SA2005FPA [SAMES]

Three Phase Bidirectional Power/Energy Metering IC with Instantaneous Pulse Output; 三相双向功率/电能计量IC,具有瞬时脉冲输出
SA2005FPA
型号: SA2005FPA
厂家: SAMES    SAMES
描述:

Three Phase Bidirectional Power/Energy Metering IC with Instantaneous Pulse Output
三相双向功率/电能计量IC,具有瞬时脉冲输出

脉冲 光电二极管
文件: 总10页 (文件大小:109K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Three Phase Bidirectional Power/Energy  
Metering IC with Instantaneous Pulse Output  
SA2005F  
ssames  
FEATURES  
n
n
n
n
n
n
Operates over a wide temperature range  
n
n
n
Functionally compatible with the SA9105F with reduced  
external components  
Performs bidirectional one, two or three phase power and  
energymeasurement  
Meets the IEC 521/1036 Specification requirements for  
Class1ACWatthourmeters  
Uses current transformers for current sensing  
Easily adaptable to different signal levels  
Precision voltage reference on chip  
Precision oscillator on chip.  
Protected against ESD  
DESCRIPTION  
The SAMES SA2005F is an enhancement of the SA9105F. A  
precision oscillator and the loop capacitors are integrated on  
chip.  
Energy consumption is determined by integrating the power  
measurement over time.  
This innovate universal three phase power/energy metering  
integrated circuit is ideally suited for applications such as  
residential and industrial energy metering and control.  
The SAMES SA2005F three phase bidirectional power/energy  
metering integrated circuit generates pulse rate outputs for  
positive and negative energy directions. The frequency of the  
pulses is proportional to the measured power consumption.  
The SA2005F performs active power calculation.  
The SA2005F integrated circuit is available in 20 pin dual-in-  
line plastic (DIP-20), and 20 pin small outline (SOIC-20)  
package types.  
The method of calculation takes the power factor into account.  
VDD VSS  
PGM0  
PGM1  
IIN1  
IIP1  
I1  
X
X
X
IVN1  
V1  
POWER  
INTEGRATE  
AND  
IIN2  
IIP2  
FOUT  
I2  
TO  
PULSE  
RATE  
IVN2  
V2  
DIR  
AVERAGE  
IIN3  
IIP3  
I3  
IVN3  
V3  
GND  
REF  
TIMING & CONTROL  
OSC  
Dr-01570  
VREF  
TCLK  
TEST  
Figure 1: Block Diagram  
1/10  
SPEC-0042 (REV. 1)  
03-07-00  
SA2005F  
ssaammeess  
ELECTRICAL CHARACTERISTICS  
#
(V = 2.5V, V = -2.5V, over the temperature range -10°C to +70°C , unless otherwise specified.)  
SS  
DD  
Symbol  
Typ  
Parameter  
Min  
-25  
4.5  
Max  
+85  
5.5  
Unit  
Condition  
Operating temp. Range  
T
O
°C  
V
Supply Voltage  
V
DD  
- V  
SS  
I
DD  
mA  
Output unloaded  
10  
Supply Current  
1% - 100% of rated  
power  
Nonlinearity of Power  
Calculation  
-0.3  
-25  
-25  
+0.3  
%
µA  
µA  
Current Sensor Inputs (Diffferential)  
Input Current Range  
I
+25  
Peak value  
II  
Voltage Sensor Input (Asymmetrical)  
I
IV  
+25  
Peak value  
Input Current Range  
Pins FOUT, DIR  
V
V
OL  
V
V
I
= 5mA  
V -1  
DD  
V +1  
SS  
Output Low Voltage  
Output High Voltage  
OL  
OH  
I
OH  
= -2mA  
MODES 0, 1, 2  
Pulse Rate: FOUT  
Hz  
Hz  
0
0
f
P
64  
Specified linearity  
Min and Max limits  
200  
MODE 3  
f
P
0
0
1160  
3500  
Hz  
Hz  
Specified linearity  
Min and Max Limits  
Pin PGM0, PGM1, TEST, TCLK  
High Voltage  
V
V
V -1  
DD  
V
V
IH  
Low Voltage  
V +1  
SS  
IL  
With R = 24kW  
Pin VREF  
50  
connected to V  
-I  
45  
Ref. Current  
Ref. Voltage  
55  
µA  
V
SS  
R
1.1  
1.3  
Referred to V  
V
SS  
R
ABSOLUTE MAXIMUM RATINGS*  
Parameter  
Symbol  
Min  
-0.3  
-150  
-40  
Max  
Unit  
V
mA  
°C  
Supply Voltage  
V -V  
DD  
6.0  
SS  
Current on any pin  
Storage Temperature  
Operating Temperature  
I
PIN  
+150  
+125  
+85  
T
STG  
T
O
-40  
°C  
*Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress  
rating only. Functional operation of the device at these or any other condition above those indicated in the operational sections of  
