1OUT  
P0.6/T2CLK  
P0.7/T2OUT  
Port 0  
Port 1  
Port 2  
Port 3  
Port 4  
Port 5  
Port 6  
Port 7  
P0.2/T0CAP  
P0.1/T0CLK  
P0.3/T0OUT/T0PWM  
8-Bit Timer/  
Counter0  
P1.0/INT0  
P1.1/INT1  
P1.2/INT2  
P1.3/INT3  
P1.4/INT4  
P1.5/INT5  
P1.6/INT6  
P1.7/INT7  
8-Bit Timer/  
Counter1  
P0.4/T1CLK  
P0.5/T1OUT  
P0.6/T2CLK  
P0.7/T2OUT  
16-Bit Timer/  
Counter2  
I/O Port and Interrupt Control  
P2.0/AD0  
P2.1/AD1  
P2.2/AD2  
P2.3/AD3  
P2.4  
P3.1/SCK0  
P3.2/SO0  
P3.3/SI0  
P3.4/SCK1  
P3.5/SO1  
P3.6/SI1  
SIO 0  
SIO 1  
P2.5  
P2.6  
P2.7  
P3.0/BUZ  
P3.1/SCK0  
P3.2/SO0  
P3.3/SI0  
P3.4/SCK1  
P3.5/SO1  
P3.6/SI1  
P3.7  
Watchdog  
Timer  
Basic Timer  
Watch Timer  
P3.0/BUZ  
SAM88RC Core  
COM0-3  
P8.7-P4.0/SEG0-39  
BIAS  
P4.0/SEG39  
P4.1/SEG38  
P4.2/SEG37  
P4.3/SEG36  
P4.4/SEG35  
P4.5/SEG34  
P4.6/SEG33  
P4.7/SEG32  
LCD Driver/  
Controller  
VLC0-VLC2  
VCOAM  
VCOFM  
EO0/EO1  
PLL  
Synthesizer  
P5.0/SEG31  
P5.1/SEG30  
P5.2/SEG29  
P5.3/SEG28  
P5.4/SEG27  
P5.5/SEG26  
P5.6/SEG25  
P5.7/SEG24  
AMIF  
FMIF  
IF Counter  
8-Bit ADC  
P2.0-P2.3/AD0-AD3  
P6.0/SEG23  
P6.1/SEG22  
P6.2/SEG21  
P6.3/SEG20  
P6.4/SEG19  
P6.5/SEG18  
P6.6/SEG17  
P6.7/SEG16  
AVDD  
Port 8  
48K-byte  
ROM  
2064-byte  
Register File  
P8.0/SEG7  
P8.1/SEG6  
P8.2/SEG5  
P8.3/SEG4  
P8.4/SEG3  
P8.5/SEG2  
P8.6/SEG1  
P8.7/SEG0  
P7.0/SEG15  
P7.1/SEG14  
P7.2/SEG13  
P7.3/SEG12  
P7.4/SEG11  
P7.5/SEG10  
P7.6/SEG9  
P7.7/SEG8  
Low Voltage  
Reset  
LVREN  
TEST1 TEST3 VDD  
VSS  
TEST2  
VDDPLL0 VSSPLL  
VDDPLL1  
Figure 1-1. Block Diagram  
1-3  
PRODUCT OVERVIEW  
S3C830A/P830A  
PIN ASSIGNMENT  
P1.7/INT7  
P2.0/AD0  
P2.1/AD1  
P2.2/AD2  
P2.3/AD3  
P2.4  
1
2
3
4
5
6
7
8
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
AMIF  
VSSPLL  
VCOAM  
VCOFM  
VDDPLL1  
LVREN  
TEST3  
BIAS  
VLC0  
VLC1  
VLC2  
COM0  
COM1  
COM2  
COM3  
SEG0/P8.7  
SEG1/P8.6  
SEG2/P8.5  
SEG3/P8.4  
SEG4/P8.3  
SEG5/P8.2  
SEG6/P8.1  
SEG7/P8.0  
SEG8/P7.7  
SEG9/P7.6  
SEG10/P7.5  
SEG11/P7.4  
SEG12/P7.3  
SEG13/P7.2  
SEG14/P7.1  
P2.5  
P2.6  
P2.7  
AVDD  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
P3.0/BUZ  
P3.1/SCK0  
P3.2/SO0  
P3.3/SI0  
VDD  
S3C830A  
VSS  
XOUT  
XIN  
TEST1  
100-QFP-1420C  
TEST2  
P3.4/SCK1  
RESET  
P3.5/SO1  
P3.6/SI1  
P3.7  
P4.0/SEG39  
P4.1/SEG38  
P4.2/SEG37  
P4.3/SEG36  
P4.4/SEG35  
Figure 1-2. S3C830A Pin Assignments (100-QFP)  
1-4  
S3C830A/P830A  
PRODUCT OVERVIEW  
PIN DESCRIPTIONS  
Table 1-1. S3C830A Pin Descriptions  
Pin  
Pin  
Names  
Pin  
Type  
Circuit Pin No.  
Type  
Share  
Pins  
Description  
P0.0  
I/O I/O port with bit programmable pins; Schmitt  
trigger input or push-pull, open-drain output  
and software assignable pull-ups.  
E-4  
86  
87  
88  
89  
90  
91  
92  
93  
T0CLK  
T0CAP  
P0.1  
P0.2  
P0.3  
P0.4  
P0.5  
P0.6  
P0.7  
T0OUT/T0PWM  
T1CLK  
TOUT  
T2CLK  
T2OUT  
P1.0-P1.7  
I/O I/O port with bit programmable pins; Schmitt  
trigger Input or push-pull output and software  
assignable pull-ups;  
D-7  
94-1  
INT0-INT7  
Alternately used for external interrupt input  
(noise filters, interrupt enable and pending  
control).  
P2.0-P2.3  
P2.4-P2.7  
I/O I/O port with bit programmable pins; Schmitt  
trigger input or push-pull output and software  
assignable pull-ups.  
F-16  
D-4  
2-5  
6-9  
AD0-AD3  
P3.0  
P3.1  
P3.2  
P3.3  
P3.4  
P3.5  
P3.6  
P3.7  
I/O I/O port with bit programmable pins; Schmitt  
trigger input or push-pull, open-drain output  
and software assignable pull-ups.  
E-4  
11  
12  
13  
14  
21  
23  
24  
25  
BUZ  
SCLK0  
SO0  
SI0  
SCK1  
SO1  
SI1  
P4.0-P4.7  
P5.0-P5.7  
P6.0-P6.7  
P7.0-P7.7  
P8.0-P8.7  
I/O I/O port with nibble programmable pins;  
Schmitt trigger input or push-pull, open-drain  
output and software assignable pull-ups.  
H-41  
H-41  
H-41  
H-41  
H-41  
26-33  
34-41  
42-49  
50-57  
58-65  
SEG39-SEG32  
SEG31-SEG24  
SEG23-SEG16  
SEG15-SEG8  
SEG7-SEG0  
I/O I/O port with nibble programmable pins;  
Schmitt trigger input or push-pull, open-drain  
output and software assignable pull-ups.  
I/O I/O port with nibble programmable pins;  
Schmitt trigger input or push-pull, open-drain  
output and software assignable pull-ups.  
I/O I/O port with nibble programmable pins;  
Schmitt trigger input or push-pull, open-drain  
output and software assignable pull-ups.  
I/O I/O port with nibble programmable pins;  
Schmitt trigger input or push-pull, open-drain  
output and software assignable pull-ups.  
1-5  
PRODUCT OVERVIEW  
S3C830A/P830A  
Table 1-1. S3C830A Pin Descriptions (Continued)  
Pin  
Names  
Pin  
Type  
Pin  
Description  
Circuit Pin No.  
Type  
Share  
Pins  
COM0-COM3  
SEG0-SEG39  
BIAS  
O
Common signal output for LCD display  
H
69-66  
65-26  
73  
I/O LCD segment signal output  
H-41  
P8-P4  
I
I
LCD power control  
VLC0  
VLC1  
VLC2  
LCD power supply  
Voltage dividing resistors are assignable by  
software  
72-70  
VDD  
VSS  
Main power supply  
Main ground  
15  
16  
VDDPLL0-1  
VSSPLL  
AVDD  
PLL/IFC power supply  
PLL/IFC ground  
82, 76  
79  
A/D converter power supply  
10  
XOUT, XIN  
I
Main oscillator pins for CPU oscillation  
Test signal input pin  
17, 18  
19, 20  
TEST1,  
TEST2  
(Must be connected to VSS  
)
TEST3  
O
I
Test signal output pin  
(Must be remained to open)  
74  
75  
LVREN  
LVR enable pin  
A
(Must be connected to VDD or VSS  
)
I
I
System reset pin  
B
22  
85  
RESET  
CE  
Input pin for checking device power  
Normal operation is high level and PLL/IFC  
Operation is stopped at low power  
B-5  
EO0  
EO1  
O
O
I
PLL's phase error output0  
A-2  
A-2  
B-4  
83  
84  
PLL's phase error output1  
VCOAM  
VCOFM  
External VCOAM/VCOFM signal inputs  
78, 77  
1-6  
S3C830A/P830A  
PRODUCT OVERVIEW  
Table 1-1. S3C830A Pin Descriptions (Continued)  
Pin  
Pin  
Names  
Pin  
Type  
Circuit Pin No.  
Share  
Pins  
Description  
Type  
FMIF, AMIF  
AD0-AD3  
BUZ  
I
FM/AM intermediate frequency signal inputs  
B-4  
81, 80  
2-5  
I/O ADC input pins  
F-16  
E-4  
P2.0-P2.3  
P3.0  
I/O 1, 1.5, 3 or 6 kHz frequency output for buzzer  
sound at 4.5 MHz clock  
11  
SCK0  
SO0  
I/O SIO0 interface signal  
E-4  
E-4  
E-4  
E-4  
E-4  
E-4  
E-4  
E-4  
E-4  
E-4  
E-4  
E-4  
E-4  
E-4  
D-7  
12  
13  
14  
21  
23  
24  
87  
88  
89  
89  
90  
91  
92  
93  
94-1  
P3.1  
P3.2  
I/O SIO0 interface data output signal  
I/O SIO0 interface data input signal  
I/O SIO1 interface signal  
SI0  
P3.3  
SCK1  
SO1  
P3.4  
I/O SIO1 interface data output signal  
I/O SIO1 interface data input signal  
I/O Timer 0 clock input  
P3.5  
SI1  
P3.6  
T0CLK  
T0CAP  
T0OUT  
T0PWM  
T1CLK  
T1OUT  
T2CLK  
T2OUT  
INT0-INT7  
P0.1  
I/O Timer 0 capture input  
I/O Timer 0 clock output  
P0.2  
P0.3  
I/O Timer 0 PWM output  
P0.3  
I/O Timer 1 clock input  
P0.4  
I/O Timer 1 clock output  
P0.5  
I/O Timer 2 clock input  
P0.6  
I/O Timer 2 clock output  
P0.7  
I/O External interrupt input pins  
P1.0-P1.7  
1-7  
PRODUCT OVERVIEW  
S3C830A/P830A  
PIN CIRCUITS  
VDD  
In  
Type A  
P-Channel  
N-Channel  
Feedback  
Enable  
In  
Pull-down  
Enable  
N-CH  
Figure 1-3. Pin Circuit Type A  
Figure 1-6. Pin Circuit Type B-4  
VDD  
Up  
P-Channel  
Out  
In  
Down  
N-Channel  
Figure 1-4. Pin Circuit Type A-2 (EO)  
Figure 1-7. Pin Circuit Type B-5 (CE)  
VDD  
VDD  
Pull-up  
Resistor  
P-Channel  
Data  
Out  
In  
N-Channel  
Output  
Disable  
Schmitt Trigger  
Figure 1-8. Pin Circuit Type C  
Figure 1-5. Pin Circuit Type B (RESET)  
1-8  
S3C830A/P830A  
PRODUCT OVERVIEW  
VDD  
DD  
V
Open-Drain  
Enable  
Pull-up  
Enable  
Pull-up  
Resistor  
DD  
V
Pull-up  
Enable  
Data  
Output  
Disable  
Circuit  
Type C  
I/O  
P-CH  
N-CH  
Data  
I/O  
ADCEN  
Output  
Disable  
ADC Select  
Data  
SS  
V
Schmitt Trigger  
To ADC  
Figure 1-9. Pin Circuit Type E-4 (P0, P3)  
Figure 1-11. Pin Circuit Type F-16 (P2.0-P2.3)  
VLC0  
VLC1  
VDD  
Pull-up  
P-Channel  
Enable  
COM  
Data  
Out  
Circuit  
Type C  
I/O  
Output  
Disable  
Port  
Enable  
VLC2  
(PG2CON.4-5)  
Schmitt Trigger  
Figure 1-12. Pin Circuit Type H (COM0-COM3)  
Figure 1-10. Pin Circuit Type D-7 (P1)  
1-9  
PRODUCT OVERVIEW  
S3C830A/P830A  
VLC0  
VDD  
VLC1  
Pull-up  
Enable  
Out  
SEG  
Data  
Circuit  
Type C  
I/O  
Output  
Disable  
Output  
Disable  
VLC2  
Figure 1-15. Pin Circuit Type D-4 (P2.4-P2.7)  
Figure 1-13. Pin Circuit Type H-39  
VDD  
Pull-up  
Resistor  
VDD  
Resistor  
Enable  
Open  
Drain  
P-CH  
N-CH  
Data  
I/O  
Output  
Disable1  
SEG  
Circuit  
Type H-39  
Output  
Disable2  
Figure 1-14. Pin Circuit Type H-41 (P4-P8)  
1-10  
S3C830A/P830A  
ADDRESS SPACES  
2
ADDRESS SPACES  
OVERVIEW  
The S3C830A microcontroller has two types of address space:  
— Internal program memory (ROM)  
— Internal register file  
A 16-bit address bus supports program memory operations. A separate 8-bit register bus carries addresses and  
data between the CPU and the register file.  
The S3C830A has an internal 48-Kbyte mask-programmable ROM.  
The 256-byte physical register space is expanded into an addressable area of 320 bytes using addressing modes.  
A 20-byte LCD display register file is implemented.  
There are 2,134 mapped registers in the internal register file. Of these, 2,064 are for general-purpose.  
(This number includes a 16-byte working register common area used as a "scratch area" for data operations,  
eight 192-byte prime register areas, and eight 64-byte areas (Set 2)). Thirteen 8-bit registers are used for the  
CPU and the system control, and 57 registers are mapped for peripheral controls and data registers. Ten register  
locations are not mapped.  
2-1  
ADDRESS SPACES  
S3C830A/P830A  
PROGRAM MEMORY (ROM)  
Program memory (ROM) stores program codes or table data. The S3C830A has 48K bytes internal mask-  
programmable program memory.  
The first 256 bytes of the ROM (0H–0FFH) are reserved for interrupt vector addresses. Unused locations in this  
address range can be used as normal program memory. If you use the vector address area to store a program  
code, be careful not to overwrite the vector addresses stored in these locations.  
The ROM address at which a program execution starts after a reset is 0100H.  
(Decimal)  
49,151  
(HEX)  
BFFFH  
48K-bytes  
Internal  
Program  
Memory Area  
255  
0
FFH  
0H  
Interrupt  
Vector Area  
Figure 2-1. Program Memory Address Space  
2-2  
S3C830A/P830A  
ADDRESS SPACES  
REGISTER ARCHITECTURE  
In the S3C830A implementation, the upper 64-byte area of register files is expanded two 64-byte areas, called  
set 1 and set 2. The upper 32-byte area of set 1 is further expanded two 32-byte register banks (bank 0 and bank  
1), and the lower 32-byte area is a single 32-byte common area.  
In case of S3C830A the total number of addressable 8-bit registers is 2134. Of these 2134 registers, 13 bytes are  
for CPU and system control registers, 57 bytes are for peripheral control and data registers, 16 bytes are used as  
a shared working registers, and 2048 registers are for general-purpose use, page 0-page 7 (including 20 bytes for  
LCD display registers).  
You can always address set 1 register locations, regardless of which of the eight register pages is currently  
selected. Set 1 locations, however, can only be addressed using register addressing modes.  
The extension of register space into separately addressable areas (sets, banks, and pages) is supported by  
various addressing mode restrictions, the select bank instructions, SB0 and SB1, and the register page pointer  
(PP).  
Specific register types and the area (in bytes) that they occupy in the register file are summarized in Table 2–1.  
Table 2-1. S3C830A Register Type Summary  
Register Type  
Number of Bytes  
General-purpose registers (including the 16-byte  
common working register area, eight 192-byte prime  
register area (including LCD data registers), and eight  
64-byte set 2 area).  
2,064  
CPU and system control registers  
Mapped clock, peripheral, I/O control, and data registers  
13  
57  
2,134  
Total Addressable Bytes  
2-3  
ADDRESS SPACES  
S3C830A/P830A  
FFH  
FFH  
FFH  
FFH  
Page 7  
Set 1  
FFH  
FFH  
Bank 1  
Page 1  
Page 0  
Bank 0  
32  
Bytes  
System and  
Peripheral Control  
Set 2  
Registers  
(Register Addressing Mode)  
Registers  
(Indirect Register,  
Indexed Mode,  
E0H  
DFH  
64  
Bytes  
System Registers  
(Register Addressing Mode)  
and Stack Operations)  
256  
Bytes  
D0H  
CFH  
Working Registers  
(Working Register  
Addressing Only)  
C0H  
BFH  
Page 0  
C0H  
13H  
~
~
~
Prime  
Data Registers  
(All Addressing Modes)  
192  
Page 7  
~
~
Bytes  
Prime  
Data Registers  
(All Addressing Modes)  
LCD Display Register  
20  
Bytes  
~
~
00H  
00H  
Figure 2-2. Internal Register File Organization  
2-4  
S3C830A/P830A  
ADDRESS SPACES  
REGISTER PAGE POINTER (PP)  
The S3C8-series architecture supports the logical expansion of the physical 256-byte internal register file (using  
an 8-bit data bus) into as many as 16 separately addressable register pages. Page addressing is controlled by the  
register page pointer (PP, DFH). In the S3C830A microcontroller, a paged register file expansion is implemented  
for LCD data registers, and the register page pointer must be changed to address other pages.  
After a reset, the page pointer's source value (lower nibble) and the destination value (upper nibble) are always  
"0000", automatically selecting page 0 as the source and destination page for register addressing.  
Register Page Pointer (PP)  
DFH ,Set 1, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Destination register page selection bits:  
Source register page selection bits:  
0000 Source: Page 0  
0000  
Destination: Page 0  
NOTE:  
A hardware reset operation writes the 4-bit destination and  
source values shown above to the register page pointer. These values should  
be modified to address other pages.  
Figure 2-3. Register Page Pointer (PP)  
+
PROGRAMMING TIP — Using the Page Pointer for RAM clear (Page 0, Page 1)  
LD  
SRP  
LD  
CLR  
DJNZ  
CLR  
PP,#00H  
#0C0H  
R0,#0FFH  
@R0  
R0,RAMCL0  
@R0  
; Destination ¬ 0, Source ¬  
0
; Page 0 RAM clear starts  
RAMCL0  
; R0 = 00H  
LD  
LD  
CLR  
DJNZ  
CLR  
PP,#10H  
R0,#0FFH  
@R0  
R0,RAMCL1  
@R0  
; Destination ¬ 1, Source ¬  
; Page 1 RAM clear starts  
0
RAMCL1  
; R0 = 00H  
NOTE: You should refer to page 6-39 and use DJNZ instruction properly when DJNZ instruction is used in your program.  
2-5  
ADDRESS SPACES  
S3C830A/P830A  
REGISTER SET 1  
The term set 1 refers to the upper 64 bytes of the register file, locations C0H–FFH.  
The upper 32-byte area of this 64-byte space (E0H–FFH) is expanded two 32-byte register banks, bank 0 and  
bank 1. The set register bank instructions, SB0 or SB1, are used to address one bank or the other. A hardware  
reset operation always selects bank 0 addressing.  
The upper two 32-byte areas (bank 0 and bank 1) of set 1 (E0H–FFH) contains 57 mapped system and  
peripheral control registers. The lower 32-byte area contains 16 system registers (D0H–DFH) and a 16-byte  
common working register area (C0H–CFH). You can use the common working register area as a “scratch” area  
for data operations being performed in other areas of the register file.  
Registers in set 1 locations are directly accessible at all times using Register addressing mode. The 16-byte  
working register area can only be accessed using working register addressing (For more information about  
working register addressing, please refer to Chapter 3, "Addressing Modes.")  
REGISTER SET 2  
The same 64-byte physical space that is used for set 1 locations C0H–FFH is logically duplicated to add another  
64 bytes of register space. This expanded area of the register file is called set 2. For the S3C830A,  
the set 2 address range (C0H–FFH) is accessible on pages 0-7.  
The logical division of set 1 and set 2 is maintained by means of addressing mode restrictions. You can use only  
Register addressing mode to access set 1 locations. In order to access registers in set 2, you must use Register  
Indirect addressing mode or Indexed addressing mode.  
The set 2 register area of page 0 is commonly used for stack operations.  
2-6  
S3C830A/P830A  
ADDRESS SPACES  
PRIME REGISTER SPACE  
The lower 192 bytes (00H–BFH) of the S3C830A's eight 256-byte register pages is called prime register area.  
Prime registers can be accessed using any of the seven addressing modes  
(see Chapter 3, "Addressing Modes.")  
The prime register area on page 0 is immediately addressable following a reset. In order to address prime  
registers on pages 0, 1, 2, 3, 4, 5, 6, or 7 you must set the register page pointer (PP) to the appropriate source  
and destination values.  
FFH  
Page 7  
FFH  
Page 6  
FFH  
Page 5  
FFH  
Page 4  
FFH  
Page 3  
FFH  
Page 2  
FFH  
FFH  
Set 1  
Page 1  
Bank 0  
Bank 1  
Page 0  
FFH  
FCH  
E0H  
D0H  
C0H  
Set 2  
Page 7  
C0H  
BFH  
Page 0  
13H  
00H  
LCD Data  
Register Area  
Prime  
Space  
CPU and system control  
General-purpose  
Peripheral and I/O  
LCD data register  
00H  
Figure 2-4. Set 1, Set 2, Prime Area Register, and LCD Data Register Map  
2-7  
ADDRESS SPACES  
S3C830A/P830A  
WORKING REGISTERS  
Instructions can access specific 8-bit registers or 16-bit register pairs using either 4-bit or 8-bit address fields.  
When 4-bit working register addressing is used, the 256-byte register file can be seen by the programmer as one  
that consists of 32 8-byte register groups or "slices." Each slice comprises of eight 8-bit registers.  
Using the two 8-bit register pointers, RP1 and RP0, two working register slices can be selected at any one time to  
form a 16-byte working register block. Using the register pointers, you can move this 16-byte register block  
anywhere in the addressable register file, except the set 2 area.  
The terms slice and block are used in this manual to help you visualize the size and relative locations of selected  
working register spaces:  
— One working register slice is 8 bytes (eight 8-bit working registers, R0–R7 or R8–R15)  
— One working register block is 16 bytes (sixteen 8-bit working registers, R0–R15)  
All the registers in an 8-byte working register slice have the same binary value for their five most significant  
address bits. This makes it possible for each register pointer to point to one of the 24 slices in the register file.  
The base addresses for the two selected 8-byte register slices are contained in register pointers RP0 and RP1.  
After a reset, RP0 and RP1 always point to the 16-byte common area in set 1 (C0H–CFH).  
FFH  
Slice 32  
F8H  
F7H  
F0H  
Slice 31  
1 1 1 1 1 X X X  
Set 1  
Only  
RP1 (Registers R8-R15)  
Each register pointer points to  
one 8-byte slice of the register  
space, selecting a total 16-byte  
working register block.  
CFH  
C0H  
~
~
0 0 0 0 0 X X X  
10H  
FH  
8H  
7H  
0H  
RP0 (Registers R0-R7)  
Slice 2  
Slice 1  
Figure 2-5. 8-Byte Working Register Areas (Slices)  
2-8  
S3C830A/P830A  
ADDRESS SPACES  
USING THE REGISTER POINTS  
Register pointers RP0 and RP1, mapped to addresses D6H and D7H in set 1, are used to select two movable  
8-byte working register slices in the register file. After a reset, they point to the working register common area:  
RP0 points to addresses C0H–C7H, and RP1 points to addresses C8H–CFH.  
To change a register pointer value, you load a new value to RP0 and/or RP1 using an SRP or LD instruction.  
(see Figures 2-6 and 2-7).  
With working register addressing, you can only access those two 8-bit slices of the register file that are currently  
pointed to by RP0 and RP1. You cannot, however, use the register pointers to select a working register space in  
set 2, C0H–FFH, because these locations can be accessed only using the Indirect Register or Indexed  
addressing modes.  
The selected 16-byte working register block usually consists of two contiguous 8-byte slices. As a general  
programming guideline, it is recommended that RP0 point to the "lower" slice and RP1 point to the "upper" slice  
(see Figure 2-6). In some cases, it may be necessary to define working register areas in different (non-  
contiguous) areas of the register file. In Figure 2-7, RP0 points to the "upper" slice and RP1 to the "lower" slice.  
Because a register pointer can point to either of the two 8-byte slices in the working register block, you can  
flexibly define the working register area to support program requirements.  
+
PROGRAMMING TIP — Setting the Register Pointers  
SRP  
SRP1  
SRP0  
CLR  
LD  
#70H  
#48H  
#0A0H  
RP0  
RP1,#0F8H  
; RP0 ¬ 70H, RP1 ¬ 78H  
; RP0 ¬ no change, RP1 ¬ 48H,  
; RP0 ¬ A0H, RP1 ¬ no change  
; RP0 ¬ 00H, RP1 ¬ no change  
; RP0 ¬ no change, RP1 ¬ 0F8H  
Register File  
Contains 32  
8-Byte Slices  
0 0 0 0 1 X X X  
RP1  
FH (R15)  
16-Byte  
Contiguous  
Working  
8-Byte Slice  
8-Byte Slice  
8H  
7H  
0 0 0 0 0 X X X  
RP0  
Register block  
0H (R0)  
Figure 2-6. Contiguous 16-Byte Working Register Block  
2-9  
ADDRESS SPACES  
S3C830A/P830A  
F7H (R7)  
F0H (R0)  
8-Byte Slice  
16-Byte  
Contiguous  
working  
Register File  
Contains 32  
8-Byte Slices  
1 1 1 1 0 X X X  
Register block  
RP0  
0 0 0 0 0 X X X  
RP1  
7H (R15)  
0H (R0)  
8-Byte Slice  
Figure 2-7. Non-Contiguous 16-Byte Working Register Block  
+
PROGRAMMING TIP — Using the RPs to Calculate the Sum of a Series of Registers  
Calculate the sum of registers 80H–85H using the register pointer. The register addresses from 80H through 85H  
contain the values 10H, 11H, 12H, 13H, 14H, and 15 H, respectively:  
SRP0  
ADD  
ADC  
ADC  
ADC  
ADC  
#80H  
; RP0 ¬ 80H  
; R0 ¬ R0 + R1  
; R0 ¬ R0 + R2 + C  
; R0 ¬ R0 + R3 + C  
; R0 ¬ R0 + R4 + C  
; R0 ¬ R0 + R5 + C  
R0,R1  
R0,R2  
R0,R3  
R0,R4  
R0,R5  
The sum of these six registers, 6FH, is located in the register R0 (80H). The instruction string used in this  
example takes 12 bytes of instruction code and its execution time is 36 cycles. If the register pointer is not used  
to calculate the sum of these registers, the following instruction sequence would have to be used:  
ADD  
ADC  
ADC  
ADC  
ADC  
80H,81H  
80H,82H  
80H,83H  
80H,84H  
80H,85H  
; 80H ¬ (80H) + (81H)  
; 80H ¬ (80H) + (82H) + C  
; 80H ¬ (80H) + (83H) + C  
; 80H ¬ (80H) + (84H) + C  
; 80H ¬ (80H) + (85H) + C  
Now, the sum of the six registers is also located in register 80H. However, this instruction string takes 15 bytes of  
instruction code rather than 12 bytes, and its execution time is 50 cycles rather than 36 cycles.  
2-10  
S3C830A/P830A  
ADDRESS SPACES  
REGISTER ADDRESSING  
The S3C8-series register architecture provides an efficient method of working register addressing that takes full  
advantage of shorter instruction formats to reduce execution time.  
With Register (R) addressing mode, in which the operand value is the content of a specific register or register  
pair, you can access any location in the register file except for set 2. With working register addressing, you use a  
register pointer to specify an 8-byte working register space in the register file and an 8-bit register within that  
space.  
Registers are addressed either as a single 8-bit register or as a paired 16-bit register space. In a 16-bit register  
pair, the address of the first 8-bit register is always an even number and the address of the next register is always  
an odd number. The most significant byte of the 16-bit data is always stored in the even-numbered register, and  
the least significant byte is always stored in the next (+1) odd-numbered register.  
Working register addressing differs from Register addressing as it uses a register pointer to identify a specific  
8-byte working register space in the internal register file and a specific 8-bit register within that space.  
MSB  
Rn  
LSB  
n = Even address  
Rn+1  
Figure 2-8. 16-Bit Register Pair  
2-11  
ADDRESS SPACES  
S3C830A/P830A  
Special-Purpose Registers  
Bank 1 Bank 0  
General-Purpose Register  
FFH  
FFH  
Control  
Registers  
E0H  
D0H  
Set 2  
System  
Registers  
CFH  
C0H  
C0H  
BFH  
RP1  
RP0  
Register  
Pointers  
Each register pointer (RP) can independently point  
to one of the 24 8-byte "slices" of the register file  
(other than set 2). After a reset, RP0 points to  
locations C0H-C7H and RP1 to locations C8H-CFH  
(that is, to the common working register area).  
Prime  
Registers  
LCD Data  
Registers  
NOTE:  
In the S3C830A microcontroller,  
pages 0-7 are implemented.  
Pages 0-7 contain all of the addressable  
registers in the internal register file.  
00H  
Page 0  
Page 0  
Register Addressing Only  
All  
Indirect Register,  
Indexed  
All  
Addressing  
Modes  
Addressing  
Modes  
Addressing  
Modes  
Can be Pointed  
Can be Pointed by Register Pointer  
by register Pointer  
Figure 2-9. Register File Addressing  
2-12  
S3C830A/P830A  
ADDRESS SPACES  
COMMON WORKING REGISTER AREA (C0H–CFH)  
After a reset, register pointers RP0 and RP1 automatically select two 8-byte register slices in set 1, locations  
C0H–CFH, as the active 16-byte working register block:  
RP0 ® C0H–C7H  
RP1 ® C8H–CFH  
This 16-byte address range is called common area. That is, locations in this area can be used as working  
registers by operations that address any location on any page in the register file. Typically, these working  
registers serve as temporary buffers for data operations between different pages.  
FFH  
Page 7  
FFH  
Page 6  
FFH  
Page 5  
FFH  
Page 4  
FFH  
Page 3  
FFH  
Page 2  
FFH  
Page 1  
Set 1  
FFH  
Page 0  
FFH  
FCH  
0  
Set 2  
E0H  
~
~
D0H  
C0H  
Page 7  
C0H  
BFH  
~
Page 0  
13H  
00H  
~
LCD Data  
Registers  
~
~
~
Following a hardware reset, register  
pointers RP0 and RP1 point to the  
common working register area,  
locations C0H-CFH.  
Prime  
Space  
~
~
RP0 = 1 1 0 0  
RP1 = 1 1 0 0  
0 0 0 0  
1 0 0 0  
00H  
Figure 2-10. Common Working Register Area  
2-13  
ADDRESS SPACES  
S3C830A/P830A  
+
PROGRAMMING TIP — Addressing the Common Working Register Area  
As the following examples show, you should access working registers in the common area, locations C0H–CFH,  
using working register addressing mode only.  
Examples 1. LD  
0C2H,40H  
; Invalid addressing mode!  
Use working register addressing instead:  
SRP  
LD  
#0C0H  
R2,40H  
; R2 (C2H) ¬ the value in location 40H  
2. ADD  
0C3H,#45H  
; Invalid addressing mode!  
Use working register addressing instead:  
SRP  
ADD  
#0C0H  
R3,#45H  
; R3 (C3H) ¬ R3 + 45H  
4-BIT WORKING REGISTER ADDRESSING  
Each register pointer defines a movable 8-byte slice of working register space. The address information stored in  
a register pointer serves as an addressing "window" that makes it possible for instructions to access working  
registers very efficiently using short 4-bit addresses. When an instruction addresses a location in the selected  
working register area, the address bits are concatenated in the following way to form a complete 8-bit address:  
— The high-order bit of the 4-bit address selects one of the register pointers ("0" selects RP0, "1" selects RP1).  
— The five high-order bits in the register pointer select an 8-byte slice of the register space.  
— The three low-order bits of the 4-bit address select one of the eight registers in the slice.  
As shown in Figure 2-11, the result of this operation is that the five high-order bits from the register pointer are  
concatenated with the three low-order bits from the instruction address to form the complete address. As long as  
the address stored in the register pointer remains unchanged, the three bits from the address will always point to  
an address in the same 8-byte register slice.  
Figure 2-12 shows a typical example of 4-bit working register addressing. The high-order bit of the instruction  
"INC R6" is "0", which selects RP0. The five high-order bits stored in RP0 (01110B) are concatenated with the  
three low-order bits of the instruction's 4-bit address (110B) to produce the register address 76H (01110110B).  
2-14  
S3C830A/P830A  
ADDRESS SPACES  
RP0  
RP1  
Selects  
RP0 or RP1  
Address  
OPCODE  
4-bit address  
provides three  
low-order bits  
Register pointer  
provides five  
high-order bits  
Together they create an  
8-bit register address  
Figure 2-11. 4-Bit Working Register Addressing  
RP0  
RP1  
0 1 1 1 0 0 0 0  
0 1 1 1 1 0 0 0  
Selects RP0  
R6  
OPCODE  
Register  
Instruction  
'INC R6'  
address  
(76H)  
0 1 1 1 0 1 1 0  
0 1 1 0 1 1 1 0  
Figure 2-12. 4-Bit Working Register Addressing Example  
2-15  
ADDRESS SPACES  
S3C830A/P830A  
8-BIT WORKING REGISTER ADDRESSING  
You can also use 8-bit working register addressing to access registers in a selected working register area. To  
initiate 8-bit working register addressing, the upper four bits of the instruction address must contain the value  
"1100B." This 4-bit value (1100B) indicates that the remaining four bits have the same effect as 4-bit working  
register addressing.  
As shown in Figure 2-13, the lower nibble of the 8-bit address is concatenated in much the same way as for 4-bit  
addressing: Bit 3 selects either RP0 or RP1, which then supplies the five high-order bits of the final address; the  
three low-order bits of the complete address are provided by the original instruction.  
Figure 2-14 shows an example of 8-bit working register addressing. The four high-order bits of the instruction  
address (1100B) specify 8-bit working register addressing. Bit 4 ("1") selects RP1 and the five high-order bits in  
RP1 (10101B) become the five high-order bits of the register address. The three low-order bits of the register  
address (011) are provided by the three low-order bits of the 8-bit instruction address. The five address bits from  
RP1 and the three address bits from the instruction are concatenated to form the complete register address,  
0ABH (10101011B).  
RP0  
RP1  
Selects  
RP0 or RP1  
Address  
These address  
bits indicate 8-bit  
working register  
addressing  
8-bit logical  
address  
1
1
0
0
Register pointer  
provides five  
Three low-order bits  
high-order bits  
8-bit physical address  
Figure 2-13. 8-Bit Working Register Addressing  
2-16  
S3C830A/P830A  
ADDRESS SPACES  
RP0  
0 1 1 0 0  
RP1  
1 0 1 0 1  
0 0 0  
0 0 0  
Selects RP1  
R11  
8-bit address  
form instruction  
'LD R11, R2'  
Register  
address  
(0ABH)  
1 1 0 0  
1
0 1 1  
1 0 1 0 1  
0 1 1  
Specifies working  
register addressing  
Figure 2-14. 8-Bit Working Register Addressing Example  
2-17  
ADDRESS SPACES  
S3C830A/P830A  
SYSTEM AND USER STACK  
The S3C8-series microcontrollers use the system stack for data storage, subroutine calls and returns. The PUSH  
and POP instructions are used to control system stack operations. The S3C830A architecture supports stack  
operations in the internal register file.  
Stack Operations  
Return addresses for procedure calls, interrupts, and data are stored on the stack. The contents of the PC are  
saved to stack by a CALL instruction and restored by the RET instruction. When an interrupt occurs, the contents  
of the PC and the FLAGS register are pushed to the stack. The IRET instruction then pops these values back to  
their original locations. The stack address value is always decreased by one before a push operation and  
increased by one after a pop operation. The stack pointer (SP) always points to the stack frame stored on the top  
of the stack, as shown in Figure 2-15.  
High Address  
PCL  
PCL  
PCH  
Top of  
PCH  
Top of  
stack  
stack  
Flags  
Stack contents  
after a call  
Stack contents  
after an  
instruction  
interrupt  
Low Address  
Figure 2-15. Stack Operations  
User-Defined Stacks  
You can freely define stacks in the internal register file as data storage locations. The instructions PUSHUI,  
PUSHUD, POPUI, and POPUD support user-defined stack operations.  
Stack Pointers (SPL, SPH)  
Register locations D8H and D9H contain the 16-bit stack pointer (SP) that is used for system stack operations.  
The most significant byte of the SP address, SP15–SP8, is stored in the SPH register (D8H), and the least  
significant byte, SP7–SP0, is stored in the SPL register (D9H). After a reset, the SP value is undetermined.  
Because only internal memory space is implemented in the S3C830A, the SPL must be initialized to an 8-bit  
value in the range 00H–FFH. The SPH register is not needed and can be used as a general-purpose register, if  
necessary.  
When the SPL register contains the only stack pointer value (that is, when it points to a system stack in the  
register file), you can use the SPH register as a general-purpose data register. However, if an overflow or  
underflow condition occurs as a result of increasing or decreasing the stack address value in the SPL register  
during normal stack operations, the value in the SPL register will overflow (or underflow) to the SPH register,  
overwriting any other data that is currently stored there. To avoid overwriting data in the SPH register, you can  
initialize the SPL value to "FFH" instead of "00H".  
2-18  
S3C830A/P830A  
ADDRESS SPACES  
+
PROGRAMMING TIP — Standard Stack Operations Using PUSH and POP  
The following example shows you how to perform stack operations in the internal register file using PUSH and  
POP instructions:  
LD  
SPL,#0FFH  
; SPL ¬ FFH  
; (Normally, the SPL is set to 0FFH by the initialization  
; routine)  
PUSH  
PUSH  
PUSH  
PUSH  
PP  
; Stack address 0FEH ¬ PP  
; Stack address 0FDH ¬ RP0  
; Stack address 0FCH ¬ RP1  
; Stack address 0FBH ¬ R3  
RP0  
RP1  
R3  
POP  
POP  
POP  
POP  
R3  
; R3 ¬ Stack address 0FBH  
; RP1 ¬ Stack address 0FCH  
; RP0 ¬ Stack address 0FDH  
; PP ¬ Stack address 0FEH  
RP1  
RP0  
PP  
2-19  
ADDRESS SPACES  
S3C830A/P830A  
NOTES  
2-20  
S3C830A/P830A  
ADDRESSING MODES  
3
ADDRESSING MODES  
OVERVIEW  
Instructions that are stored in program memory are fetched for execution using the program counter. Instructions  
indicate the operation to be performed and the data to be operated on. Addressing mode is the method used to  
determine the location of the data operand. The operands specified in SAM88RC instructions may be condition  
codes, immediate data, or a location in the register file, program memory, or data memory.  
The S3C8-series instruction set supports seven explicit addressing modes. Not all of these addressing modes are  
available for each instruction. The seven addressing modes and their symbols are:  
— Register (R)  
— Indirect Register (IR)  
— Indexed (X)  
— Direct Address (DA)  
— Indirect Address (IA)  
— Relative Address (RA)  
— Immediate (IM)  
3-1  
ADDRESSING MODES  
S3C830A/P830A  
REGISTER ADDRESSING MODE (R)  
In Register addressing mode (R), the operand value is the content of a specified register or register pair  
(see Figure 3-1).  
Working register addressing differs from Register addressing in that it uses a register pointer to specify an 8-byte  
working register space in the register file and an 8-bit register within that space (see Figure 3-2).  
Program Memory  
Register File  
OPERAND  
8-bit Register  
File Address  
dst  
Point to One  
Register in Register  
File  
OPCODE  
One-Operand  
Instruction  
(Example)  
Value used in  
Instruction Execution  
Sample Instruction:  
DEC  
CNTR  
;
Where CNTR is the label of an 8-bit register address  
Figure 3-1. Register Addressing  
Register File  
RP0 or RP1  
MSB Point to  
RP0 or RP1  
Selected  
RP points  
to start  
Program Memory  
of working  
register  
block  
4-bit  
Working Register  
3 LSBs  
dst  
src  
Point to the  
Working Register  
(1 of 8)  
OPCODE  
OPERAND  
Two-Operand  
Instruction  
(Example)  
Sample Instruction:  
ADD R1, R2  
;
Where R1 and R2 are registers in the curruntly  
selected working register area.  
Figure 3-2. Working Register Addressing  
3-2  
S3C830A/P830A  
ADDRESSING MODES  
INDIRECT REGISTER ADDRESSING MODE (IR)  
In Indirect Register (IR) addressing mode, the content of the specified register or register pair is the address of  
the operand. Depending on the instruction used, the actual address may point to a register in the register file, to  
program memory (ROM), or to an external memory space (see Figures 3-3 through 3-6).  
You can use any 8-bit register to indirectly address another register. Any 16-bit register pair can be used to  
indirectly address another memory location. Please note, however, that you cannot access locations C0H–FFH in  
set 1 using the Indirect Register addressing mode.  
Program Memory  
Register File  
ADDRESS  
8-bit Register  
File Address  
dst  
Point to One  
Register in Register  
File  
OPCODE  
One-Operand  
Instruction  
(Example)  
Address of Operand  
used by Instruction  
OPERAND  
Value used in  
Instruction Execution  
Sample Instruction:  
RL  
@SHIFT  
;
Where SHIFT is the label of an 8-bit register address  
Figure 3-3. Indirect Register Addressing to Register File  
3-3  
ADDRESSING MODES  
S3C830A/P830A  
INDIRECT REGISTER ADDRESSING MODE (Continued)  
Register File  
Program Memory  
Example  
REGISTER  
PAIR  
dst  
Instruction  
References  
Program  
Points to  
Register Pair  
OPCODE  
16-Bit  
Memory  
Address  
Points to  
Program  
Memory  
Program Memory  
OPERAND  
Sample Instructions:  
Value used in  
Instruction  
CALL  
JP  
@RR2  
@RR2  
Figure 3-4. Indirect Register Addressing to Program Memory  
3-4  
S3C830A/P830A  
ADDRESSING MODES  
INDIRECT REGISTER ADDRESSING MODE (Continued)  
Register File  
MSB Points to  
RP0 or RP1  
RP0 or RP1  
Selected  
RP points  
to start fo  
working register  
block  
Program Memory  
~
~
~
~
4-bit  
Working  
Register  
Address  
3 LSBs  
dst  
src  
Point to the  
Working Register  
(1 of 8)  
ADDRESS  
OPERAND  
OPCODE  
Sample Instruction:  
OR R3, @R6  
Value used in  
Instruction  
Figure 3-5. Indirect Working Register Addressing to Register File  
3-5  
ADDRESSING MODES  
S3C830A/P830A  
INDIRECT REGISTER ADDRESSING MODE (Concluded)  
Register File  
RP0 or RP1  
MSB Points to  
RP0 or RP1  
Selected  
RP points  
to start of  
working  
register  
block  
Program Memory  
4-bit Working  
Register Address  
dst  
src  
Register  
Pair  
Next 2-bit Point  
to Working  
Register Pair  
(1 of 4)  
OPCODE  
Example Instruction  
References either  
Program Memory or  
Data Memory  
16-Bit  
address  
points to  
program  
memory  
or data  
Program Memory  
or  
Data Memory  
LSB Selects  
memory  
Value used in  
Instruction  
OPERAND  
Sample Instructions:  
LDC  
LDE  
LDE  
R5,@RR6  
R3,@RR14  
@RR4, R8  
;
;
;
Program memory access  
External data memory access  
External data memory access  
Figure 3-6. Indirect Working Register Addressing to Program or Data Memory  
3-6  
S3C830A/P830A  
ADDRESSING MODES  
INDEXED ADDRESSING MODE (X)  
Indexed (X) addressing mode adds an offset value to a base address during instruction execution in order to  
calculate the effective operand address (see Figure 3-7). You can use Indexed addressing mode to access  
locations in the internal register file or in external memory. Please note, however, that you cannot access  
locations C0H–FFH in set 1 using Indexed addressing mode.  
In short offset Indexed addressing mode, the 8-bit displacement is treated as a signed integer in the range –128  
to +127. This applies to external memory accesses only (see Figure 3-8.)  
For register file addressing, an 8-bit base address provided by the instruction is added to an 8-bit offset contained  
in a working register. For external memory accesses, the base address is stored in the working register pair  
designated in the instruction. The 8-bit or 16-bit offset given in the instruction is then added to that base address  
(see Figure 3-9).  
The only instruction that supports Indexed addressing mode for the internal register file is the Load instruction  
(LD). The LDC and LDE instructions support Indexed addressing mode for internal program memory and for  
external data memory, when implemented.  
Register File  
RP0 or RP1  
~
~
~
~
Selected RP  
points to  
start of  
working  
register  
block  
Value used in  
Instruction  
OPERAND  
+
Program Memory  
Base Address  
3 LSBs  
Two-Operand  
Instruction  
Example  
dst/src  
x
INDEX  
Point to One of the  
Woking Register  
(1 of 8)  
OPCODE  
Sample Instruction:  
LD R0, #BASE[R1]  
;
Where BASE is an 8-bit immediate value  
Figure 3-7. Indexed Addressing to Register File  
3-7  
ADDRESSING MODES  
S3C830A/P830A  
INDEXED ADDRESSING MODE (Continued)  
Register File  
RP0 or RP1  
MSB Points to  
RP0 or RP1  
Selected  
RP points  
to start of  
working  
register  
block  
~
~
Program Memory  
OFFSET  
NEXT 2 Bits  
4-bit Working  
Register Address  
dst/src  
OPCODE  
Register  
Pair  
x
Point to Working  
Register Pair  
(1 of 4)  
16-Bit  
address  
added to  
offset  
Program Memory  
or  
LSB Selects  
Data Memory  
+
16-Bits  
8-Bits  
Value used in  
Instruction  
OPERAND  
16-Bits  
Sample Instructions:  
LDC  
LDE  
R4, #04H[RR2]  
R4,#04H[RR2]  
;
;
The values in the program address (RR2 + 04H)  
are loaded into register R4.  
Identical operation to LDC example, except that  
external program memory is accessed.  
Figure 3-8. Indexed Addressing to Program or Data Memory with Short Offset  
3-8  
S3C830A/P830A  
ADDRESSING MODES  
INDEXED ADDRESSING MODE (Concluded)  
Register File  
RP0 or RP1  
MSB Points to  
RP0 or RP1  
Selected  
RP points  
to start of  
working  
register  
block  
Program Memory  
~
~
OFFSET  
OFFSET  
NEXT 2 Bits  
4-bit Working  
Register Address  
Register  
Pair  
dst/src  
src  
Point to Working  
Register Pair  
OPCODE  
16-Bit  
address  
added to  
offset  
Program Memory  
or  
LSB Selects  
Data Memory  
+
16-Bits  
8-Bits  
Value used in  
Instruction  
OPERAND  
16-Bits  
Sample Instructions:  
LDC  
LDE  
R4, #1000H[RR2]  
R4,#1000H[RR2]  
;
;
The values in the program address (RR2 + 1000H)  
are loaded into register R4.  
Identical operation to LDC example, except that  
external program memory is accessed.  
Figure 3-9. Indexed Addressing to Program or Data Memory  
3-9  
ADDRESSING MODES  
S3C830A/P830A  
DIRECT ADDRESS MODE (DA)  
In Direct Address (DA) mode, the instruction provides the operand's 16-bit memory address. Jump (JP) and Call  
(CALL) instructions use this addressing mode to specify the 16-bit destination address that is loaded into the PC  
whenever a JP or CALL instruction is executed.  
The LDC and LDE instructions can use Direct Address mode to specify the source or destination address for  
Load operations to program memory (LDC) or to external data memory (LDE), if implemented.  
Program or  
Data Memory  
Memory  
Address  
Used  
Program Memory  
Upper Address Byte  
Lower Address Byte  
dst/src "0" or "1"  
OPCODE  
LSB Selects Program  
Memory or Data Memory:  
"0" = Program Memory  
"1" = Data Memory  
Sample Instructions:  
LDC  
LDE  
R5,1234H  
R5,1234H  
;
;
The values in the program address (1234H)  
are loaded into register R5.  
Identical operation to LDC example, except that  
external program memory is accessed.  
Figure 3-10. Direct Addressing for Load Instructions  
3-10  
S3C830A/P830A  
ADDRESSING MODES  
DIRECT ADDRESS MODE (Continued)  
Program Memory  
Next OPCODE  
Memory  
Address  
Used  
Upper Address Byte  
Lower Address Byte  
OPCODE  
Sample Instructions:  
JP  
C,JOB1  
;
;
Where JOB1 is a 16-bit immediate address  
Where DISPLAY is a 16-bit immediate address  
CALL DISPLAY  
Figure 3-11. Direct Addressing for Call and Jump Instructions  
3-11  
ADDRESSING MODES  
S3C830A/P830A  
INDIRECT ADDRESS MODE (IA)  
In Indirect Address (IA) mode, the instruction specifies an address located in the lowest 256 bytes of the program  
memory. The selected pair of memory locations contains the actual address of the next instruction to be  
executed. Only the CALL instruction can use the Indirect Address mode.  
Because the Indirect Address mode assumes that the operand is located in the lowest 256 bytes of program  
memory, only an 8-bit address is supplied in the instruction; the upper bytes of the destination address are  
assumed to be all zeros.  
Program Memory  
Next Instruction  
LSB Must be Zero  
dst  
Current  
OPCODE  
Instruction  
Lower Address Byte  
Upper Address Byte  
Program Memory  
Locations 0-255  
Sample Instruction:  
CALL #40H  
;
The 16-bit value in program memory addresses 40H  
and 41H is the subroutine start address.  
Figure 3-12. Indirect Addressing  
3-12  
S3C830A/P830A  
ADDRESSING MODES  
RELATIVE ADDRESS MODE (RA)  
In Relative Address (RA) mode, a twos-complement signed displacement between – 128 and + 127 is specified  
in the instruction. The displacement value is then added to the current PC value. The result is the address of the  
next instruction to be executed. Before this addition occurs, the PC contains the address of the instruction  
immediately following the current instruction.  
Several program control instructions use the Relative Address mode to perform conditional jumps. The  
instructions that support RA addressing are BTJRF, BTJRT, DJNZ, CPIJE, CPIJNE, and JR.  
Program Memory  
Next OPCODE  
Program Memory  
Address Used  
Current  
PC Value  
+
Displacement  
OPCODE  
Current Instruction  
Signed  
Displacement Value  
Sample Instructions:  
JR  
ULT,$+OFFSET  
;
Where OFFSET is a value in the range +127 to -128  
Figure 3-13. Relative Addressing  
3-13  
ADDRESSING MODES  
S3C830A/P830A  
IMMEDIATE MODE (IM)  
In Immediate (IM) addressing mode, the operand value used in the instruction is the value supplied in the  
operand field itself. The operand may be one byte or one word in length, depending on the instruction used.  
Immediate addressing mode is useful for loading constant values into registers.  
Program Memory  
OPERAND  
OPCODE  
(The Operand value is in the instruction)  
Sample Instruction:  
LD  
R0,#0AAH  
Figure 3-14. Immediate Addressing  
3-14  
S3C830A/P830A  
CONTROL REGISTER  
4
CONTROL REGISTERS  
OVERVIEW  
In this chapter, detailed descriptions of the S3C830A control registers are presented in an easy-to-read format.  
You can use this chapter as a quick-reference source when writing application programs. Figure 4-1 illustrates  
the important features of the standard register description format.  
Control register descriptions are arranged in alphabetical order according to register mnemonic. More detailed  
information about control registers is presented in the context of the specific peripheral hardware descriptions in  
Part II of this manual.  
Data and counter registers are not described in detail in this reference chapter. More information about all of the  
registers used by a specific peripheral is presented in the corresponding peripheral descriptions in Part II of this  
manual.  
The locations and read/write characteristics of all mapped registers in the S3C830A register file are listed in  
Table 4-1. The hardware reset value for each mapped register is described in Chapter 8, “RESET and Power-  
Down."  
Table 4-1. Set 1 Registers  
Register Name  
Mnemonic  
Address  
Decimal Hex  
Locations D0H-D2H are not mapped.  
R/W  
RESET Values (bit)  
7
6
5
4
3
2
1
0
Basic timer control register  
System clock control register  
System flags register  
BTCON  
CLKCON  
FLAGS  
RP0  
211  
212  
213  
214  
215  
216  
217  
218  
219  
220  
221  
222  
223  
D3H  
D4H  
D5H  
D6H  
D7H  
D8H  
D9H  
DAH  
DBH  
DCH  
DDH  
DEH  
DFH  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
0
0
x
1
1
x
x
x
x
0
x
0
0
0
0
x
1
1
x
x
x
x
0
x
0
0
0
x
0
0
x
x
x
x
0
x
0
0
0
x
0
0
x
x
x
x
0
x
x
0
0
0
x
0
1
x
x
x
x
0
x
x
0
0
0
x
x
x
x
x
0
x
x
0
0
0
0
x
x
x
x
0
x
0
0
0
0
0
x
x
x
x
0
x
0
0
Register pointer 0  
Register pointer 1  
RP1  
Stack pointer (high byte)  
Stack pointer (low byte)  
Instruction pointer (high byte)  
Instruction pointer (low byte)  
Interrupt request register  
Interrupt mask register  
System mode register  
Register page pointer  
SPH  
SPL  
IPH  
IPL  
IRQ  
IMR  
R/W  
R/W  
R/W  
SYM  
PP  
4-1  
CONTROL REGISTERS  
Register Name  
S3C830A/P830A  
Table 4-2. Set 1, Bank 0 Registers  
Mnemonic  
Address  
Decimal  
R/W  
RESET Values (bit)  
Hex  
E0H  
E1H  
E2H  
E3H  
E4H  
E5H  
E6H  
7
0
1
0
0
1
0
6
0
1
0
0
1
0
5
0
1
0
0
1
0
4
0
1
0
0
1
0
3
0
1
0
0
1
0
2
0
1
0
0
1
0
1
0
1
0
0
1
0
0
0
0
1
0
0
1
0
0
Timer 0 counter register  
Timer 0 data register  
T0CNT  
T0DATA  
T0CON  
T1CNT  
224  
225  
226  
227  
228  
229  
230  
R
R/W  
R/W  
R
Timer 0 control register  
Timer 1 counter register  
Timer 1 data register  
T1DATA  
T1CON  
INTPND  
R/W  
R/W  
R/W  
Timer 1 control register  
Interrupt pending register  
Location E7H is not mapped.  
Watch timer control register  
SIO 0 control register  
SIO 0 data register  
WTCON  
SIO0CON  
SIO0DATA  
SIO0PS  
SIO1CON  
SIO1DATA  
SIO1PS  
ADCON  
ADDATA  
LCON  
232  
233  
234  
235  
236  
237  
238  
239  
240  
241  
242  
243  
244  
245  
246  
247  
248  
249  
E8H  
E9H  
EAH  
EBH  
ECH  
EDH  
EEH  
EFH  
F0H  
F1H  
F2H  
F3H  
F4H  
F5H  
F6H  
F7H  
F8H  
F9H  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
0
0
0
0
0
0
0
0
x
0
0
0
0
x
x
0
0
0
0
0
0
0
0
x
0
0
0
0
x
x
0
0
0
0
0
0
0
0
x
0
0
0
0
x
x
0
0
0
0
0
0
0
0
x
0
0
0
0
x
x
0
0
0
0
0
0
0
0
x
0
0
0
0
0
x
x
0
0
0
0
0
0
0
0
x
0
0
0
0
0
x
x
0
0
0
0
0
0
0
0
x
0
0
0
0
0
x
x
0
0
0
0
0
0
0
0
x
0
0
0
0
0
x
x
SIO 0 prescaler register  
SIO 1 control register  
SIO 1 data register  
SIO 1 prescaler register  
A/D converter control register  
A/D converter data register  
LCD control register  
LCD mode register  
R/W  
R/W  
R/W  
R
LMOD  
IF counter mode register  
IF counter 1  
IFMOD  
IFCNT1  
IFCNT0  
PLLD1  
IF counter 0  
R
PLL data register 1  
R/W  
R/W  
(note)  
(note)  
PLL data register 0  
PLLD0  
(note)  
PLL mode register  
PLLMOD  
PLLREF  
(note)  
PLL reference frequency register  
Location FAH is not mapped.  
STPCON 251 FBH  
Location FCH is not mapped.  
BTCNT 253 FDH  
Location FEH is not mapped.  
IPR 255 FFH  
STOP control register  
Basic timer counter  
R/W  
R/W  
R/W  
0
0
x
0
0
x
0
0
x
0
0
x
0
0
x
0
0
x
0
0
x
0
0
x
Interrupt priority register  
NOTE: Refer to the corresponding register in this chapter.  
4-2  
S3C830A/P830A  
CONTROL REGISTER  
Table 4-3. Set 1, Bank 1 Registers  
Register Name  
Mnemonic  
Address  
Decimal  
R/W  
RESET Values (bit)  
Hex  
E0H  
E1H  
E2H  
7
0
0
0
6
0
0
0
5
0
0
0
4
0
0
0
3
0
0
0
2
0
0
0
1
0
0
0
0
0
0
0
Port 0 control register (high byte)  
Port 0 control register (low byte)  
P0CONH  
P0CONL  
P0PUR  
224  
225  
226  
R/W  
R/W  
R/W  
Port 0 pull-up resistors enable  
register  
Location E3H is not mapped.  
Port 1 control register (high byte)  
Port 1 control register (low byte)  
Port 1 interrupt control register  
Port 1 interrupt pending register  
Port 2 control register (high byte)  
Port 2 control register (low byte)  
Port 3 control register (high byte)  
Port 3 control register (low byte)  
P1CONH  
P1CONL  
P1INT  
228  
229  
230  
231  
232  
233  
234  
235  
236  
E4H  
E5H  
E6H  
E7H  
E8H  
E9H  
EAH  
EBH  
ECH  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
P1PND  
P2CONH  
P2CONL  
P3CONH  
P3CONL  
P3PUR  
Port 3 pull-up resistors enable  
register  
Port group 0 control register  
Port group 1 control register  
Port group 2 control register  
Port 0 data register  
PG0CON  
237  
238  
239  
240  
241  
242  
243  
244  
245  
246  
247  
248  
EDH  
EEH  
EFH  
F0H  
F1H  
F2H  
F3H  
F4H  
F5H  
F6H  
F7H  
F8H  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
PG1CON  
PG2CON  
P0  
Port 1 data register  
P1  
Port 2 data register  
P2  
Port 3 data register  
P3  
Port 4 data register  
P4  
Port 5 data register  
P5  
Port 6 data register  
P6  
Port 7 data register  
P7  
Port 8 data register  
P8  
Location F9H is not mapped.  
Timer 2 counter (high byte)  
Timer 2 counter (low byte)  
Timer 2 data register (high byte)  
Timer 2 data register (low byte)  
Timer 2 control register  
T2CNTH  
T2CNTL  
T2DATAH  
T2DATAL  
T2CON  
250  
251  
252  
253  
254  
FAH  
FBH  
FCH  
FDH  
FEH  
R
0
0
1
1
0
0
0
1
1
0
0
0
1
1
0
0
0
1
1
0
0
0
1
1
0
0
0
1
1
0
0
0
1
1
0
0
0
1
1
0
R
R/W  
R/W  
R/W  
Location FFH is not mapped.  
4-3  
CONTROL REGISTERS  
S3C830A/P830A  
Bit number(s) that is/are appended to  
the register name for bit addressing  
Name of individual  
bit or related bits  
Register location  
in the internal  
register file  
Register address  
(hexadecimal)  
Register ID  
Register name  
FLAGS  
-
System Flags Register  
D5H  
Set 1  
Bit Identifier  
RESET Value  
Read/Write  
Bit Addressing  
Mode  
.7  
x
.6  
x
.5  
x
.4  
x
.3  
x
.2  
.1  
.0  
0
x
x
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Register addressing mode only  
.7  
Carry Flag (C)  
Operation does not generate a carry or borrow condition  
Operation generates carry-out or borrow into high-order bit 7  
0
0
.6  
.5  
Zero Flag (Z)  
Operation result is a non-zero value  
Operation result is zero  
0
0
Sign Flag (S)  
Operation generates positive number (MSB = "0")  
0
0
Operation generates negative number (MSB = "1")  
R = Read-only  
W = Write-only  
R/W = Read/write  
'-' = Not used  
Description of the  
effect of specific  
bit settings  
Bit number:  
MSB = Bit 7  
LSB = Bit 0  
Type of addressing  
that must be used to  
address the bit  
RESET value notation:  
'-' = Not used  
'x' = Undetermined value  
'0' = Logic zero  
(1-bit, 4-bit, or 8-bit)  
'1' = Logic one  
Figure 4-1. Register Description Format  
4-4  
S3C830A/P830A  
CONTROL REGISTER  
ADCON — A/D Converter Control Register  
EFH  
Set 1, Bank 0  
Bit Identifier  
.7  
.6  
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
RESET Value  
Read/Write  
R/W  
R/W  
R
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing mode only  
.7–.6  
.5–.4  
Not used for the S3C830A  
A/D Input Pin Selection Bits  
0
0
1
1
0
1
0
1
AD0 (P2.0)  
AD1 (P2.1)  
AD2 (P2.2)  
AD3 (P2.3)  
.3  
End-of-Conversion Bit (read-only)  
0
1
Conversion not complete  
Conversion complete  
.2–.1  
Clock Source Selection Bits  
0
0
1
1
0
1
0
1
fxx/16  
fxx/8  
fxx/4  
fxx  
.0  
Start or Enable Bit  
0
1
Disable operation  
Start operation (automatically disable operation after conversion complete).  
4-5  
CONTROL REGISTERS  
S3C830A/P830A  
BTCON — Basic Timer Control Register  
D3H  
Set 1  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
.0  
0
0
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing mode only  
.7–.4  
.3–.2  
Watchdog Timer Function Disable Code (for System Reset)  
1
0
1
0
Disable watchdog timer function  
Enable watchdog timer function  
Others  
Basic Timer Input Clock Selection Bits  
fxx/4096 (3)  
fxx/1024  
fxx/128  
0
0
1
1
0
1
0
1
fxx/16  
Basic Timer Counter Clear Bit (1)  
.1  
0
1
No effect  
Clear the basic timer counter value  
Clock Frequency Divider Clear Bit for all timers (2)  
.0  
0
1
No effect  
Clear both clock frequency dividers  
NOTES:  
1. When you write a “1” to BTCON.1, the basic timer counter value is cleared to “00H”. Immediately following the write  
operation, the BTCON.1 value is automatically cleared to “0”.  
2. When you write a “1” to BTCON.0, the corresponding frequency divider is cleared to “00H”. Immediately following the  
write operation, the BTCON.0 value is automatically cleared to “0”.  
3. The fxx is selected clock for system (main OSC. only for S3C830A).  
4-6  
S3C830A/P830A  
CONTROL REGISTER  
CLKCON— System Clock Control Register  
D4H  
Set 1  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing mode only  
.7  
Oscillator IRQ Wake-up Function Bit  
0
1
Enable IRQ for main wake-up in power down mode  
Disable IRQ for main wake-up in power down mode  
.6–.5  
.4–.3  
Not used for the S3C830A  
CPU Clock (System Clock) Selection Bits (note)  
0
0
1
1
0
1
0
1
fxx/16  
fxx/8  
fxx/2  
fxx  
.2–.0  
Not used for the S3C830A  
NOTE: After a reset, the slowest clock (divided by 16) is selected as the system clock. To select faster clock speeds, load  
the appropriate values to CLKCON.3 and CLKCON.4.  
4-7  
CONTROL REGISTERS  
S3C830A/P830A  
FLAGS— System Flags Register  
D5H  
Set 1  
Bit Identifier  
.7  
x
.6  
x
.5  
x
.4  
x
.3  
x
.2  
x
.1  
0
.0  
0
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
R/W  
Addressing Mode  
Register addressing mode only  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
Carry Flag (C)  
0
1
Operation does not generate a carry or borrow condition  
Operation generates a carry-out or borrow into high-order bit 7  
Zero Flag (Z)  
0
1
Operation result is a non-zero value  
Operation result is zero  
Sign Flag (S)  
0
1
Operation generates a positive number (MSB = "0")  
Operation generates a negative number (MSB = "1")  
Overflow Flag (V)  
0
1
Operation result is £ +127 or ³ –128  
Operation result is > +127 or < –128  
Decimal Adjust Flag (D)  
0
1
Add operation completed  
Subtraction operation completed  
Half-Carry Flag (H)  
0
1
No carry-out of bit 3 or no borrow into bit 3 by addition or subtraction  
Addition generated carry-out of bit 3 or subtraction generated borrow into bit 3  
Fast Interrupt Status Flag (FIS)  
0
1
Interrupt return (IRET) in progress (when read)  
Fast interrupt service routine in progress (when read)  
Bank Address Selection Flag (BA)  
0
1
Bank 0 is selected  
Bank 1 is selected  
4-8  
S3C830A/P830A  
CONTROL REGISTER  
IFMOD— IF Counter Mode Register  
F3H  
Set 1, Bank 0  
Bit Identifier  
.7  
.6  
.5  
.4  
.3  
0
.2  
0
.1  
0
.0  
0
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing mode only  
.7–.4  
.3–.2  
Not used for the S3C830A  
Interrupt Sampling Clock Selection Bits  
0
0
1
1
0
1
0
1
IFC is disabled; FMIF/AMIF are pulled down and FMIF/AMIF's feed-back  
resistor are off.  
Enable IFC operation; AMIF pin is selected; FMIF is pulled down and  
FMIF's feed-back resistor is off.  
Enable IFC operation; FMIF pin is selected; AMIF is pulled down and  
AMIF's feed-back resistor is off.  
Enable IFC operation; Both AMIF and FMIF are selected.  
.1–.0  
Gate Time Selection Bits  
0
0
1
1
0
1
0
1
Gate opens in 1-millisecond intervals  
Gate opens in 4-millisecond intervals  
Gate opens in 8-millisecond intervals  
Gate remains open continuously  
4-9  
CONTROL REGISTERS  
S3C830A/P830A  
IMR— Interrupt Mask Register  
DDH  
Set 1  
Bit Identifier  
.7  
x
.6  
x
.5  
x
.4  
x
.3  
x
.2  
x
.1  
.0  
x
x
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing mode only  
.7  
.6  
.5  
.4  
.3  
Interrupt Level 7 (IRQ7) Enable Bit; IF Interrupt  
Disable (mask)  
0
1
Enable (unmask)  
Interrupt Level 6 (IRQ6) Enable Bit; CE Interrupt  
Disable (mask)  
0
1
Enable (unmask)  
Interrupt Level 5 (IRQ5) Enable Bit; P1.4-P1.7  
0
1
Disable (mask)  
Enable (unmask)  
Interrupt Level 4 (IRQ4) Enable Bit; P1.0-P1.3  
0
1
Disable (mask)  
Enable (unmask)  
Interrupt Level 3 (IRQ3) Enable Bit; Watch Timer  
0
1
Disable (mask)  
Enable (unmask)  
.2  
.1  
.0  
Interrupt Level 2 (IRQ2) Enable Bit; SIO 0, SIO 1 Interrupt  
0
1
Disable (mask)  
Enable (unmask)  
Interrupt Level 1 (IRQ1) Enable Bit; Timer 1, Timer 2 Interrupt  
0
1
Disable (mask)  
Enable (unmask)  
Interrupt Level 0 (IRQ0) Enable Bit; Timer 0 Match/Capture or Overflow  
0
1
Disable (mask)  
Enable (unmask)  
NOTE: When an interrupt level is masked, any interrupt requests that may be issued are not recognized by the CPU.  
4-10  
S3C830A/P830A  
CONTROL REGISTER  
INTPNDInterrupt Pending Register  
E6H  
Set 1, Bank 0  
Bit Identifier  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
0
.0  
0
RESET Value  
Read/Write  
R/W  
R/W  
Addressing Mode  
Register addressing mode only  
.7–.2  
.1  
Not used for the S3C830A  
Timer 0 Match/Capture Interrupt Pending Bit  
0
1
Interrupt request is not pending (when read), pending bit clear (when write 0)  
Interrupt request is pending  
.0  
Timer 0 Overflow Interrupt Pending Bit  
0
1
Interrupt request is not pending (when read), pending bit clear (when write 0)  
Interrupt request is pending  
4-11  
CONTROL REGISTERS  
S3C830A/P830A  
IPH— Instruction Pointer (High Byte)  
DAH  
Set 1  
Bit Identifier  
.7  
x
.6  
x
.5  
x
.4  
x
.3  
x
.2  
x
.1  
.0  
x
x
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing mode only  
.7–.0  
Instruction Pointer Address (High Byte)  
The high-byte instruction pointer value is the upper eight bits of the 16-bit instruction  
pointer address (IP15–IP8). The lower byte of the IP address is located in the IPL  
register (DBH).  
IPL— Instruction Pointer (Low Byte)  
DBH  
Set 1  
Bit Identifier  
.7  
x
.6  
x
.5  
x
.4  
x
.3  
x
.2  
x
.1  
x
.0  
x
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing mode only  
.7–.0  
Instruction Pointer Address (Low Byte)  
The low-byte instruction pointer value is the lower eight bits of the 16-bit instruction  
pointer address (IP7–IP0). The upper byte of the IP address is located in the IPH  
register (DAH).  
4-12  
S3C830A/P830A  
CONTROL REGISTER  
IPR— Interrupt Priority Register  
FFH  
Set 1, Bank 0  
Bit Identifier  
.7  
x
.6  
x
.5  
x
.4  
x
.3  
x
.2  
x
.1  
x
.0  
x
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing mode only  
Priority Control Bits for Interrupt Groups A, B, and C (note)  
.7, .4, and .1  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Group priority undefined  
B > C > A  
A > B > C  
B > A > C  
C > A > B  
C > B > A  
A > C > B  
Group priority undefined  
.6  
.5  
.3  
.2  
.0  
Interrupt Subgroup C Priority Control Bit  
0
1
IRQ6 > IRQ7  
IRQ7 > IRQ6  
Interrupt Group C Priority Control Bit  
0
1
IRQ5 > (IRQ6, IRQ7)  
(IRQ6, IRQ7) > IRQ5  
Interrupt Subgroup B Priority Control Bit  
0
1
IRQ3 > IRQ4  
IRQ4 > IRQ3  
Interrupt Group B Priority Control Bit  
0
1
IRQ2 > (IRQ3, IRQ4)  
(IRQ3, IRQ4) > IRQ2  
Interrupt Group A Priority Control Bit  
0
1
IRQ0 > IRQ1  
IRQ1 > IRQ0  
NOTE: Interrupt Group A - IRQ0, IRQ1  
Interrupt Group B - IRQ2, IRQ3, IRQ4  
Interrupt Group C - IRQ5, IRQ6, IRQ7  
4-13  
CONTROL REGISTERS  
S3C830A/P830A  
IRQ— Interrupt Request Register  
DCH  
Set 1  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
RESET Value  
Read/Write  
R
R
R
R
R
R
R
R
Addressing Mode  
Register addressing mode only  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
Level 7 (IRQ7) Request Pending Bit; IF Interrupt  
0
1
Not pending  
Pending  
Level 6 (IRQ6) Request Pending Bit; CE Interrupt  
0
1
Not pending  
Pending  
Level 5 (IRQ5) Request Pending Bit; P1.4-P1.7  
0
1
Not pending  
Pending  
Level 4 (IRQ4) Request Pending Bit; P1.0-P1.3  
0
1
Not pending  
Pending  
Level 3 (IRQ3) Request Pending Bit; Watch Timer  
0
1
Not pending  
Pending  
Level 2 (IRQ2) Request Pending Bit; SIO 0, SIO 1 Interrupt  
0
1
Not pending  
Pending  
Level 1 (IRQ1) Request Pending Bit; Timer 1, Timer 2 Interrupt  
0
1
Not pending  
Pending  
Level 0 (IRQ0) Request Pending Bit; Timer 0 Match/Capture or Overflow  
0
1
Not pending  
Pending  
4-14  
S3C830A/P830A  
CONTROL REGISTER  
LCON — LCD Control Register  
F1H  
Set 1, Bank 0  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing mode only  
.7  
LCD Output Control Bit  
0
1
LCD output is low and current to dividing resistors is cut off  
IF LMOD.3 = "0", LCD display is turned off  
IF LMOD.3 = "1", output COM and SEG signals in display mode  
.6–.4  
.3–.0  
Not used for the S3C830A  
LCD Port Selection Bit  
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
Select LCD SEG0-39  
Select LCD SEG0-35/P4.0-4.3 as I/O port  
Select LCD SEG0-31/P4 as I/O port  
Select LCD SEG0-27/P4, P5.0-5.3 as I/O port  
Select LCD SEG0-23/P4, P5 as I/O port  
Select LCD SEG0-19/P4, P5, P6.0-6.3 as I/O port  
Select LCD SEG0-15/P4, P5, P6 as I/O port  
Select LCD SEG0-11/P4, P5, P6, P7.0-7.3 as I/O port  
Select LCD SEG0-7/P4, P5, P6, P7 as I/O port  
Select LCD SEG0-3/P4, P5, P6, P7, P8.0-8.3 as I/O port  
All I/O port (P4-P8)  
4-15  
CONTROL REGISTERS  
S3C830A/P830A  
LMOD — LCD Mode Control Register  
F2H  
Set 1, Bank 0  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
.0  
0
0
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing mode only  
.7  
COM Signal Enable/Disable Bit  
0
1
Enable COM signal  
Disable COM signal  
.6  
LCD Voltage Dividing Resistor Control Bit  
0
1
Internal voltage dividing resistors  
External voltage dividing resistors; internal voltage dividing resistors are off  
.5–.4  
LCD Clock (LCDCK) Frequency Selection Bits  
0
0
1
1
0
1
0
1
62.5 Hz at fxx = 4.5 MHz  
125 Hz at fxx = 4.5 MHz  
250 Hz at fxx = 4.5 MHz  
500 Hz at fxx = 4.5 MHz  
.3–.0  
Duty and Bias Selection for LCD Display  
0
1
1
1
1
1
x
0
0
0
0
1
x
0
0
1
1
0
x
0
1
1
0
0
LCD display off (COM and SEG output low)  
1/4 duty, 1/3 bias  
1/3 duty, 1/3 bias  
1/3 duty, 1/2 bias  
1/2 duty, 1/2 bias  
Static  
4-16  
S3C830A/P830A  
CONTROL REGISTER  
P0CONH— Port 0 Control Register (High Byte)  
E0H  
Set 1, Bank 1  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing mode only  
.7–.6  
.5–.4  
.3–.2  
.1–.0  
P0.7/T2OUT  
0
0
1
1
0
1
0
1
Input mode  
Output mode, open-drain  
Alternative function (T2OUT)  
Output mode, push-pull  
P0.6/T2CLK  
0
0
1
1
0
1
0
1
Input mode (T2CLK)  
Output mode, open-drain  
Not available  
Output mode, push-pull  
P0.5/T1OUT  
0
0
1
1
0
1
0
1
Input mode  
Output mode, open-drain  
Alternative function (T1OUT)  
Output mode, push-pull  
P0.4/T1CLK  
0
0
1
1
0
1
0
1
Input mode (T1CLK)  
Output mode, open-drain  
Not available  
Output mode, push-pull  
4-17  
CONTROL REGISTERS  
S3C830A/P830A  
P0CONL— Port 0 Control Register (Low Byte)  
E1H  
Set 1, Bank 1  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
.0  
0
0
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing mode only  
.7–.6  
.5–.4  
.3–.2  
.1–.0  
P0.3/T0OUT/T0PWM  
0
0
1
1
0
1
0
1
Input mode  
Output mode, open-drain  
Alternative function (T0OUT, T0PWM)  
Output mode, push-pull  
P0.2/T0CAP  
0
0
1
1
0
1
0
1
Input mode (T0CAP)  
Output mode, open-drain  
Not available  
Output mode, push-pull  
P0.1/T0CLK  
0
0
1
1
0
1
0
1
Input mode (T0CLK)  
Output mode, open-drain  
Not available  
Output mode, push-pull  
P0.0  
0
0
1
1
0
1
0
1
Input mode  
Output mode, open-drain  
Not available  
Output mode, push-pull  
4-18  
S3C830A/P830A  
CONTROL REGISTER  
P0PUR— Port 0 Pull-up Control Register  
E2H  
Set 1, Bank 1  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing mode only  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
P0.7 Pull-up Resistor Enable Bit  
0
1
Pull-up disable  
Pull-up enable  
P0.6 Pull-up Resistor Enable Bit  
0
1
Pull-up disable  
Pull-up enable  
P0.5 Pull-up Resistor Enable Bit  
0
1
Pull-up disable  
Pull-up enable  
P0.4 Pull-up Resistor Enable Bit  
0
1
Pull-up disable  
Pull-up enable  
P0.3 Pull-up Resistor Enable Bit  
0
1
Pull-up disable  
Pull-up enable  
P0.2 Pull-up Resistor Enable Bit  
0
1
Pull-up disable  
Pull-up enable  
P0.1 Pull-up Resistor Enable Bit  
0
1
Pull-up disable  
Pull-up enable  
P0.0 Pull-up Resistor Enable Bit  
0
1
Pull-up disable  
Pull-up enable  
4-19  
CONTROL REGISTERS  
S3C830A/P830A  
P1CONH — Port 1 Control Register (High Byte)  
E4H  
Set 1, Bank 1  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
.0  
0
0
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing mode only  
.7–.6  
.5–.4  
.3–.2  
.1–.0  
P1.7/INT7  
0
0
1
1
0
1
0
1
Schmitt trigger input mode; pull-up; interrupt on falling edge  
Schmitt trigger input mode; interrupt on rising edge  
Schmitt trigger input mode; interrupt on rising or falling edge  
Output mode, push-pull  
P1.6/INT6  
0
0
1
1
0
1
0
1
Schmitt trigger input mode; pull-up; interrupt on falling edge  
Schmitt trigger input mode; interrupt on rising edge  
Schmitt trigger input mode; interrupt on rising or falling edge  
Output mode, push-pull  
P1.5/INT5  
0
0
1
1
0
1
0
1
Schmitt trigger input mode; pull-up; interrupt on falling edge  
Schmitt trigger input mode; interrupt on rising edge  
Schmitt trigger input mode; interrupt on rising or falling edge  
Output mode, push-pull  
P1.4/INT4  
0
0
1
1
0
1
0
1
Schmitt trigger input mode; pull-up; interrupt on falling edge  
Schmitt trigger input mode; interrupt on rising edge  
Schmitt trigger input mode; interrupt on rising or falling edge  
Output mode, push-pull  
4-20  
S3C830A/P830A  
CONTROL REGISTER  
P1CONL — Port 1 Control Register (Low Byte)  
E5H  
Set 1, Bank 1  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing mode only  
.7–.6  
.5–.4  
.3–.2  
.1–.0  
P1.3/INT3  
0
0
1
1
0
1
0
1
Schmitt trigger input mode; pull-up; interrupt on falling edge  
Schmitt trigger input mode; interrupt on rising edge  
Schmitt trigger input mode; interrupt on rising or falling edge  
Output mode, push-pull  
P1.2/INT2  
0
0
1
1
0
1
0
1
Schmitt trigger input mode; pull-up; interrupt on falling edge  
Schmitt trigger input mode; interrupt on rising edge  
Schmitt trigger input mode; interrupt on rising or falling edge  
Output mode, push-pull  
P1.1/INT1  
0
0
1
1
0
1
0
1
Schmitt trigger input mode; pull-up; interrupt on falling edge  
Schmitt trigger input mode; interrupt on rising edge  
Schmitt trigger input mode; interrupt on rising or falling edge  
Output mode, push-pull  
P1.0/INT0  
0
0
1
1
0
1
0
1
Schmitt trigger input mode; pull-up; interrupt on falling edge  
Schmitt trigger input mode; interrupt on rising edge  
Schmitt trigger input mode; interrupt on rising or falling edge  
Output mode, push-pull  
4-21  
CONTROL REGISTERS  
S3C830A/P830A  
P1INT — Port 1 Interrupt Control Register  
F6H  
Set 1, Bank 1  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
.0  
0
0
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing mode only  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
P1.7 External Interrupt (INT7) Enable Bit  
0
1
Disable interrupt  
Enable interrupt  
P1.6 External Interrupt (INT6) Enable Bit  
0
1
Disable interrupt  
Enable interrupt  
P1.5 External Interrupt (INT5) Enable Bit  
0
1
Disable interrupt  
Enable interrupt  
P1.4 External Interrupt (INT4) Enable Bit  
0
1
Disable interrupt  
Enable interrupt  
P1.3 External Interrupt (INT3) Enable Bit  
0
1
Disable interrupt  
Enable interrupt  
P1.2 External Interrupt (INT2) Enable Bit  
0
1
Disable interrupt  
Enable interrupt  
P1.1 External Interrupt (INT1) Enable Bit  
0
1
Disable interrupt  
Enable interrupt  
P1.0 External Interrupt (INT0) Enable Bit  
0
1
Disable interrupt  
Enable interrupt  
4-22  
S3C830A/P830A  
CONTROL REGISTER  
P1PND — Port 1 Interrupt Pending Register  
F7H  
Set 1, Bank 1  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing mode only  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
P1.7/INT7 Interrupt Pending Bit  
0
1
Interrupt request is not pending, pending bit clear when write 0  
Interrupt request is pending  
P1.6/INT6 Interrupt Pending Bit  
0
1
Interrupt request is not pending, pending bit clear when write 0  
Interrupt request is pending  
P1.5/INT5 Interrupt Pending Bit  
0
1
Interrupt request is not pending, pending bit clear when write 0  
Interrupt request is pending  
P1.4/INT4 Interrupt Pending Bit  
0
1
Interrupt request is not pending, pending bit clear when write 0  
Interrupt request is pending  
P1.3/INT3 Interrupt Pending Bit  
0
1
Interrupt request is not pending, pending bit clear when write 0  
Interrupt request is pending  
P1.2/INT2 Interrupt Pending Bit  
0
1
Interrupt request is not pending, pending bit clear when write 0  
Interrupt request is pending  
P1.1/INT1 Interrupt Pending Bit  
0
1
Interrupt request is not pending, pending bit clear when write 0  
Interrupt request is pending  
P1.0/INT0 Interrupt Pending Bit  
0
1
Interrupt request is not pending, pending bit clear when write 0  
Interrupt request is pending  
4-23  
CONTROL REGISTERS  
S3C830A/P830A  
P2CONH— Port 2 Control Register (High Byte)  
E8H  
Set 1, Bank 1  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
.0  
0
0
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing mode only  
.7–.6  
.5-.4  
.3–.2  
.1–.0  
P2.7  
0
0
1
1
0
1
0
1
Input mode  
Input mode, pull-up  
Not available  
Output mode, push-pull  
P2.6  
0
0
1
1
0
1
0
1
Input mode  
Input mode, pull-up  
Not available  
Output mode, push-pull  
P2.5  
0
0
1
1
0
1
0
1
Input mode  
Input mode, pull-up  
Not available  
Output mode, push-pull  
P2.4  
0
0
1
1
0
1
0
1
Input mode  
Input mode, pull-up  
Not available  
Output mode, push-pull  
4-24  
S3C830A/P830A  
CONTROL REGISTER  
P2CONL— Port 2 Control Register (Low Byte)  
E9H  
Set 1, Bank 1  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing mode only  
.7–.6  
.5–.4  
.3–.2  
.1–.0  
P2.3/AD3  
0
0
1
1
0
1
0
1
Input mode  
Input mode, pull-up  
Alternative function (ADC mode)  
Output mode, push-pull  
P2.2/AD2  
0
0
1
1
0
1
0
1
Input mode  
Input mode, pull-up  
Alternative function (ADC mode)  
Output mode, push-pull  
P2.1/AD1  
0
0
1
1
0
1
0
1
Input mode  
Input mode, pull-up  
Alternative function (ADC mode)  
Output mode, push-pull  
P2.0/AD0  
0
0
1
1
0
1
0
1
Input mode  
Input mode, pull-up  
Alternative function (ADC mode)  
Output mode, push-pull  
4-25  
CONTROL REGISTERS  
S3C830A/P830A  
P3CONH— Port 3 Control Register (High Byte)  
EAH  
Set 1, Bank 1  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
.0  
0
0
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing mode only  
.7–.6  
.5–.4  
.3–.2  
.1–.0  
P3.7  
0
0
1
1
0
1
0
1
Input mode  
Output mode, open-drain  
Not available  
Output mode, push-pull  
P3.6/SI1  
0
0
1
1
0
1
0
1
Input mode (SI1)  
Output mode, open-drain  
Not available  
Output mode, push-pull  
P3.5/SO1  
0
0
1
1
0
1
0
1
Input mode  
Output mode, open-drain  
Alternative function (SO1)  
Output mode, push-pull  
P3.4/SCK1  
0
0
1
1
0
1
0
1
Input mode (SCK1)  
Output mode, pull-up  
Alternative function (SCK1 out)  
Output mode, push-pull  
4-26  
S3C830A/P830A  
CONTROL REGISTER  
P3CONL— Port 3 Control Register (Low Byte)  
EBH  
Set 1, Bank 1  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing mode only  
.7–.6  
.5–.4  
.3–.2  
.1–.0  
P3.3/SI0  
0
0
1
1
0
1
0
1
Input mode (SI0)  
Output mode, open-drain  
Not available  
Output mode, push-pull  
P3.2/SO0  
0
0
1
1
0
1
0
1
Input mode  
Output mode, open-drain  
Alternative function (SO0)  
Output mode, push-pull  
P3.1/SCK0  
0
0
1
1
0
1
0
1
Input mode (SCK0)  
Output mode, open-drain  
Alternative function (SCK0 out)  
Output mode, push-pull  
P3.0/BUZ  
0
0
1
1
0
1
0
1
Input mode  
Output mode, open-drain  
Alternative function (BUZ)  
Output mode, push-pull  
4-27  
CONTROL REGISTERS  
S3C830A/P830A  
P3PUR— Port 3 Pull-up Control Register  
ECH  
Set 1, Bank 1  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
.0  
0
0
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing mode only  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
P3.7 Pull-up Resistor Enable Bit  
0
1
Pull-up disable  
Pull-up enable  
P3.6 Pull-up Resistor Enable Bit  
0
1
Pull-up disable  
Pull-up enable  
P3.5 Pull-up Resistor Enable Bit  
0
1
Pull-up disable  
Pull-up enable  
P3.4 Pull-up Resistor Enable Bit  
0
1
Pull-up disable  
Pull-up enable  
P3.3 Pull-up Resistor Enable Bit  
0
1
Pull-up disable  
Pull-up enable  
P3.2 Pull-up Resistor Enable Bit  
0
1
Pull-up disable  
Pull-up enable  
P3.1 Pull-up Resistor Enable Bit  
0
1
Pull-up disable  
Pull-up enable  
P3.0 Pull-up Resistor Enable Bit  
0
1
Pull-up disable  
Pull-up enable  
4-28  
S3C830A/P830A  
CONTROL REGISTER  
PG0CON— Port Group 0 Control Register  
EDH  
Set 1, Bank 1  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing mode only  
.7–.6  
.5–.4  
.3–.2  
.1–.0  
P4.0-P4.3/SEG39-36 Mode Selection Bits  
0
0
1
1
0
1
0
1
Input mode  
Input mode, pull-up  
Open-drain output mode  
Push-pull output mode  
P4.4-P4.7/SEG35-32 Mode Selection Bits  
0
0
1
1
0
1
0
1
Input mode  
Input mode, pull-up  
Open-drain output mode  
Push-pull output mode  
P5.0-P5.3/SEG31-28 Mode Selection Bits  
0
0
1
1
0
1
0
1
Input mode  
Input mode, pull-up  
Open-drain output mode  
Push-pull output mode  
P5.4-P5.7/SEG27-24 Mode Selection Bits  
0
0
1
1
0
1
0
1
Input mode  
Input mode, pull-up  
Open-drain output mode  
Push-pull output mode  
4-29  
CONTROL REGISTERS  
S3C830A/P830A  
PG1CON— Port Group 1 Control Register  
EEH  
Set 1, Bank 1  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
.0  
0
0
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing mode only  
.7–.6  
.5–.4  
.3–.2  
.1–.0  
P6.0-P6.3/SEG23-20 Mode Selection Bits  
0
0
1
1
0
1
0
1
Input mode  
Input mode, pull-up  
Open-drain output mode  
Push-pull output mode  
P6.4-P6.7/SEG19-16 Mode Selection Bits  
0
0
1
1
0
1
0
1
Input mode  
Input mode, pull-up  
Open-drain output mode  
Push-pull output mode  
P7.0-P7.3/SEG15-12 Mode Selection Bits  
0
0
1
1
0
1
0
1
Input mode  
Input mode, pull-up  
Open-drain output mode  
Push-pull output mode  
P7.4-P7.7/SEG11-8 Mode Selection Bits  
0
0
1
1
0
1
0
1
Input mode  
Input mode, pull-up  
Open-drain output mode  
Push-pull output mode  
4-30  
S3C830A/P830A  
CONTROL REGISTER  
PG2CON— Port Group 2 Control Register  
EFH  
Set 1, Bank 1  
Bit Identifier  
.7  
.6  
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing mode only  
Not used for the S3C830A  
P1.4-P1.7 Input Enable Bits  
.7–.6  
.5  
0
1
Port 1.4-1.7 input enable  
Port 1.4-1.7 input disable  
.4  
P1.0-P1.3 Input Enable Bits  
0
1
Port 1.0-1.3 input enable  
Port 1.0-1.3 input disable  
.3–.2  
P8.0-P8.3/SEG7-4 Mode Selection Bits  
0
0
1
1
0
1
0
1
Input mode  
Input mode, pull-up  
Open-drain output mode  
Push-pull output mode  
.1–.0  
P8.4-P8.7/SEG3-0 Mode Selection Bits  
0
0
1
1
0
1
0
1
Input mode  
Input mode, pull-up  
Open-drain output mode  
Push-pull output mode  
4-31  
CONTROL REGISTERS  
S3C830A/P830A  
PLLMOD— PLL Mode Register  
F8H  
Set 1, Bank 0  
Bit Identifier  
.7  
.6  
.5  
.4  
.3  
0
.2  
0
.1  
.0  
0
(note)  
(note)  
(note)  
0
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing mode only  
.7  
.6  
.5  
PLL Frequency Division Method Selection Flag  
0
1
Direct method for AM  
Pulse swallow method for FM  
PLL Enable/Disable Bit  
0
1
Disable PLL  
Enable PLL  
Bit Value to be Loaded into Swallow Counter  
NF bit is loaded into the LSB of swallow counter  
.4  
.3  
Not used for the S3C830A  
INTIF Interrupt Enable Bit  
0
1
Disable INTIF interrupt  
Enable INTIF interrupt  
.2  
INTIF Interrupt Pending Bit  
0
0
1
Interrupt is not pending (when read)  
Clear pending bit (when write)  
Interrupt is pending (when read)  
.1  
.0  
INTCE Interrupt Enable Bit  
0
1
Disable INTCE interrupt requests at the CE pin  
Enable INTCE interrupt requests at the CE pin  
INTCE Interrupt Pending Bit  
0
0
1
Interrupt is not pending (when read)  
Clear pending bit (when write)  
Interrupt is pending (when read)  
NOTE: If a system reset occurs during operation mode, the current value contained is retained. If a system reset occurs  
after power-on, the value is undefined.  
4-32  
S3C830A/P830A  
CONTROL REGISTER  
PLLREF— PLL Reference Frequency Selection Register  
F9H  
Set 1, Bank 0  
Bit Identifier  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
(1)  
(1)  
(1)  
(2)  
(1)  
(1)  
(1)  
(1)  
RESET Value  
Read/Write  
R
R
R
R/W  
R/W  
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing mode only  
.7  
PLL Frequency Synthesizer Locked/Unlocked Status Flag  
0
1
PLL is currently in locked state  
PLL is currently in unlocked state  
.6  
CE Pin level Status Flag  
0
1
CE pin is currently low level  
CE pin is currently high level  
.5  
IF Counter Gate Open/Close Status Flag  
0
1
Gate is currently open  
Gate is currently close  
Power on Flag (3)  
.4  
0
1
Clear power-on flag bit (when write)  
Power-on occurred (when read)  
.3 – .0  
Reference Frequency Selection Bits  
0
0
0
0
0
0
0
0
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
0
1
0
1
1-kHz signal  
3-kHz signal  
5-kHz signal  
6.25-kHz signal  
9-kHz signal  
10-kHz signal  
12.5-kHz signal  
25-kHz signal  
50-kHz signal  
100-kHz signal  
NOTES:  
1. If a system reset occurs during operation mode, the current value contained is retained. If a system reset occurs after  
power-on, the value is undefined.  
2. If a system reset occurs during operation mode, the current value contained is retained. If a system reset occurs after  
power-on, the value is "1".  
3. The POF bit is read initially to check whether or not power has been turned on.  
4-33  
CONTROL REGISTERS  
S3C830A/P830A  
PP— Register Page Pointer  
DFH  
Set 1  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
.0  
0
0
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing mode only  
.7–.4  
Destination Register Page Selection Bits  
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Destination: page 0  
Destination: page 1  
Destination: page 2  
Destination: page 3  
Destination: page 4  
Destination: page 5  
Destination: page 6  
Destination: page 7  
.3 – .0  
Source Register Page Selection Bits  
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Source: page 0  
Source: page 1  
Source: page 2  
Source: page 3  
Source: page 4  
Source: page 5  
Source: page 6  
Source: page 7  
NOTE: In the S3C830A microcontroller, the internal register file is configured as eight pages (Pages 0-7).  
The pages 0-6 are used for general purpose register file, and page 4 is used for LCD data register or general  
purpose registers.  
4-34  
S3C830A/P830A  
CONTROL REGISTER  
RP0— Register Pointer 0  
D6H  
Set 1  
Bit Identifier  
.7  
1
.6  
1
.5  
0
.4  
0
.3  
0
.2  
.1  
.0  
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing only  
.7–.3  
.2–.0  
Register Pointer 0 Address Value  
Register pointer 0 can independently point to one of the 256-byte working register  
areas in the register file. Using the register pointers RP0 and RP1, you can select  
two 8-byte register slices at one time as active working register space. After a reset,  
RP0 points to address C0H in register set 1, selecting the 8-byte working register  
slice C0H–C7H.  
Not used for the S3C830A  
RP1— Register Pointer 1  
D7H  
Set 1  
Bit Identifier  
.7  
1
.6  
1
.5  
0
.4  
0
.3  
1
.2  
.1  
.0  
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing only  
.7 – .3  
Register Pointer 1 Address Value  
Register pointer 1 can independently point to one of the 256-byte working register  
areas in the register file. Using the register pointers RP0 and RP1, you can select  
two 8-byte register slices at one time as active working register space. After a reset,  
RP1 points to address C8H in register set 1, selecting the 8-byte working register  
slice C8H–CFH.  
.2 – .0  
Not used for the S3C830A  
4-35  
CONTROL REGISTERS  
S3C830A/P830A  
SIO0CON— SIO 0 Control Register  
E9H  
Set 1, Bank 0  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
.0  
0
0
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing mode only  
SIO 0 Shift Clock Selection Bit  
.7  
.6  
.5  
.4  
0
1
Internal clock (P.S clock)  
External clock (SCK0)  
Data Direction Control Bit  
0
1
MSB-first mode  
LSB-first mode  
SIO 0 Mode Selection Bit  
0
1
Receive-only mode  
Transmit/receive mode  
Shift Clock Edge Selection Bit  
0
1
Tx at falling edges, Rx at rising edges  
Tx at rising edges, Rx at falling edges  
SIO 0 Counter Clear and Shift Start Bit  
.3  
.2  
.1  
.0  
0
1
No action  
Clear 3-bit counter and start shifting  
SIO 0 Shift Operation Enable Bit  
0
1
Disable shifter and clock counter  
Enable shifter and clock counter  
SIO 0 Interrupt Enable Bit  
0
1
Disable SIO 0 Interrupt  
Enable SIO 0 Interrupt  
SIO 0 Interrupt Pending Bit  
0
0
1
No interrupt pending  
Clear pending condition (when write)  
Interrupt is pending  
4-36  
S3C830A/P830A  
CONTROL REGISTER  
SIO1CON— SIO 1 Control Register  
ECH  
Set 1, Bank 0  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing mode only  
SIO 1 Shift Clock Selection Bit  
.7  
.6  
.5  
.4  
0
1
Internal clock (P.S clock)  
External clock (SCK1)  
Data Direction Control Bit  
0
1
MSB-first mode  
LSB-first mode  
SIO 1 Mode Selection Bit  
0
1
Receive-only mode  
Transmit/receive mode  
Shift Clock Edge Selection Bit  
0
1
Tx at falling edges, Rx at rising edges  
Tx at rising edges, Rx at falling edges  
SIO 1 Counter Clear and Shift Start Bit  
.3  
.2  
.1  
.0  
0
1
No action  
Clear 3-bit counter and start shifting  
SIO 1 Shift Operation Enable Bit  
0
1
Disable shifter and clock counter  
Enable shifter and clock counter  
SIO 1 Interrupt Enable Bit  
0
1
Disable SIO 1 Interrupt  
Enable SIO 1 Interrupt  
SIO 1 Interrupt Pending Bit  
0
0
1
No interrupt pending  
Clear pending condition (when write)  
Interrupt is pending  
4-37  
CONTROL REGISTERS  
S3C830A/P830A  
SPH— Stack Pointer (High Byte)  
D8H  
Set 1  
Bit Identifier  
.7  
x
.6  
x
.5  
x
.4  
x
.3  
x
.2  
x
.1  
.0  
x
x
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing mode only  
.7–.0  
Stack Pointer Address (High Byte)  
The high-byte stack pointer value is the upper eight bits of the 16-bit stack pointer  
address (SP15–SP8). The lower byte of the stack pointer value is located in register  
SPL (D9H). The SP value is undefined following a reset.  
SPL— Stack Pointer (Low Byte)  
D9H  
Set 1  
Bit Identifier  
.7  
x
.6  
x
.5  
x
.4  
x
.3  
x
.2  
x
.1  
x
.0  
x
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing mode only  
.7–.0  
Stack Pointer Address (Low Byte)  
The low-byte stack pointer value is the lower eight bits of the 16-bit stack pointer  
address (SP7–SP0). The upper byte of the stack pointer value is located in register  
SPH (D8H). The SP value is undefined following a reset.  
4-38  
S3C830A/P830A  
CONTROL REGISTER  
STPCON— Stop Control Register  
FBH  
Set 1, Bank 0  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing mode only  
.7–.0  
STOP Control Bits  
1 0 1 0 0 1 0 1 Enable stop instruction  
Other values Disable stop instruction  
NOTE: Before execute the STOP instruction, set this STPCON register as “10100101b”. Otherwise the STOP  
instruction will not execute as well as reset will be generated.  
4-39  
CONTROL REGISTERS  
S3C830A/P830A  
SYM— System Mode Register  
DEH  
Set 1  
Bit Identifier  
.7  
0
.6  
.5  
.4  
x
.3  
x
.2  
x
.1  
.0  
0
0
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing mode only  
Not used, But you must keep "0"  
Not used for the S3C830A  
.7  
.6–.5  
.4–.2  
Fast Interrupt Level Selection Bits (1)  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
IRQ0  
IRQ1  
IRQ2  
IRQ3  
IRQ4  
IRQ5  
IRQ6  
IRQ7  
Fast Interrupt Enable Bit (2)  
.1  
0
1
Disable fast interrupt processing  
Enable fast interrupt processing  
Global Interrupt Enable Bit (3)  
.0  
0
1
Disable all interrupt processing  
Enable all interrupt processing  
NOTES:  
1. You can select only one interrupt level at a time for fast interrupt processing.  
2. Setting SYM.1 to "1" enables fast interrupt processing for the interrupt level currently selected by SYM.2-SYM.4.  
3. Following a reset, you must enable global interrupt processing by executing an EI instruction  
(not by writing a "1" to SYM.0).  
4-40  
S3C830A/P830A  
CONTROL REGISTER  
T0CON— Timer 0 Control Register  
E2H  
Set 1, Bank 0  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing mode only  
.7–.5  
Timer 0 Input Clock Selection Bits  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
fxx/1024  
fxx/256  
fxx/64  
fxx/8  
fxx  
External clock (T0CLK) falling edge  
External clock (T0CLK) rising edge  
Counter stop  
.4–.3  
Timer 0 Operating Mode Selection Bits  
0
0
1
1
0
1
0
1
Interval mode  
Capture mode (capture on rising edge, counter running, OVF can occur)  
Capture mode (capture on falling edge, counter running, OVF can occur)  
PWM mode (OVF & match interrupt can occur)  
Timer 0 Counter Clear Bit (note)  
.2  
.1  
.0  
0
1
No effect  
Clear the timer 0 counter (when write)  
Timer 0 Match/Capture Interrupt Enable Bit  
0
1
Disable interrupt  
Enable interrupt  
Timer 0 Overflow Interrupt Enable  
0
1
Disable overflow interrupt  
Enable overflow interrupt  
NOTE: When you write a "1" to T0CON.2, the timer 0 counter value is cleared to "00H". Immediately following the write  
operation, the T0CON.2 value is automatically cleared to "0".  
4-41  
CONTROL REGISTERS  
S3C830A/P830A  
T1CON— Timer 1 Control Register  
E5H  
Set 1, Bank 0  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
.0  
0
0
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing mode only  
.7–.5  
Timer 1 Input Clock Selection Bits  
0
0
0
0
1
0
0
1
1
1
0
1
0
1
1
fxx/256  
fxx/64  
fxx/8  
fxx  
External clock (T1CLK) input  
.4  
.3  
Not used for the S3C830A  
Timer 1 Counter Clear Bit (Note)  
0
1
No effect  
Clear the timer 1 counter (when write)  
.2  
.1  
.0  
Timer 1 Counter Enable Bit  
0
1
Disable counting operation  
Enable counting operation  
Timer 1 Interrupt Enable Bit  
0
1
Disable timer 1 interrupt  
Enable timer 1 interrupt  
Timer 1 Interrupt Pending Bit  
0
0
1
No timer 1 interrupt pending (when read)  
Clear timer 1 interrupt pending condition (when write)  
T1 interrupt is pending  
NOTE: When you write a "1" to T1CON.3, the timer 1 counter value is cleared to "00H”. Immediately following the write  
operation, the T1CON.3 value is automatically cleared to "0".  
4-42  
S3C830A/P830A  
CONTROL REGISTER  
T2CON— Timer 2 Control Register  
FEH  
Set 1, Bank 1  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing mode only  
.7–.5  
Timer 2 Input Clock Selection Bits  
0
0
0
0
1
0
0
1
1
1
0
1
0
1
1
fxx/256  
fxx/64  
fxx/8  
fxx  
External clock (T2CLK) input  
.4  
.3  
Not used for the S3C830A  
Timer 2 Counter Clear Bit (Note)  
0
1
No effect  
Clear the timer 2 counter (when write)  
.2  
.1  
.0  
Timer 2 Counter Enable Bit  
0
1
Disable counting operation  
Enable counting operation  
Timer 2 Interrupt Enable Bit  
0
1
Disable timer 2 interrupt  
Enable timer 2 interrupt  
Timer 2 Interrupt Pending Bit  
0
0
1
No timer 2 interrupt pending (when read)  
Clear timer 2 interrupt pending bit (when write)  
T2 interrupt is pending  
NOTE: When you write a "1" to T2CON.3, the timer 2 counter value is cleared to "00H". Immediately following the write  
operation, the T2CON.3 value is automatically cleared to "0".  
4-43  
CONTROL REGISTERS  
S3C830A/P830A  
WTCON— Watch Timer Control Register  
E8H  
Set 1, Bank 0  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
.0  
0
0
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing mode only  
Not used for the S3C830A  
Watch Timer Enable Bit  
.7  
.6  
0
1
Disable watch timer; clear frequency dividing circuits  
Enable watch timer  
.5–.4  
.3–.2  
Buzzer Signal Selection Bits (at 4.5 MHz)  
0
0
1
1
0
1
0
1
1 kHz buzzer (BUZ) signal output  
1.5 kHz buzzer (BUZ) signal output  
3 kHz buzzer (BUZ) signal output  
6 kHz buzzer (BUZ) signal output  
Watch Timer Speed Selection Bits (at 4.5 MHz)  
0
0
1
0
1
1
1.0 s Interval  
0.5 s Interval  
50 ms Interval  
.1  
.0  
Watch Timer Interrupt Enable Bit  
0
1
Disable watch timer interrupt  
Enable watch timer interrupt  
Watch Timer Interrupt Pending Bit  
0
1
1
Interrupt is not pending (when read)  
Clear pending bit (when write)  
Interrupt is pending (when read)  
4-44  
S3C830A/P830A  
INTERRUPT STRUCTURE  
5
INTERRUPT STRUCTURE  
OVERVIEW  
The S3C8-series interrupt structure has three basic components: levels, vectors, and sources. The SAM88RC  
CPU recognizes up to eight interrupt levels and supports up to 128 interrupt vectors. When a specific interrupt  
level has more than one vector address, the vector priorities are established in hardware. A vector address can  
be assigned to one or more sources.  
Levels  
Interrupt levels are the main unit for interrupt priority assignment and recognition. All peripherals and I/O blocks  
can issue interrupt requests. In other words, peripheral and I/O operations are interrupt-driven. There are eight  
possible interrupt levels: IRQ0–IRQ7, also called level 0–level 7. Each interrupt level directly corresponds to an  
interrupt request number (IRQn). The total number of interrupt levels used in the interrupt structure varies from  
device to device. The S3C830A interrupt structure recognizes eight interrupt levels.  
The interrupt level numbers 0 through 7 do not necessarily indicate the relative priority of the levels. They are just  
identifiers for the interrupt levels that are recognized by the CPU. The relative priority of different interrupt levels  
is determined by settings in the interrupt priority register, IPR. Interrupt group and subgroup logic controlled by  
IPR settings lets you define more complex priority relationships between different levels.  
Vectors  
Each interrupt level can have one or more interrupt vectors, or it may have no vector address assigned at all.  
The maximum number of vectors that can be supported for a given level is 128 (The actual number of vectors  
used for S3C8-series devices is always much smaller). If an interrupt level has more than one vector address, the  
vector priorities are set in hardware. S3C830A uses seventeen vectors.  
Sources  
A source is any peripheral that generates an interrupt. A source can be an external pin or a counter overflow.  
Each vector can have several interrupt sources. In the S3C830A interrupt structure, there are seventeen possible  
interrupt sources.  
When a service routine starts, the respective pending bit should be either cleared automatically by hardware or  
cleared "manually" by program software. The characteristics of the source's pending mechanism determine which  
method would be used to clear its respective pending bit.  
5-1  
INTERRUPT STRUCTURE  
INTERRUPT TYPES  
S3C830A/P830A  
The three components of the S3C8 interrupt structure described before — levels, vectors, and sources — are  
combined to determine the interrupt structure of an individual device and to make full use of its available  
interrupt logic. There are three possible combinations of interrupt structure components, called interrupt types 1,  
2, and 3. The types differ in the number of vectors and interrupt sources assigned to each level (see Figure 5-1):  
Type 1:  
Type 2:  
Type 3:  
One level (IRQn) + one vector (V1) + one source (S1)  
One level (IRQn) + one vector (V1) + multiple sources (S1 – Sn)  
One level (IRQn) + multiple vectors (V1 – Vn) + multiple sources (S1 – Sn , Sn+1 – Sn+m  
)
In the S3C830A microcontroller, two interrupt types are implemented.  
Levels  
Vectors  
Sources  
Type 1:  
Type 2:  
IRQn  
V1  
S1  
S1  
IRQn  
IRQn  
V1  
S2  
S3  
Sn  
V1  
V2  
V3  
Vn  
S1  
Type 3:  
NOTES:  
S2  
S3  
Sn  
Sn + 1  
Sn + 2  
Sn + m  
1. The number of Sn and Vn value is expandable.  
2. In the S3C830A implementation,  
interrupt types 1 and 3 are used.  
Figure 5-1. S3C8-Series Interrupt Types  
5-2  
S3C830A/P830A  
INTERRUPT STRUCTURE  
S3C830A INTERRUPT STRUCTURE  
The S3C830A microcontroller supports seventeen interrupt sources. All seventeen of the interrupt sources have a  
corresponding interrupt vector address. Eight interrupt levels are recognized by the CPU in this device-specific  
interrupt structure, as shown in Figure 5-2.  
When multiple interrupt levels are active, the interrupt priority register (IPR) determines the order in which  
contending interrupts are to be serviced. If multiple interrupts occur within the same interrupt level, the interrupt  
with the lowest vector address is usually processed first (The relative priorities of multiple interrupts within a  
single level are fixed in hardware).  
When the CPU grants an interrupt request, interrupt processing starts. All other interrupts are disabled and the  
program counter value and status flags are pushed to stack. The starting address of the service routine is fetched  
from the appropriate vector address (plus the next 8-bit value to concatenate the full 16-bit address) and the  
service routine is executed.  
Levels  
Vectors  
Sources  
Reset/Clear  
100H  
H/W  
RESET  
Basic timer overflow  
Timer 0 match/capture  
Timer 0 overflow  
Timer 2 match  
S/W  
E0H  
E2H  
E4H  
E6H  
E8H  
EAH  
F2H  
IRQ0  
IRQ1  
H/W,S/W  
S/W  
S/W  
Timer 1 match  
S/W  
SIO1 interrupt  
IRQ2  
IRQ3  
S/W  
SIO0 interrupt  
S/W  
S/W  
S/W  
S/W  
S/W  
S/W  
S/W  
S/W  
S/W  
S/W  
S/W  
Watch timer  
D0H  
D2H  
D4H  
D6H  
D8H  
DAH  
DCH  
DEH  
C0H  
C2H  
P1.0 external interrupt  
P1.1 external interrupt  
P1.2 external interrupt  
P1.3 external interrupt  
P1.4 external interrupt  
P1.5 external interrupt  
P1.6 external interrupt  
P1.7 external interrupt  
CE interrupt  
IRQ4  
IRQ5  
IRQ6  
IRQ7  
IF interrupt  
NOTES:  
1. Within a given interrupt level, the low vector address has high priority.  
For example, E0H has higher priority than E2H within the level IRQ0.  
The priorities within each level are set at the factory.  
2. External interrupts are triggered by a rising or falling edge, depending on the  
corresponding control register setting.  
Figure 5-2. S3C830A Interrupt Structure  
5-3  
INTERRUPT STRUCTURE  
S3C830A/P830A  
INTERRUPT VECTOR ADDRESSES  
All interrupt vector addresses for the S3C830A interrupt structure are stored in the vector address area of the first  
256 bytes of the program memory (ROM).  
You can allocate unused locations in the vector address area as normal program memory. If you do so, please be  
careful not to overwrite any of the stored vector addresses (Table 5-1 lists all vector addresses).  
The program reset address in the ROM is 0100H.  
(Decimal)  
49,151  
(HEX)  
BFFFH  
48K-byte  
Program Memory  
Area  
100H  
FFH  
RESET  
Address  
255  
0
Interrupt  
Vector Address  
Area  
00H  
Figure 5-3. ROM Vector Address Area  
5-4  
S3C830A/P830A  
INTERRUPT STRUCTURE  
Request Reset/Clear  
Table 5-1. Interrupt Vectors  
Interrupt Source  
Vector Address  
Decimal  
Value  
Hex  
Value  
Interrupt  
Level  
Priority in H/W  
Level  
S/W  
256  
100H  
Basic timer overflow  
Ö
Ö
RESET  
226  
224  
230  
228  
234  
232  
242  
214  
212  
210  
208  
222  
220  
218  
216  
192  
194  
E2H  
E0H  
E6H  
E4H  
EAH  
E8H  
F2H  
D6H  
D4H  
D2H  
D0H  
DEH  
DCH  
DAH  
D8H  
C0H  
C2H  
Timer 0 overflow  
Timer 0 match/capture  
Timer 1 match  
IRQ0  
1
0
1
0
1
0
3
2
1
0
3
2
1
0
Ö
Ö
Ö
Ö
Ö
Ö
Ö
Ö
Ö
Ö
Ö
Ö
Ö
Ö
Ö
Ö
Ö
IRQ1  
IRQ2  
Timer 2 match  
SIO0 interrupt  
SIO1 interrupt  
Watch timer  
IRQ3  
IRQ4  
P1.3 external interrupt  
P1.2 external interrupt  
P1.1 external interrupt  
P1.0 external interrupt  
P1.7 external interrupt  
P1.6 external interrupt  
P1.5 external interrupt  
P1.4 external interrupt  
CE interrupt  
IRQ5  
IRQ6  
IRQ7  
IF interrupt  
NOTES:  
1. Interrupt priorities are identified in inverse order: "0" is the highest priority, "1" is the next highest, and so on.  
2. If two or more interrupts within the same level contend, the interrupt with the lowest vector address usually has priority  
over one with a higher vector address. The priorities within a given level are fixed in hardware.  
5-5  
INTERRUPT STRUCTURE  
S3C830A/P830A  
ENABLE/DISABLE INTERRUPT INSTRUCTIONS (EI, DI)  
Executing the Enable Interrupts (EI) instruction globally enables the interrupt structure. All interrupts are then  
serviced as they occur according to the established priorities.  
NOTE  
The system initialization routine executed after a reset must always contain an EI instruction to globally  
enable the interrupt structure.  
During the normal operation, you can execute the DI (Disable Interrupt) instruction at any time to globally disable  
interrupt processing. The EI and DI instructions change the value of bit 0 in the SYM register.  
SYSTEM-LEVEL INTERRUPT CONTROL REGISTERS  
In addition to the control registers for specific interrupt sources, four system-level registers control interrupt  
processing:  
— The interrupt mask register, IMR, enables (un-masks) or disables (masks) interrupt levels.  
— The interrupt priority register, IPR, controls the relative priorities of interrupt levels.  
— The interrupt request register, IRQ, contains interrupt pending flags for each interrupt level (as opposed to  
each interrupt source).  
— The system mode register, SYM, enables or disables global interrupt processing (SYM settings also enable  
fast interrupts and control the activity of external interface, if implemented).  
Table 5-2. Interrupt Control Register Overview  
Control Register  
ID  
R/W  
Function Description  
Interrupt mask register  
IMR  
R/W  