this specification, is not implied. Exposure to Absolute Maximum Ratings for extended periods may affect device reliability.  
2/10  
3
http://www.sames.co.za  
SA2005F  
ssaammeess  
PIN DESCRIPTION  
Designation  
Description  
PIN  
Analog Ground. The voltage to this pin should be mid-way between V and V .  
SS  
16  
GND  
DD  
V
DD  
Positive Supply voltage.  
6
V
SS  
14  
Negative Supply voltage.  
The current into the A/D converter should be set at 14µA at nominal mains  
RMS  
17, 20, 3  
IVN1, IVN2, IVN3  
voltage. The voltage sense input saturates at an input current of ±25µA peak.  
Inputs from current sensors. The shunt resistor voltage from each channel is  
19, 18, 2, 1,  
5, 4  
IIN1, IIP1, IIN2, IIP2,  
converted to a current of 16µA at rated conditions. The current sense input  
RMS  
IIN3, IIP3  
saturates at an input current of ±25µA peak.  
This pin provides the connection for the reference current setting resistor.  
15  
7, 10  
8
VREF  
TCLK, TEST  
FOUT  
A 24kW resistor connected to V sets the optimum operating condition.  
SS  
Test inputs. For normal operation these pins must be connected to V .  
SS  
Pulse rate output. The pulse frequency is proportional to the sum of the power  
measured on all three phases. The pulse format also indicates the direction of  
energy flow.  
9
DIR  
Direction output. This output indicates the direction of energy flow.  
FOUT Pulse format Select. These inputs define the FOUT pulse width  
and format.  
12, 13  
PGM0, PGM1  
ORDERING INFORMATION  
IIP2  
1
20 IVN2  
Part Number  
SA2005FPA  
SA2005FSA  
Package  
DIP-20  
IIN2  
IIN1  
2
19  
SOIC-20  
IVN3  
IIP3  
3
18 IIP1  
IVN1  
17  
4
IIN3  
GND  
5
16  
15  
14  
13  
12  
11  
VREF  
VDD  
6
TEST  
VSS  
7
FOUT  
PGM1  
PGM0  
NC  
8
DIR  
9
TCLK  
10  
DR-01571  
Figure 2: Pin connections: Package: DIP-20, SOIC-20  
3/10  
http://www.sames.co.za  
SA2005F  
ssaammeess  
FUNCTIONAL DESCRIPTION  
The SAMES SA2005F is a CMOS mixed signal integrated  
circuit, which performs three phase power/energy calculations  
over a range of 1000:1, to an overall accuracy of better than  
Class 1.  
through clamping diodes, in conjunction with the amplifiers  
input configuration. The feedback loops from the outputs of the  
amplifiers A and A generate virtual shorts on the signal inputs.  
I
V
Exact duplications of the input currents are generated for the  
analogprocessingcircuitry.  
The SA2005F is functionally similar to the SA9105F. No  
external loop capacitors are required and an precision  
oscillator is integrated on chip.  
VoltageReferenceConnection(VREF)  
A bias resistor of 24k provides an optimum bias conditions on  
chip. Calibration of the SA2005F should be done on the  
voltage inputs of the device as described in Typical  
Applications.  
The integrated circuit includes all the required functions for 3-  
phase power and energy measurement such as oversampling  
A/D converters for the voltage and current sense inputs, power  
calculation and energy integration. Internal offsets are  
eliminated through the use of cancellation procedures.  
CurrentSenseInputs(IIN1, IIP1, IIN2, IIP2, IIN3, IIP3)  
At rated current the resistor values should be selected for input  
currents of 16µA . Referring to figure 5, the resistors R1 and  
RMS  
The SA2005F generates pulses with a frequency proportional  
to the power measured. The pulse rate follows the  
instantaneous power measured. The pulse frequency is  
proportionaltothetotalsumofthethreephases.  
R2 on current channel 1, resistors R3 and R4 on current  
channel 2 and resistors R5 and R6 on current channel 3, define  
the current level into the current sense inputs of the SA2005F.  
The current sense inputs saturates at an input current of ±25µA  