Bit settings in the IMR register enable or disable interrupt  
processing for each of the eight interrupt levels: IRQ0–IRQ7.  
Interrupt priority register  
IPR  
R/W  
Controls the relative processing priorities of the interrupt  
levels. The eight levels of S3C830A are organized into three  
groups: A, B, and C. Group A is IRQ0 and IRQ1, group B is  
IRQ2, IRQ3 and IRQ4, and group C is IRQ5, IRQ6, and IRQ7.  
Interrupt request register  
System mode register  
IRQ  
R
This register contains a request pending bit for each interrupt  
level.  
SYM  
R/W  
This register enables/disables fast interrupt processing, and  
dynamic global interrupt processing.  
NOTE: Before IMR register is changed to any value, all interrupts must be disable. Using DI instruction is recommended.  
5-6  
S3C830A/P830A  
INTERRUPT STRUCTURE  
INTERRUPT PROCESSING CONTROL POINTS  
Interrupt processing can therefore be controlled in two ways: globally or by specific interrupt level and source.  
The system-level control points in the interrupt structure are:  
— Global interrupt enable and disable (by EI and DI instructions or by direct manipulation of SYM.0 )  
— Interrupt level enable/disable settings (IMR register)  
— Interrupt level priority settings (IPR register)  
— Interrupt source enable/disable settings in the corresponding peripheral control registers  
NOTE  
When writing an application program that handles interrupt processing, be sure to include the necessary  
register file address (register pointer) information.  
EI  
S
R
Q
Interrupt Request Register  
(Read-only)  
Polling  
Cycle  
RESET  
IRQ0-IRQ7,  
Interrupts  
Interrupt Priority  
Register  
Vector  
Interrupt  
Cycle  
Interrupt Mask  
Register  
Global Interrupt Control  
(EI, DI or SYM.0  
manipulation)  
Figure 5-4. Interrupt Function Diagram  
5-7  
INTERRUPT STRUCTURE  
S3C830A/P830A  
PERIPHERAL INTERRUPT CONTROL REGISTERS  
For each interrupt source there is one or more corresponding peripheral control registers that let you control the  
interrupt generated by the related peripheral (see Table 5-3).  
Table 5-3. Interrupt Source Control and Data Registers  
Interrupt Source  
Timer 0 overflow  
Timer 0 match/capture  
Interrupt Level  
Register(s)  
Location(s) in Set 1  
IRQ0  
T0CON  
T0CNT  
T0DATA  
INTPND  
E2H, bank 0  
E0H, bank 0  
E1H, bank 0  
E6H, bank 0  
Timer 1 match  
IRQ1  
IRQ2  
T1CON  
T1CNT  
T1DATA  
E5H, bank 0  
E3H, bank 0  
E4H, bank0  
Timer 2 match  
T2CON  
T2CNTH, T2CNTL  
T2DATAH, T2DATAL  
FEH, bank 1  
FAH, FBH, bank 1  
FCH, FDH, bank 1  
SIO0 interrupt  
SIO1 interrupt  
SIO0CON  
SIO0DATA  
SIO0PS  
SIO1CON  
SIO1DATA  
SIO1PS  
E9H, bank 0  
EAH, bank 0  
EBH, bank 0  
ECH, bank 0  
EDH, bank 0  
EEH, bank 0  
Watch timer  
IRQ3  
IRQ4  
WTCON  
E8H, bank 0  
P1.3 external interrupt  
P1.2 external interrupt  
P1.1 external interrupt  
P1.0 external interrupt  
P1CONL  
P1INT  
P1PND  
E5H, bank 1  
E6H, bank 1  
E7H, bank 1  
P1.7 external interrupt  
P1.6 external interrupt  
P1.5 external interrupt  
P1.4 external interrupt  
IRQ5  
P1CONH  
P1INT  
P1PND  
E4H, bank 1  
E6H, bank 1  
E7H, bank 1  
CE interrupt  
IRQ6  
IRQ7  
PLLMOD  
PLLREF  
PLLD1, PLLD0  
F8H, bank 0  
F9H, bank 0  
F6H, F7H, bank 0  
IF interrupt  
IFMOD  
F3H, bank 0  
IFCNT1, IFCNT0  
PLLMOD  
F4H, F5H, bank 0  
F8H, bank 0  
PLLREF  
F9H, bank 0  
5-8  
S3C830A/P830A  
INTERRUPT STRUCTURE  
SYSTEM MODE REGISTER (SYM)  
The system mode register, SYM (set 1, DEH), is used to globally enable and disable interrupt processing and to  
control fast interrupt processing (see Figure 5-5).  
A reset clears SYM.1, and SYM.0 to "0". The 3-bit value for fast interrupt level selection, SYM.4–SYM.2, is  
undetermined.  
The instructions EI and DI enable and disable global interrupt processing, respectively, by modifying the bit 0  
value of the SYM register. In order to enable interrupt processing an Enable Interrupt (EI) instruction must be  
included in the initialization routine, which follows a reset operation. Although you can manipulate SYM.0 directly  
to enable and disable interrupts during the normal operation, it is recommended to use the EI and DI instructions  
for this purpose.  
System Mode Register (SYM)  
DEH, Set 1, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Global interrupt enable bit:  
0 = Disable all interrupts processing  
1 = Enable all interrupts processing  
Always logic "0"  
Not used for the Fast interrupt level  
S3C830A selection bits:  
Fast interrupt enable bit:  
0 = Disable fast interrupts processing  
1 = Enable fast interrupts processing  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
IRQ0  
IRQ1  
IRQ2  
IRQ3  
IRQ4  
IRQ5  
IRQ6  
IRQ7  
Figure 5-5. System Mode Register (SYM)  
5-9  
INTERRUPT STRUCTURE  
S3C830A/P830A  
INTERRUPT MASK REGISTER (IMR)  
The interrupt mask register, IMR (set 1, DDH) is used to enable or disable interrupt processing for individual  
interrupt levels. After a reset, all IMR bit values are undetermined and must therefore be written to their required  
settings by the initialization routine.  
Each IMR bit corresponds to a specific interrupt level: bit 1 to IRQ1, bit 2 to IRQ2, and so on. When the IMR bit  
of an interrupt level is cleared to "0", interrupt processing for that level is disabled (masked). When you set a  
level's IMR bit to "1", interrupt processing for the level is enabled (not masked).  
The IMR register is mapped to register location DDH in set 1. Bit values can be read and written by instructions  
using the Register addressing mode.  
Interrupt Mask Register (IMR)  
DDH, Set 1, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
IRQ0  
IRQ1  
IRQ2  
IRQ3  
IRQ4  
IRQ5  
IRQ6  
IRQ7  
Interrupt level enable bits  
0 = Disable (mask) interrupt level  
1 = Enable (un-mask) interrupt level  
NOTE:  
Before IMR register is changed to any value, all interrupts must be disable.  
Using DI instruction is recommended.  
Figure 5-6. Interrupt Mask Register (IMR)  
5-10  
S3C830A/P830A  
INTERRUPT STRUCTURE  
INTERRUPT PRIORITY REGISTER (IPR)  
The interrupt priority register, IPR (set 1, bank 0, FFH), is used to set the relative priorities of the interrupt levels  
in the microcontroller’s interrupt structure. After a reset, all IPR bit values are undetermined and must therefore  
be written to their required settings by the initialization routine.  
When more than one interrupt sources are active, the source with the highest priority level is serviced first. If two  
sources belong to the same interrupt level, the source with the lower vector address usually has the priority (This  
priority is fixed in hardware).  
To support programming of the relative interrupt level priorities, they are organized into groups and subgroups by  
the interrupt logic. Please note that these groups (and subgroups) are used only by IPR logic for the IPR register  
priority definitions (see Figure 5-7):  
Group A  
Group B  
Group C  
IRQ0, IRQ1  
IRQ2, IRQ3, IRQ3  
IRQ5, IRQ6, IRQ7  
IPR  
IPR  
IPR  
Group A  
Group B  
Group C  
A1  
A2  
B1  
B2  
C1  
C2  
B21  
B22  
C21  
C22  
IRQ0  
IRQ1  
IRQ2 IRQ3  
IRQ4  
IRQ5 IRQ6  
IRQ7  
Figure 5-7. Interrupt Request Priority Groups  
As you can see in Figure 5-8, IPR.7, IPR.4, and IPR.1 control the relative priority of interrupt groups A, B, and C.  
For example, the setting "001B" for these bits would select the group relationship B > C > A. The setting "101B"  
would select the relationship C > B > A.  
The functions of the other IPR bit settings are as follows:  
— IPR.5 controls the relative priorities of group C interrupts.  
— Interrupt group C includes a subgroup that has an additional priority relationship among the interrupt levels 5,  
6, and 7. IPR.6 defines the subgroup C relationship. IPR.5 controls the interrupt group C.  
— IPR.0 controls the relative priority setting of IRQ0 and IRQ1 interrupts.  
5-11  
INTERRUPT STRUCTURE  
S3C830A/P830A  
Interrupt Priority Register (IPR)  
FFH, Set 1, Bank 0, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Group priority:  
D7 D4 D1  
Group A  
0 = IRQ0 > IRQ1  
1 = IRQ1 > IRQ0  
Group B  
0 = IRQ2 > (IRQ3, IRQ4)  
1 = (IRQ3, IRQ4) > IRQ2  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0 = Undefined  
1 = B > C > A  
0 = A > B > C  
1 = B > A > C  
0 = C > A > B  
1 = C > B > A  
0 = A > C > B  
1 = Undefined  
Subgroup B  
0 = IRQ3 > IRQ4  
1 = IRQ4 > IRQ3  
Group C  
0 = IRQ5 > (IRQ6, IRQ7)  
1 = (IRQ6, IRQ7) > IRQ5  
Subgroup C  
0 = IRQ6 > IRQ7  
1 = IRQ7 > IRQ6  
Figure 5-8. Interrupt Priority Register (IPR)  
5-12  
S3C830A/P830A  
INTERRUPT STRUCTURE  
INTERRUPT REQUEST REGISTER (IRQ)  
You can poll bit values in the interrupt request register, IRQ (set 1, DCH), to monitor interrupt request status for  
all levels in the microcontroller’s interrupt structure. Each bit corresponds to the interrupt level of the same  
number: bit 0 to IRQ0, bit 1 to IRQ1, and so on. A "0" indicates that no interrupt request is currently being issued  
for that level. A "1" indicates that an interrupt request has been generated for that level.  
IRQ bit values are read-only addressable using Register addressing mode. You can read (test) the contents of  
the IRQ register at any time using bit or byte addressing to determine the current interrupt request status of  
specific interrupt levels. After a reset, all IRQ status bits are cleared to “0”.  
You can poll IRQ register values even if a DI instruction has been executed (that is, if global interrupt processing  
is disabled). If an interrupt occurs while the interrupt structure is disabled, the CPU will not service it. You can,  
however, still detect the interrupt request by polling the IRQ register. In this way, you can determine which events  
occurred while the interrupt structure was globally disabled.  
Interrupt Request Register (IRQ)  
DCH, Set 1, Read-only  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
IRQ0  
IRQ1  
IRQ2  
IRQ3  
IRQ4  
IRQ5  
IRQ6  
IRQ7  
Interrupt level request pending bits:  
0 = Interrupt level is not pending  
1 = Interrupt level is pending  
Figure 5-9. Interrupt Request Register (IRQ)  
5-13  
INTERRUPT STRUCTURE  
S3C830A/P830A  
INTERRUPT PENDING FUNCTION TYPES  
Overview  
There are two types of interrupt pending bits: one type that is automatically cleared by hardware after the  
interrupt service routine is acknowledged and executed; the other that must be cleared in the interrupt service  
routine.  
Pending Bits Cleared Automatically by Hardware  
For interrupt pending bits that are cleared automatically by hardware, interrupt logic sets the corresponding  
pending bit to "1" when a request occurs. It then issues an IRQ pulse to inform the CPU that an interrupt is  
waiting to be serviced. The CPU acknowledges the interrupt source by sending an IACK, executes the service  
routine, and clears the pending bit to "0". This type of pending bit is not mapped and cannot, therefore, be read or  
written by application software.  
In the S3C830A interrupt structure, the timer 0 overflow interrupt (IRQ0) belongs to this category of interrupts in  
which pending condition is cleared automatically by hardware.  
Pending Bits Cleared by the Service Routine  
The second type of pending bit is the one that should be cleared by program software. The service routine must  
clear the appropriate pending bit before a return-from-interrupt subroutine (IRET) occurs. To do this, a "0" must  
be written to the corresponding pending bit location in the source’s mode or control register.  
5-14  
S3C830A/P830A  
INTERRUPT STRUCTURE  
INTERRUPT SOURCE POLLING SEQUENCE  
The interrupt request polling and servicing sequence is as follows:  
1. A source generates an interrupt request by setting the interrupt request bit to "1".  
2. The CPU polling procedure identifies a pending condition for that source.  
3. The CPU checks the source's interrupt level.  
4. The CPU generates an interrupt acknowledge signal.  
5. Interrupt logic determines the interrupt's vector address.  
6. The service routine starts and the source's pending bit is cleared to "0" (by hardware or by software).  
7. The CPU continues polling for interrupt requests.  
INTERRUPT SERVICE ROUTINES  
Before an interrupt request is serviced, the following conditions must be met:  
— Interrupt processing must be globally enabled (EI, SYM.0 = "1")  
— The interrupt level must be enabled (IMR register)  
— The interrupt level must have the highest priority if more than one levels are currently requesting service  
— The interrupt must be enabled at the interrupt's source (peripheral control register)  
When all the above conditions are met, the interrupt request is acknowledged at the end of the instruction cycle.  
The CPU then initiates an interrupt machine cycle that completes the following processing sequence:  
1. Reset (clear to "0") the interrupt enable bit in the SYM register (SYM.0) to disable all subsequent interrupts.  
2. Save the program counter (PC) and status flags to the system stack.  
3. Branch to the interrupt vector to fetch the address of the service routine.  
4. Pass control to the interrupt service routine.  
When the interrupt service routine is completed, the CPU issues an Interrupt Return (IRET). The IRET restores  
the PC and status flags, setting SYM.0 to "1". It allows the CPU to process the next interrupt request.  
5-15  
INTERRUPT STRUCTURE  
S3C830A/P830A  
GENERATING INTERRUPT VECTOR ADDRESSES  
The interrupt vector area in the ROM (00H–FFH) contains the addresses of interrupt service routines that  
correspond to each level in the interrupt structure. Vectored interrupt processing follows this sequence:  
1. Push the program counter's low-byte value to the stack.  
2. Push the program counter's high-byte value to the stack.  
3. Push the FLAG register values to the stack.  
4. Fetch the service routine's high-byte address from the vector location.  
5. Fetch the service routine's low-byte address from the vector location.  
6. Branch to the service routine specified by the concatenated 16-bit vector address.  
NOTE  
A 16-bit vector address always begins at an even-numbered ROM address within the range of 00H–FFH.  
NESTING OF VECTORED INTERRUPTS  
It is possible to nest a higher-priority interrupt request while a lower-priority request is being serviced. To do this,  
you must follow these steps:  
1. Push the current 8-bit interrupt mask register (IMR) value to the stack (PUSH IMR).  
2. Load the IMR register with a new mask value that enables only the higher priority interrupt.  
3. Execute an EI instruction to enable interrupt processing (a higher priority interrupt will be processed if it  
occurs).  
4. When the lower-priority interrupt service routine ends, restore the IMR to its original value by returning the  
previous mask value from the stack (POP IMR).  
5. Execute an IRET.  
Depending on the application, you may be able to simplify the procedure above to some extent.  
INSTRUCTION POINTER (IP)  
The instruction pointer (IP) is adopted by all the S3C8-series microcontrollers to control the optional high-speed  
interrupt processing feature called fast interrupts. The IP consists of register pair DAH and DBH. The names of IP  
registers are IPH (high byte, IP15–IP8) and IPL (low byte, IP7–IP0).  
FAST INTERRUPT PROCESSING  
The feature called fast interrupt processing allows an interrupt within a given level to be completed in  
approximately 6 clock cycles rather than the usual 16 clock cycles. To select a specific interrupt level for fast  
interrupt processing, you write the appropriate 3-bit value to SYM.4–SYM.2. Then, to enable fast interrupt  
processing for the selected level, you set SYM.1 to “1”.  
5-16  
S3C830A/P830A  
INTERRUPT STRUCTURE  
FAST INTERRUPT PROCESSING (Continued)  
Two other system registers support fast interrupt processing:  
— The instruction pointer (IP) contains the starting address of the service routine (and is later used to swap the  
program counter values), and  
— When a fast interrupt occurs, the contents of the FLAGS register is stored in an unmapped, dedicated  
register called FLAGS' ("FLAGS prime").  
NOTE  
For the S3C830A microcontroller, the service routine for any one of the eight interrupt levels: IRQ0–  
IRQ7, can be selected for fast interrupt processing.  
Procedure for Initiating Fast Interrupts  
To initiate fast interrupt processing, follow these steps:  
1. Load the start address of the service routine into the instruction pointer (IP).  
2. Load the interrupt level number (IRQn) into the fast interrupt selection field (SYM.4–SYM.2)  
3. Write a "1" to the fast interrupt enable bit in the SYM register.  
Fast Interrupt Service Routine  
When an interrupt occurs in the level selected for fast interrupt processing, the following events occur:  
1. The contents of the instruction pointer and the PC are swapped.  
2. The FLAG register values are written to the FLAGS' (“FLAGS prime”) register.  
3. The fast interrupt status bit in the FLAGS register is set.  
4. The interrupt is serviced.  
5. Assuming that the fast interrupt status bit is set, when the fast interrupt service routine ends, the instruction  
pointer and PC values are swapped back.  
6. The content of FLAGS' ("FLAGS prime") is copied automatically back to the FLAGS register.  
7. The fast interrupt status bit in FLAGS is cleared automatically.  
Relationship to Interrupt Pending Bit Types  
As described previously, there are two types of interrupt pending bits: One type that is automatically cleared by  
hardware after the interrupt service routine is acknowledged and executed; the other that must be cleared by the  
application program's interrupt service routine. You can select fast interrupt processing for interrupts with either  
type of pending condition clear function — by hardware or by software.  
Programming Guidelines  
Remember that the only way to enable/disable a fast interrupt is to set/clear the fast interrupt enable bit in the  
SYM register, SYM.1. Executing an EI or DI instruction globally enables or disables all interrupt processing,  
including fast interrupts. If you use fast interrupts, remember to load the IP with a new start address when the fast  
interrupt service routine ends.  
5-17  
INTERRUPT STRUCTURE  
S3C830A/P830A  
NOTES  
5-18  
S3C830A/P830A  
INSTRUCTION SET  
6
INSTRUCTION SET  
OVERVIEW  
The SAM88RC instruction set is specifically designed to support the large register files that are typical of most  
SAM8 microcontrollers. There are 78 instructions. The powerful data manipulation capabilities and features of  
the instruction set include:  
— A full complement of 8-bit arithmetic and logic operations, including multiply and divide  
— No special I/O instructions (I/O control/data registers are mapped directly into the register file)  
— Decimal adjustment included in binary-coded decimal (BCD) operations  
— 16-bit (word) data can be incremented and decremented  
— Flexible instructions for bit addressing, rotate, and shift operations  
DATA TYPES  
The SAM8 CPU performs operations on bits, bytes, BCD digits, and two-byte words. Bits in the register file can  
be set, cleared, complemented, and tested. Bits within a byte are numbered from 7 to 0, where bit 0 is the least  
significant (right-most) bit.  
REGISTER ADDRESSING  
To access an individual register, an 8-bit address in the range 0-255 or the 4-bit address of a working register is  
specified. Paired registers can be used to construct 16-bit data or 16-bit program memory or data memory  
addresses. For detailed information about register addressing, please refer to Section 2, "Address Spaces."  
ADDRESSING MODES  
There are seven explicit addressing modes: Register (R), Indirect Register (IR), Indexed (X), Direct (DA),  
Relative (RA), Immediate (IM), and Indirect (IA). For detailed descriptions of these addressing modes, please  
refer to Section 3, "Addressing Modes."  
6-1  
INSTRUCTION SET  
S3C830A/P830A  
Table 6-1. Instruction Group Summary  
Operands Instruction  
Mnemonic  
Load Instructions  
CLR  
dst  
Clear  
LD  
dst,src  
dst,src  
dst,src  
dst,src  
dst,src  
dst,src  
dst,src  
dst,src  
dst,src  
dst,src  
dst,src  
dst,src  
dst,src  
dst  
Load  
LDB  
Load bit  
LDE  
Load external data memory  
Load program memory  
LDC  
LDED  
LDCD  
LDEI  
Load external data memory and decrement  
Load program memory and decrement  
Load external data memory and increment  
Load program memory and increment  
Load external data memory with pre-decrement  
Load program memory with pre-decrement  
Load external data memory with pre-increment  
Load program memory with pre-increment  
Load word  
LDCI  
LDEPD  
LDCPD  
LDEPI  
LDCPI  
LDW  
POP  
Pop from stack  
POPUD  
POPUI  
PUSH  
PUSHUD  
PUSHUI  
dst,src  
dst,src  
src  
Pop user stack (decrementing)  
Pop user stack (incrementing)  
Push to stack  
dst,src  
dst,src  
Push user stack (decrementing)  
Push user stack (incrementing)  
6-2  
S3C830A/P830A  
INSTRUCTION SET  
Table 6-1. Instruction Group Summary (Continued)  
Operands Instruction  
Mnemonic  
Arithmetic Instructions  
ADC  
ADD  
CP  
dst,src  
dst,src  
Add with carry  
Add  
dst,src  
dst  
Compare  
DA  
Decimal adjust  
Decrement  
Decrement word  
Divide  
DEC  
DECW  
DIV  
dst  
dst  
dst,src  
dst  
INC  
Increment  
INCW  
MULT  
SBC  
SUB  
dst  
Increment word  
Multiply  
dst,src  
dst,src  
dst,src  
Subtract with carry  
Subtract  
Logic Instructions  
AND  
COM  
OR  
dst,src  
dst  
Logical AND  
Complement  
dst,src  
dst,src  
Logical OR  
XOR  
Logical exclusive OR  
6-3  
INSTRUCTION SET  
Mnemonic  
S3C830A/P830A  
Table 6-1. Instruction Group Summary (Continued)  
Operands Instruction  
Program Control Instructions  
BTJRF  
BTJRT  
CALL  
CPIJE  
CPIJNE  
DJNZ  
ENTER  
EXIT  
IRET  
JP  
dst,src  
dst,src  
dst  
Bit test and jump relative on false  
Bit test and jump relative on true  
Call procedure  
dst,src  
dst,src  
r,dst  
Compare, increment and jump on equal  
Compare, increment and jump on non-equal  
Decrement register and jump on non-zero  
Enter  
Exit  
Interrupt return  
cc,dst  
dst  
Jump on condition code  
Jump unconditional  
JP  
JR  
cc,dst  
Jump relative on condition code  
Next  
NEXT  
RET  
Return  
WFI  
Wait for interrupt  
Bit Manipulation Instructions  
BAND  
BCP  
BITC  
BITR  
BITS  
BOR  
BXOR  
TCM  
TM  
dst,src  
dst,src  
dst  
Bit AND  
Bit compare  
Bit complement  
Bit reset  
dst  
dst  
Bit set  
dst,src  
dst,src  
dst,src  
dst,src  
Bit OR  
Bit XOR  
Test complement under mask  
Test under mask  
6-4  
S3C830A/P830A  
Mnemonic  
INSTRUCTION SET  
Table 6-1. Instruction Group Summary (Concluded)  
Operands Instruction  
Rotate and Shift Instructions  
RL  
dst  
dst  
dst  
dst  
dst  
dst  
Rotate left  
RLC  
RR  
Rotate left through carry  
Rotate right  
RRC  
SRA  
SWAP  
Rotate right through carry  
Shift right arithmetic  
Swap nibbles  
CPU Control Instructions  
CCF  
DI  
Complement carry flag  
Disable interrupts  
Enable interrupts  
Enter Idle mode  
No operation  
EI  
IDLE  
NOP  
RCF  
SB0  
SB1  
SCF  
Reset carry flag  
Set bank 0  
Set bank 1  
Set carry flag  
SRP  
src  
src  
src  
Set register pointers  
Set register pointer 0  
Set register pointer 1  
Enter Stop mode  
SRP0  
SRP1  
STOP  
6-5  
INSTRUCTION SET  
S3C830A/P830A  
FLAGS REGISTER (FLAGS)  
The flags register FLAGS contains eight bits that describe the current status of CPU operations. Four of these  
bits, FLAGS.7–FLAGS.4, can be tested and used with conditional jump instructions; two others FLAGS.3 and  
FLAGS.2 are used for BCD arithmetic.  
The FLAGS register also contains a bit to indicate the status of fast interrupt processing (FLAGS.1) and a bank  
address status bit (FLAGS.0) to indicate whether bank 0 or bank 1 is currently being addressed. FLAGS register  
can be set or reset by instructions as long as its outcome does not affect the flags, such as, Load instruction.  
Logical and Arithmetic instructions such as, AND, OR, XOR, ADD, and SUB can affect the Flags register. For  
example, the AND instruction updates the Zero, Sign and Overflow flags based on the outcome of the AND  
instruction. If the AND instruction uses the Flags register as the destination, then simultaneously, two write will  
occur to the Flags register producing an unpredictable result.  
System Flags Register (FLAGS)  
D5H, Set 1, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Bank address  
status flag (BA)  
Carry flag (C)  
Fast interrupt  
status flag (FS)  
Zero flag (Z)  
Sign flag (S)  
Half-carry flag (H)  
Decimal adjust flag (D)  
Overflow flag (V)  
Figure 6-1. System Flags Register (FLAGS)  
6-6  
S3C830A/P830A  
INSTRUCTION SET  
FLAG DESCRIPTIONS  
C
Carry Flag (FLAGS.7)  
The C flag is set to "1" if the result from an arithmetic operation generates a carry-out from or a borrow to  
the bit 7 position (MSB). After rotate and shift operations, it contains the last value shifted out of the  
specified register. Program instructions can set, clear, or complement the carry flag.  
Z
Zero Flag (FLAGS.6)  
For arithmetic and logic operations, the Z flag is set to "1" if the result of the operation is zero. For  
operations that test register bits, and for shift and rotate operations, the Z flag is set to "1" if the result is  
logic zero.  
S
V
D
Sign Flag (FLAGS.5)  
Following arithmetic, logic, rotate, or shift operations, the sign bit identifies the state of the MSB of the  
result. A logic zero indicates a positive number and a logic one indicates a negative number.  
Overflow Flag (FLAGS.4)  
The V flag is set to "1" when the result of a two's-complement operation is greater than + 127 or less than  
– 128. It is also cleared to "0" following logic operations.  
Decimal Adjust Flag (FLAGS.3)  
The DA bit is used to specify what type of instruction was executed last during BCD operations, so that a  
subsequent decimal adjust operation can execute correctly. The DA bit is not usually accessed by  
programmers, and cannot be used as a test condition.  
H
Half-Carry Flag (FLAGS.2)  
The H bit is set to "1" whenever an addition generates a carry-out of bit 3, or when a subtraction borrows  
out of bit 4. It is used by the Decimal Adjust (DA) instruction to convert the binary result of a previous  
addition or subtraction into the correct decimal (BCD) result. The H flag is seldom accessed directly by a  
program.  
FIS Fast Interrupt Status Flag (FLAGS.1)  
The FIS bit is set during a fast interrupt cycle and reset during the IRET following interrupt servicing.  
When set, it inhibits all interrupts and causes the fast interrupt return to be executed when the IRET  
instruction is executed.  
BA Bank Address Flag (FLAGS.0)  
The BA flag indicates which register bank in the set 1 area of the internal register file is currently  
selected, bank 0 or bank 1. The BA flag is cleared to "0" (select bank 0) when you execute the SB0  
instruction and is set to "1" (select bank 1) when you execute the SB1 instruction.  
6-7  
INSTRUCTION SET  
S3C830A/P830A  
INSTRUCTION SET NOTATION  
Table 6-2. Flag Notation Conventions  
Flag  
C
Z
Description  
Carry flag  
Zero flag  
S
V
D
H
0
Sign flag  
Overflow flag  
Decimal-adjust flag  
Half-carry flag  
Cleared to logic zero  
Set to logic one  
1
*
Set or cleared according to operation  
Value is unaffected  
Value is undefined  
x
Table 6-3. Instruction Set Symbols  
Symbol  
dst  
src  
@
Description  
Destination operand  
Source operand  
Indirect register address prefix  
Program counter  
PC  
IP  
Instruction pointer  
FLAGS  
RP  
#
Flags register (D5H)  
Register pointer  
Immediate operand or register address prefix  
Hexadecimal number suffix  
Decimal number suffix  
Binary number suffix  
Opcode  
H
D
B
opc  
6-8  
S3C830A/P830A  
Notation  
INSTRUCTION SET  
Table 6-4. Instruction Notation Conventions  
Description Actual Operand Range  
cc  
r
Condition code  
Working register only  
See list of condition codes in Table 6-6.  
Rn (n = 0–15)  
rb  
r0  
rr  
Bit (b) of working register  
Rn.b (n = 0–15, b = 0–7)  
Rn (n = 0–15)  
Bit 0 (LSB) of working register  
Working register pair  
RRp (p = 0, 2, 4, ..., 14)  
reg or Rn (reg = 0–255, n = 0–15)  
reg.b (reg = 0–255, b = 0–7)  
R
Register or working register  
Bit 'b' of register or working register  
Register pair or working register pair  
Rb  
RR  
reg or RRp (reg = 0–254, even number only, where  
p = 0, 2, ..., 14)  
IA  
Ir  
Indirect addressing mode  
addr (addr = 0–254, even number only)  
@Rn (n = 0–15)  
Indirect working register only  
IR  
Indirect register or indirect working register @Rn or @reg (reg = 0–255, n = 0–15)  
Irr  
Indirect working register pair only  
@RRp (p = 0, 2, ..., 14)  
IRR  
Indirect register pair or indirect working  
register pair  
@RRp or @reg (reg = 0–254, even only, where  
p = 0, 2, ..., 14)  
X
Indexed addressing mode  
#reg [Rn] (reg = 0–255, n = 0–15)  
XS  
Indexed (short offset) addressing mode  
#addr [RRp] (addr = range –128 to +127, where  
p = 0, 2, ..., 14)  
xl  
Indexed (long offset) addressing mode  
#addr [RRp] (addr = range 0–65535, where  
p = 0, 2, ..., 14)  
da  
ra  
Direct addressing mode  
Relative addressing mode  
addr (addr = range 0–65535)  
addr (addr = number in the range +127 to –128 that is  
an offset relative to the address of the next instruction)  
im  
Immediate addressing mode  
#data (data = 0–255)  
iml  
Immediate (long) addressing mode  
#data (data = range 0–65535)  
6-9  
INSTRUCTION SET  
S3C830A/P830A  
Table 6-5. Opcode Quick Reference  
OPCODE MAP  
LOWER NIBBLE (HEX)  
0
1
2
3
4
5
6
7
DEC  
R1  
DEC  
IR1  
ADD  
r1,r2  
ADD  
r1,Ir2  
ADD  
R2,R1  
ADD  
IR2,R1  
ADD  
R1,IM  
BOR  
r0–Rb  
U
P
P
E
R
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
RLC  
R1  
RLC  
IR1  
ADC  
r1,r2  
ADC  
r1,Ir2  
ADC  
R2,R1  
ADC  
IR2,R1  
ADC  
R1,IM  
BCP  
r1.b, R2  
INC  
R1  
INC  
IR1  
SUB  
r1,r2  
SUB  
r1,Ir2  
SUB  
R2,R1  
SUB  
IR2,R1  
SUB  
R1,IM  
BXOR  
r0–Rb  
JP  
IRR1  
SRP/0/1  
IM  
SBC  
r1,r2  
SBC  
r1,Ir2  
SBC  
R2,R1  
SBC  
IR2,R1  
SBC  
R1,IM  
BTJR  
r2.b, RA  
DA  
R1  
DA  
IR1  
OR  
r1,r2  
OR  
r1,Ir2  
OR  
R2,R1  
OR  
IR2,R1  
OR  
R1,IM  
LDB  
r0–Rb  
POP  
R1  
POP  
IR1  
AND  
r1,r2  
AND  
r1,Ir2  
AND  
R2,R1  
AND  
IR2,R1  
AND  
R1,IM  
BITC  
r1.b  
COM  
R1  
COM  
IR1  
TCM  
r1,r2  
TCM  
r1,Ir2  
TCM  
R2,R1  
TCM  
IR2,R1  
TCM  
R1,IM  
BAND  
r0–Rb  
N
I
PUSH  
R2  
PUSH  
IR2  
TM  
r1,r2  
TM  
r1,Ir2  
TM  
R2,R1  
TM  
IR2,R1  
TM  
R1,IM  
BIT  
r1.b  
DECW  
RR1  
DECW  
IR1  
PUSHUD PUSHUI  
IR1,R2  
MULT  
R2,RR1  
MULT  
IR2,RR1  
MULT  
IM,RR1  
LD  
r1, x, r2  
B
B
L
E
IR1,R2  
RL  
R1  
RL  
IR1  
POPUD  
IR2,R1  
POPUI  
IR2,R1  
DIV  
R2,RR1  
DIV  
IR2,RR1  
DIV  
IM,RR1  
LD  
r2, x, r1  
INCW  
RR1  
INCW  
IR1  
CP  
r1,r2  
CP  
r1,Ir2  
CP  
R2,R1  
CP  
IR2,R1  
CP  
R1,IM  
LDC  
r1, Irr2, xL  
CLR  
R1  
CLR  
IR1  
XOR  
r1,r2  
XOR  
r1,Ir2  
XOR  
R2,R1  
XOR  
IR2,R1  
XOR  
R1,IM  
LDC  
r2, Irr2, xL  
RRC  
R1  
RRC  
IR1  
CPIJE  
Ir,r2,RA  
LDC  
r1,Irr2  
LDW  
LDW  
LDW  
LD  
r1, Ir2  
RR2,RR1 IR2,RR1 RR1,IML  
SRA  
R1  
SRA  
IR1  
CPIJNE  
Irr,r2,RA  
LDC  
r2,Irr1  
CALL  
IA1  
LD  
IR1,IM  
LD  
Ir1, r2  
H
E
X
RR  
R1  
RR  
IR1  
LDCD  
r1,Irr2  
LDCI  
r1,Irr2  
LD  
R2,R1  
LD  
R2,IR1  
LD  
R1,IM  
LDC  
r1, Irr2, xs  
SWAP  
R1  
SWAP  
IR1  
LDCPD  
r2,Irr1  
LDCPI  
r2,Irr1  
CALL  
IRR1  
LD  
IR2,R1  
CALL  
DA1  
LDC  
r2, Irr1, xs  
6-10  
S3C830A/P830A  
INSTRUCTION SET  
Table 6-5. Opcode Quick Reference (Continued)  
OPCODE MAP  
LOWER NIBBLE (HEX)  
8
9
A
B
C
D
E
F
U
P
P
E
R
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
LD  
r1,R2  
LD  
r2,R1  
DJNZ  
r1,RA  
JR  
cc,RA  
LD  
r1,IM  
JP  
cc,DA  
INC  
r1  
NEXT  
ENTER  
EXIT  
WFI  
SB0  
SB1  
IDLE  
STOP  
DI  
¯
¯
¯
¯
¯
¯
¯
¯
¯
¯
¯
¯
¯
¯
¯
¯
¯
¯
¯
¯
¯
N
I
B
B
L
E
EI  
RET  
IRET  
RCF  
SCF  
CCF  
NOP  
H
E
X
LD  
r1,R2  
LD  
r2,R1  
DJNZ  
r1,RA  
JR  
cc,RA  
LD  
r1,IM  
JP  
cc,DA  
INC  
r1  
6-11  
INSTRUCTION SET  
S3C830A/P830A  
CONDITION CODES  
The opcode of a conditional jump always contains a 4-bit field called the condition code (cc). This specifies under  
which conditions it is to execute the jump. For example, a conditional jump with the condition code for "equal"  
after a compare operation only jumps if the two operands are equal. Condition codes are listed in Table 6-6.  
The carry (C), zero (Z), sign (S), and overflow (V) flags are used to control the operation of conditional jump  
instructions.  
Table 6-6. Condition Codes  
Binary  
Mnemonic  
Description  
Always false  
Flags Set  
0000  
1000  
F
T
Always true  
0111 (note)  
1111 (note)  
0110 (note)  
1110 (note)  
1101  
C
Carry  
C = 1  
C = 0  
Z = 1  
Z = 0  
S = 0  
S = 1  
V = 1  
V = 0  
Z = 1  
Z = 0  
NC  
Z
No carry  
Zero  
NZ  
PL  
MI  
OV  
Not zero  
Plus  
0101  
Minus  
0100  
Overflow  
1100  
NOV  
EQ  
No overflow  
Equal  
0110 (note)  
1110 (note)  
1001  
NE  
Not equal  
GE  
Greater than or equal  
Less than  
(S XOR V) = 0  
(S XOR V) = 1  
(Z OR (S XOR V)) = 0  
(Z OR (S XOR V)) = 1  
C = 0  
0001  
LT  
1010  
GT  
Greater than  
Less than or equal  
Unsigned greater than or equal  
Unsigned less than  
Unsigned greater than  
Unsigned less than or equal  
0010  
LE  
1111 (note)  
0111 (note)  
1011  
UGE  
ULT  
UGT  
ULE  
C = 1  
(C = 0 AND Z = 0) = 1  
(C OR Z) = 1  
0011  
NOTES:  
1. It indicates condition codes that are related to two different mnemonics but which test the same flag. For  
example, Z and EQ are both true if the zero flag (Z) is set, but after an ADD instruction, Z would probably be used;  
after a CP instruction, however, EQ would probably be used.  
2. For operations involving unsigned numbers, the special condition codes UGE, ULT, UGT, and ULE must be used.  
6-12  
S3C830A/P830A  
INSTRUCTION SET  
INSTRUCTION DESCRIPTIONS  
This section contains detailed information and programming examples for each instruction in the SAM8  
instruction set. Information is arranged in a consistent format for improved readability and for fast referencing.  
The following information is included in each instruction description:  
— Instruction name (mnemonic)  
— Full instruction name  
— Source/destination format of the instruction operand  
— Shorthand notation of the instruction's operation  
— Textual description of the instruction's effect  
— Specific flag settings affected by the instruction  
— Detailed description of the instruction's format, execution time, and addressing mode(s)  
— Programming example(s) explaining how to use the instruction  
6-13  
INSTRUCTION SET  
S3C830A/P830A  
ADC — Add with carry  
ADC  
dst,src  
Operation:  
dst ¬ dst + src + c  
The source operand, along with the setting of the carry flag, is added to the destination operand  
and the sum is stored in the destination. The contents of the source are unaffected. Two's-  
complement addition is performed. In multiple precision arithmetic, this instruction permits the  
carry from the addition of low-order operands to be carried into the addition of high-order  
operands.  
Flags:  
C: Set if there is a carry from the most significant bit of the result; cleared otherwise.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result is negative; cleared otherwise.  
V: Set if arithmetic overflow occurs, that is, if both operands are of the same sign and the result  
is of the opposite sign; cleared otherwise.  
D: Always cleared to "0".  
H: Set if there is a carry from the most significant bit of the low-order four bits of the result;  
cleared otherwise.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
opc  
opc  
dst | src  
src  
2
4
6
12  
13  
r
r
r
lr  
dst  
src  
3
3
6
6
14  
15  
R
R
R
IR  
dst  
6
16  
R
IM  
Examples:  
Given: R1 = 10H, R2 = 03H, C flag = "1", register 01H = 20H, register 02H = 03H, and  
register 03H = 0AH:  
ADC R1,R2  
®
®
®
®
®
R1 = 14H, R2 = 03H  
ADC R1,@R2  
ADC 01H,02H  
ADC 01H,@02H  
ADC 01H,#11H  
R1 = 1BH, R2 = 03H  
Register 01H = 24H, register 02H = 03H  
Register 01H = 2BH, register 02H = 03H  
Register 01H = 32H  
In the first example, destination register R1 contains the value 10H, the carry flag is set to "1",  
and the source working register R2 contains the value 03H. The statement "ADC R1,R2" adds  
03H and the carry flag value ("1") to the destination value 10H, leaving 14H in register R1.  
6-14  
S3C830A/P830A  
INSTRUCTION SET  
ADD — Add  
ADD  
dst,src  
Operation:  
dst ¬ dst + src  
The source operand is added to the destination operand and the sum is stored in the destination.  
The contents of the source are unaffected. Two's-complement addition is performed.  
Flags:  
C: Set if there is a carry from the most significant bit of the result; cleared otherwise.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result is negative; cleared otherwise.  
V: Set if arithmetic overflow occurred, that is, if both operands are of the same sign and the  
result is of the opposite sign; cleared otherwise.  
D: Always cleared to "0".  
H: Set if a carry from the low-order nibble occurred.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
opc  
opc  
dst | src  
src  
2
4
6
02  
03  
r
r
r
lr  
dst  
src  
3
3
6
6
04  
05  
R
R
R
IR  
dst  
6
06  
R
IM  
Examples:  
Given: R1 = 12H, R2 = 03H, register 01H = 21H, register 02H = 03H, register 03H = 0AH:  
ADD R1,R2  
®
®
®
®
®
R1 = 15H, R2 = 03H  
ADD R1,@R2  
ADD 01H,02H  
ADD 01H,@02H  
ADD 01H,#25H  
R1 = 1CH, R2 = 03H  
Register 01H = 24H, register 02H = 03H  
Register 01H = 2BH, register 02H = 03H  
Register 01H = 46H  
In the first example, destination working register R1 contains 12H and the source working  
register R2 contains 03H. The statement "ADD R1,R2" adds 03H to 12H, leaving the value 15H  
in register R1.  
6-15  
INSTRUCTION SET  
S3C830A/P830A  
AND — Logical AND  
AND  
dst,src  
Operation:  
dst ¬ dst AND src  
The source operand is logically ANDed with the destination operand. The result is stored in the  
destination. The AND operation results in a "1" bit being stored whenever the corresponding bits  
in the two operands are both logic ones; otherwise a "0" bit value is stored. The contents of the  
source are unaffected.  
Flags:  
C: Unaffected.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result bit 7 is set; cleared otherwise.  
V: Always cleared to "0".  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
opc  
opc  
dst | src  
src  
2
4
6
52  
53  
r
r
r
lr  
dst  
src  
3
3
6
6
54  
55  
R
R
R
IR  
dst  
6
56  
R
IM  
Examples:  
Given: R1 = 12H, R2 = 03H, register 01H = 21H, register 02H = 03H, register 03H = 0AH:  
AND R1,R2  
®
®
®
®
®
R1 = 02H, R2 = 03H  
AND R1,@R2  
AND 01H,02H  
AND 01H,@02H  
AND 01H,#25H  
R1 = 02H, R2 = 03H  
Register 01H = 01H, register 02H = 03H  
Register 01H = 00H, register 02H = 03H  
Register 01H = 21H  
In the first example, destination working register R1 contains the value 12H and the source  
working register R2 contains 03H. The statement "AND R1,R2" logically ANDs the source  
operand 03H with the destination operand value 12H, leaving the value 02H in register R1.  
6-16  
S3C830A/P830A  
INSTRUCTION SET  
BAND — Bit AND  
BAND  
dst,src.b  
BAND  
dst.b,src  
Operation:  
dst(0) ¬ dst(0) AND src(b)  
or  
dst(b) ¬ dst(b) AND src(0)  
The specified bit of the source (or the destination) is logically ANDed with the zero bit (LSB) of  
the destination (or source). The resultant bit is stored in the specified bit of the destination. No  
other bits of the destination are affected. The source is unaffected.  
Flags:  
C: Unaffected.  
Z: Set if the result is "0"; cleared otherwise.  
S: Cleared to "0".  
V: Undefined.  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
opc  
dst | b | 0  
src | b | 1  
src  
dst  
3
6
67  
r0  
Rb  
3
6
67  
Rb  
r0  
NOTE: In the second byte of the 3-byte instruction formats, the destination (or source) address is four  
bits, the bit address 'b' is three bits, and the LSB address value is one bit in length.  
Examples:  
Given: R1 = 07H and register 01H = 05H:  
BAND R1,01H.1  
BAND 01H.1,R1  
®
®
R1 = 06H, register 01H = 05H  
Register 01H = 05H, R1 = 07H  
In the first example, source register 01H contains the value 05H (00000101B) and destination  
working register R1 contains 07H (00000111B). The statement "BAND R1,01H.1" ANDs the bit 1  
value of the source register ("0") with the bit 0 value of register R1 (destination), leaving the  
value 06H (00000110B) in register R1.  
6-17  
INSTRUCTION SET  
S3C830A/P830A  
BCP — Bit Compare  
BCP  
dst,src.b  
Operation:  
dst(0) – src(b)  
The specified bit of the source is compared to (subtracted from) bit zero (LSB) of the destination.  
The zero flag is set if the bits are the same; otherwise it is cleared. The contents of both  
operands are unaffected by the comparison.  
Flags:  
C: Unaffected.  
Z: Set if the two bits are the same; cleared otherwise.  
S: Cleared to "0".  
V: Undefined.  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
dst | b | 0  
src  
3
6
17  
r0  
Rb  
NOTE: In the second byte of the instruction format, the destination address is four bits, the bit address 'b'  
is three bits, and the LSB address value is one bit in length.  
Example:  
Given: R1 = 07H and register 01H = 01H:  
BCP  
R1,01H.1  
®
R1 = 07H, register 01H = 01H  
If destination working register R1 contains the value 07H (00000111B) and the source register  
01H contains the value 01H (00000001B), the statement "BCP R1,01H.1" compares bit one of  
the source register (01H) and bit zero of the destination register (R1). Because the bit values are  
not identical, the zero flag bit (Z) is cleared in the FLAGS register (0D5H).  
6-18  
S3C830A/P830A  
INSTRUCTION SET  
BITC — Bit Complement  
BITC  
dst.b  
Operation:  
dst(b) ¬ NOT dst(b)  
This instruction complements the specified bit within the destination without affecting any other  
bits in the destination.  
Flags:  
C: Unaffected.  
Z: Set if the result is "0"; cleared otherwise.  
S: Cleared to "0".  
V: Undefined.  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
dst | b | 0  
2
4
57  
rb  
NOTE: In the second byte of the instruction format, the destination address is four bits, the bit address 'b'  
is three bits, and the LSB address value is one bit in length.  
Example:  
Given: R1 = 07H  
BITC R1.1  
®
R1 = 05H  
If working register R1 contains the value 07H (00000111B), the statement "BITC R1.1"  
complements bit one of the destination and leaves the value 05H (00000101B) in register R1.  
Because the result of the complement is not "0", the zero flag (Z) in the FLAGS register (0D5H)  
is cleared.  
6-19  
INSTRUCTION SET  
S3C830A/P830A  
BITR— Bit Reset  
BITR  
dst.b  
Operation:  
dst(b) ¬ 0  
The BITR instruction clears the specified bit within the destination without affecting any other bits  
in the destination.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
dst | b | 0  
2
4
77  
rb  
NOTE: In the second byte of the instruction format, the destination address is four bits, the bit address 'b'  
is three bits, and the LSB address value is one bit in length.  
Example:  
Given: R1 = 07H:  
BITR R1.1  
®
R1 = 05H  
If the value of working register R1 is 07H (00000111B), the statement "BITR R1.1" clears bit one  
of the destination register R1, leaving the value 05H (00000101B).  
6-20  
S3C830A/P830A  
INSTRUCTION SET  
BITS— Bit Set  
BITS  
dst.b  
Operation:  
dst(b) ¬ 1  
The BITS instruction sets the specified bit within the destination without affecting any other bits  
in the destination.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
dst | b | 1  
2
4
77  
rb  
NOTE: In the second byte of the instruction format, the destination address is four bits, the bit address 'b'  
is three bits, and the LSB address value is one bit in length.  
Example:  
Given: R1 = 07H:  
BITS R1.3  
®
R1 = 0FH  
If working register R1 contains the value 07H (00000111B), the statement "BITS R1.3" sets bit  
three of the destination register R1 to "1", leaving the value 0FH (00001111B).  
6-21  
INSTRUCTION SET  
S3C830A/P830A  
BOR— Bit OR  
BOR  
BOR  
dst,src.b  
dst.b,src  
Operation:  
dst(0) ¬ dst(0) OR src(b)  
or  
dst(b) ¬ dst(b) OR src(0)  
The specified bit of the source (or the destination) is logically ORed with bit zero (LSB) of the  
destination (or the source). The resulting bit value is stored in the specified bit of the destination.  
No other bits of the destination are affected. The source is unaffected.  
Flags:  
C: Unaffected.  
Z: Set if the result is "0"; cleared otherwise.  
S: Cleared to "0".  
V: Undefined.  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
opc  
dst | b | 0  
src | b | 1  
src  
dst  
3
6
07  
r0  
Rb  
3
6
07  
Rb  
r0  
NOTE: In the second byte of the 3-byte instruction formats, the destination (or source) address is four  
bits, the bit address 'b' is three bits, and the LSB address value is one bit.  
Examples:  
Given: R1 = 07H and register 01H = 03H:  
BOR R1, 01H.1  
BOR 01H.2, R1  
®
®
R1 = 07H, register 01H = 03H  
Register 01H = 07H, R1 = 07H  
In the first example, destination working register R1 contains the value 07H (00000111B) and  
source register 01H the value 03H (00000011B). The statement "BOR R1,01H.1" logically ORs  
bit one of register 01H (source) with bit zero of R1 (destination). This leaves the same value  
(07H) in working register R1.  
In the second example, destination register 01H contains the value 03H (00000011B) and the  
source working register R1 the value 07H (00000111B). The statement "BOR 01H.2,R1" logically  
ORs bit two of register 01H (destination) with bit zero of R1 (source). This leaves the value 07H  
in register 01H.  
6-22  
S3C830A/P830A  
INSTRUCTION SET  
BTJRF — Bit Test, Jump Relative on False  
BTJRF  
dst,src.b  
Operation:  
If src(b) is a "0", then PC ¬ PC + dst  
The specified bit within the source operand is tested. If it is a "0", the relative address is added to  
the program counter and control passes to the statement whose address is now in the PC;  
otherwise, the instruction following the BTJRF instruction is executed.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
(Note 1)  
dst  
src  
opc  
src | b | 0  
dst  
3
10  
37  
RA  
rb  
NOTE: In the second byte of the instruction format, the source address is four bits, the bit address 'b' is  
three bits, and the LSB address value is one bit in length.  
Example:  
Given: R1 = 07H:  
BTJRF SKIP,R1.3  
®
PC jumps to SKIP location  
If working register R1 contains the value 07H (00000111B), the statement "BTJRF SKIP,R1.3"  
tests bit 3. Because it is "0", the relative address is added to the PC and the PC jumps to the  
memory location pointed to by the SKIP. (Remember that the memory location must be within  
the allowed range of + 127 to – 128.)  
6-23  
INSTRUCTION SET  
S3C830A/P830A  
BTJRT— Bit Test, Jump Relative on True  
BTJRT  
dst,src.b  
Operation:  
If src(b) is a "1", then PC ¬ PC + dst  
The specified bit within the source operand is tested. If it is a "1", the relative address is added to  
the program counter and control passes to the statement whose address is now in the PC;  
otherwise, the instruction following the BTJRT instruction is executed.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
(Note 1)  
dst  
src  
opc  
src | b | 1  
dst  
3
10  
37  
RA  
rb  
NOTE: In the second byte of the instruction format, the source address is four bits, the bit address 'b' is  
three bits, and the LSB address value is one bit in length.  
Example:  
Given: R1 = 07H:  
BTJRT  
SKIP,R1.1  
If working register R1 contains the value 07H (00000111B), the statement "BTJRT SKIP,R1.1"  
tests bit one in the source register (R1). Because it is a "1", the relative address is added to the  
PC and the PC jumps to the memory location pointed to by the SKIP. (Remember that the  
memory location must be within the allowed range of + 127 to – 128.)  
6-24  
S3C830A/P830A  
INSTRUCTION SET  
BXOR— Bit XOR  
BXOR  
BXOR  
dst,src.b  
dst.b,src  
Operation:  
dst(0) ¬ dst(0) XOR src(b)  
or  
dst(b) ¬ dst(b) XOR src(0)  
The specified bit of the source (or the destination) is logically exclusive-ORed with bit zero (LSB)  
of the destination (or source). The result bit is stored in the specified bit of the destination. No  
other bits of the destination are affected. The source is unaffected.  
Flags:  
C: Unaffected.  
Z: Set if the result is "0"; cleared otherwise.  
S: Cleared to "0".  
V: Undefined.  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
opc  
dst | b | 0  
src | b | 1  
src  
dst  
3
6
27  
r0  
Rb  
3
6
27  
Rb  
r0  
NOTE: In the second byte of the 3-byte instruction formats, the destination (or source) address is four  
bits, the bit address 'b' is three bits, and the LSB address value is one bit in length.  
Examples:  
Given: R1 = 07H (00000111B) and register 01H = 03H (00000011B):  
BXOR R1,01H.1  
BXOR 01H.2,R1  
®
®
R1 = 06H, register 01H = 03H  
Register 01H = 07H, R1 = 07H  
In the first example, destination working register R1 has the value 07H (00000111B) and source  
register 01H has the value 03H (00000011B). The statement "BXOR R1,01H.1" exclusive-ORs  
bit one of register 01H (source) with bit zero of R1 (destination). The result bit value is stored in  
bit zero of R1, changing its value from 07H to 06H. The value of source register 01H is  
unaffected.  
6-25  
INSTRUCTION SET  
S3C830A/P830A  
CALL— Call Procedure  
CALL  
dst  
Operation:  
SP  
@SP  
SP  
@SP  
PC  
¬
¬
¬
¬
¬
SP – 1  
PCL  
SP –1  
PCH  
dst  
The current contents of the program counter are pushed onto the top of the stack. The program  
counter value used is the address of the first instruction following the CALL instruction. The  
specified destination address is then loaded into the program counter and points to the first  
instruction of a procedure. At the end of the procedure the return instruction (RET) can be used  
to return to the original program flow. RET pops the top of the stack back into the program  
counter.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
opc  
opc  
dst  
3
14  
F6  
F4  
D4  
DA  
IRR  
IA  
dst  
dst  
2
2
12  
14  
Examples:  
Given: R0 = 35H, R1 = 21H, PC = 1A47H, and SP = 0002H:  
CALL 3521H ®  
SP = 0000H  
(Memory locations 0000H = 1AH, 0001H = 4AH, where  
4AH is the address that follows the instruction.)  
SP = 0000H (0000H = 1AH, 0001H = 49H)  
SP = 0000H (0000H = 1AH, 0001H = 49H)  
CALL @RR0 ®  
CALL #40H  
®
In the first example, if the program counter value is 1A47H and the stack pointer contains the  
value 0002H, the statement "CALL 3521H" pushes the current PC value onto the top of the  
stack. The stack pointer now points to memory location 0000H. The PC is then loaded with the  
value 3521H, the address of the first instruction in the program sequence to be executed.  
If the contents of the program counter and stack pointer are the same as in the first example, the  
statement "CALL @RR0" produces the same result except that the 49H is stored in stack  
location 0001H (because the two-byte instruction format was used). The PC is then loaded with  
the value 3521H, the address of the first instruction in the program sequence to be executed.  
Assuming that the contents of the program counter and stack pointer are the same as in the first  
example, if program address 0040H contains 35H and program address 0041H contains 21H, the  
statement "CALL #40H" produces the same result as in the second example.  
6-26  
S3C830A/P830A  
INSTRUCTION SET  
CCF— Complement Carry Flag  
CCF  
Operation:  
C ¬ NOT C  
The carry flag (C) is complemented. If C = "1", the value of the carry flag is changed to logic  
zero; if C = "0", the value of the carry flag is changed to logic one.  
Flags:  
C: Complemented.  
No other flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
opc  
1
4
EF  
Example:  
Given: The carry flag = "0":  
CCF  
If the carry flag = "0", the CCF instruction complements it in the FLAGS register (0D5H),  
changing its value from logic zero to logic one.  
6-27  
INSTRUCTION SET  
S3C830A/P830A  
CLR— Clear  
CLR  
dst  
Operation:  
dst ¬ "0"  
The destination location is cleared to "0".  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
dst  
2
4
4
B0  
B1  
R
IR  
Examples:  
Given: Register 00H = 4FH, register 01H = 02H, and register 02H = 5EH:  
CLR  
CLR  
00H  
®
Register 00H = 00H  
@01H ®  
Register 01H = 02H, register 02H = 00H  
In Register (R) addressing mode, the statement "CLR 00H" clears the destination register 00H  
value to 00H. In the second example, the statement "CLR @01H" uses Indirect Register (IR)  
addressing mode to clear the 02H register value to 00H.  
6-28  
S3C830A/P830A  
INSTRUCTION SET  
COM— Complement  
COM  
dst  
Operation:  
dst ¬ NOT dst  
The contents of the destination location are complemented (one's complement); all "1s" are  
changed to "0s", and vice-versa.  
Flags:  
C: Unaffected.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result bit 7 is set; cleared otherwise.  
V: Always reset to "0".  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
dst  
2
4
4
60  
61  
R
IR  
Examples:  
Given: R1 = 07H and register 07H = 0F1H:  
COM R1  
®
®
R1 = 0F8H  
R1 = 07H, register 07H = 0EH  
COM @R1  
In the first example, destination working register R1 contains the value 07H (00000111B). The  
statement "COM R1" complements all the bits in R1: all logic ones are changed to logic zeros,  
and vice-versa, leaving the value 0F8H (11111000B).  
In the second example, Indirect Register (IR) addressing mode is used to complement the value  
of destination register 07H (11110001B), leaving the new value 0EH (00001110B).  
6-29  
INSTRUCTION SET  
S3C830A/P830A  
CP— Compare  
CP  
dst,src  
Operation:  
dst – src  
The source operand is compared to (subtracted from) the destination operand, and the  
appropriate flags are set accordingly. The contents of both operands are unaffected by the  
comparison.  
Flags:  
C: Set if a "borrow" occurred (src > dst); cleared otherwise.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result is negative; cleared otherwise.  
V: Set if arithmetic overflow occurred; cleared otherwise.  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
dst |  
src  
2
4
6
A2  
r
r
A3  
r
lr  
opc  
opc  
src  
dst  
dst  
src  
3
3
6
6
A4  
A5  
R
R
R
IR  
6
A6  
R
IM  
Examples:  
1. Given: R1 = 02H and R2 = 03H:  
CP R1,R2 ® Set the C and S flags  
Destination working register R1 contains the value 02H and source register R2 contains the  
value 03H. The statement "CP R1,R2" subtracts the R2 value (source/subtrahend) from the R1  
value (destination/minuend). Because a "borrow" occurs and the difference is negative, C and S  
are "1".  
2. Given: R1 = 05H and R2 = 0AH:  
CP  
JP  
INC  
R1,R2  
UGE,SKIP  
R1  
SKIP LD  
R3,R1  
In this example, destination working register R1 contains the value 05H which is less than the  
contents of the source working register R2 (0AH). The statement "CP R1,R2" generates C = "1"  
and the JP instruction does not jump to the SKIP location. After the statement "LD R3,R1"  
executes, the value 06H remains in working register R3.  
6-30  
S3C830A/P830A  
INSTRUCTION SET  
CPIJE— Compare, Increment, and Jump on Equal  
CPIJE  
dst,src,RA  
Operation:  
If dst – src = "0", PC ¬ PC + RA  
Ir ¬ Ir + 1  
The source operand is compared to (subtracted from) the destination operand. If the result is "0",  
the relative address is added to the program counter and control passes to the statement whose  
address is now in the program counter. Otherwise, the instruction immediately following the  
CPIJE instruction is executed. In either case, the source pointer is incremented by one before  
the next instruction is executed.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
src dst  
RA  
3
12  
C2  
r
Ir  
NOTE: Execution time is 18 cycles if the jump is taken or 16 cycles if it is not taken.  
Example:  
Given: R1 = 02H, R2 = 03H, and register 03H = 02H:  
CPIJE R1,@R2,SKIP ®  
R2 = 04H, PC jumps to SKIP location  
In this example, working register R1 contains the value 02H, working register R2 the value 03H,  
and register 03 contains 02H. The statement "CPIJE R1,@R2,SKIP" compares the @R2 value  
02H (00000010B) to 02H (00000010B). Because the result of the comparison is equal, the  
relative address is added to the PC and the PC then jumps to the memory location pointed to by  
SKIP. The source register (R2) is incremented by one, leaving a value of 04H. (Remember that  
the memory location must be within the allowed range of + 127 to – 128.)  
6-31  
INSTRUCTION SET  
S3C830A/P830A  
CPIJNE— Compare, Increment, and Jump on Non-Equal  
CPIJNE  
dst,src,RA  
Operation:  
If dst – src "0", PC ¬ PC + RA  
Ir ¬ Ir + 1  
The source operand is compared to (subtracted from) the destination operand. If the result is not  
"0", the relative address is added to the program counter and control passes to the statement  
whose address is now in the program counter; otherwise the instruction following the CPIJNE  
instruction is executed. In either case the source pointer is incremented by one before the next  
instruction.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
src dst  
RA  
3
12  
D2  
r
Ir  
NOTE: Execution time is 18 cycles if the jump is taken or 16 cycles if it is not taken.  
Example:  
Given: R1 = 02H, R2 = 03H, and register 03H = 04H:  
CPIJNE  
R1,@R2,SKIP ®  
R2 = 04H, PC jumps to SKIP location  
Working register R1 contains the value 02H, working register R2 (the source pointer) the value  
03H, and general register 03 the value 04H. The statement "CPIJNE R1,@R2,SKIP" subtracts  
04H (00000100B) from 02H (00000010B). Because the result of the comparison is non-equal,  
the relative address is added to the PC and the PC then jumps to the memory location pointed to  
by SKIP. The source pointer register (R2) is also incremented by one, leaving a value of 04H.  
(Remember that the memory location must be within the allowed range of + 127 to – 128.)  
6-32  
S3C830A/P830A  
INSTRUCTION SET  
DA— Decimal Adjust  
DA  
dst  
Operation:  
dst ¬ DA dst  
The destination operand is adjusted to form two 4-bit BCD digits following an addition or  
subtraction operation. For addition (ADD, ADC) or subtraction (SUB, SBC), the following table  
indicates the operation performed. (The operation is undefined if the destination operand was not  
the result of a valid addition or subtraction of BCD digits):  
Instruction  
Carry  
Before DA  
Bits 4–7  
Value (Hex)  
H Flag  
Before DA  
Bits 0–3  
Value (Hex)  
Number Added  
to Byte  
Carry  
After DA  
0
0
0
0
0
0
1
1
1
0
0
1
1
0–9  
0–8  
0–9  
A–F  
9–F  
A–F  
0–2  
0–2  
0–3  
0–9  
0–8  
7–F  
6–F  
0
0
1
0
0
1
0
0
1
0
1
0
1
0–9  
A–F  
0–3  
0–9  
A–F  
0–3  
0–9  
A–F  
0–3  
0–9  
6–F  
0–9  
6–F  
00  
0
0
0
1
1
1
1
1
1
0
0
1
1
06  
06  
ADD  
ADC  
60  
66  
66  
60  
66  
66  
00 = – 00  
FA = – 06  
A0 = – 60  
9A = – 66  
SUB  
SBC  
Flags:  
C: Set if there was a carry from the most significant bit; cleared otherwise (see table).  
Z: Set if result is "0"; cleared otherwise.  
S: Set if result bit 7 is set; cleared otherwise.  
V: Undefined.  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
dst  
2
4
4
40  
41  
R
IR  
6-33  
INSTRUCTION SET  
S3C830A/P830A  
DA— Decimal Adjust  
DA  
(Continued)  
Example:  
Given: Working register R0 contains the value 15 (BCD), working register R1 contains  
27 (BCD), and address 27H contains 46 (BCD):  
ADD  
DA  
R1,R0  
R1  
;
;
C ¬ "0", H ¬ "0", Bits 4–7 = 3, bits 0–3 = C, R1 ¬ 3CH  
R1 ¬ 3CH + 06  
If addition is performed using the BCD values 15 and 27, the result should be 42. The sum is  
incorrect, however, when the binary representations are added in the destination location using  
standard binary arithmetic:  
0 0 0 1 0 1 0 1  
+ 0 0 1 0 0 1 1 1  
15  
27  
0 0 1 1 1 1 0 0  
=
3CH  
The DA instruction adjusts this result so that the correct BCD representation is obtained:  
0 0 1 1 1 1 0 0  
+ 0 0 0 0 0 1 1 0  
0 1 0 0 0 0 1 0  
=
42  
Assuming the same values given above, the statements  
SUB  
DA  
27H,R0 ;  
@R1  
C ¬ "0", H ¬ "0", Bits 4–7 = 3, bits 0–3 = 1  
@R1 ¬ 31–0  
;
leave the value 31 (BCD) in address 27H (@R1).  
6-34  
S3C830A/P830A  
INSTRUCTION SET  
DEC— Decrement  
DEC  
dst  
Operation:  
dst ¬ dst – 1  
The contents of the destination operand are decremented by one.  
Flags:  
C: Unaffected.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if result is negative; cleared otherwise.  
V: Set if arithmetic overflow occurred; cleared otherwise.  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
dst  
2
4
4
00  
01  
R
IR  
Examples:  
Given: R1 = 03H and register 03H = 10H:  
DEC R1  
®
®
R1 = 02H  
DEC @R1  
Register 03H = 0FH  
In the first example, if working register R1 contains the value 03H, the statement "DEC R1"  
decrements the hexadecimal value by one, leaving the value 02H. In the second example, the  
statement "DEC @R1" decrements the value 10H contained in the destination register 03H by  
one, leaving the value 0FH.  
6-35  
INSTRUCTION SET  
S3C830A/P830A  
DECW— Decrement Word  
DECW  
dst  
Operation:  
dst ¬ dst – 1  
The contents of the destination location (which must be an even address) and the operand  
following that location are treated as a single 16-bit value that is decremented by one.  
Flags:  
C: Unaffected.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result is negative; cleared otherwise.  
V: Set if arithmetic overflow occurred; cleared otherwise.  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
dst  
2
8
8
80  
81  
RR  
IR  
Examples:  
Given: R0 = 12H, R1 = 34H, R2 = 30H, register 30H = 0FH, and register 31H = 21H:  
DECW RR0  
DECW @R2  
®
®
R0 = 12H, R1 = 33H  
Register 30H = 0FH, register 31H = 20H  
In the first example, destination register R0 contains the value 12H and register R1 the value  
34H. The statement "DECW RR0" addresses R0 and the following operand R1 as a 16-bit word  
and decrements the value of R1 by one, leaving the value 33H.  
NOTE:  
A system malfunction may occur if you use a Zero flag (FLAGS.6) result together with a DECW  
instruction. To avoid this problem, we recommend that you use DECW as shown in the following  
example:  
LOOP: DECW RR0  
LD  
OR  
JR  
R2,R1  
R2,R0  
NZ,LOOP  
6-36  
S3C830A/P830A  
INSTRUCTION SET  
DI— Disable Interrupts  
DI  
Operation:  
SYM (0) ¬ 0  
Bit zero of the system mode control register, SYM.0, is cleared to "0", globally disabling all  
interrupt processing. Interrupt requests will continue to set their respective interrupt pending bits,  
but the CPU will not service them while interrupt processing is disabled.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
opc  
1
4
8F  
Example:  
Given: SYM = 01H:  
DI  
If the value of the SYM register is 01H, the statement "DI" leaves the new value 00H in the  
register and clears SYM.0 to "0", disabling interrupt processing.  
Before changing IMR, interrupt pending and interrupt source control register, be sure DI state.  
6-37  
INSTRUCTION SET  
S3C830A/P830A  
DIV— Divide (Unsigned)  
DIV  
dst,src  
Operation:  
dst ÷ src  
dst (UPPER) ¬ REMAINDER  
dst (LOWER) ¬ QUOTIENT  
The destination operand (16 bits) is divided by the source operand (8 bits). The quotient (8 bits)  
is stored in the lower half of the destination. The remainder (8 bits) is stored in the upper half of  
8
the destination. When the quotient is ³ 2 , the numbers stored in the upper and lower halves of  
the destination for quotient and remainder are incorrect. Both operands are treated as unsigned  
integers.  
Flags:  
C: Set if the V flag is set and quotient is between 28 and 29 –1; cleared otherwise.  
Z: Set if divisor or quotient = "0"; cleared otherwise.  
S: Set if MSB of quotient = "1"; cleared otherwise.  
V: Set if quotient is ³ 28 or if divisor = "0"; cleared otherwise.  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
RR  
RR  
RR  
src  
opc  
src  
dst  
3
26/10  
26/10  
26/10  
94  
95  
96  
R
IR  
IM  
NOTE: Execution takes 10 cycles if the divide-by-zero is attempted; otherwise it takes 26 cycles.  
Examples:  
Given: R0 = 10H, R1 = 03H, R2 = 40H, register 40H = 80H:  
DIV  
DIV  
DIV  
RR0,R2  
®
®
®
R0 = 03H, R1 = 40H  
R0 = 03H, R1 = 20H  
R0 = 03H, R1 = 80H  
RR0,@R2  
RR0,#20H  
In the first example, destination working register pair RR0 contains the values 10H (R0) and 03H  
(R1), and register R2 contains the value 40H. The statement "DIV RR0,R2" divides the 16-bit  
RR0 value by the 8-bit value of the R2 (source) register. After the DIV instruction, R0 contains  
the value 03H and R1 contains 40H. The 8-bit remainder is stored in the upper half of the  
destination register RR0 (R0) and the quotient in the lower half (R1).  
6-38  
S3C830A/P830A  
INSTRUCTION SET  
DJNZ— Decrement and Jump if Non-Zero  
DJNZ  
r,dst  
Operation:  
r ¬ r – 1  
If r ¹ 0, PC ¬ PC + dst  
The working register being used as a counter is decremented. If the contents of the register are  
not logic zero after decrementing, the relative address is added to the program counter and  
control passes to the statement whose address is now in the PC. The range of the relative  
address is +127 to –128, and the original value of the PC is taken to be the address of the  
instruction byte following the DJNZ statement.  
NOTE: In case of using DJNZ instruction, the working register being used as a counter should be set at  
the one of location 0C0H to 0CFH with SRP, SRP0, or SRP1 instruction.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
r | opc  
dst  
2
8 (jump taken)  
8 (no jump)  
rA  
RA  
r = 0 to F  
Example:  
Given: R1 = 02H and LOOP is the label of a relative address:  
SRP  
#0C0H  
DJNZ R1,LOOP  
DJNZ is typically used to control a "loop" of instructions. In many cases, a label is used as the  
destination operand instead of a numeric relative address value. In the example, working register  
R1 contains the value 02H, and LOOP is the label for a relative address.  
The statement "DJNZ R1, LOOP" decrements register R1 by one, leaving the value 01H.  
Because the contents of R1 after the decrement are non-zero, the jump is taken to the relative  
address specified by the LOOP label.  
6-39  
INSTRUCTION SET  
S3C830A/P830A  
EI— Enable Interrupts  
EI  
Operation:  
SYM (0) ¬ 1  
An EI instruction sets bit zero of the system mode register, SYM.0 to "1". This allows interrupts to  
be serviced as they occur (assuming they have highest priority). If an interrupt's pending bit was  
set while interrupt processing was disabled (by executing a DI instruction), it will be serviced  
when you execute the EI instruction.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
opc  
1
4
9F  
Example:  
Given: SYM = 00H:  
EI  
If the SYM register contains the value 00H, that is, if interrupts are currently disabled, the  
statement "EI" sets the SYM register to 01H, enabling all interrupts. (SYM.0 is the enable bit for  
global interrupt processing.)  
6-40  
S3C830A/P830A  
INSTRUCTION SET  
ENTER— Enter  
ENTER  
Operation:  
SP  
@SP  
IP  
¬
¬
¬
¬
¬
SP – 2  
IP  
PC  
PC  
IP  
@IP  
IP + 2  
This instruction is useful when implementing threaded-code languages. The contents of the  
instruction pointer are pushed to the stack. The program counter (PC) value is then written to the  
instruction pointer. The program memory word that is pointed to by the instruction pointer is  
loaded into the PC, and the instruction pointer is incremented by two.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
opc  
1
14  
1F  
Example:  
The diagram below shows one example of how to use an ENTER statement.  
Before  
After  
Data  
Address  
IP  
Data  
Address  
IP  
0050  
0040  
0022  
0043  
0110  
0020  
Address  
Data  
1F  
Address  
40 Enter  
Data  
1F  
PC  
SP  
40 Enter  
PC  
SP  
41 Address H 01  
42 Address L 10  
43 Address H  
41 Address H 01  
42 Address L 10  
43 Address H  
20  
21  
22  
00  
50  
IPH  
IPL  
Data  
110 Routine  
Memory  
Memory  
22  
Data  
Stack  
Stack  
6-41  
INSTRUCTION SET  
S3C830A/P830A  
EXIT— Exit  
EXIT  
Operation:  
IP  
¬
¬
¬
¬
@SP  
SP  
PC  
IP  
SP + 2  
@IP  
IP + 2  
This instruction is useful when implementing threaded-code languages. The stack value is  
popped and loaded into the instruction pointer. The program memory word that is pointed to by  
the instruction pointer is then loaded into the program counter, and the instruction pointer is  
incremented by two.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode (Hex)  
opc  
1
14 (internal stack)  
16 (internal stack)  
2F  
Example:  
The diagram below shows one example of how to use an EXIT statement.  
Before  
After  
Data  
Address  
IP  
Data  
Address  
IP  
0050  
0040  
0022  
0052  
0060  
0022  
Address  
Data  
Address  
Data  
PC  
SP  
PC  
SP  
50 PCL old  
51 PCH  
60  
00  
60  
Main  
140 Exit  
2F  
20  
21  
22  
00  
50  
IPH  
IPL  
Data  
Memory  
Memory  
Data  
22  
Stack  
Stack  
6-42  
S3C830A/P830A  
INSTRUCTION SET  
IDLE— Idle Operation  
IDLE  
Operation:  
The IDLE instruction stops the CPU clock while allowing system clock oscillation to continue. Idle  
mode can be released by an interrupt request (IRQ) or an external reset operation.  
In application programs, a IDLE instruction must be immediately followed by at least three NOP  
instructions. This ensures an adeguate time interval for the clock to stabilize before the next  
instruction is executed. If three or more NOP instructons are not used after IDLE instruction,  
leakage current could be flown because of the floating state in the internal bus.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
1
4
6F  
Example:  
The instruction  
IDLE  
NOP  
NOP  
NOP  
; stops the CPU clock but not the system clock  
6-43  
INSTRUCTION SET  
S3C830A/P830A  
INC— Increment  
INC  
dst  
Operation:  
dst ¬ dst + 1  
The contents of the destination operand are incremented by one.  
Flags:  
C: Unaffected.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result is negative; cleared otherwise.  
V: Set if arithmetic overflow occurred; cleared otherwise.  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
dst | opc  
opc  
1
4
rE  
r
r = 0 to F  
dst  
2
4
4
20  
21  
R
IR  
Examples:  
Given: R0 = 1BH, register 00H = 0CH, and register 1BH = 0FH:  
INC  
INC  
INC  
R0  
®
®
®
R0 = 1CH  
00H  
@R0  
Register 00H = 0DH  
R0 = 1BH, register 01H = 10H  
In the first example, if destination working register R0 contains the value 1BH, the statement  
"INC R0" leaves the value 1CH in that same register.  
The next example shows the effect an INC instruction has on register 00H, assuming that it  
contains the value 0CH.  
In the third example, INC is used in Indirect Register (IR) addressing mode to increment the  
value of register 1BH from 0FH to 10H.  
6-44  
S3C830A/P830A  
INSTRUCTION SET  
INCW— Increment Word  
INCW  
dst  
Operation:  
dst ¬ dst + 1  
The contents of the destination (which must be an even address) and the byte following that  
location are treated as a single 16-bit value that is incremented by one.  
Flags:  
C: Unaffected.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result is negative; cleared otherwise.  
V: Set if arithmetic overflow occurred; cleared otherwise.  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
dst  
2
8
8
A0  
A1  
RR  
IR  
Examples:  
Given: R0 = 1AH, R1 = 02H, register 02H = 0FH, and register 03H = 0FFH:  
INCW RR0  
INCW @R1  
®
®
R0 = 1AH, R1 = 03H  
Register 02H = 10H, register 03H = 00H  
In the first example, the working register pair RR0 contains the value 1AH in register R0 and 02H  
in register R1. The statement "INCW RR0" increments the 16-bit destination by one, leaving the  
value 03H in register R1. In the second example, the statement "INCW @R1" uses Indirect  
Register (IR) addressing mode to increment the contents of general register 03H from 0FFH to  
00H and register 02H from 0FH to 10H.  
NOTE:  
A system malfunction may occur if you use a Zero (Z) flag (FLAGS.6) result together with an  
INCW instruction. To avoid this problem, we recommend that you use INCW as shown in the  
following example:  
LOOP:  
INCW  
LD  
OR  
RR0  
R2,R1  
R2,R0  
NZ,LOOP  
JR  
6-45  
INSTRUCTION SET  
S3C830A/P830A  
IRET— Interrupt Return  
IRET  
IRET (Normal)  
IRET (Fast)  
Operation:  
FLAGS ¬ @SP  
SP ¬ SP + 1  
PC ¬ @SP  
PC « IP  
FLAGS ¬ FLAGS'  
FIS ¬  
0
SP ¬ SP + 2  
SYM(0) ¬  
1
This instruction is used at the end of an interrupt service routine. It restores the flag register and  
the program counter. It also re-enables global interrupts. A "normal IRET" is executed only if the  
fast interrupt status bit (FIS, bit one of the FLAGS register, 0D5H) is cleared (= "0"). If a fast  
interrupt occurred, IRET clears the FIS bit that was set at the beginning of the service routine.  
Flags:  
All flags are restored to their original settings (that is, the settings before the interrupt occurred).  
Format:  
Bytes  
Cycles  
Opcode (Hex)  
IRET  
(Normal)  
opc  
1
10 (internal stack)  
12 (internal stack)  
BF  
Bytes  
Cycles  
Opcode (Hex)  
IRET  
(Fast)  
opc  
1
6
BF  
Example:  
In the figure below, the instruction pointer is initially loaded with 100H in the main program  
before interrupts are enabled. When an interrupt occurs, the program counter and instruction  
pointer are swapped. This causes the PC to jump to address 100H and the IP to keep the return  
address. The last instruction in the service routine normally is a jump to IRET at address FFH.  
This causes the instruction pointer to be loaded with 100H "again" and the program counter to  
jump back to the main program. Now, the next interrupt can occur and the IP is still correct at  
100H.  
0H  
FFH  
IRET  
100H  
Interrupt  
Service  
Routine  
JP to FFH  
FFFFH  
NOTE:  
In the fast interrupt example above, if the last instruction is not a jump to IRET, you must pay  
attention to the order of the last two instructions. The IRET cannot be immediately proceeded by  
a clearing of the interrupt status (as with a reset of the IPR register).  
6-46  
S3C830A/P830A  
INSTRUCTION SET  
JP— Jump  
JP  
cc,dst  
(Conditional)  
JP  
dst  
(Unconditional)  
Operation:  
If cc is true, PC ¬ dst  
The conditional JUMP instruction transfers program control to the destination address if the  
condition specified by the condition code (cc) is true; otherwise, the instruction following the JP  
instruction is executed. The unconditional JP simply replaces the contents of the PC with the  
contents of the specified register pair. Control then passes to the statement addressed by the  
PC.  
Flags:  
No flags are affected.  
Format: (1)  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
(2)  
cc | opc  
dst  
3
8
ccD  
DA  
cc = 0 to F  
opc  
dst  
2
8
30  
IRR  
NOTES:  
1. The 3-byte format is used for a conditional jump and the 2-byte format for an unconditional jump.  
2. In the first byte of the three-byte instruction format (conditional jump), the condition code and the  
opcode are both four bits.  
Examples:  
Given: The carry flag (C) = "1", register 00 = 01H, and register 01 = 20H:  
JP  
JP  
C,LABEL_W  
@00H  
®
®
LABEL_W = 1000H, PC = 1000H  
PC = 0120H  
The first example shows a conditional JP. Assuming that the carry flag is set to "1", the  
statement  
"JP C,LABEL_W" replaces the contents of the PC with the value 1000H and transfers control to  
that location. Had the carry flag not been set, control would then have passed to the statement  
immediately following the JP instruction.  
The second example shows an unconditional JP. The statement "JP @00" replaces the contents  
of the PC with the contents of the register pair 00H and 01H, leaving the value 0120H.  
6-47  
INSTRUCTION SET  
S3C830A/P830A  
JR— Jump Relative  
JR  
cc,dst  
Operation:  
If cc is true, PC ¬ PC + dst  
If the condition specified by the condition code (cc) is true, the relative address is added to the  
program counter and control passes to the statement whose address is now in the program  
counter; otherwise, the instruction following the JR instruction is executed. (See list of condition  
codes).  
The range of the relative address is +127, –128, and the original value of the program counter is  
taken to be the address of the first instruction byte following the JR statement.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
(1)  
cc | opc  
dst  
2
6
ccB  
RA  
cc = 0 to F  
NOTE: In the first byte of the two-byte instruction format, the condition code and the opcode are each  
four bits.  
Example:  
Given: The carry flag = "1" and LABEL_X = 1FF7H:  
JR  
C,LABEL_X  
®
PC = 1FF7H  
If the carry flag is set (that is, if the condition code is true), the statement "JR C,LABEL_X" will  
pass control to the statement whose address is now in the PC. Otherwise, the program  
instruction following the JR would be executed.  
6-48  
S3C830A/P830A  
INSTRUCTION SET  
LD— Load  
LD  
dst,src  
Operation:  
dst ¬ src  
The contents of the source are loaded into the destination. The source's contents are unaffected.  
No flags are affected.  
Flags:  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
IM  
R
dst | opc  
src | opc  
opc  
src  
dst  
2
4
4
rC  
r8  
r
r
2
2
3
3
4
r9  
R
r
r = 0 to F  
dst | src  
4
4
C7  
D7  
r
lr  
r
Ir  
opc  
src  
dst  
src  
6
6
E4  
E5  
R
R
R
IR  
opc  
dst  
6
6
E6  
D6  
R
IM  
IM  
IR  
opc  
opc  
opc  
src  
dst  
x
3
3
3
6
6
6
F5  
87  
97  
IR  
r
R
x [r]  
r
dst | src  
src | dst  
x
x [r]  
6-49  
INSTRUCTION SET  
S3C830A/P830A  
LD— Load  
LD  
(Continued)  
Examples:  
Given: R0 = 01H, R1 = 0AH, register 00H = 01H, register 01H = 20H,  
register 02H = 02H, LOOP = 30H, and register 3AH = 0FFH:  
LD  
LD  
LD  
LD  
LD  
LD  
LD  
LD  
LD  
LD  
LD  
LD  
R0,#10H  
R0,01H  
®
®
®
®
®
®
®
®
®
®
R0 = 10H  
R0 = 20H, register 01H = 20H  
Register 01H = 01H, R0 = 01H  
R1 = 20H, R0 = 01H  
01H,R0  
R1,@R0  
@R0,R1  
00H,01H  
02H,@00H  
00H,#0AH  
@00H,#10H  
@00H,02H  
R0 = 01H, R1 = 0AH, register 01H = 0AH  
Register 00H = 20H, register 01H = 20H  
Register 02H = 20H, register 00H = 01H  
Register 00H = 0AH  
Register 00H = 01H, register 01H = 10H  
Register 00H = 01H, register 01H = 02, register 02H = 02H  
R0 = 0FFH, R1 = 0AH  
R0,#LOOP[R1] ®  
#LOOP[R0],R1 ®  
Register 31H = 0AH, R0 = 01H, R1 = 0AH  
6-50  
S3C830A/P830A  
INSTRUCTION SET  
LDB— Load Bit  
LDB  
dst,src.b  
LDB  
dst.b,src  
Operation:  
dst(0) ¬ src(b)  
or  
dst(b) ¬ src(0)  
The specified bit of the source is loaded into bit zero (LSB) of the destination, or bit zero of the  
source is loaded into the specified bit of the destination. No other bits of the destination are  
affected. The source is unaffected.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
opc  
dst | b | 0  
src | b | 1  
src  
dst  
3
6
47  
r0  
Rb  
3
6
47  
Rb  
r0  
NOTE: In the second byte of the instruction formats, the destination (or source) address is four bits, the  
bit address 'b' is three bits, and the LSB address value is one bit in length.  
Examples:  
Given: R0 = 06H and general register 00H = 05H:  
LDB  
LDB  
R0,00H.2  
00H.0,R0  
®
®
R0 = 07H, register 00H = 05H  
R0 = 06H, register 00H = 04H  
In the first example, destination working register R0 contains the value 06H and the source  
general register 00H the value 05H. The statement "LD R0,00H.2" loads the bit two value of the  
00H register into bit zero of the R0 register, leaving the value 07H in register R0.  
In the second example, 00H is the destination register. The statement "LD 00H.0,R0" loads bit  
zero of register R0 to the specified bit (bit zero) of the destination register, leaving 04H in  
general register 00H.  
6-51  
INSTRUCTION SET  
S3C830A/P830A  
LDC/LDE— Load Memory  
LDC/LDE  
dst,src  
Operation:  
dst ¬ src  
This instruction loads a byte from program or data memory into a working register or vice-versa.  
The source values are unaffected. LDC refers to program memory and LDE to data memory.  
The assembler makes 'Irr' or 'rr' values an even number for program memory and odd an odd  
number for data memory.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
1.  
2.  
3.  
4.  
5.  
opc  
opc  
opc  
opc  
opc  
dst | src  
src | dst  
dst | src  
src | dst  
dst | src  
2
10  
C3  
D3  
E7  
F7  
A7  
r
Irr  
2
3
3
4
10  
12  
12  
14  
Irr  
r
XS  
XS  
r
XS [rr]  
r
XS [rr]  
r
XLL  
XLH  
XLH  
DAH  
DAH  
DAH  
DAH  
XL [rr]  
XLL  
DAL  
DAL  
DAL  
DAL  
6.  
7.  
8.  
9.  
opc  
opc  
opc  
opc  
src | dst  
dst | 0000  
src | 0000  
dst | 0001  
src | 0001  
4
4
4
4
4
14  
14  
14  
14  
14  
B7  
A7  
B7  
A7  
B7  
XL [rr]  
r
DA  
r
r
DA  
r
DA  
r
10.  
opc  
DA  
NOTES:  
1. The source (src) or working register pair [rr] for formats 5 and 6 cannot use register pair 0–1.  
2. For formats 3 and 4, the destination address 'XS [rr]' and the source address 'XS [rr]' are each one  
byte.  
3. For formats 5 and 6, the destination address 'XL [rr] and the source address 'XL [rr]' are each two  
bytes.  
4. The DA and r source values for formats 7 and 8 are used to address program memory; the second set  
of values, used in formats 9 and 10, are used to address data memory.  
6-52  
S3C830A/P830A  
INSTRUCTION SET  
LDC/LDE— Load Memory  
LDC/LDE  
(Continued)  
Examples:  
Given: R0 = 11H, R1 = 34H, R2 = 01H, R3 = 04H; Program memory locations  
0103H = 4FH, 0104H = 1A, 0105H = 6DH, and 1104H = 88H. External data memory  
locations 0103H = 5FH, 0104H = 2AH, 0105H = 7DH, and 1104H = 98H:  
LDC  
R0,@RR2  
; R0 ¬ contents of program memory location 0104H  
; R0 = 1AH, R2 = 01H, R3 = 04H  
LDE  
R0,@RR2  
; R0 ¬ contents of external data memory location 0104H  
; R0 = 2AH, R2 = 01H, R3 = 04H  
LDC (note) @RR2,R0  
; 11H (contents of R0) is loaded into program memory  
; location 0104H (RR2),  
; working registers R0, R2, R3 ® no change  
LDE  
LDC  
LDE  
@RR2,R0  
; 11H (contents of R0) is loaded into external data memory  
; location 0104H (RR2),  
; working registers R0, R2, R3 ® no change  
R0,#01H[RR2]  
R0,#01H[RR2]  
; R0 ¬ contents of program memory location 0105H  
; (01H + RR2),  
; R0 = 6DH, R2 = 01H, R3 = 04H  
; R0 ¬ contents of external data memory location 0105H  
; (01H + RR2), R0 = 7DH, R2 = 01H, R3 = 04H  
LDC (note) #01H[RR2],R0  
; 11H (contents of R0) is loaded into program memory location  
; 0105H (01H + 0104H)  
LDE  
LDC  
LDE  
#01H[RR2],R0  
; 11H (contents of R0) is loaded into external data memory  
; location 0105H (01H + 0104H)  
R0,#1000H[RR2] ; R0 ¬ contents of program memory location 1104H  
; (1000H + 0104H), R0 = 88H, R2 = 01H, R3 = 04H  
R0,#1000H[RR2] ; R0 ¬ contents of external data memory location 1104H  
; (1000H + 0104H), R0 = 98H, R2 = 01H, R3 = 04H  
LDC  
LDE  
R0,1104H  
R0,1104H  
; R0 ¬ contents of program memory location 1104H, R0 = 88H  
; R0 ¬ contents of external data memory location 1104H,  
; R0 = 98H  
LDC (note) 1105H,R0  
; 11H (contents of R0) is loaded into program memory location  
; 1105H, (1105H) ¬ 11H  
LDE  
1105H,R0  
; 11H (contents of R0) is loaded into external data memory  
; location 1105H, (1105H) ¬ 11H  
NOTE: These instructions are not supported by masked ROM type devices.  
6-53  
INSTRUCTION SET  
S3C830A/P830A  
LDCD/LDED— Load Memory and Decrement  
LDCD/LDED dst,src  
Operation:  
dst ¬ src  
rr ¬ rr – 1  
These instructions are used for user stacks or block transfers of data from program or data  
memory to the register file. The address of the memory location is specified by a working register  
pair. The contents of the source location are loaded into the destination location. The memory  
address is then decremented. The contents of the source are unaffected.  
LDCD references program memory and LDED references external data memory. The assembler  
makes 'Irr' an even number for program memory and an odd number for data memory.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
dst | src  
2
10  
E2  
r
Irr  
Examples:  
Given: R6 = 10H, R7 = 33H, R8 = 12H, program memory location 1033H = 0CDH, and  
external data memory location 1033H = 0DDH:  
LDCD  
R8,@RR6  
; 0CDH (contents of program memory location 1033H) is loaded  
; into R8 and RR6 is decremented by one  
; R8 = 0CDH, R6 = 10H, R7 = 32H (RR6 ¬ RR6 – 1)  
LDED  
R8,@RR6  
; 0DDH (contents of data memory location 1033H) is loaded  
; into R8 and RR6 is decremented by one (RR6 ¬ RR6 – 1)  
; R8 = 0DDH, R6 = 10H, R7 = 32H  
6-54  
S3C830A/P830A  
INSTRUCTION SET  
LDCI/LDEI— Load Memory and Increment  
LDCI/LDEI  
dst,src  
Operation:  
dst ¬ src  
rr ¬ rr + 1  
These instructions are used for user stacks or block transfers of data from program or data  
memory to the register file. The address of the memory location is specified by a working register  
pair. The contents of the source location are loaded into the destination location. The memory  
address is then incremented automatically. The contents of the source are unaffected.  
LDCI refers to program memory and LDEI refers to external data memory. The assembler  
makes 'Irr' even for program memory and odd for data memory.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
dst | src  
2
10  
E3  
r
Irr  
Examples:  
Given: R6 = 10H, R7 = 33H, R8 = 12H, program memory locations 1033H = 0CDH and  
1034H = 0C5H; external data memory locations 1033H = 0DDH and 1034H = 0D5H:  
LDCI  
R8,@RR6  
; 0CDH (contents of program memory location 1033H) is loaded  
; into R8 and RR6 is incremented by one (RR6 ¬ RR6 + 1)  
; R8 = 0CDH, R6 = 10H, R7 = 34H  
LDEI  
R8,@RR6  
; 0DDH (contents of data memory location 1033H) is loaded  
; into R8 and RR6 is incremented by one (RR6 ¬ RR6 + 1)  
; R8 = 0DDH, R6 = 10H, R7 = 34H  
6-55  
INSTRUCTION SET  
S3C830A/P830A  
LDCPD/LDEPD— Load Memory with Pre-Decrement  
LDCPD/  
LDEPD  
dst,src  
Operation:  
rr ¬ rr – 1  
dst ¬ src  
These instructions are used for block transfers of data from program or data memory from the  
register file. The address of the memory location is specified by a working register pair and is  
first decremented. The contents of the source location are then loaded into the destination  
location. The contents of the source are unaffected.  
LDCPD refers to program memory and LDEPD refers to external data memory. The assembler  
makes 'Irr' an even number for program memory and an odd number for external data memory.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
src | dst  
2
14  
F2  
Irr  
r
Examples:  
Given: R0 = 77H, R6 = 30H, and R7 = 00H:  
LDCPD @RR6,R0  
; (RR6 ¬ RR6 – 1)  
; 77H (contents of R0) is loaded into program memory location  
; 2FFFH (3000H – 1H)  
; R0 = 77H, R6 = 2FH, R7 = 0FFH  
LDEPD @RR6,R0  
; (RR6 ¬ RR6 – 1)  
; 77H (contents of R0) is loaded into external data memory  
; location 2FFFH (3000H – 1H)  
; R0 = 77H, R6 = 2FH, R7 = 0FFH  
6-56  
S3C830A/P830A  
INSTRUCTION SET  
LDCPI/LDEPI— Load Memory with Pre-Increment  
LDCPI/  
LDEPI  
dst,src  
Operation:  
rr ¬ rr + 1  
dst ¬ src  
These instructions are used for block transfers of data from program or data memory from the  
register file. The address of the memory location is specified by a working register pair and is  
first incremented. The contents of the source location are loaded into the destination location.  
The contents of the source are unaffected.  
LDCPI refers to program memory and LDEPI refers to external data memory. The assembler  
makes 'Irr' an even number for program memory and an odd number for data memory.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
src | dst  
2
14  
F3  
Irr  
r
Examples:  
Given: R0 = 7FH, R6 = 21H, and R7 = 0FFH:  
LDCPI  
@RR6,R0  
; (RR6 ¬ RR6 + 1)  
; 7FH (contents of R0) is loaded into program memory  
; location 2200H (21FFH + 1H)  
; R0 = 7FH, R6 = 22H, R7 = 00H  
LDEPI  
@RR6,R0  
; (RR6 ¬ RR6 + 1)  
; 7FH (contents of R0) is loaded into external data memory  
; location 2200H (21FFH + 1H)  
; R0 = 7FH, R6 = 22H, R7 = 00H  
6-57  
INSTRUCTION SET  
S3C830A/P830A  
LDW— Load Word  
LDW  
dst,src  
Operation:  
dst ¬ src  
The contents of the source (a word) are loaded into the destination. The contents of the source  
are unaffected.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
RR  
RR  
src  
RR  
IR  
opc  
opc  
src  
dst  
dst  
3
8
8
C4  
C5  
src  
4
8
C6  
RR  
IML  
Examples:  
Given: R4 = 06H, R5 = 1CH, R6 = 05H, R7 = 02H, register 00H = 1AH,  
register 01H = 02H, register 02H = 03H, and register 03H = 0FH:  
LDW  
LDW  
RR6,RR4  
00H,02H  
®
®
R6 = 06H, R7 = 1CH, R4 = 06H, R5 = 1CH  
Register 00H = 03H, register 01H = 0FH,  
register 02H = 03H, register 03H = 0FH  
LDW  
LDW  
LDW  
LDW  
RR2,@R7  
®
®
®
®
R2 = 03H, R3 = 0FH,  
04H,@01H  
RR6,#1234H  
02H,#0FEDH  
Register 04H = 03H, register 05H = 0FH  
R6 = 12H, R7 = 34H  
Register 02H = 0FH, register 03H = 0EDH  
In the second example, please note that the statement "LDW 00H,02H" loads the contents of  
the source word 02H, 03H into the destination word 00H, 01H. This leaves the value 03H in  
general register 00H and the value 0FH in register 01H.  
The other examples show how to use the LDW instruction with various addressing modes and  
formats.  
6-58  
S3C830A/P830A  
INSTRUCTION SET  
MULT— Multiply (Unsigned)  
MULT  
dst,src  
Operation:  
dst ¬ dst ´ src  
The 8-bit destination operand (even register of the register pair) is multiplied by the source  
operand (8 bits) and the product (16 bits) is stored in the register pair specified by the destination  
address. Both operands are treated as unsigned integers.  
Flags:  
C: Set if result is > 255; cleared otherwise.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if MSB of the result is a "1"; cleared otherwise.  
V: Cleared.  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
RR  
RR  
RR  
src  
opc  
src  
dst  
3
22  
22  
22  
84  
85  
86  
R
IR  
IM  
Examples:  
Given: Register 00H = 20H, register 01H = 03H, register 02H = 09H, register 03H = 06H:  
MULT  
MULT  
MULT  
00H, 02H  
®
®
®
Register 00H = 01H, register 01H = 20H, register 02H = 09H  
Register 00H = 00H, register 01H = 0C0H  
00H, @01H  
00H, #30H  
Register 00H = 06H, register 01H = 00H  
In the first example, the statement "MULT 00H,02H" multiplies the 8-bit destination operand (in  
the register 00H of the register pair 00H, 01H) by the source register 02H operand (09H). The  
16-bit product, 0120H, is stored in the register pair 00H, 01H.  
6-59  
INSTRUCTION SET  
S3C830A/P830A  
NEXT— Next  
NEXT  
Operation:  
PC ¬ @ IP  
IP ¬ IP + 2  
The NEXT instruction is useful when implementing threaded-code languages. The program  
memory word that is pointed to by the instruction pointer is loaded into the program counter. The  
instruction pointer is then incremented by two.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
opc  
1
10  
0F  
Example:  
The following diagram shows one example of how to use the NEXT instruction.  
Before  
After  
Data  
Address  
IP  
Data  
Address  
IP  
0043  
0120  
0045  
0130  
Address  
Data  
Address  
43 Address H  
Data  
PC  
43 Address H 01  
PC  
44 Address L 10  
45 Address H  
44 Address L  
45 Address H  
120 Next  
Memory  
130 Routine  
Memory  
6-60  
S3C830A/P830A  
INSTRUCTION SET  
NOP— No Operation  
NOP  
Operation:  
No action is performed when the CPU executes this instruction. Typically, one or more NOPs are  
executed in sequence in order to effect a timing delay of variable duration.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
opc  
1
4
FF  
Example:  
When the instruction  
NOP  
is encountered in a program, no operation occurs. Instead, there is a delay in instruction  
execution time.  
6-61  
INSTRUCTION SET  
S3C830A/P830A  
OR— Logical OR  
OR  
dst,src  
Operation:  
dst ¬ dst OR src  
The source operand is logically ORed with the destination operand and the result is stored in the  
destination. The contents of the source are unaffected. The OR operation results in a "1" being  
stored whenever either of the corresponding bits in the two operands is a "1"; otherwise a "0" is  
stored.  
Flags:  
C: Unaffected.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result bit 7 is set; cleared otherwise.  
V: Always cleared to "0".  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
opc  
opc  
dst | src  
src  
2
4
6
42  
43  
r
r
r
lr  
dst  
src  
3
3
6
6
44  
45  
R
R
R
IR  
dst  
6
46  
R
IM  
Examples:  
Given: R0 = 15H, R1 = 2AH, R2 = 01H, register 00H = 08H, register 01H = 37H, and  
register 08H = 8AH:  
OR  
OR  
OR  
OR  
OR  
R0,R1  
®
®
®
®
®
R0 = 3FH, R1 = 2AH  
R0,@R2  
00H,01H  
01H,@00H  
00H,#02H  
R0 = 37H, R2 = 01H, register 01H = 37H  
Register 00H = 3FH, register 01H = 37H  
Register 00H = 08H, register 01H = 0BFH  
Register 00H = 0AH  
In the first example, if working register R0 contains the value 15H and register R1 the value  
2AH, the statement "OR R0,R1" logical-ORs the R0 and R1 register contents and stores the  
result (3FH) in destination register R0.  
The other examples show the use of the logical OR instruction with the various addressing  
modes and formats.  
6-62  
S3C830A/P830A  
INSTRUCTION SET  
POP— Pop From Stack  
POP  
dst  
Operation:  
dst ¬ @SP  
SP ¬ SP + 1  
The contents of the location addressed by the stack pointer are loaded into the destination. The  
stack pointer is then incremented by one.  
Flags:  
No flags affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
dst  
2
8
8
50  
51  
R
IR  
Examples:  
Given: Register 00H = 01H, register 01H = 1BH, SPH (0D8H) = 00H, SPL (0D9H) = 0FBH,  
and stack register 0FBH = 55H:  
POP  
POP  
00H  
®
®
Register 00H = 55H, SP = 00FCH  
@00H  
Register 00H = 01H, register 01H = 55H, SP = 00FCH  
In the first example, general register 00H contains the value 01H. The statement "POP 00H"  
loads the contents of location 00FBH (55H) into destination register 00H and then increments the  
stack pointer by one. Register 00H then contains the value 55H and the SP points to location  
00FCH.  
6-63  
INSTRUCTION SET  
S3C830A/P830A  
POPUD— Pop User Stack (Decrementing)  
POPUD  
dst,src  
Operation:  
dst ¬ src  
IR ¬ IR – 1  
This instruction is used for user-defined stacks in the register file. The contents of the register file  
location addressed by the user stack pointer are loaded into the destination. The user stack  
pointer is then decremented.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
src  
dst  
3
8
92  
R
IR  
Example:  
Given: Register 00H = 42H (user stack pointer register), register 42H = 6FH, and  
register 02H = 70H:  
POPUD 02H,@00H  
®
Register 00H = 41H, register 02H = 6FH, register 42H = 6FH  
If general register 00H contains the value 42H and register 42H the value 6FH, the statement  
"POPUD 02H,@00H" loads the contents of register 42H into the destination register 02H. The  
user stack pointer is then decremented by one, leaving the value 41H.  
6-64  
S3C830A/P830A  
INSTRUCTION SET  
POPUI— Pop User Stack (Incrementing)  
POPUI  
dst,src  
Operation:  
dst ¬ src  
IR ¬ IR + 1  
The POPUI instruction is used for user-defined stacks in the register file. The contents of the  
register file location addressed by the user stack pointer are loaded into the destination. The user  
stack pointer is then incremented.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
src  
dst  
3
8
93  
R
IR  
Example:  
Given: Register 00H = 01H and register 01H = 70H:  
POPUI 02H,@00H Register 00H = 02H, register 01H = 70H, register 02H = 70H  
®
If general register 00H contains the value 01H and register 01H the value 70H, the statement  
"POPUI 02H,@00H" loads the value 70H into the destination general register 02H. The user  
stack pointer (register 00H) is then incremented by one, changing its value from 01H to 02H.  
6-65  
INSTRUCTION SET  
S3C830A/P830A  
PUSH— Push To Stack  
PUSH  
src  
Operation:  
SP ¬ SP – 1  
@SP ¬ src  
A PUSH instruction decrements the stack pointer value and loads the contents of the source  
(src) into the location addressed by the decremented stack pointer. The operation then adds the  
new value to the top of the stack.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
src  
2
8 (internal clock)  
8 (external clock)  
70  
R
8 (internal clock)  
8 (external clock)  
71  
IR  
Examples:  
Given: Register 40H = 4FH, register 4FH = 0AAH, SPH = 00H, and SPL = 00H:  
PUSH  
PUSH  
40H  
®
Register 40H = 4FH, stack register 0FFH = 4FH,  
SPH = 0FFH, SPL = 0FFH  
@40H  
®
Register 40H = 4FH, register 4FH = 0AAH, stack register  
0FFH = 0AAH, SPH = 0FFH, SPL = 0FFH  
In the first example, if the stack pointer contains the value 0000H, and general register 40H the  
value 4FH, the statement "PUSH 40H" decrements the stack pointer from 0000 to 0FFFFH. It  
then loads the contents of register 40H into location 0FFFFH and adds this new value to the top  
of the stack.  
6-66  
S3C830A/P830A  
INSTRUCTION SET  
PUSHUD— Push User Stack (Decrementing)  
PUSHUD  
dst,src  
Operation:  
IR ¬ IR – 1  
dst ¬ src  
This instruction is used to address user-defined stacks in the register file. PUSHUD decrements  
the user stack pointer and loads the contents of the source into the register addressed by the  
decremented stack pointer.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
dst  
src  
3
8
82  
IR  
R
Example:  
Given: Register 00H = 03H, register 01H = 05H, and register 02H = 1AH:  
PUSHUD @00H,01H Register 00H = 02H, register 01H = 05H, register 02H = 05H  
®
If the user stack pointer (register 00H, for example) contains the value 03H, the statement  
"PUSHUD @00H,01H" decrements the user stack pointer by one, leaving the value 02H. The  
01H register value, 05H, is then loaded into the register addressed by the decremented user  
stack pointer.  
6-67  
INSTRUCTION SET  
S3C830A/P830A  
PUSHUI— Push User Stack (Incrementing)  
PUSHUI  
dst,src  
Operation:  
IR ¬ IR + 1  
dst ¬ src  
This instruction is used for user-defined stacks in the register file. PUSHUI increments the user  
stack pointer and then loads the contents of the source into the register location addressed by  
the incremented user stack pointer.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
dst  
src  
3
8
83  
IR  
R
Example:  
Given: Register 00H = 03H, register 01H = 05H, and register 04H = 2AH:  
PUSHUI @00H,01H Register 00H = 04H, register 01H = 05H, register 04H = 05H  
®
If the user stack pointer (register 00H, for example) contains the value 03H, the statement  
"PUSHUI @00H,01H" increments the user stack pointer by one, leaving the value 04H. The 01H  
register value, 05H, is then loaded into the location addressed by the incremented user stack  
pointer.  
6-68  
S3C830A/P830A  
INSTRUCTION SET  
RCF— Reset Carry Flag  
RCF  
RCF  
Operation:  
C ¬ 0  
The carry flag is cleared to logic zero, regardless of its previous value.  
C: Cleared to "0".  
Flags:  
No other flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
opc  
1
4
CF  
Example:  
Given: C = "1" or "0":  
The instruction RCF clears the carry flag (C) to logic zero.  
6-69  
INSTRUCTION SET  
S3C830A/P830A  
RET— Return  
RET  
Operation:  
PC ¬ @SP  
SP ¬ SP + 2  
The RET instruction is normally used to return to the previously executing procedure at the end  
of a procedure entered by a CALL instruction. The contents of the location addressed by the  
stack pointer are popped into the program counter. The next statement that is executed is the  
one that is addressed by the new program counter value.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode (Hex)  
opc  
1
8 (internal stack)  
10 (internal stack)  
AF  
Example:  
Given: SP = 00FCH, (SP) = 101AH, and PC = 1234:  
RET PC = 101AH, SP = 00FEH  
®
The statement "RET" pops the contents of stack pointer location 00FCH (10H) into the high byte  
of the program counter. The stack pointer then pops the value in location 00FEH (1AH) into the  
PC's low byte and the instruction at location 101AH is executed. The stack pointer now points to  
memory location 00FEH.  
6-70  
S3C830A/P830A  
INSTRUCTION SET  
RL— Rotate Left  
RL  
dst  
Operation:  
C ¬ dst (7)  
dst (0) ¬ dst (7)  
dst (n + 1) ¬ dst (n), n = 0–6  
The contents of the destination operand are rotated left one bit position. The initial value of bit 7  
is moved to the bit zero (LSB) position and also replaces the carry flag.  
7
0
C
Flags:  