peak. Resistors R25, R26 and R27 are the current transformer  
termination resistors. The voltage drop across the termination  
resistors should be at least 20mV at rated conditions. Values  
forthecurrentsenseinputsarecalculatedasfollows:  
POWER CALCULATION  
In the application circuit (figure 5), the mains voltages from V1,  
V2 and V3, are converted to currents and applied to the voltage  
senseinputsIVP1, IVP2andIVP3.  
R =R =(I /16µA )xR /2  
RMS  
1
2
L
25  
R =R =(I /16µA )xR /2  
RMS  
3
4
L
26  
The current levels on the voltage sense inputs are derived from  
the mains voltages (3 x 230VAC) being divided down to 14V  
through voltage dividers. The resulting input currents into the  
R =R =(I /16µA )xR /2  
RMS  
5
6
L
27  
Where:  
A/D converters are 14µA through the resistors R8, R9 and  
RMS  
I =Linecurrent/CT-ratio  
L
R10.  
V
DD  
For the current sense inputs the voltage drop across the  
current transformers terminating resistors are converted to  
IIP  
currents of 16µA at rated conditions, by means of resistors  
RMS  
R1, R2 (Phase 1); R3, R4 (Phase 2) and R5, R6 (Phase 3). The  
signals providing the current information are applied to the  
currentsensorinputsIIN1, IIP1, IIN2, IIP2andIIN3, IIP3.  
V
V
SS  
CURRENT  
SENSOR  
INPUTS  
AI  
DD  
IIN  
The output frequency of the SA2005F energy metering  
integrated circuit at rated conditions is 64Hz on FOUT  
(PGM0=0, PGM1=1).  
V
SS  
V
DD  
IVP  
One pulse (measured in Watt second) correspond to an energy  
measuredof3xI  
xV  
/64Hz.  
VOLTAGE  
SENSOR  
INPUT  
RATED  
RATED  
V
SS  
A
V
ForamoredetaileddescriptionseetheInputSignalssection.  
INPUT SIGNALS  
GND  
Analog Input Configuration  
DR-01288  
The current and voltage sensor inputs are illustrated in figure 3.  
These inputs are protected against electrostatic discharge  
Figure 3: Analog Input Internal Configuration  
4/10  
http://www.sames.co.za  
SA2005F  
ssaammeess  
Voltage Sense Inputs (IVN1, IVN2, IVN3)  
The current into the voltage sense inputs (virtual ground)  
DIR as a logic 1. The DIR pin may be used to drive a LED in  
order to indicate reverse energy flow.  
should be set to 14µA  
at rated voltage conditions. The  
RMS  
individual mains voltages are divided down to 14V  
per  
RMS  
phase. The resistors R8, R9 and R10 set the current for the  
voltage sense inputs. The voltage sense inputs saturate at an  
input current of ±25µA peak.  
Frequency Output (FOUT)  
The sum of the measured power, from the three phases  
produce a pulse rate of 64Hz or 1160Hz (mode 3), at rated  
conditions on FOUT. The format of the pulse output signal,  
which provides power/energy and direction information is  
shown in figure 4. Refer to Pulse Programming Inputs for pulse  
widths.  
Pulse Programming Inputs (PGM0, PGM1)  
The pulse programming inputs PGM1 and PGM0 define the  
representation of energy measured by the device on FOUT.  
The table below shows the difference between the various  
modes.  
The following equation may be used for calculating the output  
frequency:  
Forward  
Pulse  
Reverse  
Pulse  
Frequency  
Mode PGM1 PGM0 at rated  
conditions  
f = 11.16 x FOUTX x ((I x I )+(I x I )+(I x I )) / 3 x I  
R
Width  
Width  
I1  
V1  
I2  
V2  
I3  
V3  
Where:  
FOUTX = Nominal rated frequency (64Hz/1160Hz)  
0
0
1
1
0
1
2
3
64Hz  
64Hz  
1.14ms  
1.14ms  
1.14ms  
71µs  
3.4ms  
1.14ms  
1.14ms  
71µs  
0
1
0
1
I , I , I = Input currents for current sensor inputs (16µA at rated  
I1 I2 I3  
line current)  
64Hz  
I , I , I = Input currents for voltage sensor inputs (14µA at  
V3  
V1  
V2  
1160Hz  
rated line voltage)  
I = Reference current (typically 50µA)  
R
Test Inputs (TCLK, TEST)  
An integrated anti-creep function ensures that no pulses are  
generated at zero line currents.  
The TEST and TCLK inputs are manufacturers test pins and  
must be connected to VSS in a metering application.  
ELECTROSTATIC DISCHARGE (ESD) PROTECTION  
The SA2005F integrated circuit's inputs/outputs are protected  
against ESD.  
OUTPUT SIGNALS  
Direction Indication (DIRO)  
The SA2005F indicates the measured energy flow direction on  
pin DIR. A logic 0 on pin DIR indicates reverse energy flow.  
Reverse energy flow is defined as the condition where the  
voltage sense input and current sense input are out of phase  
(greater than 90 degrees). Positive energy flow, when voltage  
sense and current sense input are in phase, is indicated on pin  
POWER CONSUMPTION  
The overall power consumption rating of the SA2005F  
integrated circuit is less than 50 mW with a 5V supply.  
MODE 0  
FOUT  
MODE1  
FOUT  
MODE2  
FOUT  
MODE3  
FOUT  
DIR  
DR-01582  
Note: Frequency of pulse rate in MODE 3 is 18 times higher than other modes  
Figure 4: FOUT options  
5/10  
http://www.sames.co.za  
SA2005F  
ssaammeess  
TYPICAL APPLICATION  
VOLTAGEDIVIDER  
In figure 5, the components required for the three phase  
power/energy metering section of a meter, is shown. The  
application uses current transformers for current sensing. The  
4-wire meter section is capable of measuring 3x230V/80A with  
precision better than Class 1.  
The voltage divider is calculated for a voltage drop of 14V.  
Equationsforthevoltagedividerinfigure5are:  
RA=R16+R19+R22  
RB=R8||(R13+P1)  
Combiningthetwoequationsgives:  
The most important external components for the SA2005F  
integrated circuit are the current sense resistors, the voltage  
sense resistors as well as the bias setting resistor.  
(RA+RB)/230V=RB/14V  
A 5k trimpot is used in each of voltage channel for meter  
calibration. The center position of the pot is used in the  
calculations. P1 = 2.5k and values for resistors R13 = 22k and  
R8=1Mischosen.  
BIAS RESISTOR  
R7 defines all on-chip and reference currents. With R7=24kW,  
optimum conditions are set. Device calibration is done on the  
voltage inputs of the device.  
Substitutingthevaluesresultin:  
RB=23.9k  
RA=RBx(230V/14V-1)  
RA=368.9k.  
CT TERMINATION RESISTOR  
The voltage drop across the CT termination resistor at rated  
current should be at least 20mV. The CTs used have low  
phase shift and a ratio of 1:2500.The CT is terminated with a  
2.7W resistor giving a voltage drop across the termination  
resistor 864mV at rated conditions (Imax for the meter).  
Resistor values of R16, R19 and R22 is chosen to be 120k,  
120kand130k.  
CURRENT SENSE RESISTORS  
The three voltage channels are identical so R14= R15= R16 =  
R17=R18=R19andR20=R21=R22.  
The resistors R1 and R2 define the current level into the  
current sense inputs of phase one of the device. The resistor  
values are selected for an input current of 16µA on the current  
inputs at rated conditions.  
According to equation described in the Current Sense inputs  
section:  
R1 = R2 = (I / 16µA ) x R / 2  
SH  
L
=80A/2500/1Ax2.7W /2  
=2.7kW  
I =Linecurrent/CTRatio  
L
The three current channels are identical so R1 = R2 = R3 = R4  
=R5=R6.  
6/10  
http://www.sames.co.za  
NEUTRAL  
R20  
R17  
R14  
R15  
R16  
GND  
V3 In  
R12  
R11  
R13  
P3  
P2  
P1  
R18  
R21  
V2 In  
R19  
R22  
V1In  
U1  
R1  
CT1  
CT2  
CT3  
19  
16  
17  
20  
3
IIN1  
GND  
IVN1  
IVN2  
IVN3  
GND  
C5  
R25  
R8  
R2  
18  
IIP1  
R9  
C4  
GND  
R3  
R10  
2
C3  
IIN2  
R26  
VDD  
R28  
D1  
9
DIR  
R4  
1
IIP2  
GND  
VSS  
R29  
R5  
D2  
5
8
IIN3  
FOUT  
VDD  
R27  
VDD  
13  
12  
10  
PGM1  
PGM0  
TCLK  
TEST  
VDD  
R6  
4
IIP3  
R23  
C2  
GND  
R7  
15  
V3 Out  
V2 Out  
V1 Out  
VREF  
GND  
7
6
C1  
C6  
R24  
14  
VSS  
Dr-01572  
VSS  
SA2002F  