C: Set if the bit rotated from the most significant bit position (bit 7) was "1".  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result bit 7 is set; cleared otherwise.  
V: Set if arithmetic overflow occurred; cleared otherwise.  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
dst  
2
4
4
90  
91  
R
IR  
Examples:  
Given: Register 00H = 0AAH, register 01H = 02H and register 02H = 17H:  
RL  
RL  
00H  
®
®
Register 00H = 55H, C = "1"  
Register 01H = 02H, register 02H = 2EH, C = "0"  
@01H  
In the first example, if general register 00H contains the value 0AAH (10101010B), the statement  
"RL 00H" rotates the 0AAH value left one bit position, leaving the new value 55H (01010101B)  
and setting the carry and overflow flags.  
6-71  
INSTRUCTION SET  
S3C830A/P830A  
RLC— Rotate Left Through Carry  
RLC  
dst  
Operation:  
dst (0) ¬ C  
C ¬ dst (7)  
dst (n + 1) ¬ dst (n), n = 0–6  
The contents of the destination operand with the carry flag are rotated left one bit position. The  
initial value of bit 7 replaces the carry flag (C); the initial value of the carry flag replaces bit zero.  
7
0
C
Flags:  
C: Set if the bit rotated from the most significant bit position (bit 7) was "1".  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result bit 7 is set; cleared otherwise.  
V: Set if arithmetic overflow occurred, that is, if the sign of the destination changed during  
rotation; cleared otherwise.  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
dst  
2
4
4
10  
11  
R
IR  
Examples:  
Given: Register 00H = 0AAH, register 01H = 02H, and register 02H = 17H, C = "0":  
RLC  
RLC  
00H  
®
®
Register 00H = 54H, C = "1"  
@01H  
Register 01H = 02H, register 02H = 2EH, C = "0"  
In the first example, if general register 00H has the value 0AAH (10101010B), the statement  
"RLC 00H" rotates 0AAH one bit position to the left. The initial value of bit 7 sets the carry flag  
and the initial value of the C flag replaces bit zero of register 00H, leaving the value 55H  
(01010101B). The MSB of register 00H resets the carry flag to "1" and sets the overflow flag.  
6-72  
S3C830A/P830A  
INSTRUCTION SET  
RR— Rotate Right  
RR  
dst  
Operation:  
C ¬ dst (0)  
dst (7) ¬ dst (0)  
dst (n) ¬ dst (n + 1), n = 0–6  
The contents of the destination operand are rotated right one bit position. The initial value of bit  
zero (LSB) is moved to bit 7 (MSB) and also replaces the carry flag (C).  
7
0
C
Flags:  
C: Set if the bit rotated from the least significant bit position (bit zero) was "1".  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result bit 7 is set; cleared otherwise.  
V: Set if arithmetic overflow occurred, that is, if the sign of the destination changed during  
rotation; cleared otherwise.  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
dst  
2
4
4
E0  
E1  
R
IR  
Examples:  
Given: Register 00H = 31H, register 01H = 02H, and register 02H = 17H:  
RR  
RR  
00H  
®
®
Register 00H = 98H, C = "1"  
Register 01H = 02H, register 02H = 8BH, C = "1"  
@01H  
In the first example, if general register 00H contains the value 31H (00110001B), the statement  
"RR 00H" rotates this value one bit position to the right. The initial value of bit zero is moved to  
bit 7, leaving the new value 98H (10011000B) in the destination register. The initial bit zero also  
resets the C flag to "1" and the sign flag and overflow flag are also set to "1".  
6-73  
INSTRUCTION SET  
S3C830A/P830A  
RRC— Rotate Right Through Carry  
RRC  
dst  
Operation:  
dst (7) ¬ C  
C ¬ dst (0)  
dst (n) ¬ dst (n + 1), n = 0–6  
The contents of the destination operand and the carry flag are rotated right one bit position. The  
initial value of bit zero (LSB) replaces the carry flag; the initial value of the carry flag replaces bit  
7 (MSB).  
7
0
C
Flags:  
C: Set if the bit rotated from the least significant bit position (bit zero) was "1".  
Z: Set if the result is "0" cleared otherwise.  
S: Set if the result bit 7 is set; cleared otherwise.  
V: Set if arithmetic overflow occurred, that is, if the sign of the destination changed during  
rotation; cleared otherwise.  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
dst  
2
4
4
C0  
C1  
R
IR  
Examples:  
Given: Register 00H = 55H, register 01H = 02H, register 02H = 17H, and C = "0":  
RRC  
RRC  
00H  
®
®
Register 00H = 2AH, C = "1"  
@01H  
Register 01H = 02H, register 02H = 0BH, C = "1"  
In the first example, if general register 00H contains the value 55H (01010101B), the statement  
"RRC 00H" rotates this value one bit position to the right. The initial value of bit zero ("1")  
replaces the carry flag and the initial value of the C flag ("1") replaces bit 7. This leaves the new  
value 2AH (00101010B) in destination register 00H. The sign flag and overflow flag are both  
cleared to "0".  
6-74  
S3C830A/P830A  
INSTRUCTION SET  
SB0— Select Bank 0  
SB0  
Operation:  
BANK ¬ 0  
The SB0 instruction clears the bank address flag in the FLAGS register (FLAGS.0) to logic zero,  
selecting bank 0 register addressing in the set 1 area of the register file.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
opc  
1
4
4F  
Example:  
The statement  
SB0  
clears FLAGS.0 to "0", selecting bank 0 register addressing.  
6-75  
INSTRUCTION SET  
S3C830A/P830A  
SB1— Select Bank 1  
SB1  
Operation:  
BANK ¬ 1  
The SB1 instruction sets the bank address flag in the FLAGS register (FLAGS.0) to logic one,  
selecting bank 1 register addressing in the set 1 area of the register file. (Bank 1 is not  
implemented in some S3C8-series microcontrollers.)  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
opc  
1
4
5F  
Example:  
The statement  
SB1  
sets FLAGS.0 to "1", selecting bank 1 register addressing, if implemented.  
6-76  
S3C830A/P830A  
INSTRUCTION SET  
SBC— Subtract with Carry  
SBC  
dst,src  
Operation:  
dst ¬ dst – src – c  
The source operand, along with the current value of the carry flag, is subtracted from the  
destination operand and the result is stored in the destination. The contents of the source are  
unaffected. Subtraction is performed by adding the two's-complement of the source operand to  
the destination operand. In multiple precision arithmetic, this instruction permits the carry  
("borrow") from the subtraction of the low-order operands to be subtracted from the subtraction of  
high-order operands.  
Flags:  
C: Set if a borrow occurred (src > dst); cleared otherwise.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result is negative; cleared otherwise.  
V: Set if arithmetic overflow occurred, that is, if the operands were of opposite sign and the sign  
of the result is the same as the sign of the source; cleared otherwise.  
D: Always set to "1".  
H: Cleared if there is a carry from the most significant bit of the low-order four bits of the result;  
set otherwise, indicating a "borrow".  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
opc  
opc  
dst | src  
src  
2
4
6
32  
33  
r
r
r
lr  
dst  
src  
3
3
6
6
34  
35  
R
R
R
IR  
dst  
6
36  
R
IM  
Examples:  
Given: R1 = 10H, R2 = 03H, C = "1", register 01H = 20H, register 02H = 03H, and  
register 03H = 0AH:  
SBC  
SBC  
SBC  
SBC  
SBC  
R1,R2  
®
®
®
®
®
R1 = 0CH, R2 = 03H  
R1,@R2  
01H,02H  
01H,@02H  
01H,#8AH  
R1 = 05H, R2 = 03H, register 03H = 0AH  
Register 01H = 1CH, register 02H = 03H  
Register 01H = 15H,register 02H = 03H, register 03H = 0AH  
Register 01H = 95H; C, S, and V = "1"  
In the first example, if working register R1 contains the value 10H and register R2 the value 03H,  
the statement "SBC R1,R2" subtracts the source value (03H) and the C flag value ("1") from the  
destination (10H) and then stores the result (0CH) in register R1.  
6-77  
INSTRUCTION SET  
S3C830A/P830A  
SCF— Set Carry Flag  
SCF  
Operation:  
Flags:  
C ¬ 1  
The carry flag (C) is set to logic one, regardless of its previous value.  
C: Set to "1".  
No other flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
opc  
1
4
DF  
Example:  
The statement  
SCF  
sets the carry flag to logic one.  
6-78  
S3C830A/P830A  
INSTRUCTION SET  
SRA— Shift Right Arithmetic  
SRA  
dst  
Operation:  
dst (7) ¬ dst (7)  
C ¬ dst (0)  
dst (n) ¬ dst (n + 1), n = 0–6  
An arithmetic shift-right of one bit position is performed on the destination operand. Bit zero (the  
LSB) replaces the carry flag. The value of bit 7 (the sign bit) is unchanged and is shifted into bit  
position 6.  
7
6
0
C
Flags:  
C: Set if the bit shifted from the LSB position (bit zero) was "1".  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result is negative; cleared otherwise.  
V: Always cleared to "0".  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
dst  
2
4
4
D0  
D1  
R
IR  
Examples:  
Given: Register 00H = 9AH, register 02H = 03H, register 03H = 0BCH, and C = "1":  
SRA  
SRA  
00H  
®
®
Register 00H = 0CD, C = "0"  
@02H  
Register 02H = 03H, register 03H = 0DEH, C = "0"  
In the first example, if general register 00H contains the value 9AH (10011010B), the statement  
"SRA 00H" shifts the bit values in register 00H right one bit position. Bit zero ("0") clears the C  
flag and bit 7 ("1") is then shifted into the bit 6 position (bit 7 remains unchanged). This leaves  
the value 0CDH (11001101B) in destination register 00H.  
6-79  
INSTRUCTION SET  
S3C830A/P830A  
SRP/SRP0/SRP1— Set Register Pointer  
SRP  
src  
src  
src  
SRP0  
SRP1  
Operation:  
If src (1) = 1 and src (0) = 0 then: RP0 (3–7)  
¬
¬
¬
¬
¬
¬
src (3–7)  
src (3–7)  
src (4–7),  
0
If src (1) = 0 and src (0) = 1 then: RP1 (3–7)  
If src (1) = 0 and src (0) = 0 then: RP0 (4–7)  
RP0 (3)  
RP1 (4–7)  
RP1 (3)  
src (4–7),  
1
The source data bits one and zero (LSB) determine whether to write one or both of the register  
pointers, RP0 and RP1. Bits 3–7 of the selected register pointer are written unless both register  
pointers are selected. RP0.3 is then cleared to logic zero and RP1.3 is set to logic one.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
src  
opc  
src  
2
4
31  
IM  
Examples:  
The statement  
SRP #40H  
sets register pointer 0 (RP0) at location 0D6H to 40H and register pointer 1 (RP1) at location  
0D7H to 48H.  
The statement "SRP0 #50H" sets RP0 to 50H, and the statement "SRP1 #68H" sets RP1 to  
68H.  
6-80  
S3C830A/P830A  
INSTRUCTION SET  
STOP— Stop Operation  
STOP  
Operation:  
The STOP instruction stops the both the CPU clock and system clock and causes the  
microcontroller to enter Stop mode. During Stop mode, the contents of on-chip CPU registers,  
peripheral registers, and I/O port control and data registers are retained. Stop mode can be  
released by an external reset operation or by external interrupts. For the reset operation, the  
RESET pin must be held to Low level until the required oscillation stabilization interval has  
elapsed.  
In application programs, a STOP instruction must be immediately followed by at least three NOP  
instructions. This ensures an adeguate time interval for the clock to stabilize before the next  
instruction is executed. If three or more NOP instructons are not used after STOP instruction,  
leakage current could be flown because of the floating state in the internal bus.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
1
4
7F  
Example:  
The statement  
STOP  
NOP  
NOP  
NOP  
; halts all microcontroller operations  
6-81  
INSTRUCTION SET  
S3C830A/P830A  
SUB— Subtract  
SUB  
dst,src  
Operation:  
dst ¬ dst – src  
The source operand is subtracted from the destination operand and the result is stored in the  
destination. The contents of the source are unaffected. Subtraction is performed by adding the  
two's complement of the source operand to the destination operand.  
Flags:  
C: Set if a "borrow" occurred; cleared otherwise.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result is negative; cleared otherwise.  
V: Set if arithmetic overflow occurred, that is, if the operands were of opposite signs and the  
sign of the result is of the same as the sign of the source operand; cleared otherwise.  
D: Always set to "1".  
H: Cleared if there is a carry from the most significant bit of the low-order four bits of the result;  
set otherwise indicating a "borrow".  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
dst |  
src  
2
4
6
22  
r
r
23  
r
lr  
opc  
opc  
src  
dst  
dst  
src  
3
3
6
6
24  
25  
R
R
R
IR  
6
26  
R
IM  
Examples:  
Given: R1 = 12H, R2 = 03H, register 01H = 21H, register 02H = 03H, register 03H = 0AH:  
SUB  
SUB  
SUB  
SUB  
SUB  
SUB  
R1,R2  
®
®
®
®
®
®
R1 = 0FH, R2 = 03H  
R1,@R2  
01H,02H  
01H,@02H  
01H,#90H  
01H,#65H  
R1 = 08H, R2 = 03H  
Register 01H = 1EH, register 02H = 03H  
Register 01H = 17H, register 02H = 03H  
Register 01H = 91H; C, S, and V = "1"  
Register 01H = 0BCH; C and S = "1", V = "0"  
In the first example, if working register R1 contains the value 12H and if register R2 contains the  
value 03H, the statement "SUB R1,R2" subtracts the source value (03H) from the destination  
value (12H) and stores the result (0FH) in destination register R1.  
6-82  
S3C830A/P830A  
INSTRUCTION SET  
SWAP— Swap Nibbles  
SWAP  
dst  
Operation:  
dst (0 – 3) « dst (4 – 7)  
The contents of the lower four bits and upper four bits of the destination operand are swapped.  
7
4 3  
0
Flags:  
C: Undefined.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result bit 7 is set; cleared otherwise.  
V: Undefined.  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
dst  
2
4
4
F0  
F1  
R
IR  
Examples:  
Given: Register 00H = 3EH, register 02H = 03H, and register 03H = 0A4H:  
SWAP  
SWAP  
00H  
®
®
Register 00H = 0E3H  
@02H  
Register 02H = 03H, register 03H = 4AH  
In the first example, if general register 00H contains the value 3EH (00111110B), the statement  
"SWAP 00H" swaps the lower and upper four bits (nibbles) in the 00H register, leaving the value  
0E3H (11100011B).  
6-83  
INSTRUCTION SET  
S3C830A/P830A  
TCM— Test Complement Under Mask  
TCM  
dst,src  
Operation:  
(NOT dst) AND src  
This instruction tests selected bits in the destination operand for a logic one value. The bits to be  
tested are specified by setting a "1" bit in the corresponding position of the source operand  
(mask). The TCM statement complements the destination operand, which is then ANDed with the  
source mask. The zero (Z) flag can then be checked to determine the result. The destination and  
source operands are unaffected.  
Flags:  
C: Unaffected.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result bit 7 is set; cleared otherwise.  
V: Always cleared to "0".  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
opc  
opc  
dst | src  
src  
2
4
6
62  
63  
r
r
r
lr  
dst  
src  
3
3
6
6
64  
65  
R
R
R
IR  
dst  
6
66  
R
IM  
Examples:  
Given: R0 = 0C7H, R1 = 02H, R2 = 12H, register 00H = 2BH, register 01H = 02H, and  
register 02H = 23H:  
TCM  
TCM  
TCM  
TCM  
R0,R1  
®
®
®
®
R0 = 0C7H, R1 = 02H, Z = "1"  
R0,@R1  
00H,01H  
00H,@01H  
R0 = 0C7H, R1 = 02H, register 02H = 23H, Z = "0"  
Register 00H = 2BH, register 01H = 02H, Z = "1"  
Register 00H = 2BH, register 01H = 02H,  
register 02H = 23H, Z = "1"  
TCM  
00H,#34  
®
Register 00H = 2BH, Z = "0"  
In the first example, if working register R0 contains the value 0C7H (11000111B) and register R1  
the value 02H (00000010B), the statement "TCM R0,R1" tests bit one in the destination register  
for a "1" value. Because the mask value corresponds to the test bit, the Z flag is set to logic one  
and can be tested to determine the result of the TCM operation.  
6-84  
S3C830A/P830A  
INSTRUCTION SET  
TM— Test Under Mask  
TM  
dst,src  
Operation:  
dst AND src  
This instruction tests selected bits in the destination operand for a logic zero value. The bits to be  
tested are specified by setting a "1" bit in the corresponding position of the source operand  
(mask), which is ANDed with the destination operand. The zero (Z) flag can then be checked to  
determine the result. The destination and source operands are unaffected.  
Flags:  
C: Unaffected.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result bit 7 is set; cleared otherwise.  
V: Always reset to "0".  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
opc  
opc  
dst | src  
src  
2
4
6
72  
73  
r
r
r
lr  
dst  
src  
3
3
6
6
74  
75  
R
R
R
IR  
dst  
6
76  
R
IM  
Examples:  
Given: R0 = 0C7H, R1 = 02H, R2 = 18H, register 00H = 2BH, register 01H = 02H, and  
register 02H = 23H:  
TM  
TM  
TM  
TM  
R0,R1  
®
®
®
®
R0 = 0C7H, R1 = 02H, Z = "0"  
R0,@R1  
00H,01H  
00H,@01H  
R0 = 0C7H, R1 = 02H, register 02H = 23H, Z = "0"  
Register 00H = 2BH, register 01H = 02H, Z = "0"  
Register 00H = 2BH, register 01H = 02H,  
register 02H = 23H, Z = "0"  
TM  
00H,#54H  
®
Register 00H = 2BH, Z = "1"  
In the first example, if working register R0 contains the value 0C7H (11000111B) and register R1  
the value 02H (00000010B), the statement "TM R0,R1" tests bit one in the destination register  
for a "0" value. Because the mask value does not match the test bit, the Z flag is cleared to logic  
zero and can be tested to determine the result of the TM operation.  
6-85  
INSTRUCTION SET  
S3C830A/P830A  
WFI— Wait for Interrupt  
WFI  
Operation:  
The CPU is effectively halted until an interrupt occurs, except that DMA transfers can still take  
place during this wait state. The WFI status can be released by an internal interrupt, including a  
fast interrupt .  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
opc  
1
4n  
3F  
( n = 1, 2, 3, … )  
Example:  
The following sample program structure shows the sequence of operations that follow a "WFI"  
statement:  
Main program  
.
.
.
EI  
WFI  
(Enable global interrupt)  
(Wait for interrupt)  
(Next instruction)  
.
.
.
Interrupt occurs  
Interrupt service routine  
.
.
.
Clear interrupt flag  
IRET  
Service routine completed  
6-86  
S3C830A/P830A  
INSTRUCTION SET  
XOR— Logical Exclusive OR  
XOR  
dst,src  
Operation:  
dst ¬ dst XOR src  
The source operand is logically exclusive-ORed with the destination operand and the result is  
stored in the destination. The exclusive-OR operation results in a "1" bit being stored whenever  
the corresponding bits in the operands are different; otherwise, a "0" bit is stored.  
Flags:  
C: Unaffected.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result bit 7 is set; cleared otherwise.  
V: Always reset to "0".  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
opc  
opc  
dst | src  
src  
2
4
6
B2  
B3  
r
r
r
lr  
dst  
src  
3
3
6
6
B4  
B5  
R
R
R
IR  
dst  
6
B6  
R
IM  
Examples:  
Given: R0 = 0C7H, R1 = 02H, R2 = 18H, register 00H = 2BH, register 01H = 02H, and  
register 02H = 23H:  
XOR  
XOR  
XOR  
XOR  
XOR  
R0,R1  
®
®
®
®
®
R0 = 0C5H, R1 = 02H  
R0,@R1  
00H,01H  
00H,@01H  
00H,#54H  
R0 = 0E4H, R1 = 02H, register 02H = 23H  
Register 00H = 29H, register 01H = 02H  
Register 00H = 08H, register 01H = 02H, register 02H = 23H  
Register 00H = 7FH  
In the first example, if working register R0 contains the value 0C7H and if register R1 contains  
the value 02H, the statement "XOR R0,R1" logically exclusive-ORs the R1 value with the R0  
value and stores the result (0C5H) in the destination register R0.  
6-87  
INSTRUCTION SET  
S3C830A/P830A  
NOTES  
6-88  
S3C830A/P830A  
CLOCK CIRCUIT  
7
CLOCK CIRCUIT  
OVERVIEW  
The clock frequency generated for the S3C830A by an external crystal can range from 0.4 MHz to 4.5 MHz. The  
maximum CPU clock frequency is 4.5 MHz. The XIN and XOUT pins connect the external oscillator or clock  
source to the on-chip clock circuit.  
SYSTEM CLOCK CIRCUIT  
The system clock circuit has the following components:  
— External crystal or ceramic resonator oscillation source (or an external clock source)  
— Oscillator stop and wake-up functions  
— Programmable frequency divider for the CPU clock (fxx divided by 1, 2, 8, or 16)  
— System clock control register, CLKCON  
— STOP control register, STPCON  
CPU Clock Notation  
In this document, the following notation is used for descriptions of the CPU clock;  
fx: main clock  
fxt: sub clock (the fxt is not implemented in the S3C830A)  
fxx: selected system clock  
C1  
C2  
XIN  
XIN  
S3C830A  
S3C830A  
XOUT  
XOUT  
Figure 7-1. Main Oscillator Circuit  
(Crystal or Ceramic Oscillator)  
Figure 7-2. Main Oscillator Circuit  
(External Oscillator)  
7-1  
CLOCK CIRCUIT  
S3C830A/P830A  
CLOCK STATUS DURING POWER-DOWN MODES  
The two power-down modes, Stop mode and Idle mode, affect the system clock as follows:  
— In Stop mode, the main oscillator is halted. Stop mode is released, and the oscillator is started, by a reset  
operation or an external interrupt (with RC delay noise filter).  
— In Idle mode, the internal clock signal is gated to the CPU, but not to interrupt structure, timers, timer/  
counters, and watch timer. Idle mode is released by a reset or by an external or internal interrupt.  
Stop Release  
INT  
Main-System  
Oscillator  
Circuit  
Sub-system  
Oscillator  
Circuit  
fX  
fXt  
Selector 1  
fXX  
Stop  
Logic "0"  
Logic "0"  
Stop  
Logic "1"  
Basic Timer  
Timer/Counters  
Watch Timer  
LCD Controller  
SIO0, SIO1  
1/8-1/4096  
STOP OSC  
inst.  
STPCON  
Frequency  
Dividing  
Circuit  
A/D Converter  
PLL Frequency Synthesizer  
IF Counter  
1/1 1/2 1/8 1/16  
Selector 2  
System Clock  
CLKCON.4-.3  
CPU Clock  
NOTE:  
The fxt is not implemented in the S3C830A.  
IDLE Instruction  
Figure 7-3. System Clock Circuit Diagram  
7-2  
S3C830A/P830A  
CLOCK CIRCUIT  
SYSTEM CLOCK CONTROL REGISTER (CLKCON)  
The system clock control register, CLKCON, is located in the set 1, address D4H. It is read/write addressable and  
has the following functions:  
— Oscillator frequency divide-by value  
After the main oscillator is activated, and the fxx/16 (the slowest clock speed) is selected as the CPU clock. If  
necessary, you can then increase the CPU clock speed fxx/8, fxx/2, or fxx/1.  
System Clock Control Register (CLKCON)  
D4H, Set 1, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Not used  
(must keep always 0)  
Not used  
(must keep always 0)  
Oscillator IRQ wake-up  
function bit:  
0 = Enable IRQ for main  
wake-up in power down mode  
1 = Disable IRQ for main  
wake-up in power down mode  
Divide-by selection bits for  
CPU clock frequency:  
00 = fXX/16  
01 = fXX/8  
10 = fXX/2  
11 = fXX/1 (non-divided)  
Figure 7-4. System Clock Control Register (CLKCON)  
7-3  
CLOCK CIRCUIT  
S3C830A/P830A  
STOP Control Register (STPCON)  
FBH, Set 1,bank 0, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
STOP Control bits:  
Other values = Disable STOP instruction  
10100101 = Enable STOP instruction  
NOTE:  
Before execute the STOP instruction, set this STPCON register as "10100101B".  
Otherwise the STOP instruction will not execute as well as reset will be generated.  
Figure 7-5. STOP Control Register (STPCON)  
7-4  
S3C830A/P830A  
RESET and POWER-DOWN  
8
RESET and POWER-DOWN  
SYSTEM RESET  
OVERVIEW  
During a power-on reset, the voltage at VDD goes to High level and the RESET pin is forced to Low level. The  
RESET signal is input through a schmitt trigger circuit where it is then synchronized with the CPU clock. This  
procedure brings the S3C830A into a known operating status.  
To allow time for internal CPU clock oscillation to stabilize, the RESET pin must be held to Low level for a  
minimum time interval after the power supply comes within tolerance. The minimum required time of a reset  
operation for oscillation stabilization is 1 millisecond.  
Whenever a reset occurs during normal operation (that is, when both VDD and RESET are High level), the  
RESET pin is forced Low level and the reset operation starts. All system and peripheral control registers are then  
reset to their default hardware values  
In summary, the following sequence of events occurs during a reset operation:  
— All interrupt is disabled.  
— The watchdog function (basic timer) is enabled.  
— Ports 0-3 are set to input mode, and all pull-up resistors are disabled for the I/O port.  
— Peripheral control and data register settings are disabled and reset to their default hardware values.  
— The program counter (PC) is loaded with the program reset address in the ROM, 0100H.  
— When the programmed oscillation stabilization time interval has elapsed, the instruction stored in ROM  
location 0100H (and 0101H) is fetched and executed.  
NORMAL MODE RESET OPERATION  
In normal (masked ROM) mode, the Test pin is tied to VSS. A reset enables access to the 48-Kbyte on-chip  
ROM.  
NOTE  
To program the duration of the oscillation stabilization interval, you make the appropriate settings to the  
basic timer control register, BTCON, before entering Stop mode. Also, if you do not want to use the basic  
timer watchdog function (which causes a system reset if a basic timer counter overflow occurs), you can  
disable it by writing "1010B" to the upper nibble of BTCON.  
8-1  
RESET and POWER-DOWN  
S3C830A/P830A  
HARDWARE RESET VALUES  
Table 8-1, 8-2, 8-3 list the reset values for CPU and system registers, peripheral control registers, and peripheral  
data registers following a reset operation. The following notation is used to represent reset values:  
— A "1" or a "0" shows the reset bit value as logic one or logic zero, respectively.  
— An "x" means that the bit value is undefined after a reset.  
— A dash ("–") means that the bit is either not used or not mapped, but read 0 is the bit value.  
Table 8-1. S3C830A Set 1 Register and Values after RESET  
Register Name  
Mnemonic  
Address  
Dec Hex  
Locations D0H-D2H are not mapped.  
Bit Values after RESET  
7
6
5
4
3
2
1
0
Basic Timer Control Register  
Clock Control Register  
BTCON  
CLKCON  
FLAGS  
RP0  
211  
212  
213  
214  
215  
216  
217  
218  
219  
220  
221  
222  
223  
D3H  
D4H  
D5H  
D6H  
D7H  
D8H  
D9H  
DAH  
DBH  
DCH  
DDH  
DEH  
DFH  
0
0
x
1
1
x
x
x
x
0
x
0
0
0
0
x
1
1
x
x
x
x
0
x
0
0
0
x
0
0
x
x
x
x
0
x
0
0
0
x
0
0
x
x
x
x
0
x
x
0
0
0
x
0
1
x
x
x
x
0
x
x
0
0
0
x
x
x
x
x
0
x
x
0
0
0
0
x
x
x
x
0
x
0
0
0
0
0
x
x
x
x
0
x
0
0
System Flags Register  
Register Pointer (High Byte)  
Register Pointer (Low Byte)  
Stack Pointer (High Byte)  
Stack Pointer (Low Byte)  
Instruction Pointer (High Byte)  
Instruction Pointer (Low Byte)  
Interrupt Request Register  
Interrupt Mask Register  
RP1  
SPH  
SPL  
IPH  
IPL  
IRQ  
IMR  
System Mode Register  
SYM  
PP  
Register Page Pointer  
8-2  
S3C830A/P830A  
RESET and POWER-DOWN  
Table 8-2. S3C830A Set 1, Bank 0 Register Values after RESET  
Register Name  
Mnemonic  
Address  
Bit Values after RESET  
Dec  
Hex  
E0H  
E1H  
E2H  
E3H  
E4H  
E5H  
E6H  
7
0
1
0
0
1
0
6
0
1
0
0
1
0
5
0
1
0
0
1
0
4
0
1
0
0
1
0
3
0
1
0
0
1
0
2
0
1
0
0
1
0
1
0
1
0
0
1
0
0
0
0
1
0
0
1
0
0
Timer 0 Counter Register  
Timer 0 Data Register  
T0CNT  
T0DATA  
T0CON  
T1CNT  
224  
225  
226  
227  
228  
229  
230  
Timer 0 Control Register  
Timer 1 Counter Register  
Timer 1 Data Register  
T1DATA  
T1CON  
INTPND  
Timer 1 Control Register  
Interrupt Pending Register  
Location E7H is not mapped.  
Watch Timer Control Register  
SIO 0 Control Register  
SIO 0 Data Register  
WTCON  
232  
233  
E8H  
E9H  
EAH  
EBH  
ECH  
EDH  
EEH  
EFH  
F0H  
F1H  
F2H  
F3H  
F4H  
F5H  
F6H  
F7H  
F8H  
F9H  
0
0
0
0
0
0
0
0
x
0
0
0
0
x
x
0
0
0
0
0
0
0
0
x
0
0
0
0
x
x
0
0
0
0
0
0
0
0
x
0
0
0
0
x
x
0
0
0
0
0
0
0
0
x
0
0
0
0
x
x
0
0
0
0
0
0
0
0
x
0
0
0
0
0
x
x
0
0
0
0
0
0
0
0
x
0
0
0
0
0
x
x
0
0
0
0
0
0
0
0
x
0
0
0
0
0
x
x
0
0
0
0
0
0
0
0
x
0
0
0
0
0
x
x
SIO0CON  
SIO0DATA 234  
SIO 0 Prescaler Register  
SIO 1 Control Register  
SIO 1 Data Register  
SIO0PS  
235  
236  
SIO1CON  
SIO1DATA 237  
SIO 1 Prescaler Register  
A/D Converter Control Register  
A/D Converter Data Register  
LCD Control Register  
LCD Mode Register  
SIO1PS  
ADCON  
ADDATA  
LCON  
238  
239  
240  
241  
242  
243  
244  
245  
246  
247  
248  
249  
LMOD  
IF Counter Mode Register  
IF Counter 1  
IFMOD  
IFCNT1  
IFCNT0  
PLLD1  
IF Counter 0  
PLL Data Register 1  
PLL Data Register 0  
PLLD0  
(note)  
PLL Mode Register  
PLLMOD  
PLLREF  
(note)  
PLL Reference Frequency Register  
Location FAH is not mapped.  
STPCON 251 FBH  
Location FCH is not mapped.  
BTCNT 253 FDH  
Location FEH is not mapped.  
IPR 255 FFH  
STOP Control Register  
Basic Timer Data Register  
Interrupt Priority Register  
0
0
x
0
0
x
0
0
x
0
0
0
x
0
0
x
0
0
x
0
0
x
0
x
NOTE: Refer to the corresponding register in the chapter 4.  
8-3  
RESET and POWER-DOWN  
S3C830A/P830A  
Table 8-3. S3C830A Set 1, Bank 1 Register Values after RESET  
Register Name  
Mnemonic  
Address  
Bit Values after RESET  
Dec  
Hex  
E0H  
E1H  
E2H  
7
0
0
0
6
0
0
0
5
0
0
0
4
0
0
0
3
0
0
0
2
0
0
0
1
0
0
0
0
0
0
0
Port 0 Control Register (High Byte)  
Port 0 Control Register (Low Byte)  
P0CONH  
P0CONL  
P0PUR  
224  
225  
226  
Port 0 Pull-up Resistors Enable  
Register  
Locations E3H is not mapped.  
Port 1 Control Register (High Byte)  
Port 1 Control Register (Low Byte)  
Port 1 Interrupt Control Register  
Port 1 Interrupt Pending Register  
Port 2 Control Register (High Byte)  
Port 2 Control Register (Low Byte)  
Port 3 Control Register (High Byte)  
Port 3 Control Register (Low Byte)  
P1CONH  
P1CONL  
P1INT  
228  
229  
230  
231  
232  
233  
234  
235  
236  
E4H  
E5H  
E6H  
E7H  
E8H  
E9H  
EAH  
EBH  
ECH  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
P1PND  
P2CONH  
P2CONL  
P3CONH  
P3CONL  
P3PUR  
Port 3 Pull-up Resistors Enable  
Register  
Port Group 0 Control Register  
Port Group 1 Control Register  
Port Group 2 Control Register  
Port 0 Data Register  
PG0CON  
237  
238  
239  
240  
241  
242  
243  
244  
245  
246  
247  
248  
EDH  
EEH  
EFH  
F0H  
F1H  
F2H  
F3H  
F4H  
F5H  
F6H  
F7H  
F8H  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
PG1CON  
PG2CON  
P0  
Port 1 Data Register  
P1  
Port 2 Data Register  
P2  
Port 3 Data Register  
P3  
Port 4 Data Register  
P4  
Port 5 Data Register  
P5  
Port 6 Data Register  
P6  
Port 7 Data Register  
P7  
Port 8 Data Register  
P8  
Location F9H is not mapped.  
Timer 2 Counter (High Byte)  
Timer 2 Counter (Low Byte)  
Timer 2 Data Register (High Byte)  
Timer 2 Data Register (Low Byte)  
Timer 2 Control Register  
T2CNTH  
T2CNTL  
T2DATAH  
T2DATAL  
T2CON  
250  
251  
252  
253  
254  
F9H  
FBH  
FCH  
FDH  
FEH  
0
0
1
1
0
0
0
1
1
0
0
0
1
1
0
0
0
1
1
0
0
0
1
1
0
0
0
1
1
0
0
0
1
1
0
0
0
1
1
0
Location FFH is not mapped.  
8-4  
S3C830A/P830A  
RESET and POWER-DOWN  
POWER-DOWN MODES  
STOP MODE  
Stop mode is invoked by the instruction STOP (opcode 7FH). In Stop mode, the operation of the CPU and all  
peripherals is halted. That is, the on-chip main oscillator stops and the supply current is reduced to less than  
3 mA. All system functions stop when the clock “freezes”, but data stored in the internal register file is retained.  
Stop mode can be released in one of two ways: by a reset or by external interrupts, for more details see Figure 7-  
3.  
NOTE  
Do not use stop mode if you are using an external clock source because XIN input must be restricted  
internally to VSS to reduce current leakage.  
Using RESET to Release Stop Mode  
Stop mode is released when the RESET signal is released and returns to high level: all system and peripheral  
control registers are reset to their default hardware values and the contents of all data registers are retained. A  
reset operation automatically selects a slow clock fxx/16 because CLKCON.3 and CLKCON.4 are cleared to  
'00B'. After the programmed oscillation stabilization interval has elapsed, the CPU starts the system initialization  
routine by fetching the program instruction stored in ROM location 0100H.  
Using an External Interrupt to Release Stop Mode  
External interrupts with an RC-delay noise filter circuit can be used to release Stop mode. Which interrupt you  
can use to release Stop mode in a given situation depends on the microcontroller’s current internal operating  
mode. The external interrupts in the S3C830A interrupt structure that can be used to release Stop mode are:  
— External interrupts P1.0–P1.7 (INT0–INT7)  
Please note the following conditions for Stop mode release:  
— If you release Stop mode using an external interrupt, the current values in system and peripheral control  
registers are unchanged except STPCON register.  
— If you use an internal or external interrupt for stop mode release, you can also program the duration of the  
oscillation stabilization interval. To do this, you must make the appropriate control and clock settings before  
entering stop mode.  
— When the Stop mode is released by external interrupt, the CLKCON.4 and CLKCON.3 bit-pair setting  
remains unchanged and the currently selected clock value is used.  
— The external interrupt is serviced when the Stop mode release occurs. Following the IRET from the service  
routine, the instruction immediately following the one that initiated Stop mode is executed.  
How to Enter into Stop Mode  
Handling STPCON register then writing Stop instruction (keep the order).  
LD  
STPCON, #10100101B  
STOP  
NOP  
NOP  
NOP  
8-5  
RESET and POWER-DOWN  
S3C830A/P830A  
IDLE MODE  
Idle mode is invoked by the instruction IDLE (opcode 6FH). In idle mode, CPU operations are halted while some  
peripherals remain active. During idle mode, the internal clock signal is gated away from the CPU, but all  
peripherals remain active. Port pins retain the mode (input or output) they had at the time idle mode was entered.  
There are two ways to release idle mode:  
1. Execute a reset. All system and peripheral control registers are reset to their default values and the contents  
of all data registers are retained. The reset automatically selects the slow clock fxx/16 because CLKCON.4  
and CLKCON.3 are cleared to ‘00B’. If interrupts are masked, a reset is the only way to release idle mode.  
2. Activate any enabled interrupt, causing idle mode to be released. When you use an interrupt to release idle  
mode, the CLKCON.4 and CLKCON.3 register values remain unchanged, and the currently selected clock  
value is used. The interrupt is then serviced. When the return-from-interrupt (IRET) occurs, the instruction  
immediately following the one that initiated idle mode is executed.  
8-6  
S3C830A/P830A  
I/O PORTS  
9
I/O PORTS  
OVERVIEW  
The S3C830A microcontroller has four bit-programmable and five nibble-programmable I/O ports,  
P0–P8. The port 0–8 are all 8-bit ports. This gives a total of 72 I/O pins. Each port can be flexibly configured to  
meet application design requirements. The CPU accesses ports by directly writing or reading port registers. No  
special I/O instructions are required. All ports of the S3C830A can be configured to input or output mode and P4–  
P8 are shared with LCD segment signals.  
Table 9-1 gives you a general overview of the S3C830A I/O port functions.  
9-1  
I/O PORTS  
S3C830A/P830A  
Table 9-1. S3C830A Port Configuration Overview  
Configuration Options  
Port  
0
1-bit programmable I/O port.  
Schmitt trigger input or push-pull, open-drain output mode selected by software; software  
assignable pull-up.  
Alternately P0.1–P0.7 can be used as T0CLK, T0CAP, T0OUT/T0PWM, T1CLK, T1OUT,  
T2CLK, T2OUT.  
1
1-bit programmable I/O port.  
Schmitt trigger input or push-pull output mode selected by software; software assignable pull-  
up .  
P1.0–P1.7 can be used as inputs for external interrupts INT0–INT7 (with noise filter and  
interrupt control).  
2
3
1-bit programmable I/O port.  
Schmitt trigger input or push-pull output mode selected by software; software assignable pull-  
up. Alternately P2.0–P2.3 can be used as AD0–AD3.  
1-bit programmable I/O port.  
Schmitt trigger input or push-pull, open-drain output mode selected by software; software  
assignable pull-up.  
Alternately P3.0–P3.6 can be used as BUZ, SCK0, SO0, SI0, SCK1, SO1, SI1.  
4
5
6
7
8
4-bit programmable I/O port.  
Schmitt trigger input or push-pull, open-drain output mode selected by software;  
software assignable pull-up. P4.0–P4.7 can alternately be used as outputs for LCD segment  
signals.  
4-bit programmable I/O port.  
Schmitt trigger input or push-pull, open-drain output mode selected by software;  
software assignable pull-up. P5.0–P5.7 can alternately be used as outputs for LCD segment  
signals.  
4-bit programmable I/O port.  
Schmitt trigger input or push-pull, open-drain output mode selected by software;  
software assignable pull-up. P6.0–P6.7 can alternately be used as outputs for LCD segment  
signals.  
4-bit programmable I/O port.  
Schmitt trigger input or push-pull, open-drain output mode selected by software;  
software assignable pull-up. P7.0–P7.7 can alternately be used as outputs for LCD segment  
signals.  
4-bit programmable I/O port.  
Schmitt trigger input or push-pull, open-drain output mode selected by software;  
software assignable pull-up. P8.0–P8.7 can alternately be used as outputs for LCD segment  
signals.  
9-2  
S3C830A/P830A  
I/O PORTS  
PORT DATA REGISTERS  
Table 9-2 gives you an overview of the register locations of all nine S3C830A I/O port data registers. Data  
registers for ports 0, 1, 2, 3, 4, 5, 6, 7 and 8 have the general format shown in Figure 9-1.  
Table 9-2. Port Data Register Summary  
Register Name  
Port 0 data register  
Port 1 data register  
Port 2 data register  
Port 3 data register  
Port 4 data register  
Port 5 data register  
Port 6 data register  
Port 7 data register  
Port 8 data register  
Mnemonic  
Decimal  
240  
Hex  
F0H  
F1H  
F2H  
F3H  
F4H  
F5H  
F6H  
F7H  
F8H  
Location  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
P0  
P1  
P2  
P3  
P4  
P5  
P6  
P7  
P8  
Set 1, Bank 1  
Set 1, Bank 1  
Set 1, Bank 1  
Set 1, Bank 1  
Set 1, Bank 1  
Set 1, Bank 1  
Set 1, Bank 1  
Set 1, Bank 1  
Set 1, Bank 1  
241  
242  
243  
244  
245  
246  
247  
248  
9-3  
I/O PORTS  
PORT 0  
S3C830A/P830A  
Port 0 is an 8-bit I/O port with individually configurable pins. Port 0 pins are accessed directly by writing or  
reading the port 0 data register, P0 at location F0H in set 1, bank 1. P0.0–P0.7 can serve inputs, as outputs  
(push pull or open-drain) or you can configure the following alternative functions:  
— Low-nibble pins (P0.1-P0.3): T0CLK, T0CAP, T0OUT/T0PWM  
— High-nibble pins (P0.4-P0.7): T1CLK, T1OUT, T2CLK, T2OUT  
Port 0 Control Register  
Port 0 has two 8-bit control registers: P0CONH for P0.4–P0.7 and P0CONL for P0.0–P0.3. A reset clears the  
P0CONH and P0CONL registers to “00H”, configuring all pins to input mode. You use control registers settings to  
select input or output mode (push-pull or open drain) and enable the alternative functions.  
When programming the port, please remember that any alternative peripheral I/O function you configure using  
the port 0 control registers must also be enabled in the associated peripheral module.  
Port 0 Pull-up Resistor Enable Register (P0PUR)  
Using the port 0 pull-up resistor enable register, P0PUR (E2H, set 1, bank 1), you can configure pull-up resistors  
to individual port 0 pins.  
Port 0 Control Register, High Byte  
E0H, Set 1, Bank 1, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
P0.4/T1CLK  
P0.5/T1OUT  
P0.6/T2CLK  
P0.7/T2OUT  
P0CONH bit-pair pin configuration settings  
00  
01  
10  
11  
Input mode (T1CLK, T2CLK)  
Output mode, open-drain  
Alternative function (T1OUT, T2OUT)  
Output mode, push-pull  
Figure 9-1. Port 0 High-Byte Control Register (P0CONH)  
9-4  
S3C830A/P830A  
I/O PORTS  
Port 0 Control Register, Low Byte  
E1H, Set 1, Bank 1, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
P0.0  
P0.1/T0CLK  
P0.2/T0CAP  
P0.3/T0OUT  
/T0PWM  
P0CONL bit-pair pin configuration settings  
00  
01  
10  
11  
Input mode (T0CAP, T0CLK)  
Output mode, open-drain  
Alternative function (T0OUT, T0PWM)  
Output mode, push-pull  
Figure 9-2. Port 0 Low-Byte Control Register (P0CONL)  
Port 0 Pull-up Control Register  
E2H, Set 1, Bank 1, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
P0.7 P0.6 P0.5 P0.4 P0.3 P0.2 P0.1 P0.0  
P0PUR bit configuration settings:  
0
1
Disable pull-up resistor  
Enable pull-up resistor  
NOTE:  
The corresponding pull-up resistor is disabled  
automatically, when a bit of port 0 is selected as  
output mode.  
Figure 9-3. Port 0 Pull-up Control Register (P0PUR)  
9-5  
I/O PORTS  
S3C830A/P830A  
PORT 1  
Port 1 is an 8-bit I/O Port that you can use two ways:  
— General-purpose I/O  
— External interrupt inputs for INT0–INT7  
Port 1 is accessed directly by writing or reading the port 1 data register, P1 at location F1H in set 1, bank 1.  
NOTE  
The port 1 inputs can be disabled by PG2CON.5–.4 when the port is selected as input mode. Refer to the  
PG2CON register.  
Port 1 Control Register (P1CONH, P1CONL)  
Port 1 pins are configured individually by bit-pair settings in two control registers located in set 1, bank 1:  
P1CONL (low byte, E5H) and P1CONH (high byte, E4H).  
When you select output mode, a push-pull circuit is automatically configured. In input mode, three different  
selections are available:  
— Schmitt trigger input with interrupt generation on falling edges.  
— Schmitt trigger input with interrupt generation on rising edges.  
— Schmitt trigger input with interrupt generation on falling/rising edges.  
Port 1 Interrupt Enable and Pending Registers (P1INT, P1PND)  
To process external interrupts at the port 1 pins, two additional control registers are provided: the port 1 interrupt  
enable register P1INT (E6H, set 1, bank 1) and the port 1 interrupt pending register P1PND (E7H, set 1, bank 1).  
The port 1 interrupt pending register P1PND lets you check for interrupt pending conditions and clear the pending  
condition when the interrupt service routine has been initiated. The application program detects interrupt requests  
by polling the P1PND register at regular intervals.  
When the interrupt enable bit of any port 1 pin is “1”, a rising or falling edge at that pin will generate an interrupt  
request. The corresponding P1PND bit is then automatically set to “1” and the IRQ level goes low to signal the  
CPU that an interrupt request is waiting. When the CPU acknowledges the interrupt request, application software  
must the clear the pending condition by writing a “0” to the corresponding P1PND bit.  
9-6  
S3C830A/P830A  
I/O PORTS  
Port 1 Control Register, High Byte (P1CONH)  
E4H, Set 1, Bank 1, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
P1.7  
(INT7)  
P1.6  
(INT6)  
P1.5  
(INT5)  
P1.4  
(INT4)  
P1CONH bit-pair pin configuration  
00  
01  
10  
11  
Schmitt trigger input mode, pull-up, interrupt on falling edge  
Schmitt trigger input mode, interrupt on rising edge  
Schmitt trigger input mode, interrupt on rising or falling edge  
Output mode, push-pull  
Figure 9-4. Port 1 High-Byte Control Register (P1CONH)  
Port 1 Control Register, Low Byte (P1CONL)  
E5H, Set 1, Bank 1, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
P1.3  
(INT3)  
P1.2  
(INT2)  
P1.1  
(INT1)  
P1.0  
(INT0)  
P1CONL bit-pair pin configuration  
00  
01  
10  
11  
Schmitt trigger input mode, pull-up, interrupt on falling edge  
Schmitt trigger input mode, interrupt on rising edge  
Schmitt trigger input mode, interrupt on rising or falling edge  
Output mode, push-pull  
Figure 9-5. Port 1 Low-Byte Control Register (P1CONL)  
9-7  
I/O PORTS  
S3C830A/P830A  
Port 1 Interrupt Control Register (P1INT)  
E6H, Set 1, Bank 1, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
INT7 INT6 INT5 INT4 INT3 INT2 INT1 INT0  
P1INT bit configuration settings:  
0
1
Disable interrupt  
Enable interrupt  
Figure 9-6. Port 1 Interrupt Control Register (P1INT)  
Port 1 Interrupt Pending Register (P1PND)  
E7H, Set 1, Bank 1, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
PND7 PND6 PND5 PND4 PND3 PND2 PND1 PND0  
P1PND bit configuration settings:  
0
Interrupt request is not pending,  
pending bit clear when write 0  
1
Interrupt request is pending  
Figure 9-7. Port 1 Interrupt Pending Register (P1PND)  
9-8  
S3C830A/P830A  
PORT 2  
I/O PORTS  
Port 2 is an 8-bit I/O port that can be used for general-purpose I/O as A/D converter inputs, AD0–AD3. The pins  
are accessed directly by writing or reading the port 2 data register, P2 at location F2H in set 1, bank 1.  
To individually configure the port 2 pins P2.0–P2.7, you make bit-pair settings in two control registers located in  
set 1, bank 1: P2CONL (low byte, E9H) and P2CONH (high byte, E8H). In input mode, ADC voltage input are  
also available.  
Port 2 Control Registers  
Two 8-bit control registers are used to configure port 2 pins: P2CONL (E9H, set 1, Bank 1) for pins P2.0–P2.3  
and P2CONH (E8H, set 1, Bank 1) for pins P2.4–P2.7. Each byte contains four bit-pairs and each bit-pair  
configures one port 2 pin. The P2CONH and the P2CONL registers also control the alternative functions.  
Port 2 Control Register, High Byte (P2CONH)  
E8H, Set 1, Bank 1, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
P2.4  
P2.5  
P2.6  
P2.7  
P2CONH bit-pair pin configuration  
00  
01  
10  
11  
Input mode  
Input mode, pull-up  
Not available  
Output mode, push-pull  
Figure 9-8. Port 2 High-Byte Control Register (P2CONH)  
9-9  
I/O PORTS  
S3C830A/P830A  
Port 2 Control Register,Low Byte (P2CONL)  
E9H, Set 1, Bank 1, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
P2.0 (AD0)  
P2.1 (AD1)  
P2.2 (AD2)  
P2.3 (AD3)  
P2CONL bit-pair pin configuration  
00  
01  
10  
11  
Input mode  
Input mode, pull-up  
Alternative function (ADC mode)  
Output mode, push-pull  
Figure 9-9. Port 2 Low-Byte Control Register (P2CONL)  
9-10  
S3C830A/P830A  
PORT 3  
I/O PORTS  
Port 3 is an 8-bit I/O port with individually configurable pins. Port 3 pins are accessed directly by writing or  
reading the port 3 data register, P3 at location F3H in set 1, bank 1. P3.0–P3.7 can serve as inputs or as push-  
pull, open-drain outputs. You can configure the following alternative functions:  
— BUZ, SCK0, SO0, SI0, SCK1, SO1, and SI1  
Port 3 Control Registers  
Port 3 has two 8-bit control registers: P3CONH for P3.4–P3.7 and P3CONL for P3.0–P3.3. A reset clears the  
P3CONH and P3CONL registers to “00H”, configuring all pins to input mode. You use control registers settings to  
select input or output mode, enable pull-up resistors, and enable the alternative functions.  
When programming this port, please remember that any alternative peripheral I/O function you configure using  
the port 3 control registers must also be enabled in the associated peripheral module.  
Port 3 Control Register, High Byte (P3CONH)  
EAH, Set 1, Bank 1, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
P3.7  
P3.6/SI1  
P3.5/SO1  
P3.4/SCK1  
P3CONH bit-pair pin configuration settings  
00  
01  
10  
11  
Input mode (SCK1, SI1)  
Output mode, open-drain  
Alternative function (SCK1, SO1)  
Output mode, push-pull  
Figure 9-10. Port 3 High-Byte Control Register (P3CONH)  
9-11  
I/O PORTS  
S3C830A/P830A  
Port 3 Control Register, Low Byte (P3CONL)  
EBH, Set 1, Bank 1, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
P3.0/BUZ  
P3.1/SCK0  
P3.2/SO0  
P3.3/SI0  
P3CONL bit-pair pin configuration settings  
Input mode (SCK0, SI0)  
Output mode, open-drain  
00  
01  
10  
11  
Alternative function (BUZ, SCK0, SO0)  
Output mode, push-pull  
Figure 9-11. Port 3 Low-Byte Control Register (P3CONL)  
Port 3 Pull-up Control Register  
ECH, Set 1, Bank 1, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
P3.7 P3.6 P3.5 P3.4 P3.3 P3.2 P3.1 P3.0  
P3PUR bit configuration settings:  
0
1
Disable pull-up resistor  
Enable pull-up resistor  
NOTE:  
The corresponding pull-up resistor is disabled  
automatically, when a bit of port 3 is selected as  
output mode.  
Figure 9-12. Port 3 Pull-up Control Register (P3PUR)  
9-12  
S3C830A/P830A  
PORT 4, 5  
I/O PORTS  
Port 4 and 5 are 8-bit I/O ports with nibble configurable pins, respectively. Port 4 and 5 pins are accessed directly  
by writing or reading the port 4 and 5 data registers, P4 at location F4H and P5 at location F5H in set 1, bank 1.  
P4.0–P4.7 and P5.0–P5.7 can serve as inputs (with or without pull-ups), as output (open drain or push-pull). And  
they can serve as segment pins for LCD, also.  
Port Group 0 Control Register  
Port 4 and 5 have a 8-bit control register: PG0CON.4–.7 for P4.0–P4.7 and PG0CON.0–.3 for P5.0–P5.7. A reset  
clears the PG0CON register to “00H”, configuring all pins to input mode.  
Port Group 0 Control Register  
EDH, Set 1, Bank 1, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
P5.4-P5.7  
/SEG27-SEG24  
P5.0-P5.3  
/SEG31-SEG28  
P4.4-P4.7  
/SEG35-SEG32  
P4.0-P4.3  
/SEG39-SEG36  
PG0CON bit-pair pin configuration settings  
Input mode  
00  
01  
10  
11  
Input mode, pull-up  
Output mode, open-drain  
Output mode, push-pull  
NOTE:  
The shared I/O ports with LCD segments should  
be selected as one of two by LCON.3-.0.  
Figure 9-13. Port Group 0 Control Register (PG0CON)  
9-13  
I/O PORTS  
PORT 6, 7  
S3C830A/P830A  
Port 6 and 7 are 8-bit I/O port with nibble configurable pins, respectively. Port 6 and 7 pins are accessed directly  
by writing or reading the port 6 and 7 data registers, P6 at location F6H and P7 at location F7H in set 1, bank 1.  
P6.0–P6.7 and P7.0–P7.7 can serve as inputs (with or without pull-ups), as output (open drain or push-pull). And  
they can serve as segment pins for LCD also.  
Port Group 1 Control Register  
Port 6 and 7 have a 8-bit control register: PG1CON.4–.7 for P6.0–P6.7 and PG1CON.0–.3 for P7.0–P7.7. A reset  
clears the PG1CON register to “00H”, configuring all pins to input mode.  
Port Group 1 Control Register  
EEH, Set 1, Bank 1, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
P7.4-P7.7  
/SEG11-SEG8  
P7.0-P7.3  
/SEG15-SEG12  
P6.4-P6.7  
/SEG19-SEG16  
P6.0-P6.3  
/SEG23-SEG20  
PG1CON bit-pair pin configuration settings  
Input mode  
00  
01  
10  
11  
Input mode, pull-up  
Output mode, open-drain  
Output mode, push-pull  
NOTE:  
The shared I/O ports with LCD segments should be  
slelected as one of two by LCON.3-.0.  