VSS  
VSS  
SA2005F  
ssaammeess  
Parts List for Application Circuit: Figure 5  
Symbol  
Description  
Detail  
DIP-20/SOIC-20  
Note 1  
U1  
SA2005F  
Resistor, 2.7k, 1/4W, 1% metal  
Resistor, 2.7k, 1/4W, 1% metal  
Resistor, 2.7k, 1/4W, 1% metal  
Resistor, 2.7k, 1/4W, 1% metal  
Resistor, 2.7k, 1/4W, 1% metal  
Resistor, 2.7k, 1/4W, 1% metal  
Resistor, 24k, 1/4W, 1%, metal  
Resistor, 1M, 1/4W, 1%, metal  
Resistor, 1M, 1/4W, 1%, metal  
Resistor, 1M, 1/4W, 1%, metal  
Resistor, 22k, 1/4W, 1%, metal  
Resistor, 22k, 1/4W, 1%, metal  
Resistor, 22k, 1/4W, 1%, metal  
R1  
R2  
Note 1  
R3  
Note 1  
R4  
Note 1  
R5  
Note 1  
R6  
Note 1  
R7  
R8  
R9  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
R18  
R19  
R20  
Resistor, 120k, 1/4W, 1%, metal  
Resistor, 120k, 1/4W, 1%, metal  
Resistor, 120k, 1/4W, 1%, metal  
Resistor, 120k, 1/4W, 1%, metal  
Resistor, 120k, 1/4W, 1%, metal  
Resistor, 120k, 1/4W, 1%, metal  
Resistor, 130k, 1/4W, 1%, metal  
Resistor, 130k, 1/4W, 1%, metal  
R21  
R22  
R23  
R24  
R25  
R26  
R27  
P1  
Resistor, 130k, 1/4W, 1%, metal  
Resistor, 1k, 1/4W, 1%, metal  
Resistor, 1k, 1/4W, 1%, metal  
Resistor, 2.7R, 1/4W, 1%, metal  
Resistor, 2.7R, 1/4W, 1%, metal  
Resistor, 2.7R, 1/4W, 1%, metal  
Trim pot, 5k, Multi turn  
Note 1  
Note 1  
Note 1  
Trim pot, 5k, Multi turn  
P2  
P2  
Note 1  
Trim pot, 5k, Multi turn  
C1  
Capacitor, 220nF  
C2  
Capacitor, 220nF  
Capacitor, 820nF  
C3  
Note 2  
Note 2  
Note 2  
Note 3  
C4  
Capacitor, 820nF  
C5  
Capacitor, 820nF  
C6  
Capacitor, 820nF  
LED1  
LED2  
CT1  
CT2  
CT3  
3mm Light emitting diode  
3mm Light emitting diode  
Current Transformer, TZ76  
Current Transformer, TZ76  
Current Transformer, TZ76  
Note 1: Resistor (R1 to R6) values are dependant on the selection of the termination resistors (R25 to R27) and CT combination.  
Note 2: Capacitor values may be selected to compensate for phase errors caused by the current transformers.  
Note 3: Capacitor C6 to be positioned as close as possible to supply pins V and V of U1 as possible.  
DD  
SS  
8/10  
http://www.sames.co.za  
SA2005F  
ssaammeess  
NOTES:  
9/10  
http://www.sames.co.za  
SA2005F
ssaammeess  
DISCLAIMER:  
The information contained in this document is confidential and proprietary to South African Micro-Electronic Systems (Pty) Ltd  
("SAMES") and may not be copied or disclosed to a third party, in whole or in part, without the express written consent of SAMES.  
The information contained herein is current as of the date of publication; however, delivery of this document shall not under any  
circumstances create any implication that the information contained herein is correct as of any time subsequent to such date.  
SAMES does not undertake to inform any recipient of this document of any changes in the information contained herein, and  
SAMES expressly reserves the right to make changes in such information, without notification, even if such changes would render  
information contained herein inaccurate or incomplete. SAMES makes no representation or warranty that any circuit designed by  
reference to the information contained herein, will function without errors and as intended by the designer.  
Any sales or technical questions may be posted to our e-mail address below:  
energy@sames.co.za  
For the latest updates on datasheets, please visit our web site:  
http://www.sames.co.za.  
SOUTH AFRICAN MICRO-ELECTRONIC SYSTEMS  
DIVISION OF LABAT TECHNOLOGIES (PTY) LTD  
Tel: (012) 333-6021  
Tel: Int +27 12 333-6021  
Fax: (012) 333-8071  
Fax: Int +27 12 333-8071  
33 ELAND STREET  
KOEDOESPOORT INDUSTRIAL AREA  
PRETORIA  
P O BOX 15888  
33 ELAND STREET  
LYNN EAST 0039  
REPUBLIC OF SOUTH AFRICA  
REPUBLIC OF SOUTH AFRICA  
10/10  
http://www.sames.co.za  