Figure 9-14. Port Group 1 Control Register (PG1CON)  
9-14  
S3C830A/P830A  
PORT 8  
I/O PORTS  
Port 8 is an 8-bit I/O port with nibble configurable pins. Port 8 pins are accessed directly by writing or reading the  
port 8 data register, P8 at location F8H in set 1, bank 1. P8.0–P8.7 can serve as inputs (with or without pull-ups),  
as output (open drain or push-pull). And they can serve as segment pins for LCD also.  
Port Group 2 Control Register  
Port 8 has a 8-bit control register: PG2CON for P8.0–P8.7. A reset clears the PG2CON register to “00H”,  
configuring all pins to input mode.  
Port Group 2 Control Register  
EFH, Set 1, Bank 1, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
P8.4-P8.7  
/SEG3-SEG0  
P8.0-P8.3  
/SEG7-SEG4  
Not used  
P1.0-P1.3 input enable bit:  
0: Enable port 1.0-1.3 input  
1: Disable port 1.0-1.3 input  
P1.4-P1.7 input enable bit:  
0: Enable port 1.4-1.7 input  
1: Disable port 1.4-1.7 input  
PG2CON bit-pair pin configuration settings  
Input mode  
00  
01  
10  
Input mode, pull-up  
Output mode, open-drain  
11  
Output mode, push-pull  
NOTE:  
The shared I/O ports with LCD segments should be  
slelected as one of two by LCON.3-.0.  
Figure 9-15. Port Group 2 Control Register (PG2CON)  
9-15  
I/O PORTS  
S3C830A/P830A  
NOTES  
9-16  
S3C830A/P830A  
BASIC TIMER and TIMER 0  
10 BASIC TIMER and TIMER 0  
OVERVIEW  
The S3C830A has two default timers: an 8-bit basic timer and one 8-bit general-purpose timer/counter. The 8-bit  
timer/counter is called timer 0.  
BASIC TIMER (BT)  
You can use the basic timer (BT) in two different ways:  
— As a watchdog timer to provide an automatic reset mechanism in the event of a system malfunction.  
— To signal the end of the required oscillation stabilization interval after a reset or a stop mode release.  
The functional components of the basic timer block are:  
— Clock frequency divider (fxx divided by 4096, 1024, 128, or 16) with multiplexer  
— 8-bit basic timer counter, BTCNT (set 1, bank 0, FDH, read-only)  
— Basic timer control register, BTCON (set 1, D3H, read/write)  
10-1  
BASIC TIMER and TIMER 0  
S3C830A/P830A  
BASIC TIMER CONTROL REGISTER (BTCON)  
The basic timer control register, BTCON, is used to select the input clock frequency, to clear the basic timer  
counter and frequency dividers, and to enable or disable the watchdog timer function. It is located in set 1,  
address D3H, and is read/write addressable using Register addressing mode.  
A reset clears BTCON to “00H”. This enables the watchdog function and selects a basic timer clock frequency of  
fxx/4096. To disable the watchdog function, you must write the signature code “1010B” to the basic timer register  
control bits BTCON.7–BTCON.4.  
The 8-bit basic timer counter, BTCNT (set 1, bank 0, FDH), can be cleared at any time during normal operation  
by writing a "1" to BTCON.1. To clear the frequency dividers for all timers input clock, you write a "1" to  
BTCON.0.  
Basic TImer Control Register (BTCON)  
D3H, Set 1, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Divider clear bit for all timers:  
0 = No effect  
1= Clear dvider  
Watchdog timer enable bits:  
1010B = Disable watchdog function  
Other value = Enable watchdog function  
Basic timer counter clear bit:  
0 = No effect  
1= Clear BTCNT  
Basic timer input clock selection bits:  
00 = fXX/4096  
01 = fXX/1024  
10 = fXX/128  
11 = fXX/16  
Figure 10-1. Basic Timer Control Register (BTCON)  
10-2  
S3C830A/P830A  
BASIC TIMER and TIMER 0  
BASIC TIMER FUNCTION DESCRIPTION  
Watchdog Timer Function  
You can program the basic timer overflow signal (BTOVF) to generate a reset by setting BTCON.7–BTCON.4 to  
any value other than “1010B”. (The “1010B” value disables the watchdog function.) A reset clears BTCON to  
“00H”, automatically enabling the watchdog timer function. A reset also selects the CPU clock (as determined by  
the current CLKCON register setting), divided by 4096, as the BT clock.  
A reset whenever a basic timer counter overflow occurs. During normal operation, the application program must  
prevent the overflow, and the accompanying reset operation, from occurring. To do this, the BTCNT value must  
be cleared (by writing a "1" to BTCON.1) at regular intervals.  
If a system malfunction occurs due to circuit noise or some other error condition, the BT counter clear operation  
will not be executed and a basic timer overflow will occur, initiating a reset. In other words, during normal  
operation, the basic timer overflow loop (a bit 7 overflow of the 8-bit basic timer counter, BTCNT) is always  
broken by a BTCNT clear instruction. If a malfunction does occur, a reset is triggered automatically.  
Oscillation Stabilization Interval Timer Function  
You can also use the basic timer to program a specific oscillation stabilization interval following a reset or when  
stop mode has been released by an external interrupt.  
In stop mode, whenever a reset or an internal and an external interrupt occurs, the oscillator starts. The BTCNT  
value then starts increasing at the rate of fxx/4096 (for reset), or at the rate of the preset clock source (for an  
internal and an external interrupt). When BTCNT.3 overflows, a signal is generated to indicate that the  
stabilization interval has elapsed and to gate the clock signal off to the CPU so that it can resume normal  
operation.  
In summary, the following events occur when stop mode is released:  
1. During stop mode, a power-on reset or an internal and an external interrupt occurs to trigger the stop mode  
release and oscillation starts.  
2. If a power-on reset occurred, the basic timer counter will increase at the rate of fxx/4096. If an internal and an  
external interrupt is used to release stop mode, the BTCNT value increases at the rate of the preset clock  
source.  
3. Clock oscillation stabilization interval begins and continues until bit 3 of the basic timer counter overflows.  
4. When a BTCNT.3 overflow occurs, normal CPU operation resumes.  
10-3  
BASIC TIMER and TIMER 0  
S3C830A/P830A  
RESET or STOP  
Bit 1  
Bits 3, 2  
Basic Timer Control Register  
(Write '1010xxxxB' to Disable)  
Data Bus  
fXX/4096  
Clear  
fXX/1024  
fXX/128  
fXX/16  
8-Bit Up Counter  
(BTCNT, Read-Only)  
fXX  
DIV  
MUX  
OVF  
RESET  
Start the CPU (note)  
R
Bit 0  
NOTE:  
During a power-on reset operation, the CPU is idle during the required oscillation  
stabilization interval (until bit 4 of the basic timer counter overflows).  
Figure 10-2. Basic Timer Block Diagram  
10-4  
S3C830A/P830A  
BASIC TIMER and TIMER 0  
8-BIT TIMER/COUNTER 0  
Timer/counter 0 has three operating modes, one of which you select using the appropriate T0CON setting:  
— Interval timer mode  
— Capture input mode with a rising or falling edge trigger at the P0.2 pin  
— PWM mode  
Timer/counter 0 has the following functional components:  
— Clock frequency divider (fxx divided by 1024, 256, 64, 8, or 1) with multiplexer  
— External clock input (P0.1, T0CLK)  
— 8-bit counter (T0CNT), 8-bit comparator, and 8-bit reference data register (T0DATA)  
— I/O pins for capture input, match output, or PWM output (P0.2/T0CAP, P0.3/T0OUT, P0.3/T0PWM)  
— Timer 0 overflow interrupt (IRQ0, vector E2H) and match/capture interrupt (IRQ0, vector E0H) generation  
— Timer 0 control register, T0CON (set 1, E2H, bank 0, read/write)  
TIMER/COUNTER 0 CONTROL REGISTER (T0CON)  
You use the timer 0 control register, T0CON, to  
— Select the timer 0 operating mode (interval timer, capture mode, or PWM mode)  
— Select the timer 0 input clock frequency  
— Clear the timer 0 counter, T0CNT  
— Enable the timer 0 overflow interrupt or timer 0 match/capture interrupt  
— Clear timer 0 match/capture interrupt pending condition  
10-5  
BASIC TIMER and TIMER 0  
S3C830A/P830A  
T0CON is located in set 1, bank 0, at address E2H, and is read/write addressable using Register addressing  
mode.  
A reset clears T0CON to “00H”. This sets timer 0 to normal interval timer mode, selects an input clock frequency  
of fxx/1024, and disables all timer 0 interrupts. You can clear the timer 0 counter at any time during normal  
operation by writing a "1" to T0CON.2.  
The timer 0 overflow interrupt (T0OVF) is interrupt level IRQ0 and has the vector address E2H. When a timer 0  
overflow interrupt occurs and is serviced by the CPU, the pending condition is cleared automatically by hardware  
or must be cleared by software.  
To enable the timer 0 match/capture interrupt (IRQ0, vector E0H), you must write T0CON.1 to "1". To detect a  
match/capture interrupt pending condition, the application program polls INTPND.1. When a "1" is detected, a  
timer 0 match or capture interrupt is pending. When the interrupt request has been serviced, the pending  
condition must be cleared by software by writing a "0" to the timer 0 match/capture interrupt pending bit,  
INTPND.1.  
Timer 0 Control Register (T0CON)  
E2H, Set 1, Bank 0, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Timer 0 input clock selection bits:  
000 = fxx/1024  
001 = fxx/256  
Timer 0 overflow interrupt enable bit:  
0 = Disable overflow interrupt  
1 = Enable overflow interrupt  
010 = fxx/64  
011 = fxx/8  
100 = fxx  
Timer 0 match/capture interrupt enable bit:  
0 = Disable interrupt  
1 = Enable interrupt  
101 = External clock  
(P0.1/T0CLK) falling edge  
110 = External clock  
(P0.1/T0CLK) rising edge  
111 = Counter stop  
Timer 0 counter clear bit:  
0 = No effect  
1 = Clear the timer 0 counter (when write)  
Timer 0 operating mode selection bits:  
00 = Interval mode (P0.3/T0OUT)  
01 = Capture mode (capture on rising edge,  
counter running, OVF can occur)  
10 = Capture mode (capture on falling edge,  
counter running, OVF can occur)  
11 = PWM mode (OVF and match  
interrupt can occur)  
Figure 10-3. Timer 0 Control Register (T0CON)  
10-6  
S3C830A/P830A  
BASIC TIMER and TIMER 0  
Timer 0 Interrupt Pending Register (INTPND)  
E6H, Set 1, Bank 0, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Not used  
Timer 0 overflow interrupt pending bit:  
0 = Interrupt request is not pending,  
pending bit clear when write "0".  
1 = Interrupt request is pending  
Timer 0 match/capture pending bit:  
0 = Interrupt request is not pending,  
pending bit clear when write "0".  
1 = Interrupt request is pending  
Figure 10-4. Timer 0 Interrupt Pending Register (INTPND)  
10-7  
BASIC TIMER and TIMER 0  
S3C830A/P830A  
TIMER 0 FUNCTION DESCRIPTION  
Timer 0 Interrupts (IRQ0, Vectors E0H and E2H)  
The timer 0 can generate two interrupts: the timer 0 overflow interrupt (T0OVF), and the timer 0 match/ capture  
interrupt (T0INT). T0OVF is belongs to interrupt level IRQ0, vector E2H. T0INT also belongs to interrupt level  
IRQ0, but is assigned the separate vector address, E0H.  
A timer 0 overflow interrupt pending condition is automatically cleared by hardware when it has been serviced or  
should be cleared by software in the interrupt service routine by writing a “0” to the INTPND.0 interrupt pending  
bit. However, the timer 0 match/capture interrupt pending condition must be cleared by the application’s interrupt  
service routine by writing a "0" to the INTPND.1 interrupt pending bit.  
Interval Timer Mode  
In interval timer mode, a match signal is generated when the counter value is identical to the value written to the  
timer 0 reference data register, T0DATA. The match signal generates a timer 0 match interrupt (T0INT, vector  
E0H) and clears the counter.  
If, for example, you write the value "10H" to T0DATA, the counter will increment until it reaches “10H”. At this  
point, the timer 0 interrupt request is generated, the counter value is reset, and counting resumes. With each  
match, the level of the signal at the timer 0 output pin is inverted (see Figure 10-5).  
Interrupt Enable/Disable  
Capture Signal  
T0CON.1  
R (Clear)  
8-Bit Up Counter  
8-Bit Comparator  
CLK  
T0INT (IRQ0)  
(Match INT)  
M
U
X
INTPND.1  
Pending  
Match  
T0OUT (P0.3)  
Timer 0 Buffer Register  
Timer 0 Data Register  
T0CON.4-.3  
Match Signal  
T0CON.2  
T0OVF  
Figure 10-5. Simplified Timer 0 Function Diagram: Interval Timer Mode  
10-8  
S3C830A/P830A  
BASIC TIMER and TIMER 0  
Pulse Width Modulation Mode  
Pulse width modulation (PWM) mode lets you program the width (duration) of the pulse that is output at the  
T0PWM (P0.3) pin. As in interval timer mode, a match signal is generated when the counter value is identical to  
the value written to the timer 0 data register. In PWM mode, however, the match signal does not clear the  
counter. Instead, it runs continuously, overflowing at "FFH", and then continues incrementing from "00H".  
Although you can use the match signal to generate a timer 0 overflow interrupt, interrupts are not typically used in  
PWM-type applications. Instead, the pulse at the T0PWM (P0.3) pin is held to Low level as long as the reference  
data value is less than or equal to ( £ ) the counter value and then the pulse is held to High level for as long as  
the data value is greater than ( > ) the counter value. One pulse width is equal to tCLK ´ 256 (see Figure 10-6).  
T0CON.0  
Interrupt Enable/Disable  
Capture Signal  
T0CON.1  
T0OVF(IRQ0)  
(Overflow INT)  
CLK  
8-Bit Up Counter  
8-Bit Comparator  
INTPND.0  
T0INT (IRQ0)  
(Match INT)  
M
U
X
Match  
INTPND.1  
Pending  
T0PWM  
Output (P0.3)  
High level when  
data > counter,  
Lower level when  
data < counter  
Timer 0 Buffer Register  
Timer 0 Data Register  
T0CON.4-.3  
Match Signal  
T0CON.2  
T0OVF  
Figure 10-6. Simplified Timer 0 Function Diagram: PWM Mode  
10-9  
BASIC TIMER and TIMER 0  
Capture Mode  
S3C830A/P830A  
In capture mode, a signal edge that is detected at the T0CAP (P0.2) pin opens a gate and loads the current  
counter value into the timer 0 data register. You can select rising or falling edges to trigger this operation.  
Timer 0 also gives you capture input source: the signal edge at the T0CAP (P0.2) pin. You select the capture  
input by setting the values of the timer 0 capture input selection bits in the port 0 control register, P0CONL.5–.4,  
(set 1, bank 1, E1H). When P0CONL.5–.4 is "00", the T0CAP input is selected.  
Both kinds of timer 0 interrupts can be used in capture mode: the timer 0 overflow interrupt is generated  
whenever a counter overflow occurs; the timer 0 match/capture interrupt is generated whenever the counter  
value is loaded into the timer 0 data register.  
By reading the captured data value in T0DATA, and assuming a specific value for the timer 0 clock frequency,  
you can calculate the pulse width (duration) of the signal that is being input at the T0CAP pin (see Figure 10-7).  
T0CON.0  
T0OVF(IRQ0)  
8-Bit Up Counter  
INTPND.0  
CLK  
(Overflow INT)  
Interrupt Enable/Disable  
T0CON.1  
T0INT (IRQ0)  
(Capture INT)  
M
U
X
INTPND.1  
Pending  
T0CAP input  
(P0.2)  
Match Signal  
T0CON.4-.3  
T0CON.4-.3  
Timer 0 Data Register  
Figure 10-7. Simplified Timer 0 Function Diagram: Capture Mode  
10-10  
S3C830A/P830A  
BASIC TIMER and TIMER 0  
T0CON.0  
T0CON.7-.5  
T0OVF  
(IRQ0)  
OVF  
INTPND.0  
Data BUS  
8
fxx/1024  
fxx/256  
fxx/64  
fxx/8  
T0CON.2  
Clear  
fxx/1  
8-Bit Up Counter  
(Read-Only)  
MUX  
R
T0CLK  
T0CON.1  
T0INT  
(IRQ0)  
M
U
X
8-Bit Comparator  
INTPND.1  
Match  
M
U
X
T0OUT  
T0PWM  
Timer 0 Buffer Register  
Timer 0 Data Register  
T0CAP  
T0CON.4-.3  
Match signal  
T0CON.2  
T0OVF  
T0CON.4-.3  
8
Data BUS  
Figure 10-8. Timer 0 Block Diagram  
10-11  
BASIC TIMER and TIMER 0  
S3C830A/P830A  
NOTES  
10-12  
S3C830A/P830A  
8-BIT TIMER 1  
11 8-BIT TIMER 1  
OVERVIEW  
The 8-bit timer 1 is an 8-bit general-purpose timer. Timer 1 has the interval timer mode by using the appropriate  
T1CON setting.  
Timer 1 has the following functional components:  
— Clock frequency divider (fxx divided by 256, 64, 8 or 1) with multiplexer  
— External clock input (P0.4/T1CLK)  
— 8-bit counter (T1CNT), 8-bit comparator, and 8-bit reference data register (T1DATA)  
— Timer 1 interrupt (IRQ1, vector E6H) generation  
— Timer 1 control register, T1CON (set 1, Bank 0, E5H, read/write)  
FUNCTION DESCRIPTION  
Interval Timer Function  
The timer 1 can generate an interrupt, the timer 1 match interrupt (T1INT). T1INT belongs to interrupt level  
IRQ1, and is assigned the separate vector address, E6H.  
The T1INT pending condition should be cleared by software when it has been serviced. Even though T1INT is  
disabled, the application’s service routine can detect a pending condition of T1INT by the software and execute  
it’s sub-routine. When this case is used, the T1INT pending bit must be cleared by the application subroutine by  
writing a “0” to the T1CON.0 pending bit.  
In interval timer mode, a match signal is generated when the counter value is identical to the values written to  
the Timer 1 reference data registers, T1DATA. The match signal generates a timer 1 match interrupt (T1INT,  
vector E6H) and clears the counter.  
If, for example, you write the value 10H to T1DATA and 0EH to T1CON, the counter will increment until it  
reaches 10H. At this point, the Timer 1 interrupt request is generated, the counter value is reset, and counting  
resumes.  
11-1  
8-BIT TIMER 1  
S3C830A/P830A  
TIMER 1 CONTROL REGISTER (T1CON)  
You use the timer 1 control register, T1CON, to  
— Enable the timer 1 operating (interval timer)  
— Select the timer 1 input clock frequency  
— Clear the timer 1 counter, T1CNT  
— Enable the timer 1 interrupt and clear timer 1 interrupt pending condition  
T1CON is located in set 1, bank 0, at address E5H, and is read/write addressable using register addressing  
mode.  
A reset clears T1CON to "00H". This sets timer 1 to disable interval timer mode, and disables timer 1 interrupt.  
You can clear the timer 1 counter at any time during normal operation by writing a “1” to T1CON.3  
To enable the timer 1 interrupt (IRQ1, vector E6H), you must write T1CON.2, and T1CON.1 to "1". To detect an  
interrupt pending condition when T1INT is disabled, the application program polls pending bit, T1CON.0. When a  
"1" is detected, a timer 1 interrupt is pending. When the T1INT sub-routine has been serviced, the pending  
condition must be cleared by software by writing a "0" to the timer 1 interrupt pending bit, T1CON.0.  
Timer 1 Control Register  
E5H, Set 1, Bank 0, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Timer 1 input clock selection bits:  
000 = fxx/256  
Timer 1 interrupt pending bit:  
0 = No interrupt pending  
001 = fxx/64  
010 = fxx/8  
0 = Clear pending bit (when write)  
1 = Interrupt is pending  
011 = fxx  
111= External clock (T1CLK) input  
Timer 1 interrupt enable bit:  
0 = Disable interrupt  
1 = Enable interrupt  
Not used  
Timer 1 count enable bit:  
0 = Disable counting operation  
1 = Enable counting operation  
Timer 1 counter clear bit:  
0 = No affect  
1 = Clear the timer 1 counter  
(when write)  
Figure 11-1. Timer 1 Control Register (T1CON)  
11-2  
S3C830A/P830A  
8-BIT TIMER 1  
BLOCK DIAGRAM  
Bits 7, 6, 5  
Data Bus  
8
Bit 3  
T1CLK  
(P0.4)  
fxx/256  
M
U
X
8-bit up-Counter  
(Read Only)  
R
fxx/64  
fxx/8  
fxx/1  
Clear  
Pending  
Bit 0  
T1INT  
IRQ1  
8-bit Comparator  
Match  
Bit 2  
Timer 1 Buffer Register  
Bit 1  
Counter clear signal (T1CON.3) only  
Timer 1 Data Register  
(Read/Write)  
8
Data Bus  
NOTE:  
To be loaded T1DATA value to buffer register for comparing, T1CON.3 bit must be set 1.  
Figure 11-2. Timer 1 Functional Block Diagram  
11-3  
8-BIT TIMER 1  
S3C830A/P830A  
NOTES  
11-4  
S3C830A/P830A  
16-BIT TIMER 2  
12 16-BIT TIMER 2  
OVERVIEW  
The 16-bit timer 2 is an 16-bit general-purpose timer. Timer 2 has the interval timer mode by using the  
appropriate T2CON setting.  
Timer 2 has the following functional components:  
— Clock frequency divider (fxx divided by 256, 64, 8 or 1) with multiplexer  
— External clock input (T2CLK)  
— 16-bit counter (T2CNTH/L), 16-bit comparator, and 16-bit reference data register (T2DATAH/L)  
— Timer 2 interrupt (IRQ1, vector E4H) generation  
— Timer 2 control register, T2CON (set 1, Bank 1, FEH, read/write)  
FUNCTION DESCRIPTION  
Interval Timer Function  
The timer 2 can generate an interrupt, the timer 2 match interrupt (T2INT). T2INT belongs to interrupt level  
IRQ1, and is assigned the separate vector address, E4H.  
The T2INT pending condition should be cleared by software when it has been serviced. Even though T2INT is  
disabled, the application’s service routine can detect a pending condition of T2INT by the software and execute  
it’s sub-routine. When this case is used, the T2INT pending bit must be cleared by the application subroutine by  
writing a “0” to the T2CON.0 pending bit.  
In interval timer mode, a match signal is generated when the counter value is identical to the values written to  
the Timer 2 reference data registers, T2DATA. The match signal generates a timer 2 match interrupt (T2INT,  
vector E4H) and clears the counter.  
If, for example, you write the value 0010H to T2DATAH/L and 0EH to T2CON, the counter will increment until it  
reaches 10H. At this point, the Timer 2 interrupt request is generated, the counter value is reset, and counting  
resumes.  
12-1  
16-BIT TIMER 2  
S3C830A/P830A  
TIMER 2 CONTROL REGISTER (T2CON)  
You use the timer 2 control register, T2CON, to  
— Enable the timer 2 operating (interval timer)  
— Select the timer 2 input clock frequency  
— Clear the timer 2 counter, T2CNTH/L  
— Enable the timer 2 interrupt and clear timer 2 interrupt pending condition  
T2CON is located in set 1, bank 1, at address FEH, and is read/write addressable using register addressing  
mode.  
A reset clears T2CON to "00H". This sets timer 2 to disable interval timer mode, and disables timer 2 interrupt.  
You can clear the timer 2 counter at any time during normal operation by writing a “1” to T2CON.3  
To enable the timer 2 interrupt (IRQ1, vector E4H), you must write T2CON.2, and T2CON.1 to "1". To detect an  
interrupt pending condition when T2INT is disabled, the application program polls pending bit, T2CON.0. When a  
"1" is detected, a timer 2 interrupt is pending. When the T2INT sub-routine has been serviced, the pending  
condition must be cleared by software by writing a "0" to the timer 2 interrupt pending bit, T2CON.0.  
Timer 2 Control Registers  
FEH, Set 1, Bank 1  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Timer 0 input clock selection bits:  
000 = fxx/256  
Timer 2 interrupt pending bit:  
0 = No interrupt pending  
001 = fxx/64  
010 = fxx/8  
0 = Clear pending bit (when write)  
1 = Interrupt is pending  
011 = fxx  
111 = External clock (T2CLK) input  
Timer 2 interrupt enable bit:  
0 = Disable interrupt  
1 = Enable interrupt  
Not used  
Timer 2 count enable bit:  
0 = Disable counting operation  
1 = Enable counting operation  
Timer 2 counter clear bit:  
0 = No affect  
1 = Clear the timer 2 counter (when write)  
Figure 12-1. Timer 2 Control Register (T2CON)  
12-2  
S3C830A/P830A  
16-BIT TIMER 2  
BLOCK DIAGRAM  
Bits 7, 6, 5  
Data Bus  
8
Bit 3  
T2CLK  
(P0.6)  
fxx/256  
M
U
X
16-bit up-Counter  
(Read Only)  
R
fxx/64  
fxx/8  
fxx/1  
Clear  
Pending  
Bit 0  
T2INT  
IRQ1  
16-bit Comparator  
Match  
Bit 2  
Timer 2 Buffer Register  
Bit 1  
Counter clear signal (T2CON.3)  
Timer 2 Data Register  
(Read/Write)  
8
Data Bus  
NOTE:  
To be loaded T2DATAH/L value to buffer register for comparing, T2CON.3 bit must be set 1.  
Figure 12-2. Timer 2 Functional Block Diagram  
12-3  
16-BIT TIMER 2  
S3C830A/P830A  
NOTES  
12-4  
S3C830A/P830A  
WATCH TIMER  
13 WATCH TIMER  
OVERVIEW  
Watch timer functions include real-time and watch-time measurement and interval timing for the system clock.  
To start watch timer operation, set bit 6 of the watch timer control register, WTCON.6 to "1".  
And if you want to service watch timer overflow interrupt (IRQ3, vector F2H), then set the WTCON.1 to “1”.  
The watch timer overflow interrupt pending condition (WTCON.0) must be cleared by software in the application’s  
interrupt service routine by means of writing a "0" to the WTCON.0 interrupt pending bit.  
After the watch timer starts and elapses a time, the watch timer interrupt pending bit (WTCON.0) is automatically  
set to "1", and interrupt requests commence in 50 ms, 0.5 and 1-second intervals by setting Watch timer speed  
selection bits (WTCON.3 – .2).  
The watch timer can generate a steady 1 kHz, 1.5 kHz, 3 kHz, or 6 kHz signal to BUZ output pin for Buzzer. By  
setting WTCON.3 and WTCON.2 to "11b", the watch timer will function in high-speed mode, generating an  
interrupt every 50 ms. High-speed mode is useful for timing events for program debugging sequences.  
The watch timer supplies the clock frequency for the LCD controller (fLCD). Therefore, if the watch timer is  
disabled, the LCD controller does not operate.  
Watch timer has the following functional components:  
— Real Time and Watch-Time Measurement  
— Using a Main System Clock Source only  
— Clock Source Generation for LCD Controller (fLCD  
)
— I/O pin for Buzzer Output Frequency Generator (P3.0, BUZ)  
— Timing Tests in High-Speed Mode  
— Watch timer overflow interrupt (IRQ3, vector F2H) generation  
— Watch timer control register, WTCON (set 1, bank 0, E8H, read/write)  
13-1  
WATCH TIMER  
S3C830A/P830A  
WATCH TIMER CONTROL REGISTER (WTCON)  
The watch timer control register, WTCON is used to select the watch timer interrupt time and Buzzer signal, to  
enable or disable the watch timer function. It is located in set 1, bank 0 at address E8H, and is read/write  
addressable using register addressing mode.  
A reset clears WTCON to "00H". This disable the watch timer.  
So, if you want to use the watch timer, you must write appropriate value to WTCON.  
Watch Timer Control Register (WTCON)  
E8H, Set 1, Bank 0, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Watch timer interrupt pending bit:  
0 = Interrupt request is not pending  
(Clear pending bit when write"0")  
1 = Interrupt request is pending  
Not used  
Watch timer Enable/Disable bit:  
0 = Disable watch timer  
1 = Enable watch timer  
Watch timer INT Enable/Disable bit:  
0 = Disable watch timer INT  
1 = Enable watch timer INT  
Buzzer signal selection bits:  
00 = 1 kHz  
01 = 1.5 kHz  
10 = 3 kHz  
11 = 6 kHz  
Watch timer speed selection bits:  
00 = Set watch timer interrupt to 1 s  
01 = Set watch timer interrupt to 0.5 s  
11 = Set watch timer interrupt to 50 ms  
Figure 13-1. Watch Timer Control Register (WTCON)  
13-2  
S3C830A/P830A  
WATCH TIMER  
WATCH TIMER CIRCUIT DIAGRAM  
BUZZER Output  
WTCON.1  
WTCON.5  
WTCON.4  
WTCON.3  
WTCON.2  
MUX  
WTINT  
1 kHz  
1.5 kHz  
3 kHz  
6 kHz  
Selector  
Circuit  
WTCON.0  
Enable/Disable  
WTCON.6  
1 sec  
0.5 sec  
50 msec  
Frequency  
Dividing  
Circuit  
Frequency  
Divider  
fW  
32.768 kHz  
fLCD (500 Hz)  
fXX = Main system clock (4.5 MHz)  
fW = Watch timer clock  
fxx  
Figure 13-2. Watch Timer Circuit Diagram  
13-3  
WATCH TIMER  
S3C830A/P830A  
NOTES  
13-4  
S3C830A/P830A  
LCD CONTROLLER/DRIVER  
14 LCD CONTROLLER/DRIVER  
OVERVIEW  
The S3C830A microcontroller can directly drive an up-to-20-digit (40-segment) LCD panel. The LCD block has  
the following components:  
— LCD controller/driver  
— Display RAM (00H–13H) for storing display data in page 7  
— 40 segment output pins (SEG0–SEG39)  
— Four common output pins (COM0–COM3)  
— Three LCD operating power supply pins (V  
V
) and bias pin for LCD driving voltage (V  
)
LCD  
LC0– LC2  
— LCD voltage dividing resistors  
Bit settings in the LCD mode register, LMOD, determine the LCD frame frequency, duty and bias, and LCD  
voltage dividing resistors.  
The LCD control register LCON turns the LCD display on and off and switches current to the LCD voltage  
dividing resistors for the display. LCD data stored in the display RAM locations are transferred to the segment  
signal pins automatically without program control.  
Bias  
1
VLC0-VLC2  
LCD  
3
Controller/  
Driver  
8
COM0-COM3  
SEG0-SEG39  
4
40  
Figure 14-1. LCD Function Diagram  
14-1  
LCD CONTROLLER/DRIVER  
LCD CIRCUIT DIAGRAM  
S3C830A/P830A  
13H.7  
8
8
13H.6  
13H.5  
13H.4  
SEG39/P4.0  
MUX  
MUX  
MUX  
SEG38/P4.1  
SEG37/P4.2  
SEG36/P4.3  
SEG35/P4.4  
SEG34/P4.5  
05H.1  
05H.0  
04H.7  
04H.6  
Segment  
Driver  
SEG16/P6.7  
SEG15/P7.0  
SEG14/P7.1  
SEG13/P7.2  
SEG12/P7.3  
SEG11/P7.4  
00H.3  
00H.2  
00H.1  
00H.0  
8
8
8
SEG0/P8.7  
fLCD  
COM3  
COM2  
COM1  
COM0  
Timing  
Controller  
COM  
Control  
LMOD  
LCON  
VLC0  
VLC1  
VLC2  
Bias  
LCD  
Voltage  
Control  
NOTES:  
1. fLCD = 500Hz, 250Hz, 125Hz, and 62.5Hz  
2. The LCD display registers are in the page 7.  
Figure 14-2. LCD Circuit Diagram  
14-2  
S3C830A/P830A  
LCD CONTROLLER/DRIVER  
LCD RAM ADDRESS AREA  
RAM addresses 00H–13H of page 7 are used as LCD data memory. When the bit value of a display segment is  
"1", the LCD display is turned on; when the bit value is "0", the display is turned off.  
Display RAM data are sent out through segment pins SEG0–SEG39 using a direct memory access (DMA)  
method that is synchronized with the fLCD signal. RAM addresses in this location that are not used for LCD display  
can be allocated to general-purpose use.  
SEG39  
713H  
70FH  
70BH  
707H  
712H  
70EH  
70AH  
706H  
711H  
70DH  
709H  
705H  
710H  
70CH  
708H  
704H  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
SEG7  
SEG6  
SEG5  
SEG4  
SEG3  
SEG2  
SEG1  
SEG0  
703H  
702H  
701H  
700H  
COM3  
COM2  
COM1  
COM0  
Figure 14-3. LCD Display Data RAM Organization  
14-3  
LCD CONTROLLER/DRIVER  
S3C830A/P830A  
LCD CONTROL REGISTER (LCON), F1H at BANK 0 of SET 1  
Table 14-1. LCD Control Register (LCON) Organization  
LCON Bit  
Setting  
Description  
LCON.7  
0
1
LCD output is low and the current for dividing the resistors is cut off.  
If LMOD.3 = “0”, LCD display is turned off. (All LCD segments are off signal output.)  
If LMOD.3 = “1”, output COM and SEG signals in display mode.  
LCON.6–.4 Not used for the S3C830A.  
LCON.3–.0  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
Select LCD SEG0–39.  
Select LCD SEG0–35/P4.0–4.3 as I/O port.  
Select LCD SEG0–31/P4 as I/O port.  
Select LCD SEG0–27/P4, P5.0–P5.3 as I/O port.  
Select LCD SEG0–23/P4, P5 as I/O port.  
Select LCD SEG0–19/P4, P5, P6.0–P6.3 as I/O port.  
Select LCD SEG0–15/P4, P5, P6 as I/O port.  
Select LCD SEG0–11/P4, P5, P6, P7.0–P7.3 as I/O port.  
Select LCD SEG0–7/P4, P5, P6, P7 as I/O port.  
Select LCD SEG0–3/P4, P5, P6, P7, P8.0–P8.3 as I/O port.  
All I/O port (P4–P8)  
14-4  
S3C830A/P830A  
LCD CONTROLLER/DRIVER  
LCD MODE REGISTER (LMOD)  
The LCD mode control register LMOD is mapped to RAM address F2H at bank 0 of set 1.  
LMOD controls these LCD functions:  
— Duty and bias selection (LMOD.3–LMOD.0)  
— LCDCK clock frequency selection (LMOD.5–LMOD.4)  
— LCD voltage dividing resistors selection (LMOD.6)  
— LCD common signal enable or disable selection (LMOD.7)  
The LCD clock signal, LCDCK, determines the frequency of COM signal scanning of each segment output. This  
is also referred to as the 'frame frequency.' Since LCDCK is generated by dividing the watch timer clock (fw), the  
watch timer must be enabled when the LCD display is turned on. RESET clears the LMOD register values to  
logic zero. This produces the following LCD control settings:  
— Display is turned off  
— LCDCK frequency is 62.5 Hz (at fx = 4.5 MHz) from the watch timer clock.  
The LCD display can continue to operate during idle mode.  
Table 14-2. LCD Clock Signal (LCDCK) Frame Frequency  
LCDCK Frequency  
62.5 Hz  
Static  
62.5 Hz  
125 Hz  
250 Hz  
500 Hz  
1/2 Duty  
31.3 Hz  
62.5 Hz  
125 Hz  
250 Hz  
1/3 Duty  
20.8 Hz  
41.7 Hz  
83.3 Hz  
166.7 Hz  
1/4 Duty  
15.6 Hz  
31.3 Hz  
62.5 Hz  
125 Hz  
125 Hz  
250 Hz  
500 Hz  
NOTE: fx = 4.5 MHz  
14-5  
LCD CONTROLLER/DRIVER  
S3C830A/P830A  
Table 14-3. LCD Mode Control Register (LMOD) Organization, F2H at Bank 0 of Set 1  
LMOD.7  
COM Signal Enable/Disable Bit  
0
1
Enable COM signal  
Disable COM signal  
LMOD.6  
LCD Voltage Dividing Resistors Control Bit  
0
1
Internal voltage dividing resistors  
External voltage dividing resistors; Internal voltage dividing resistors are off.  
LMOD.5  
LMOD.4  
LCD Clock (LCDCK) Frequency  
0
0
1
1
0
1
0
1
62.5 Hz at fx = 4.5 MHz  
125 Hz at fx = 4.5 MHz  
250 Hz at fx = 4.5 MHz  
500 Hz at fx = 4.5 MHz  
LMOD.3  
LMOD.2  
LMOD.1  
LMOD.0  
Duty and Bias Selection for LCD Display  
0
1
1
1
1
1
x
0
0
0
0
1
x
0
0
1
1
0
x
0
1
1
0
0
LCD display off (LCD off signal output)  
1/4 duty, 1/3 bias  
1/3 duty, 1/3 bias  
1/3 duty, 1/2 bias  
1/2 duty, 1/2 bias  
Static  
Table 14-4. Maximum Number of Display Digits per Duty Cycle  
LCD Duty  
LCD Bias  
Static  
1/2  
COM Output Pins  
COM0  
Maximum Seg Display  
Static  
1/2  
40  
COM0–COM1  
COM0–COM2  
COM0–COM2  
COM0–COM3  
40 x 2  
40 x 3  
40 x 3  
40 x 4  
1/3  
1/2  
1/3  
1/3  
1/4  
1/3  
14-6  
S3C830A/P830A  
LCD CONTROLLER/DRIVER  
LCD DRIVE VOLTAGE  
The LCD display is turned on only when the voltage difference between the common and segment signals is  
greater than VLCD. The LCD display is turned off when the difference between the common and segment signal  
voltages is less than VLCD. The turn-on voltage, + VLCD or - VLCD, is generated only when both signals are the  
selected signals of the bias. Table 14-5 shows LCD drive voltages for static mode, 1/2 bias, and 1/3 bias.  
Table 14-5. LCD Drive Voltage Values  
LCD Power Supply  
Static Mode  
1/2 Bias  
1/3 Bias  
VLC0  
VLCD  
VLCD  
VLCD  
VLC1  
VLC2  
Vss  
1/2 VLCD  
1/2 VLCD  
0 V  
2/3 VLCD  
1/3 VLCD  
0 V  
0 V  
NOTE: The LCD panel display may deteriorate if a DC voltage is applied that lies between the common and segment signal  
voltage. Therefore, always drive the LCD panel with AC voltage.  
LCD COM/SEG SIGNALS  
The 40 LCD segment signal pins are connected to corresponding display RAM locations at 00H–13H at page 7.  
The corresponding bits of the display RAM are synchronized with the common signal output pins COM0, COM1,  
COM2, and COM3.  
When the bit value of a display RAM location is "1", a select signal is sent to the corresponding segment pin.  
When the display bit is "0", a 'no-select' signal is sent to the corresponding segment pin. Each bias has select  
and no-select signals.  
Select  
Non-Select  
FR  
1 Frame  
VLC0  
VSS  
COM  
VLC0  
VSS  
SEG  
VLC0  
VSS  
COM-SEG  
-VLC0  
Figure 14-4. Select/No-Select Bias Signals in Static Display Mode  
14-7  
LCD CONTROLLER/DRIVER  
S3C830A/P830A  
Select  
Non-Select  
FR  
1 Frame  
VLC0  
VLC1,2  
Vss  
COM  
SEG  
VLC0  
VLC1,2  
Vss  
VLC0  
VLC1,2  
Vss  
COM-SEG  
-VLC1,2  
-VLC0  
Figure 14-5. Select/No-Select Bias Signals in 1/2 Duty, 1/2 Bias Display Mode  
Select  
Non-Select  
FR  
1 Frame  
VLC0  
VSS  
COM  
VLC0  
VSS  
SEG  
VLC0  
VSS  
COM-SEG  
-VLC0  
Figure 14-6. Select/No-Select Bias Signals in 1/3 Duty, 1/3 Bias Display Mode  
14-8  
S3C830A/P830A  
LCD CONTROLLER/DRIVER  
Static and 1/3 Bias (VLCD = 3 V at VDD = 5 V)  
1/2 Bias (VLCD = 2.5 V at VDD = 5 V)  
VDD  
VDD  
LCON.7  
LCON.7  
Bias Pin  
Bias Pin  
2R  
R
2R  
R
VLC0  
VLC0  
VLC1  
VLC2  
VLC1  
VLC2  
VLCD = 3 V  
R
VLCD = 2.5 V  
R
R
R
U
VSS  
VSS  
Voltage Dividing Resistors Adjustment  
Static and 1/3 Bias (VLCD = 5 V at VDD = 5 V)  
VDD  
VDD  
LCON.7  
LCON.7  
Bias Pin  
Bias Pin  
2R  
R''  
2R  
R
VLC0  
VLC0  
VLC1  
VLC2  
R
R'  
R'  
R'  
VLC1  
VLCD  
R
R
VLCD = 5 V  
R
VLC2  
R
VSS  
VSS  
3 R' ´ VDD  
R'' + 3R'  
VLCD =  
, when LMOD.6 = "1"  
NOTES:  
1. R = Internal voltage dividing resistors. These resistors can be disconnected by LMOD.6.  
2. R' = External Resistors  
3. R'' = External Resistor to adjust VLCD.  
Figure 14-7. Voltage Dividing Resistor Circuit Diagram  
14-9  
LCD CONTROLLER/DRIVER  
S3C830A/P830A  
NOTES  
14-10  
S3C830A/P830A  
A/D CONVERTER  
15 8-BIT ANALOG-TO-DIGITAL CONVERTER  
OVERVIEW  
The 8-bit A/D converter (ADC) module uses successive approximation logic to convert analog levels entering at  
one of the four input channels to equivalent 8-bit digital values. The analog input level must lie between the  
AVDD and VSS values. The A/D converter has the following components:  
— Analog comparator with successive approximation logic  
— D/A converter logic (resistor string type)  
— ADC control register (ADCON)  
— Four multiplexed analog data input pins (AD0–AD3)  
— 8-bit A/D conversion data output register (ADDATA)  
— 8-bit digital input port (Alternately, I/O port.)  
— AVDD pin is internally connected to VDD  
.
FUNCTION DESCRIPTION  
To initiate an analog-to-digital conversion procedure, at first you must set with alternative function for ADC input  
enable at port 2, the pin set with alternative function can be used for ADC analog input. And you write the  
channel selection data in the A/D converter control register ADCON.4–.5 to select one of the four analog input  
pins (AD0–3) and set the conversion start or enable bit, ADCON.0. The read-write ADCON register is located in  
set 1, bank 0, at address EFH. The pins witch are not used for ADC can be used for normal I/O.  
During a normal conversion, ADC logic initially sets the successive approximation register to 80H (the  
approximate half-way point of an 8-bit register). This register is then updated automatically during each  
conversion step. The successive approximation block performs 8-bit conversions for one input channel at a time.  
You can dynamically select different channels by manipulating the channel selection bit value (ADCON.5–4) in  
the ADCON register. To start the A/D conversion, you should set the enable bit, ADCON.0. When a conversion  
is completed, ADCON.3, the end-of-conversion(EOC) bit is automatically set to 1 and the result is dumped into  
the ADDATA register where it can be read. The A/D converter then enters an idle state. Remember to read the  
contents of ADDATA before another conversion starts. Otherwise, the previous result will be overwritten by the  
next conversion result.  
NOTE  
Because the A/D converter has no sample-and-hold circuitry, it is very important that fluctuation in the analog  
level at the AD0–AD3 input pins during a conversion procedure be kept to an absolute minimum. Any change in  
the input level, perhaps due to noise, will invalidate the result. If the chip enters to STOP or IDLE mode in  
conversion process, there will be a leakage current path in A/D block. You must use STOP or IDLE mode after  
ADC operation is finished.  
15-1  
A/D CONVERTER  
S3C830A/P830A  
CONVERSION TIMING  
The A/D conversion process requires 5 steps (5 clock edges) to convert each bit and 10 clocks to set-up A/D  
conversion. Therefore, total of 50 clocks are required to complete an 8-bit conversion: When fxx/8 is selected  
for conversion clock with an 4.5 MHz fxx clock frequency, one clock cycle is 1.78 us. Each bit conversion  
requires 5 clocks, the conversion rate is calculated as follows:  
5 clocks/bit ´ 8 bits + set-up time = 50 clocks, 50 clock ´ 1.78 us = 89 us at 0.56 MHz (4.5 MHz/8)  
Note that A/D converter needs at least 25ms for conversion time.  
A/D CONVERTER CONTROL REGISTER (ADCON)  
The A/D converter control register, ADCON, is located at address EFH in set 1, bank 0. It has three functions:  
— Analog input pin selection (bits 4 and 5)  
— End-of-conversion status detection (bit 3)  
— ADC clock selection (bits 2 and 1)  
— A/D operation start or enable (bit 0 )  
After a reset, the start bit is turned off. You can select only one analog input channel at a time. Other analog  
input pins (AD0–AD3) can be selected dynamically by manipulating the ADCON.4–5 bits. And the pins not used  
for analog input can be used for normal I/O function.  
A/D Converter Control Register (ADCON)  
EFH, Set 1, Bank 0, R/W (EOC bit is read-only)  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Always logic zero  
Start or enable bit:  
0 = Disable operation  
1 = Start operation  
A/D input pin selection bits:  
A/D input pin  
.5 .4  
Clock Selection bits:  
.2.1  
Conversion CLK  
00 fXX/16  
0 0  
0 1  
1 0  
1 1  
AD0  
AD1  
AD2  
AD3  
01 fXX/8  
10 fXX/4  
11 fXX/1  
End-of-conversion bit:  
0 = Not complete Conversion  
1 = complete Conversion  
Figure 15-1. A/D Converter Control Register (ADCON)  
15-2  
S3C830A/P830A  
A/D CONVERTER  
Conversion Data Register ADDATA  
F0H, Set 1, Bank 0, Read Only  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Figure 15-2. A/D Converter Data Register (ADDATA)  
INTERNAL REFERENCE VOLTAGE LEVELS  
In the ADC function block, the analog input voltage level is compared to the reference voltage. The analog input  
level must remain within the range VSS to AVDD (The AVDD pin is internally connected with VDD).  
Different reference voltage levels are generated internally along the resistor tree during the analog conversion  
process for each conversion step. The reference voltage level for the first conversion bit is always 1/2 AVDD  
.
BLOCK DIAGRAM  
ADCON.2-.1  
ADCON.4-5  
(Select one input pin of the assigned pins)  
To ADCON.3  
(EOC Flag)  
Clock  
Selector  
ADCON.0  
(AD/C Enable)  
M
U
X
Analog  
Comparator  
Successive  
Approximation  
Logic & Register  
-
Input Pins  
AD0-AD3  
(P2.0-P2.3)  
.
.
.
+
ADCON.0  
Upper 8-bit is loaded to  
A/D Conversion  
(AD/C Enable)  
Data Register  
P2CONL  
(Assign Pins to ADC Input)  
Conversion  
Result (ADDATA  
F0H, Set 1, Bank 0)  
AVDD  
8-bit D/A  
Converter  
VSS  
Figure 15-3. A/D Converter Functional Block Diagram  
15-3  
A/D CONVERTER  
S3C830A/P830A  
VDD  
Reference  
Voltage Input  
AVDD  
+
-
C
10 mF  
103  
(It is the same voltage  
with VDD only.)  
VDD  
Analog  
Input Pin  
AD0-AD3  
S3C830A  
C
101  
VSS  
Figure 15-4. Recommended A/D Converter Circuit for Highest Absolute Accuracy  
15-4  
S3C830A/P830A  
SERIAL I/O INTERFACE  
16 SERIAL I/O INTERFACE  
OVERVIEW  
Serial I/O modules, SIO0 and SIO1 can interface with various types of external device that require serial data  
transfer. The components of SIO0 and SIO1 function block are:  
— 8-bit control register (SIO0CON, SIO1CON)  
— Clock selector logic  
— 8-bit data buffer (SIO0DATA, SIO1DATA)  
— 8-bit prescaler (SIO0PS, SIO1PS)  
— 3-bit serial clock counter  
— Serial data I/O pins (SI0, SO0, SI1, SO1)  
— External clock input/output pins (SCK0, SCK1)  
The SIO modules can transmit or receive 8-bit serial data at a frequency determined by its corresponding control  
register settings. To ensure flexible data transmission rates, you can select an internal or external clock source.  
PROGRAMMING PROCEDURE  
To program the SIO modules, follow these basic steps:  
1. Configure the I/O pins at port (SCK0/SI0/SO0, SCK1/SI1/SO1) by loading the appropriate value to the  
P3CONH and P3CONL register if necessary.  
2. Load an 8-bit value to the SIO0CON and SIO1CON control registers to properly configure the serial I/O  
modules. In this operation, SIO0CON.2 and SIO1CON.2 must be set to "1" to enable the data shifters,  
respectively.  
3. For interrupt generation, set the serial I/O interrupt enable bits (SIO0CON.1, SIO1CON.1) to "1",  
respectively.  
4. When you transmit data to the serial buffer, write data to SIO0DATA or SIO1DATA and set SIO0CON.3 or  
SIO1CON.3 to 1, the shift operation starts.  
5. When the shift operation (transmit/receive) is completed, the SIO0 and SIO1 pending bits (SIO0CON.0 and  
SIO1CON.0) are set to "1" and SIO interrupt requests are generated, respectively.  
16-1  
SERIAL I/O INTERFACE  
S3C830A/P830A  
SIO0 AND SIO1 CONTROL REGISTERS (SIO0CON, SIO1CON)  
The control registers for serial I/O interface modules, SIO0CON, is located at E9H and SIO1CON, is located at  
ECH in set 1, bank 0. They have the control settings for SIO modules, respectively.  
— Clock source selection (internal or external) for shift clock  
— Interrupt enable  
— Edge selection for shift operation  
— Clear 3-bit counter and start shift operation  
— Shift operation (transmit) enable  
— Mode selection (transmit/receive or receive-only)  
— Data direction selection (MSB first or LSB first)  
A reset clears the SIO0CON and SIO1CON values to "00H". This configures the corresponding modules with an  
internal clock source at the SCK0 and SCK1, selects receive-only operating mode, and clears the 3-bit counter,  
respectively. The data shift operation and the interrupt are disabled. The selected data direction is MSB-first.  
Serial I/O Module Control Register (SIO0CON)  
E9H, Set 1, Bank 0, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
SIO0 interrupt pending bit:  
0 = No interrupt pending  
0 = Clear pending condition  
(when write)  
SIO0 shift clock selection bit:  
0 = Internal clock (P.S Clock)  
1 = External clock (SCK0)  
1 = Interrupt is pending  
Data direction control bit:  
0 = MSB-first mode  
1 = LSB-first mode  
SIO0 interrupt enable bit:  
0 = Disable SIO0 interrupt  
1 = Enable SIO0 interrupt  
SIO0 mode selection bit:  
0 = Receive only mode  
1 = Transmit/receive mode  
SIO0 shift operation enable bit:  
0 = Disable shifter and clock counter  
1 = Enable shifter and clock counter  
Shift clock edge selection bit:  
0 = tX at falling edeges, rx at rising edges.  
1 = tX at rising edeges, rx at falling edges.  
SIO0 counter clear and shift start bit:  
0 = No action  
1 = Clear 3-bit counter and start shifting  
Figure 16-1. Serial I/O Module Control Register (SIO0CON)  
16-2  
S3C830A/P830A  
SERIAL I/O INTERFACE  
Serial I/O Module Control Register (SIO1CON)  
ECH, Set 1, Bank 0, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
SIO1 interrupt pending bit:  
0 = No interrupt pending  
0 = Clear pending condition  
(when write)  
SIO1 shift clock selection bit:  
0 = Internal clock (P.S Clock)  
1 = External clock (SCK1)  
1 = Interrupt is pending  
Data direction control bit:  
0 = MSB-first mode  
1 = LSB-first mode  
SIO1 interrupt enable bit:  
0 = Disable SIO0 interrupt  
1 = Enable SIO0 interrupt  
SIO1 mode selection bit:  
0 = Receive only mode  
1 = Transmit/receive mode  
SIO1 shift operation enable bit:  
0 = Disable shifter and clock counter  
1 = Enable shifter and clock counter  
Shift clock edge selection bit:  
0 = tX at falling edeges, rx at rising edges.  
1 = tX at rising edeges, rx at falling edges.  
SIO1 counter clear and shift start bit:  
0 = No action  
1 = Clear 3-bit counter and start shifting  
Figure 16-2. Serial I/O Module Control Register (SIO1CON)  
16-3  
SERIAL I/O INTERFACE  
S3C830A/P830A  
SIO0 AND SIO1 PRE-SCALER REGISTER (SIO0PS, SIO1PS)  
The prescaler registers for serial I/O interface modules, SIO0PS and SIO1PS, are located at EBH and EEH in  
set 1, bank 0, respectively.  
The values stored in the SIO0 and SIO1 pre-scale registers, SIO0PS and SIO1PS, lets you determine the SIO0  
and SIO1 clock rate (baud rate) as follows, respectively:  
Baud rate = Input clock (fxx/4)/(Pre-scaler value + 1), or SCK0 and SCK1 input clock.  
SIO0 Pre-scaler Register (SIO0PS)  
EBH, Set 1, Bank 0, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Baud rate = (fXX/4)/(SIO0PS + 1)  
Figure 16-3. SIO0 Pre-scaler Register (SIO0PS)  
SIO1 Pre-scaler Register (SIO1PS)  
EEH, Set 1, Bank 0, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Baud rate = (fXX/4)/(SIO1PS + 1)  
Figure 16-4. SIO1 Pre-scaler Register (SIO1PS)  
16-4  
S3C830A/P830A  
SERIAL I/O INTERFACE  
SIO0 BLOCK DIAGRAM  
SIO0 INT  
IRQ2  
3-Bit Counter  
Clear  
SIO0CON.0  
Pending  
CLK  
SIO0CON.1  
(Interrupt Enable)  
SIO0CON.3  
SIO0CON.7  
SIO0CON.4  
SIO0CON.2  
(Edge Select)  
(Shift Enable)  
SIO0CON.5  
M
U
X
SCK0  
(Mode Select)  
SIO0PS (EBH, bank 0)  
CLK  
8-Bit SIO0 Shift Buffer  
SO0  
(SIO0DATA, EAH, bank 0)  
fxx/2  
8-bit P.S.  
1/2  
SIO0CON.6  
(LSB/MSB First  
Mode Select)  
8
SI0  
Data Bus  
Figure 16-5. SIO0 Functional Block Diagram  
SIO1 INT  
3-Bit Counter  
SIO1CON.0  
Pending  
IRQ2  
Clear  
CLK  
SIO1CON.1  
(Interrupt Enable)  
SIO1CON.3  
SIO1CON.7  
SIO1CON.4  
SIO1CON.2  
(Edge Select)  
(Shift Enable)  
SIO1CON.5  
M
U
X
SCK1  
fxx/2  
(Mode Select)  
SIO1PS (EEH, bank 0)  
8-bit P.S. 1/2  
CLK  
8-Bit SIO1 Shift Buffer  
SO1  
(SIO1DATA, EDH, bank 0)  
SIO1CON.6  
(LSB/MSB First  
Mode Select)  
8
SI1  
Data Bus  
Figure 16-6. SIO1 Functional Block Diagram  
16-5  
SERIAL I/O INTERFACE  
S3C830A/P830A  
SERIAL I/O TIMING DIAGRAM (SIO0, SIO1)  
SCK0/SCK1  
SI0/SI1  
DI7  
DI6  
DI5  
DI4  
DI3  
DI2  
DI1  
DI0  
SO0/SO1  
IRQ2  
DO7  
DO6  
DO5  
DO4  
DO3  
DO2  
DO1  
DO0  
Transmit  
Complete  
Set SIO0CON.3 or SIO1CON.3  
Figure 16-7. Serial I/O Timing in Transmit/Receive Mode (Tx at falling, SIO0CON.4 or SIO1CON.4 = 0)  
SCK0/SCK1  
DI7  
DI6  
DI5  
DI4  
DI3  
DI2  
DI1  
DI0  
SI0/SI1  
SO0/SO1  
IRQ2  
DO7  
DO6  
DO5  
DO4  
DO3  
DO2  
DO1  
DO0  
Transmit  
Complete  
Set SIO0CON.3 or SIO1CON.3  
Figure 16-8. Serial I/O Timing in Transmit/Receive Mode (Tx at rising, SIO0CON.4 or SIO1CON.4 = 1)  
16-6  
S3C830A/P830A  
LOW VOLTAGE RESET  
17 LOW VOLTAGE RESET  
OVERVIEW  
The low voltage reset block is useful for an system reset under the specific voltage of system. The components  
of LVR block are:  
— LVREN pin  
— Reference voltage generator  
— Voltage divider  
— Comparator  
— Glitch filter  
LVREN PIN  
A LVREN pin is used to enable or disable LVR function.  
The LVR function is disabled when the LVREN pin is connected to VSS and is enabled when the LVREN pin is  
connected to VDD  
.
BLOCK DIAGRAM  
Reference  
Voltage  
Start Up  
Generator  
Comparator  
Glitch Filter  
RESET  
Voltage  
Divider  
Figure 17-1. Low Voltage Reset Block Diagram  
17-1  
LOW VOLTAGE RESET  
S3C830A/P830A  
NOTES  
17-2  
S3C830A/P830A  
PLL FREQUENCY SYNTHESIZER  
18 PLL FREQUENCY SYNTHESIZER  
OVERVIEW  
The phase locked loop (PLL) frequency synthesizer locks medium frequency (MF), high frequency (HF), and very  
high frequency (VHF) signals to a fixed frequency using a phase difference comparison system. As shown in  
Figure 18-1, the PLL frequency synthesizer consists of an input selection circuit, programmable divider, phase  
detector, reference frequency generator, and a charge pump.  
PLLMOD  
PLLD (16-bit)  
2
NF  
1
4
12  
PLLMOD.6-.7  
Input  
Circuit  
Swallow  
Counter  
Prescaler  
VCOFM  
PLLMOD.7  
Programmable  
Counter  
Input  
Circuit  
Phase  
Comparator  
Charge  
Pump  
Selector  
VCOAM  
EO0, EO1  
PLLMOD.6  
Reference Frequency  
Generator  
Unlock  
Detector  
PLLREF  
ULFG  
Figure 18-1. Block Diagram of the PLL Frequency Synthesizer  
18-1  
PLL FREQUENCY SYNTHESIZER  
S3C830A/P830A  
PLL FREQUENCY SYNTHESIZER FUNCTION  
The PLL frequency synthesizer divides the signal frequency at the VCOAM or VCOFM pin using the programmable  
divider. It then outputs the phase difference between the divided frequency and reference frequency at the EO0  
and EO1 pin.  
NOTE  
The PLL frequency synthesizer operates only when the CE pin is High level. When the CE pin is Low  
level, the synthesizer is disable.  
Input Selection Circuit  
The input selection circuit consists of the VCOAM pin and VCOFM pins, an FM/AM selector, and two amplifiers. The  
input selection circuit selects the frequency division method and the input pin of the PLL frequency.  
You can choose one of two frequency division methods using the PLL mode register: 1) direct frequency division  
method, or 2) pulse swallow method. The PLL mode register is also used to select the VCOAM or VCOFM pin as  
the frequency input pin.  
Programmable Divider  
The programmable divider divides the frequency of the signal from the VCOAM and VCOFM pins in accordance  
with the values contained in the swallow counter and programmable counter. The programmable divider consists  
of prescalers, a swallow counter, and a programmable counter.  
When the PLL operation starts, the contents of the PLL data registers (PLLD0–PLLD1) and the NF bit in the  
PLLMOD register are automatically loaded into the 12-bit programmable counter and the 5-bit swallow counter.  
When the 12-bit programmable down counter reaches zero, the contents of the data register are automatically  
reloaded into the programmable counter and the swallow counter for the next counting operation.  
If you modify the data register value while the PLL is operating, the new values are not immediately loaded into  
the two counters; the new data are loaded into the two counters when the current count operation has been  
completed.  
The contents of the data register undetermined after initial power-on. However, the data register retains its  
current value when the reset operation is initiated by an external reset or a change in level at the CE pin.  
The swallow counter is a 5-bit binary down counter; the programmable counter is a 12-bit binary down counter.  
The swallow counter is for FM mode only. The swallow counter and programmable counter start counting down  
simultaneously. When the swallow counter starts counting down, the 1/33 prescaler is selected. When the  
swallow counter reaches zero, it stop operation and selects the 1/32 prescaler.  
18-2  
S3C830A/P830A  
PLL FREQUENCY SYNTHESIZER  
PLL DATA REGISTER (PLLD)  
The frequency division value of the swallow counter and programmable counter is set in the PLL data register  
(PLLD0-PLLD1). PLL data register configuration is shown in Figure 18-2.  
Programmable Counter  
(Upper 12 bits)  
Swallow Counter  
(Lower 5 bits)  
16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
PLLMOD.5  
(NF)  
PLLD b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0  
PLLD1 (F6H, Bank 0, Set 1)  
PLLD0 (F7H, Bank 0, Set 1)  
Figure 18-2. PLL Register Configuration  
Direct Frequency Division and Pulse Swallow Formulas  
In the direct frequency division method, the upper 12 bits are valid. In the pulse swallow method, all 16 bits are  
valid. The upper 12 bit are set in the programmable counter and the lower 4 bits and the NF bit are set in the  
swallow counter. The frequency division formulas for both methods, as set in the PLL data register, are shown  
below:  
— Direct frequency division (AM) is  
fVCOAM  
fR =  
N
Where the frequency division value (N) is 12 bits; fVCOAM = input frequency at the VCOAM pin  
— Pulse swallow system (FM) is  
fVCOFM  
fR =  
(N´ 32+M)  
where the frequency division values (N and M) are 12 bits and 5 bits, respectively; fVCOFM = input frequency at  
the VCOFM pin.  
18-3  
PLL FREQUENCY SYNTHESIZER  
S3C830A/P830A  
REFERENCE FREQUENCY GENERATOR  
The reference frequency generator produce reference frequency which are then compared by the phase  
comparator. As shown in Figure 18-3, the reference frequency generator divides a crystal oscillation frequency of  
4.5 MHz and generates the reference frequency (fR) for the PLL frequency synthesizer. Using the PLLREF  
register, you can select from ten different reference frequencies.  
Data Bus  
8
PLLREF  
4
1 kHz  
3 kHz  
5 kHz  
6.25 kHz  
Frequency  
Divider  
To Phase  
Detector  
Selector  
4.5 MHz  
50 kHz  
100 kHz  
Figure 18-3. Reference Frequency Generator  
18-4  
S3C830A/P830A  
PLL FREQUENCY SYNTHESIZER  
PLL MODE REGISTER (PLLMOD)  
The PLL mode register (PLLMOD) is used to start and stop PLL operation. PLLMOD values also determine the  
frequency dividing method.  
PLLMOD PLLMOD.7 PLLMOD.6  
NF  
Not used PLLMOD.3 PLLMOD.2 PLLMOD.1 PLLMOD.0  
PLLMOD.7 selects the frequency dividing method. The basic configuration for the two frequency dividing  
methods are as follows:  
Direct Method  
— Used for AM mode  
— Swallow counter is not used  
— VCOAM pin is selected for input  
Pulse Swallow Method  
— Used for FM mode  
— Swallow counter is used  
— VCOFM pin is selected for input  
The input frequency at the VCOAM or VCOFM pin is divided by the programmable divider. The frequency division  
value of the programmable divider is written to the PLL data register.  
When the pulse swallow method is selected by setting PLLMOD.7, the input signal is first divided by a 1/32 or  
1/33 prescaler and the divided frequency is input to the programmable divider. Table 18-1 shows PLLMOD  
organization.  
18-5  
PLL FREQUENCY SYNTHESIZER  
S3C830A/P830A  
Table 18-1. PLLMOD Organization  
PLL Enable and INTIF/INTCE Interrupt Control Bits  
PLLMOD.6  
PLLMOD.3  
PLLMOD.2  
0
1
0
1
0
Disable PLL.  
Enable PLL.  
Disable INTIF interrupt.  
Enable INTIF interrupt.  
INTIF interrupt is not pending (when read).;  
Clear INTIF pending bit (when write).  
1
0
1
0
INTIF interrupt is pending (when read).  
Disable INTCE interrupt requests at CE pin.  
Enable INTCE interrupt requests at CE pin.  
PLLMOD.1  
PLLMOD.0  
INTCE interrupt is not pending (when read).;  
Clear INTCE pending bit (when write).  
1
INTCE interrupt is pending (when read).  
Frequency Division Method Selection Bit  
PLLMOD.7  
Frequency Division  
Method  
Selected Pin  
Input  
Voltage  
Input  
Frequency  
Division Value  
16 to (212–1)  
VCOAM selected;  
VCOFM pulled Low  
300mVPP  
300mVPP  
0
Direct method for AM  
0.5–30 MHz  
30–150 MHz  
210 to (217–2)  
VCOFM selected;  
VCOAM pulled Low  
1
Pulse swallow method  
for FM  
NOTE: The NF bit, a one-bit frequency division value, is written to bit 0 in the swallow counter.  
18-6  
S3C830A/P830A  
PLL FREQUENCY SYNTHESIZER  
PLL REFERENCE FREQUENCY SELECTION REGISTER (PLLREF)  
The PLL reference frequency selection register (PLLREF) used to determine the reference frequency. You can  
select one of ten reference frequencies by setting bits PLLREF.3-PLLREF.0 to the appropriate value.  
PLLREF PLLREF.7 PLLREF.6 PLLREF.5 PLLREF.4 PLLREF.3 PLLREF.2 PLLREF.1 PLLREF.0  
You can select one of the reference frequencies by setting bits PLLREF.3–PLLREF.0.  
Table 18-2. PLLREF Register Organization  
PLLREF.3 PLLREF.2 PLLREF.1 PLLREF.0  
Reference Frequency Selection  
Select 1 kHz as reference frequency  
0
0
0
0
0
0
0
0
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
0
1
0
1
Select 3 kHz as reference frequency  
Select 5 kHz as reference frequency  
Select 6.25 kHz as reference frequency  
Select 9 kHz as reference frequency  
Select 10 kHz as reference frequency  
Select 12.5 kHz as reference frequency  
Select 25 kHz as reference frequency  
Select 50 kHz as reference frequency  
Select 100 kHz as reference frequency  
18-7  
PLL FREQUENCY SYNTHESIZER  
S3C830A/P830A  
PHASE DETECTOR, CHARGE PUMP, AND UNLOCK DETECTOR  
The phase comparator compare the phase difference between divided frequency (fN) output from the  
programmable divider and the reference frequency (fR) output from the reference frequency generator.  
The charge pump outputs the phase comparator’s output from error output pins EO0 and EO1. The relation  
between the error output pin, divided frequency fN, and reference frequency fR is shown below:  
fR > fN = Low level output  
fR < fN = High level output  
fR = fN = Floating level  
A PLL operation starts when a value is loaded to the PLLMOD register, The PLL unlock flag (ULFG) in the PLL  
reference register, PLLREF, provides status information regarding the reference frequency and divided  
frequency.  
The unlock detector detects the unlock state of the PLL frequency synthesizer. The unlock flag in the PLLREF  
register is set to “1” in an unlock state. When ULFG = “0”, the PLL locked state is selected.  
ULFG  
CEFG  
POFG  
PLLREF.7–.4  
IFCFG  
F9H at bank 0 of set 1  
The ULFG flag is set continuously at a period of reference frequency fR by the unlock detector. You must  
therefore read the ULFG flag in the PLLREF register at periods longer than 1/fR of the reference frequency.  
ULFG is reset wherever it is read.  
PLL operation is controlled by the state of the CE (chip enable) pin. The PLL frequency synthesizer is disabled  
and the error output pin is set to floating state whenever the CE pin is Low. When CE pin is High level, the PLL  
operates normally.  
The chip enable flag in the PLLREF register, CEFG, provides the status of the current level of the CE pin.  
Whenever the state of the CE pin goes from Low to High, the CEFG flag is set to “1” and a CE reset operation  
occurs. When the CE pin goes from High to Low, the CEFG flag is cleared to “0” and a CE interrupt is generated.  
The power on flag in the PLLREF register, POFG, is set by initiated power-on reset, but it is not set when a reset  
occurs on the normal operation. The POFG flag is cleared to “0” by writing “0” to POFG flag bit in PLLREF.  
18-8  
S3C830A/P830A  
PLL FREQUENCY SYNTHESIZER  
USING THE PLL FREQUENCY SYNTHESIZER  
This section describes the steps you should follow when using the PLL direct frequency division method and the  
pulse swallow method. In each case, you must make the following selections in this order:  
1. Frequency division method:  
2. Input pin:  
Direct frequency division (AM) or pulse swallow (FM)  
VCOAM or VCOFM  
fR  
3. Reference frequency:  
4. Frequency division value:  
N
Direct Frequency Division Method  
Select the direct frequency division method by writing a “0” to PLLMOD.7.  
The VCOAM pin is configured for input when you select the direct frequency division method.  
Select the reference frequency by writing the appropriate values to the PLLREF register.  
The frequency division value is  
fVCOAM  
N =  
fR  
where fVCOAM is the input frequency at the VCOAM pin, and fR is the reference frequency.  
Example:  
The following data are used to receive an AM-band broadcasting station:  
Receive frequency:  
Reference frequency:  
Intermediate frequency:  
1422 kHz  
9 kHz  
+ 450 kHz  
The frequency division value N is calculated as follows:  
(1422+450)´ 103  
9´ 103  
fVCOAM  
N =  
=
= 208 (decimal)  
fR  
= 0D0H (hexadecimal)  
You would modify the PLL data register and PLLMOD.7–.4 register as follows:  
PLLD0  
PLMOD.7-.4  
PLLD1  
0
0
0
0
1
1
0
1
0
0
0
0
x
x
x
x
0
1
x
0
NF  
0
D
0
NOTE: In the direct method, the contents of PLLD0.3-PLLD0.0 and NF are not evaluated.  
18-9  
PLL FREQUENCY SYNTHESIZER  
S3C830A/P830A  
Pulse Swallow Method  
1. Select the pulse swallow method by writing a “1” to PLLMOD.7.  
2. The VCOFM pin is configured for input when you select the pulse swallow method.  
3. Select the reference frequency by writing the appropriate value to the PLLREF register.  
4. Calculate the frequency division value as follows:  
fVCOFM  
32N + M =  
fR  
where fVCOFM is the input frequency at the VCOFM pin, and fR is the reference frequency, N is the quotient of  
fVCOFM  
32fR  
fVCOFM  
32fR  
and M is the remainder of  
.
Example:  
The following data are used to receive an FM-band broadcasting station:  
Receive frequency:  
Reference frequency:  
Intermediate frequency:  
100.0 MHz  
25 kHz  
10.7 MHz  
The frequency division value N and M are calculated as follows:  
(100.0 + 10.7) ´ 106  
25 ´ 103  
fVCOFM  
=
= 4428 = 138 ´ 32 + 12  
fR  
N = 138 (decimal) = 8AH (hexadecimal)  
M = 12 (decimal) = 0C (hexadecimal)  
You would modify the PLL data register and PLLMOD.7–.4 register as follows:  
PLLD1  
PLLD0  
PLLMOD.7-.4  
0
0
0
0
1
0
0
0
1
0
1
0
0
0
1
1
0
0
1
1
0
0
NF  
0
8
A
C
18-10  
S3C830A/P830A  
INTERMEDIATE FREQUENCY COUNTER  
19 INTERMEDIATE FREQUENCY COUNTER  
OVERVIEW  
The S3C830A uses an intermediate frequency counter (IFC) to counter the frequency of the AM or FM signal at  
FMIF or AMIF pin. The IFC block consists of a 1/2 divider, gate control circuit, IFC mode register (IFMOD) and a  
16-bit binary counter. The gate control circuit, which controls the frequency counting time, is programmed using  
the IFMOD register. Four different gate times can be selected using IFMOD register settings.  
During gate time, the 16-bit IFC counts the input frequency at the FMIF or AMIF pins. The FMIF or AMIF pin  
input signal for the 16-bit counter is selected using IFMOD register settings.  
The 16-bit binary counter (IFCNT1-IFCNT0) can be read by 8-bit register addressing mode only. When the FMIF  
pin input signal is selected, the signal is divided by two. When the AMIF pin input signal is directly connected to  
the IFC, it is not divided.  
By setting IFMOD register, the gate is opened for 1-ms, 4-ms, or 8-ms periods. During the open period of the  
gate, input frequency is counted by the 16-bit counter. When the gate is closed, the counting operation is  
complete, and an interrupt is generated.  
1/2  
Divider  
IF Counter  
(16 bit)  
Selector  
FMIF  
AMIF  
8
Data Bus  
Gate Control  
Circuit  
IRQ7  
1 ms  
4 ms  
8 ms  
3
2
1
0
IFMOD  
Gate Signal  
Generator  
Data Bus  
1kHz Internal Signal  
Figure 19-1. IF Counter Block Diagram  
19-1  
INTERMEDIATE FREQUENCY COUNTER  
S3C830A/P830A  
IFC MODE REGISTER (IFMOD)  
The IFC mode register (IFMOD) is a 8-bit register that is used to select the input pin and gate time. Setting  
IFMOD register reset IFC value and IFC gate flag value, and starts IFC operation. You use the IFMOD register to  
select the AMIF or FMIF input pin and the gate time.  
IFMOD  
IFMOD.3  
IFMOD.2  
IFMOD.1  
IFMOD.0  
F3H at bank 0 of set 1  
IFC operation starts when you select AMIF or FMIF as the IFC input pin. A reset operation clears all IFMOD  
values to “0”.  
Table 19-1. IFMOD Organization  
Pin Selection Bits  
IFMOD.3  
IFMOD.2  
Effect of Control Setting  
0
0
IFC is disabled; FMIF/AMIF are pulled down and FMIF/AMIF's feed-back  
resistor are off.  
0
1
1
1
0
1
Enable IFC operation; AMIF pin is selected; FMIF is pulled down and FMIF's  
feed-back resistor is off.  
Enable IFC operation; FMIF is selected; AMIF is pulled down and AMIF's feed-  
back resistor is off.  
Enable IFC operation; Both AMIF and FMIF are selected.  
Gate Time Select Bits  
IFMOD.1  
IFMOD.0  
Select Gate Time  
Gate time is 1 ms.  
0
0
1
1
0
1
0
1
Gate time is 4 ms.  
Gate time is 8 ms.  
Gate is open  
IFC GATE FLAG REGISTER (PLLREF.5)  
IFCFG  
PLLREF.7-.4  
ULFG  
CEFG  
POFG  
F9H at bank 0 of set 1  
When IFC operation is started by setting IFMOD, the IFC gate flag (IFCFG) is cleared to “0”. After a specified  
gate time has elapsed, the IFCFG bit is automatically set to “1”. This lets you check whether a IFC counting  
operation has been completed or not.  
The IFC interrupt can also be used to check whether or not a IFC counting operation is complete.  
19-2  
S3C830A/P830A  
INTERMEDIATE FREQUENCY COUNTER  
GATE TIMES  
When you write a value to IFMOD, the IFC gate is opened for a 1-millisecond, 4-millisecond, or 8-millisecond  
interval, setting with a rising clock edge. When the gate is open, the frequency at the AMIF or FMIF pin is  
counted by the 16-bit counter. When the gate closes, the IFC gate flag (IFCFG) is set to “1”. An interrupt is then  
generated and the IFC interrupt pending bit (PLLMOD.2) is set.  
Figure 19-2 shows gate timings with a 1-kHz internal clock.  
Clock (1 kHz)  
1 ms  
4 ms  
8 ms  
Counting Period  
Gate open here  
Counting ends;  
IFMOD is written;  
IFCFG flag is set to "1" and  
IFCFG flag is cleared to "0".  
PLLMOD.2 is set to "1".  
Figure 19-2. Gate Timing (1,4, or 8 ms)  
19-3  
INTERMEDIATE FREQUENCY COUNTER  
Selecting “Gate Remains Open”  
S3C830A/P830A  
If you select “gate remain open” (IFMOD.0 and IFMOD.1 = “1”), the IFC counts the input signal during the open  
period of the gate. The gate closes the next time a value is written to IFMOD.  
Clock (1 kHz)  
Gate Time  
Counting Period  
The gate closes when IFMOD is rewritten  
Gate is opened by writing IFMOD  
Figure 19-3. Gate Timing (When Open)  
When you select “gate remains open” as the gating time, you can control the opening and closing of the gate in  
one of two ways:  
— Set the gate time to a specific interval (1-ms, 4-ms, or 8-ms) by setting bits IFMOD.1 and IFMOD.0.  
Gate Time  
Set non-open gate time (1-, 4-, 8-ms) by  
Set IFMOD.1 = IFMOD.0 = "1"  
bit IFMOD.1 and IFMOD.0  
— Disable IFC operation by clearing bits IFMOD.3 and IFMOD.2 to “0”. This method lets the gate remain open,  
and stops the counting operation.  
Gate Time  
Set IFMOD.3 = IFMOD.2 = "0",  
Set IFMOD.1 = IFMOD.0 = "1"  
IFC counting operation is stopped.  
19-4  
S3C830A/P830A  
INTERMEDIATE FREQUENCY COUNTER  
Gate Time Errors  
A gate time error occurs whenever the gate signals are not synchronized to the interval instruction clock. That is,  
the IFC does not start counter operation until a rising edge of the gate signal is detected, even though the counter  
start instruction (setting bits IFMOD.3 and IFMOD.2) has been executed. Therefore, there is a maximum 1-ms  
timing error (see Figure 19-4).  
After you have executed the IFC start instruction, you can check the gate state at any time. Please note, however  
that the IFC does not actually start its counting operation until stabilization time for the gate control signal has  
elapsed.  
Instruction Execution  
(IFMOD Setting)  
1ms  
Clock (1 kHz)  
Actual Gate  
Signal (1 ms)  
Resulting  
Gate Signal  
Actual Counting Period  
Gate Time Errors  
Figure 19-4. Gate Timing (1-ms Error)  
Counting Errors  
The IF counter counts the rising edges of the input signal in order to determine the frequency. If the input signal  
is High level when the gate is open, one additional pulse is counted. When the gate is close, however, counting is  
not affected by the input signal status. In other words, the counting error is “+1, 0”.  
19-5  
INTERMEDIATE FREQUENCY COUNTER  
S3C830A/P830A  
IF COUNTER (IFC) OPERATION  
IFMOD register bits 2 and 3 are used to select the input pin and to start or stop IFC counting operation. You stop  
the counting operation by clearing IFMOD.2 and IFMOD.3 to “0”. The IFC retains its previous value until IFMOD  
register values are specified.  
Setting bits IFMOD.3 and IFMOD.2 starts the frequency counting operation. Counting continues as long as the  
gate is open. The 16-bit counter value is automatically cleared to 0000H after it overflows (at FFFFH), and  
continues counting from zero. The 16-bit count value (IFCNT1-IFCNT0) can be read by register addressing  
mode. A reset operation clears the counter to zero.  
IFCNT0  
IFCNT1  
IFCNT0.7 IFCNT0.6 IFCNT0.5 IFCNT0.4 IFCNT0.3 IFCNT0.2 IFCNT0.1 IFCNT0.0  
IFCNT1.7 IFCNT1.6 IFCNT1.5 IFCNT1.4 IFCNT1.3 IFCNT1.2 IFCNT1.1 IFCNT1.0  
When the specified gate open time has elapsed, the gate closes in order to complete the counter operation. At  
this time, the IFC interrupt pending bit (PLLMOD.2) is automatically set to “1” and an interrupt is generated. The  
pending bit must be cleared to “0” by software when the interrupt is serviced. The IFC gate flag (IFCFG) is set to  
“1” at the same time the gate is closed. Since the IFCFG flag is cleared to “0” when IFC operation start, you can  
check the IFCFG flag to determine when IFC operation stops (that is, when the specified gate open time has  
elapsed).  
The frequency applied to FMIF or AMIF pin is counted while the gate is open. The frequency applied to FMIF pin  
is divided by 2 before counting. The relationship between the count value (N) and input frequencies fAMIF and  
fFMIF is shown below.  
— FMIF pin input frequency is  
N (DEC)  
fFMIF =  
x 2  
TG  
when TG = gate time (1 ms, 4 ms, 8 ms)  
— AMIF pin input frequency is  
N (DEC)  
fAMIF =  
TG  
when TG = gate time (1 ms, 4 ms, 8 ms)  
Table 19-2 shows the range of frequency that you can apply to the AMIF and FMIF pins.  
Table 19-2. IF Counter Frequency Characteristics  
Pin  
Voltage Level  
Frequency Range  
0.1 MHz to 1 MHz  
5 MHz to 15 MHz  
300 m VPP (min)  
AMIF  
FMIF  
300 m VPP (min)  
19-6  
S3C830A/P830A  
INTERMEDIATE FREQUENCY COUNTER  
INPUT PIN CONFIGURATION  
The AMIF and FMIF pins have built-in AC amplifiers (see Figure 19-5). The DC component of the input signal  
must be stripped off by the external capacitor.  
When the AMIF or FMIF pin is selected for the IFC function and the switch is turned on voltage of each pin  
increases to approximately 1/2 VDD after a sufficiently long time. If the pin voltage does not increase to  
approximately 1/2 VDD, the AC amplifier exceeds its operating range, possibly causing an IFC malfunction. To  
prevent this from occurring, you should program a sufficiently long time delay interval before starting the count  
operation.  
SW  
C
External  
Frequency  
To Internal  
Counter  
FMIF  
AMIF  
Figure 19-5. AMIF and FMIF Pin Configuration  
19-7  
INTERMEDIATE FREQUENCY COUNTER  
S3C830A/P830A  
IFC DATA CALCULATION  
Selecting the FMIF pin for IFC Input  
First, divide the signal at the FMIF pin by 2, and then apply this value to the IF counter. This means that the IF  
counter value is equal to one-half of the input signal frequency.  
FMIF input frequency (fFMIF): 10.7 MHz  
Gate time (TG): 8 ms  
IFC counter value (N):  
N = (fFMIF/2) ´ TG  
= 10.7 ´ 106 /2 ´ 8 ´ 10-3  
= 42800  
= A730H  
Bin  
Dec  
1
0
1
0
0
1
1
1
0
0
1
1
0
0
0
0
A
7
3
0
IFCNT  
IFCNT1  
IFCNT0  
Selecting the AMIF Pin for IFC Input  
The signal at AMIF pin is directly input to the IF counter.  
AMIF input frequency (fAMIF): 450 kHz  
Gate time (TG): 8 ms  
IFC counter value (N):  
N = (fAMIF) ´ TG  
= 450 ´ 103 ´ 8 ´ 10-3  
= 3600  
= E10H  
Bin  
Dec  
0
0
0
0
1
1
1
0
0
0
0
1
0
0
0
0
0
E
1
0
IFCNT  
IFCNT1  
IFCNT0  
19-8  
S3C830A/P830A  
ELECTRICAL DATA  
20 ELECTRICAL DATA  
OVERVIEW  
In this chapter, S3C830A electrical characteristics are presented in tables and graphs.  
The information is arranged in the following order:  
— Absolute maximum ratings  
— D.C. electrical characteristics  
— A.C. electrical characteristics  
— Input/output capacitance  
— Data retention supply voltage in stop mode  
— A/D converter electrical characteristics  
— PLL electrical characteristics  
— Low voltage reset electrical characteristics  
— Serial I/O timing characteristics  
— Oscillation characteristics  
— Oscillation stabilization time  
20-1  
ELECTRICAL DATA  
S3C830A/P830A  
Table 20-1. Absolute Maximum Ratings  
°
(TA= 25 C)  
Parameter  
Symbol  
Conditions  
Rating  
– 0.3 to +6.5  
Unit  
VDD  
VI  
Supply voltage  
V
– 0.3 to VDD + 0.3  
Input voltage  
Ports 0–8  
VO  
IOH  
– 0.3 to VDD + 0.3  
– 15  
Output voltage  
Output current high  
One I/O pin active  
mA  
All I/O pins active  
One I/O pin active  
– 60  
+ 30  
IOL  
Output current low  
Total pin current for port  
+ 100  
°
C
TA  
Operating temperature  
Storage temperature  
– 25 to + 85  
TSTG  
– 65 to + 150  
Table 20-2. D.C. Electrical Characteristics  
(TA = –25 C to + 85 C, VDD = 3.0 V to 5.5 V)  
°
°
Parameter  
Symbol  
Conditions  
fx = 0.4–4.5 MHz  
Min.  
Typ.  
Max.  
Unit  
VDD  
Operating voltage  
3.0  
5.5  
V
(except PLL/IFC)  
fx = 4.5 MHz (PLL/IFC)  
Ports 0–8  
4.5  
5.5  
VIH1  
VIH2  
VIH3  
VIL1  
VIL2  
VIL3  
VOH1  
0.8 VDD  
VDD  
Input high voltage  
Input low voltage  
Output high voltage  
0.8 VDD  
VDD–0.1  
VDD  
VDD  
RESET, CE  
XIN, XOUT  
0.2 VDD  
0.2 VDD  
0.1  
Ports 0–8  
RESET, CE  
XIN, XOUT  
VDD = 4.5 V to 5.5 V  
EO0, EO1; IOH = –1 mA  
VDD – 2.0  
VDD – 1.0  
VDD  
VOH2  
VDD = 4.5 V to 5.5 V  
VDD  
Other output ports;  
IOH = –1 mA  
VOL1  
VDD = 4.5 V to 5.5 V  
EO0, EO1; IOL = 1 mA  
Output low voltage  
2.0  
2.0  
VOL2  
VDD = 4.5 V to 5.5 V  
Other output ports;  
IOL = 10 mA  
20-2  
S3C830A/P830A  
ELECTRICAL DATA  
Table 20-2. D.C. Electrical Characteristics (Continued)  
°
°
(TA = -25 C to + 85 C, VDD = 3.0 V to 5.5 V)  
Parameter  
Symbol  
Conditions  
VIN = VDD  
Min.  
Typ.  
Max.  
Unit  
ILIH1  
Input high leakage  
current  
3
uA  
All input pins except  
XIN, XOUT  
ILIH2  
ILIL1  
VIN = VDD, XIN  
VIN = 0 V  
X
,
OUT  
20  
-3  
Input low leakage  
current  
All input pins except  
RESET, XIN  
X
,
OUT  
ILIL2  
ILOH  
VIN = 0 V, XIN  
VOUT = VDD  
X
,
OUT  
-20  
3
Output high  
leakage current  
All output pins  
VOUT = 0 V  
ILOL  
RL1  
RL2  
Output low leakage  
current  
-3  
All output pins  
VIN = 0 V; VDD = 5 V  
Port 0–8  
Pull-up resistor  
25  
150  
50  
250  
100  
400  
kW  
VIN = 0 V; VDD = 5 V;  
RESET  
RD  
VIN = VDD, VDD = 5 V  
Pull-down resistor  
15  
35  
45  
kW  
kW  
VCOFM, VCOAM, AMIF  
and FMIF  
°
ROSC  
Oscillator feed  
back resistors  
300  
750  
1500  
VDD = 5 V, T = 25 C  
A
XIN = VDD, XOUT = 0 V  
°
RLCD  
VDC  
LCD voltage  
dividing resistor  
70  
110  
45  
150  
120  
kW  
TA = 25 C  
|VLCD – COMi|  
mV  
–15 mA per common pin  
–15 mA per common pin  
VDD = 3.0 V to 5.5 V  
voltage drop  
(I = 0–3)  
|VLCD – SEGx|  
VDS  
45  
120  
mV  
V
voltage drop  
(x = 0–39)  
Middle output  
voltage  
VLC0  
0.6VDD  
0.2  
0.6VDD  
0.6VDD  
0.2  
+
VLC1  
VLC2  
0.4VDD  
0.2  
0.4VDD  
0.2VDD  
0.4VDD  
0.2  
+
+
0.2VDD  
0.2  
0.2VDD  
0.2  
20-3  
ELECTRICAL DATA  
S3C830A/P830A  
Table 20-2. D.C. Electrical Characteristics (Concluded)  
°
°
(T = -25 C to + 85 C, VDD = 3.0 V to 5.5 V)  
A
Parameter  
Symbol  
Conditions  
Run mode:  
Min.  
Typ.  
Max.  
Unit  
Supply current (1)  
IDD1  
5.0  
15  
mA  
4.5 MHz crystal oscillator  
CE = VDD  
VDD = 5 V ± 10 %  
C1 = C2 = 22pF  
IDD2  
Run mode:  
2.6  
5.5  
4.5 MHz crystal oscillator  
CE = 0 V  
VDD = 5 V ± 10 %  
C1 = C2 = 22pF  
IDD3  
Idle mode:  
4.5 MHz crystal oscillator  
VDD = 5 V ± 10 %  
0.6  
0.5  
2.0  
3
(2)  
Stop mode (in LVR disable):  
CE = 0 V, T = 25 C  
A
mA  
IDD4  
°
VDD = 5 V ± 10 %  
NOTES:  
1. Supply current does not include current drawn through internal pull-up resistors, PWM, or external output current loads.  
2. is current when the main clock oscillation stops.  
I
DD4  
3. Every values in this table is measured when bits 4–3 of the system clock control register (CLKCON.4–.3) is set to 11B.  
20-4  
S3C830A/P830A  
ELECTRICAL DATA  
Table 20-3. A.C. Electrical Characteristics  
°
°
(TA = -25 C to +85 C, VDD = 3.0 V to 5.5 V)  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
P1.0–P1.7, VDD = 5 V  
Interrupt input  
high, low width  
(P1.0–P1.7)  
tINTH,  
tINTL  
200  
ns  
VDD = 5 V  
tRSL  
10  
us  
RESET input low  
width  
tTIL  
tTIH  
0.8 VDD  
0.2 VDD  
0.2 VDD  
Figure 20-1. Input Timing for External Interrupts (Ports 1)  
t
RSL  
RESET  
0.2 V  
DD  
Figure 20-2. Input Timing for RESET  
20-5  
ELECTRICAL DATA  
S3C830A/P830A  
Table 20-4. Input/Output Capacitance  
°
°
(TA = -25 C to +85 C, VDD = 0 V )  
Parameter  
Input  
capacitance  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
CIN  
f = 1 MHz; unmeasured pins  
are returned to VSS  
10  
pF  
COUT  
CIO  
Output  
capacitance  
I/O capacitance  
Table 20-5. Data Retention Supply Voltage in Stop Mode  
°
°
(TA = -25 C to + 85 C)  
Parameter  
Symbol  
VDDDR  
Conditions  
Min  
Typ  
Max  
Unit  
Data retention  
supply voltage  
3.0  
5.5  
V
°
IDDDR  
Data retention  
supply current  
1
uA  
VDDDR = 2 V (TA = 25 C)  
Stop mode (in LVR disable)  
RESET  
Occurs  
Oscillation  
Stabilization  
Time  
Stop Mode  
Normal  
Operating Mode  
Data Retention Mode  
V
DD  
V
DDDR  
Execution of  
STOP Instrction  
RESET  
0.2 VDD  
t
WAIT  
NOTE:  
tWAIT is the same as 4096 x 16 x 1/fxx  
Figure 20-3. Stop Mode Release Timing Initiated by RESET  
20-6  
S3C830A/P830A  
ELECTRICAL DATA  
Oscillation  
Stabilization Time  
Idle Mode  
Stop Mode  
Data Retention Mode  
VDD  
VDDDR  
Normal  
Execution of  
STOP Instruction  
Operating Mode  
Interrupt  
0.2 VDD  
tWAIT  
NOTE:  
tWAIT is the same as 16 x 1/BT clock  
Figure 20-4. Stop Mode Release Timing Initiated by Interrupts  
Table 20-6. A/D Converter Electrical Characteristics  
(T = -25 °C to +85 °C, V  
A
= 3.5 V to 5.5 V, VSS = 0 V)  
DD  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
A/D converting  
resolution  
8
bits  
Absolute accuracy  
LSB  
ms  
±2  
tCON  
A/D conversion time  
Conversion clock = fxx  
50/fxx  
VSS  
VIAN  
RAN  
VDD  
Analog input voltage  
V
VDD = 5 V  
Analog input  
impedance  
2
1000  
MW  
20-7  
ELECTRICAL DATA  
S3C830A/P830A  
Table 20-7. PLL Electrical Characteristics  
= 4.5 V to 5.5 V)  
(T = –25 °C to +85 °C, V  
A
DD  
Parameter  
Symbol  
Conditions  
Sine wave input  
Min  
Typ  
Max  
Unit  
VIN  
VDD  
VCOFM, VCOAM,  
FMIF and AMIF  
input voltage (peak  
to peak)  
0.3  
V
fVCOAM  
fVCOFM  
fAMIF  
Frequency  
VCOAM mode, sine wave  
input; VIN = 0.3VP-P  
0.5  
30  
0.1  
5
30  
150  
1.0  
15  
MHz  
VCOFM mode, sine wave  
input; VIN = 0.3VP-P  
AMIF mode, sine wave  
input; VIN = 0.3VP-P  
fFMIF  
FMIF mode, sine wave  
input; VIN = 0.3VP-P  
Table 20-8. Low Voltage Reset Electrical Characteristics  
(T = –25 °C to +85 °C)  
A
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
VDET  
Detect voltage range  
3.0  
3.5  
4.0  
V
IBL  
LVR operating  
current  
10  
25  
mA  
20-8  
S3C830A/P830A  
ELECTRICAL DATA  
Table 20-9. Synchronous SIO Electrical Characteristics  
°
°
(TA = –25 C to +85 C, VDD = 3.0 V to 5.5 V)  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
tCKY  
SCK0/SCK1 cycle time  
External SCK0/SCK1 source  
1000  
ns  
Internal SCK0/SCK1 source  
External SCK0/SCK1 source  
1000  
500  
tKH, tKL  
SCK0/SCK1 high, low  
width  
tKCY/2–  
50  
Internal SCK0/SCK1 source  
tSIK  
SI setup time to  
External SCK0/SCK1 source  
250  
SCK0/SCK1 high  
SI hold time to  
Internal SCK0/SCK1 source  
External SCK0/SCK1 source  
250  
400  
tKSI  
SCK0/SCK1 high  
Output delay for  
Internal SCK0/SCK1 source  
External SCK0/SCK1 source  
400  
tKSO  
300  
250  
SCK0/SCK1 to SO  
Internal SCK0/SCK1 source  
tCKY  
tKL  
tKH  
SCK0/SCK1  
0.8 VDD  
0.2 VDD  
tSIK  
tKSI  
0.8 VDD  
0.2 VDD  
SI0/SI1  
Input Data  
tKSO  
SO0/SO1  
Output Data  
Figure 20-5. Serial Data Transfer Timing  
20-9  
ELECTRICAL DATA  
S3C830A/P830A  
Table 20-10. Main Oscillator Characteristics (fx)  
°
°
(T = –25 C to +85 C, V  
= 3.0 V to 5.5 V)  
DD  
A
Oscillator  
Crystal  
Clock Circuit  
Test Condition  
Min  
Typ  
Max  
Unit  
Crystal oscillation frequency  
0.4  
4.5  
MHz  
XIN  
XOUT  
C1  
C2  
Ceramic  
Ceramic oscillation  
frequency  
0.4  
0.4  
4.5  
4.5  
MHz  
MHz  
X
IN  
XOUT  
C1  
C2  
XIN input frequency  
External clock  
X
IN  
XOUT  
Table 20-11. Main Oscillator Clock Stabilization Time (tST1  
)
°
°
(TA = -25 C to +85 C, VDD = 3.0 V to 5.5 V)  
Oscillator  
Crystal  
Test Condition  
Min  
Typ  
Max  
Unit  
VDD = 4.5 V to 5.5 V  
10  
ms  
Stabilization occurs when VDD is equal to the minimum  
oscillator voltage range.  
Ceramic  
4
ms  
XIN input high and low level width (tXH, tXL)  
External clock  
111  
1250  
ns  
NOTE: Oscillation stabilization time (t  
) is the time required for the CPU clock to return to its normal oscillation  
ST1  
frequency after a power-on occurs, or when Stop mode is ended by a RESET signal.  
The RESET should therefore be held at low level until the t time has elapsed  
ST1  
20-10  
S3C830A/P830A  
ELECTRICAL DATA  
1/fx  
tXL  
tXH  
XIN  
VDD-0.1V  
0.1V  
Figure 20-6. Clock Timing Measurement at XIN  
Instruction Clock  
1.125 MHZ  
Main Oscillator Frequency  
4.5 MHZ  
25 kHz  
400 kHz  
1
2
3
4
5
6
7
Supply Voltage (V)  
CPU Clock = 1/4n x oscillator frequency (n = 1,2,8,16)  
When PLL/IFC operation, operating voltage range is 4.5 V to 5.5 V.  
Figure 20-7. Operating Voltage Range  
20-11  
ELECTRICAL DATA  
S3C830A/P830A  
NOTES  
20-12  
S3C830A/P830A  
MECHANICAL DATA  
21 MECHANICAL DATA  
OVERVIEW  
The S3C830A microcontroller is currently available in 100-pin-QFP package.  
23.90 ± 0.30  
20.00 ± 0.20  
0-8  
+ 0.10  
- 0.05  
0.15  
0.10 MAX  
100-QFP-1420C  
#100  
+ 0.10  
- 0.05  
#1  
0.30  
0.05 MIN  
2.65 ± 0.10  
3.00 MAX  
0.65  
0.15 MAX  
(0.58)  
0.10 MAX  
0.80 ± 0.20  
NOTE: Dimensions are in millimeters.  
Figure 21-1. Package Dimensions (100-QFP-1420C)  
21-1  
MECHANICAL DATA  
S3C830A/P830A  
NOTES  
21-2  
S3C830A/P830A  
S3P830A OTP  
22 S3P830A OTP  
OVERVIEW  
The S3P830A single-chip CMOS microcontroller is the OTP (One Time Programmable) version of the S3C830A  
microcontroller. It has an on-chip OTP ROM instead of a masked ROM. The EPROM is accessed by serial data  
format.  
The S3P830A is fully compatible with the S3C830A, both in function in D.C. electrical characteristics and in pin  
configuration. Because of its simple programming requirements, the S3P830A is ideal as an evaluation chip for  
the S3C830A.  
22-1  
S3P830A OTP  
S3C830A/P830A  
P1.7/INT7  
P2.0/AD0  
P2.1/AD1  
P2.2/AD2  
P2.3/AD3  
P2.4  
1
2
3
4
5
6
7
8
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
AMIF  
VSSPLL  
VCOAM  
VCOFM  
VDDPLL1  
LVREN  
TEST3  
BIAS  
VLC0  
VLC1  
VLC2  
COM0  
COM1  
COM2  
COM3  
SEG0/P8.7  
SEG1/P8.6  
SEG2/P8.5  
SEG3/P8.4  
SEG4/P8.3  
SEG5/P8.2  
SEG6/P8.1  
SEG7/P8.0  
SEG8/P7.7  
SEG9/P7.6  
SEG10/P7.5  
SEG11/P7.4  
SEG12/P7.3  
SEG13/P7.2  
SEG14/P7.1  
P2.5  
P2.6  
P2.7  
AVDD  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
P3.0/BUZ  
P3.1/SCK0  
SDAT/P3.2/SO0  
SCLK/P3.3/SI0  
VDD/VDD  
S3P830A  
VSS/VSS  
100-QFP-1420C  
XOUT  
XIN  
VPP/TEST1  
TEST2  
P3.4/SCK1  
RESET/RESET  
P3.5/SO1  
P3.6/SI1  
P3.7  
P4.0/SEG39  
P4.1/SEG38  
P4.2/SEG37  
P4.3/SEG36  
P4.4/SEG35  
Figure 22-1. S3P830A Pin Assignments (100-Pin QFP Package)  
22-2  
S3C830A/P830A  
S3P830A OTP  
Table 22-1. Descriptions of Pins Used to Read/Write the EPROM  
During Programming  
Main Chip  
Pin Name  
P3.2/SO0  
Pin Name  
Pin No.  
I/O  
Function  
SDAT  
13  
I/O  
Serial data pin. Output port when reading and  
input port when writing. Can be assigned as a  
Input/push-pull output port.  
P3.3/SI0  
TEST1  
SCLK  
VPP  
14  
19  
I
I
Serial clock pin. Input only pin.  
Power supply pin for EPROM cell writing  
(indicates that OTP enters into the writing mode).  
When 12.5 V is applied, OTP is in writing mode  
and when 5 V is applied, OTP is in reading mode.  
(Option)  
22  
I
Chip Initialization  
RESET  
RESET  
VDD/VSS  
VDD/VSS  
15/16  
Logic power supply pin. VDD should be tied to  
+5 V during programming.  
Table 22-2. Comparison of S3P830A and S3C830A Features  
S3P830A  
Characteristic  
S3C830A  
Program Memory  
48-Kbyte EPROM  
3.0 V to 5.5 V  
48-Kbyte mask ROM  
3.0 V to 5.5 V  
Operating Voltage (VDD  
)
VDD = 5 V, VPP (TEST1) = 12.5 V  
OTP Programming Mode  
Pin Configuration  
100 QFP  
100 QFP  
EPROM Programmability  
User Program 1 time  
Programmed at the factory  
OPERATING MODE CHARACTERISTICS  
When 12.5 V is supplied to the VPP (TEST1) pin of the S3P830A, the EPROM programming mode is entered.  
The operating mode (read, write, or read protection) is selected according to the input signals to the pins listed in  
Table 21-3 below.  
Table 22-3. Operating Mode Selection Criteria  
VDD  
VPP (TEST1)  
Address(A15–A0)  
R/W  
Mode  
EPROM read  
REG/MEM  
5 V  
5 V  
0
0
0
1
0000H  
0000H  
0000H  
0E3FH  
1
0
1
0
12.5 V  
12.5 V  
12.5 V  
EPROM program  
EPROM verify  
EPROM read protection  
NOTE: "0" means Low level; "1" means High level.  
22-3  
S3P830A OTP  
S3C830A/P830A  
Instruction Clock  
1.125 MHZ  
Main Oscillator Frequency  
4.5 MHZ  
25 kHz  
400 kHz  
1
2
3
4
5
6
7
Supply Voltage (V)  
CPU Clock = 1/4n x oscillator frequency (n = 1,2,8,16)  
When PLL/IFC operation, operating voltage range is 4.5 V to 5.5 V.  
Figure 22-2. Operating Voltage Range  
22-4  
S3C830A/P830A  
DEVELOPMENT TOOLS  
23 DEVELOPMENT TOOLS  
OVERVIEW  
Samsung provides a powerful and easy-to-use development support system in turnkey form. The development  
support system is configured with a host system, debugging tools, and support software. For the host system, any  
standard computer that operates with MS-DOS as its operating system can be used. One type of debugging tool  
including hardware and software is provided: the sophisticated and powerful in-circuit emulator, SMDS2+, for  
S3C7, S3C9, S3C8 families of microcontrollers. The SMDS2+ is a new and improved version of SMDS2.  
Samsung also offers support software that includes debugger, assembler, and a program for setting options.  
SHINE  
Samsung Host Interface for In-Circuit Emulator, SHINE, is a multi-window based debugger for SMDS2+. SHINE  
provides pull-down and pop-up menus, mouse support, function/hot keys, and context-sensitive hyper-linked  
help. It has an advanced, multiple-windowed user interface that emphasizes ease of use. Each window can be  
sized, moved, scrolled, highlighted, added, or removed completely.  
SAMA ASSEMBLER  
The Samsung Arrangeable Microcontroller (SAM) Assembler, SAMA, is a universal assembler, and generates  
object code in standard hexadecimal format. Assembled program code includes the object code that is used for  
ROM data and required SMDS program control data. To assemble programs, SAMA requires a source file and  
an auxiliary definition (DEF) file with device specific information.  
SASM88  
The SASM88 is a relocatable assembler for Samsung's S3C8-series microcontrollers. The SASM88 takes a  
source file containing assembly language statements and translates into a corresponding source code, object  
code and comments. The SASM88 supports macros and conditional assembly. It runs on the MS-DOS operating  
system. It produces the relocatable object code only, so the user should link object file. Object files can be linked  
with other object files and loaded into memory.  
HEX2ROM  
HEX2ROM file generates ROM code from HEX file which has been produced by assembler. ROM code must be  
needed to fabricate a microcontroller which has a mask ROM. When generating the ROM code (.OBJ file) by  
HEX2ROM, the value "FF" is filled into the unused ROM area up to the maximum ROM size of the target device  
automatically.  
TARGET BOARDS  
Target boards are available for all S3C8-series microcontrollers. All required target system cables and adapters  
are included with the device-specific target board.  
23-1  
DEVELOPMENT TOOLS  
S3C830A/P830A  
IBM-PC AT or Compatible  
RS-232C  
SMDS2+  
PROM/OTP Writer Unit  
Target  
Application  
System  
RAM Break/Display Unit  
Trace/Timer Unit  
Probe  
Adapter  
TB830A  
Target  
Board  
POD  
SAM8 Base Unit  
Eva  
Chip  
Power Supply Unit  
Figure 23-1. SMDS Product Configuration (SMDS2+)  
23-2  
S3C830A/P830A  
DEVELOPMENT TOOLS  
TB830A TARGET BOARD  
The TB830A target board is used for the S3C830A/P830A microcontroller. It is supported with the SMDS2+,  
Smart Kit and OPENice.  
REV.1  
01, 06. 09  
TB830A  
To User_VCC  
u3  
J3  
On  
74NC11  
Dip1  
RESET  
25  
Idle  
+
Stop  
+
J101  
J102  
1
9
2
51  
52  
60  
70  
80  
90  
100  
TB830A  
160-QFP  
10 59  
20 69  
30 79  
40 89  
50 99  
19  
29  
39  
49  
1
SMDS2  
SMDS2+  
JP4  
SM1344A  
Figure 23-2. TB830A Target Board Configuration  
23-3  
DEVELOPMENT TOOLS  
S3C830A/P830A  
Table 23-1. Power Selection Settings for TB830A  
Operating Mode  
"To User_Vcc"  
Settings  
Comments  
The SMDS2/SMDS2+  
supplies VCC to the target  
To User_VCC  
Target  
System  
TB830A  
Off  
On  
VCC  
VSS  
board (evaluation chip) and  
the target system.  
VCC  
SMDS2/SMDS2+  
The SMDS2/SMDS2+  
supplies VCC only to the target  
To User_VCC  
Off  
External  
VCC  
Target  
System  
TB830A  
On  
board (evaluation chip).  
The target system must have  
its own power supply.  
VSS  
VCC  
SMDS2+  
NOTE: The following symbol in the "To User_Vcc" Setting column indicates the electrical short (off) configuration:  
23-4  
S3C830A/P830A  
DEVELOPMENT TOOLS  
SMDS2+ SELECTION (SAM8)  
In order to write data into program memory that is available in SMDS2+, the target board should be selected to  
be for SMDS2+ through a switch as follows. Otherwise, the program memory writing function is not available.  
Table 23-2. The SMDS2+ Tool Selection Setting  
"SW1" Setting  
SMDS2 SMDS2+  
Operating Mode  
R/W R/W  
SMDS2+  
Target  
System  
IDLE LED  
The Yellow LED is ON when the evaluation chip (S3E8300) is in idle mode.  
STOP LED  
The Red LED is ON when the evaluation chip (S3E8300) is in stop mode.  
23-5  
DEVELOPMENT TOOLS  
S3C8248/C8245/P8245/C8247/C8249/P8249  
J101  
J102  
P1.7  
P2.1  
P2.3  
P2.5  
P2.7  
P3.0  
P3.2  
User_VCC  
XOUT  
GND  
P3.4  
P3.5  
P3.7  
P4.1  
P4.3  
P4.5  
P4.7  
P5.1  
P5.3  
P5.5  
P5.7  
P6.1  
P6.3  
P6.5  
P6.7  
1
3
5
7
2
4
6
P2.0  
P2.2  
P2.4  
P2.6  
NC  
P3.1  
P3.3  
GND  
XIN  
GND  
DEMO_RSTB  
P3.6  
P4.0  
P4.2  
P4.4  
P4.6  
P5.0  
P5.2  
P5.4  
P5.6  
P6.0  
P6.2  
P6.4  
P6.5  
P7.0  
P7.1  
P7.3  
P7.5  
P7.7  
P8.1  
P8.3  
P8.5  
P8.7  
1
3
5
7
2
4
6
P7.2  
P7.4  
P7.6  
P8.0  
P8.2  
P8.4  
P8.6  
COM3  
COM1  
VLC2  
VLC0  
VDET  
VDD  
8
8
9
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
30  
32  
34  
36  
38  
40  
42  
44  
46  
48  
50  
9
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
30  
32  
34  
36  
38  
40  
42  
44  
46  
48  
50  
11  
13  
15  
17  
19  
21  
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
47  
49  
11  
13  
15  
17  
19  
21  
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
47  
49  
COM2  
COM0  
VLC1  
BIAS  
LVR_EN  
VCOFM  
GND  
FMIF  
EO0  
VCOAM  
AMIF  
NC  
EO1  
CE  
P0.1  
P0.2  
P0.5  
P0.7  
P1.1  
P1.3  
P1.5  
P0.0  
P0.2  
P0.4  
P0.6  
P1.0  
P1.2  
P1.4  
P1.6  
Figure 23-3. 50-Pin Connectors (J101, J102) for TB830A  
Target Board  
J101 J102  
51 52  
Target System  
J102  
51 52  
J101  
1
2
1
2
Part Name: (AS50D-A)  
Order Cods: SM6305  
49 50 99 100  
99 100 49 50  
Figure 23-4. S3C830A/P830A Probe Adapter Cables for 100-QFP Package  
23-6  
S3C8 SERIES MASK ROM ORDER FORM  
Product description:  
Device Number: S3C8__________- ___________(write down the ROM code number)  
Product Order Form:  
Package  
Pellet  
Wafer  
Package Type: __________  
Package Marking (Check One):  
Standard  
Custom A  
(Max 10 chars)  
Custom B  
(Max 10 chars each line)  
@ YWW  
Device Name  
@ YWW  
@ YWW  
Device Name  
SEC  
@ : Assembly site code, Y : Last number of assembly year, WW : Week of assembly  
Delivery Dates and Quantities:  
Deliverable  
ROM code  
Required Delivery Date  
Quantity  
Comments  
Not applicable  
See ROM Selection Form  
Customer sample  
Risk order  
See Risk Order Sheet  
Please answer the following questions:  
For what kind of product will you be using this order?  
+
New product  
Upgrade of an existing product  
Other  
Replacement of an existing product  
If you are replacing an existing product, please indicate the former product name  
(
)
+
What are the main reasons you decided to use a Samsung microcontroller in your product?  
Please check all that apply.  
Price  
Product quality  
Features and functions  
Delivery on time  
Development system  
Used same micom before  
Technical support  
Quality of documentation  
Samsung reputation  
Mask Charge (US$ / Won):  
Customer Information:  
____________________________  
Company Name:  
___________________  
Telephone number  
_________________________  
Signatures:  
________________________  
(Person placing the order)  
__________________________________  
(Technical Manager)  
(For duplicate copies of this form, and for additional ordering information, please contact your local  
Samsung sales representative. Samsung sales offices are listed on the back cover of this book.)  
S3C8 SERIES  
REQUEST FOR PRODUCTION AT CUSTOMER RISK  
Customer Information:  
Company Name:  
Department:  
Telephone Number:  
Date:  
________________________________________________________________  
________________________________________________________________  
__________________________  
__________________________  
Fax: _____________________________  
Risk Order Information:  
Device Number:  
S3C8________- ________ (write down the ROM code number)  
Package:  
Number of Pins: ____________  
Package Type: _____________________  
Intended Application:  
Product Model Number:  
________________________________________________________________  
________________________________________________________________  
Customer Risk Order Agreement:  
We hereby request SEC to produce the above named product in the quantity stated below. We believe our risk  
order product to be in full compliance with all SEC production specifications and, to this extent, agree to assume  
responsibility for any and all production risks involved.  
Order Quantity and Delivery Schedule:  
Risk Order Quantity:  
Delivery Schedule:  
_____________________ PCS  
Delivery Date (s)  
Quantity  
Comments  
Signatures:  
_______________________________  
(Person Placing the Risk Order)  
_______________________________________  
(SEC Sales Representative)  
(For duplicate copies of this form, and for additional ordering information, please contact your local  
Samsung sales representative. Samsung sales offices are listed on the back cover of this book.)  
S3C830A  
MASK OPTION SELECTION FORM  
Device Number:  
S3C8_______-________(write down the ROM code number)  
Attachment (Check one):  
Diskette  
PROM  
Customer Checksum:  
Company Name:  
________________________________________________________________  
________________________________________________________________  
________________________________________________________________  
Signature (Engineer):  
Please answer the following questions:  
+
Application (Product Model ID: _______________________)  
Audio  
Video  
Telecom  
LCD Databank  
Industrials  
Remocon  
Caller ID  
Home Appliance  
Other  
LCD Game  
Office Automation  
Please describe in detail its application  
(For duplicate copies of this form, and for additional ordering information, please contact your local  
Samsung sales representative. Samsung sales offices are listed on the back cover of this book.)  
S3P8 SERIES OTP FACTORY WRITING ORDER FORM (1/2)  
Product Description:  
Device Number: S3P8________-________(write down the ROM code number)  
Product Order Form:  
Package  
Pellet  
Wafer  
If the product order form is package:  
Package Type: _____________________  
Package Marking (Check One):  
Standard  
Custom A  
Custom B  
(Max 10 chars)  
(Max 10 chars each line)  
@ YWW  
@ YWW  
@ YWW  
Device Name  
SEC  
Device Name  
@ : Assembly site code, Y : Last number of assembly year, WW : Week of assembly  
Delivery Dates and Quantity:  
ROM Code Release Date  
Required Delivery Date of Device  
Quantity  
Please answer the following questions:  
+
What is the purpose of this order?  
New product development  
Upgrade of an existing product  
Other  
Replacement of an existing microcontroller  
If you are replacing an existing microcontroller, please indicate the former microcontroller name  
(
)
+
What are the main reasons you decided to use a Samsung microcontroller in your product?  
Please check all that apply.  
Price  
Product quality  
Features and functions  
Delivery on time  
Development system  
Used same micom before  
Technical support  
Quality of documentation  
Samsung reputation  
Customer Information:  
Company Name:  
___________________  
Telephone number  
_________________________  
Signatures:  
________________________  
(Person placing the order)  
__________________________________  
(Technical Manager)  
(For duplicate copies of this form, and for additional ordering information, please contact your local  
Samsung sales representative. Samsung sales offices are listed on the back cover of this book.)  
S3P830A  
OTP FACTORY WRITING ORDER FORM (2/2)  
Device Number:  
S3P8________-__________ (write down the ROM code number)  
Customer Checksums:  
Company Name:  
_______________________________________________________________  
________________________________________________________________  
________________________________________________________________  
Signature (Engineer):  
Read Protection (1):  
Yes  
No  
Please answer the following questions:  
+
+
Are you going to continue ordering this device?  
Yes No  
If so, how much will you be ordering? _________________pcs  
Application (Product Model ID: _______________________)  
Audio  
Video  
Telecom  
LCD Databank  
Industrials  
Remocon  
Caller ID  
Home Appliance  
Other  
LCD Game  
Office Automation  
Please describe in detail its application  
___________________________________________________________________________  
NOTES  
1. Once you choose a read protection, you cannot read again the programming code from the EPROM.  
2. OTP Writing will be executed in our manufacturing site.  
3. The writing program is completely verified by a customer. Samsung does not take on any responsibility for errors  
occurred from the writing program.  
(For duplicate copies of this form, and for additional ordering information, please contact your local  
Samsung sales representative. Samsung sales offices are listed on the back cover of this book.)  