相关型号:

SA2005FSA

Three Phase Bidirectional Power/Energy Metering IC with Instantaneous Pulse Output
SAMES

SA2005M

Pin Selectable Three Phase Power / Energy Metering IC for Stepper Motor / Impulse Counter Applications with Anti Tamper Features
SAMES

SA2005MPA

Pin Selectable Three Phase Power / Energy Metering IC for Stepper Motor / Impulse Counter Applications with Anti Tamper Features
SAMES

SA2005MSA

Pin Selectable Three Phase Power / Energy Metering IC for Stepper Motor / Impulse Counter Applications with Anti Tamper Features
SAMES

SA2005P

Programmable Three Phase Power / Energy Metering IC for Stepper Motor / Impulse Counter Applications
SAMES

SA2005PPA

Programmable Three Phase Power / Energy Metering IC for Stepper Motor / Impulse Counter Applications
SAMES

SA2005PPA

Analog Circuit
A1PROS

SA2005PSA

Programmable Three Phase Power / Energy Metering IC for Stepper Motor / Impulse Counter Applications
SAMES

SA2005PSA

Analog Circuit
A1PROS

SA2007H

Single Phase Bidirectional Dual Element Power/Energy Metering IC with Pulse Output
SAMES

SA2007HPA

Single Phase Bidirectional Dual Element Power/Energy Metering IC with Pulse Output
SAMES

SA2007HSA

Single Phase Bidirectional Dual Element Power/Energy Metering IC with Pulse Output
SAMES