相关型号:

S3C831B

8-Bit CMOS Microcontroller Revision 1
SAMSUNG

S3C831BXX-QX

Microcontroller, 8-Bit, MROM, SAM88RC CPU, 9MHz, CMOS, PQFP100
SAMSUNG

S3C831BXX-TX

Microcontroller, 8-Bit, MROM, SAM88RC CPU, 9MHz, CMOS, PQFP100
SAMSUNG

S3C8444

S3C8444 MICROCONTROLLER
SAMSUNG

S3C8444XX-QW

Microcontroller, 8-Bit, MROM, 18MHz, CMOS, PQFP80, 14 X 20 MM, QFP-80
SAMSUNG

S3C8444XX-TW

Microcontroller, 8-Bit, MROM, 18MHz, CMOS, PQFP80, 12 X 12 MM, TQFP-80
SAMSUNG

S3C8454

S3C8454 MICROCONTROLLER
SAMSUNG

S3C8454XX-QW

暂无描述
SAMSUNG

S3C8454XX-TW

Microcontroller, 8-Bit, MROM, SAM87RC CPU, 25MHz, CMOS, PQFP80, 12 X 12 MM, TQFP-80
SAMSUNG

S3C8465

S3C8465/C8469 MICROCONTROLLER
SAMSUNG

S3C8465XX-AQ

Microcontroller, 8-Bit, MROM, 12MHz, CMOS, PDIP64, 0.750 INCH, SDIP-64
SAMSUNG

S3C8469

S3C8465/C8469 MICROCONTROLLER
SAMSUNG