BV1HAL85EFJ [ROHM]

BV1HAL85EFJ是1个电路内置了Nch MOSFET的高边负载开关,输入电压范围为8.0V~32.0V。内置过电流保护功能、过热保护功能、软启动功能、低电压时输出OFF功能,具备过电流和过热的错误FLAG通知引脚。单芯片即可实现电源线的电源管理。;
BV1HAL85EFJ
型号: BV1HAL85EFJ
厂家: ROHM    ROHM
描述:

BV1HAL85EFJ是1个电路内置了Nch MOSFET的高边负载开关,输入电压范围为8.0V~32.0V。内置过电流保护功能、过热保护功能、软启动功能、低电压时输出OFF功能,具备过电流和过热的错误FLAG通知引脚。单芯片即可实现电源线的电源管理。

开关 软启动 过电流保护
文件: 总43页 (文件大小:2028K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
Load Switch IC  
34 V Breakdown Voltage  
Variable Overcurrent Detection  
1ch Load Switch  
BV1HAL85EFJ  
General Description  
Key Specifications  
BV1HAL85EFJ is a single Nch MOSFET high side load  
switch applicable to 8.0 V to 32.0 V input. It has a built-in  
overcurrent protection, Thermal shutdown protection,  
soft-start function and low power output OFF function. It  
is equipped with error flag notification pin to indicate  
thermal shutdown and overcurrent. Single chip power  
supply management is possible.  
Input Voltage Range:  
Output ON Resistance:  
Variable Overcurrent Detection: 2.5 A to 6.5 A (Typ)  
Standby Current:  
Operating Temperature Range:  
8.0 V to 32.0 V  
85 mΩ (Typ)  
0.5 μA (Max)  
-40 °C to +85 °C  
Package  
W (Typ) x D (Typ) x H (Max)  
HTSOP-J8  
4.9 mm x 6.0 mm x 1.0 mm  
Features  
Dual TSD(Note 1)  
Low On-Resistance Single Nch MOSFET Switch  
Variable Output Soft-Start Time  
Overcurrent Protection Function (Latch-Off)  
Thermal Shutdown Protection Function (TSD)  
Low Voltage Output OFF Function (UVLO)  
Error Flag Notification Pin  
(Note 1) This IC has thermal shutdown function (Junction temperature  
detect) and ΔTj Protection function (Power-MOS  
steep temperature rising detect).  
Applications  
Multifunction Machine and TV  
Overcurrent Monitoring of Various Power Lines and  
Power Management  
Application Circuit  
12 V / 24 V  
CIN = 1 µF  
IN  
OUT  
OUT  
SS  
RSS  
COUT  
ILIM  
GND  
FLAG  
Load  
RLIM  
N.C.  
EN  
10 kΩ to  
100 kΩ  
Product structure : Silicon integrated circuit This product has no designed protection against radioactive rays.  
www.rohm.com  
TSZ02201-0G6G1G300040-1-2  
11.May.2020 Rev.001  
© 2020 ROHM Co., Ltd. All rights reserved.  
1/40  
TSZ22111 14 001  
 
 
 
 
 
 
BV1HAL85EFJ  
Table of Contents  
General Description........................................................................................................................................................................1  
Features..........................................................................................................................................................................................1  
Applications ....................................................................................................................................................................................1  
Key Specifications ..........................................................................................................................................................................1  
Package..........................................................................................................................................................................................1  
Application Circuit...........................................................................................................................................................................1  
Table of Contents............................................................................................................................................................................2  
Pin Configuration ............................................................................................................................................................................3  
Pin Description................................................................................................................................................................................3  
Block Diagram ................................................................................................................................................................................3  
Definition.........................................................................................................................................................................................4  
Absolute Maximum Ratings ............................................................................................................................................................5  
Thermal Resistance........................................................................................................................................................................6  
Recommended Operating Conditions...........................................................................................................................................10  
Electrical Characteristics...............................................................................................................................................................10  
Typical Performance Curves.........................................................................................................................................................11  
Measurement Setup .....................................................................................................................................................................17  
Timing Chart .................................................................................................................................................................................19  
Function Description.....................................................................................................................................................................20  
1.Truth Table .............................................................................................................................................................................20  
2. Overcurrent Protection ..........................................................................................................................................................21  
2.1 Latch-off due to Fixed Overcurrent Limit (IOCD1)...............................................................................................................21  
2.2 Duration of Fixed Overcurrent Limit (IOCD1) is less than tBLANK .........................................................................................23  
2.3 Latch-off due to Variable Overcurrent Detection (IOCD2)...................................................................................................25  
2.4 Duration of Variable Overcurrent Detection (IOCD2) is less than tBLANK..............................................................................25  
2.5 Setting Variable Overcurrent Detection............................................................................................................................26  
3. Setting Soft Start Function ....................................................................................................................................................27  
4. Thermal Shutdown Function, ΔTj Protection Function...........................................................................................................30  
4.1 Thermal Shutdown Function............................................................................................................................................30  
4.2 ΔTj Protection Function....................................................................................................................................................30  
4.3 The case of connecting the capacitance load..................................................................................................................31  
5. Output Load is Open.............................................................................................................................................................34  
I/O Equivalence Circuit .................................................................................................................................................................35  
Operational Notes.........................................................................................................................................................................36  
Ordering Information.....................................................................................................................................................................38  
Marking Diagram ..........................................................................................................................................................................38  
Physical Dimension and Packing Information...............................................................................................................................39  
Revision History............................................................................................................................................................................40  
www.rohm.com  
TSZ02201-0G6G1G300040-1-2  
© 2020 ROHM Co., Ltd. All rights reserved.  
2/40  
TSZ22111 15 001  
11.May.2020 Rev.001  
 
BV1HAL85EFJ  
Pin Configuration  
HTSOP-J8  
(TOP VIEW)  
Pin Description  
Pin No.  
Pin Name  
SS  
Function  
1
2
3
4
Variable soft-start time setting pin  
ILIM  
Variable overcurrent detection setting pin  
Ground pin  
GND  
FLAG  
Error flag output pin (Active low when TSD and OCD is detected.)  
Enable pin (Pull-down resistor is connected internally.)  
Active High to turn on the switch  
5
EN  
6
N.C.  
OUT  
IN  
Not connected pin(Note 1)  
Switch output pin  
7,8  
EXP-PAD  
Power input pin, switch input pin  
(Note 1) GND short connection is recommended for the N.C. pin. It can also be open since the N.C. pin is not connected inside the IC.  
Block Diagram  
IN  
Gate Control  
Control  
Clamp  
CLK  
Charge  
Pump  
Power MOS FET  
Gate Driver  
OUT  
SS  
EN  
lnternal  
supply  
Control  
Logic  
Protect  
TSD  
FLAG  
UVLO  
for TSD,OCP  
ILIM  
OCD  
GND  
www.rohm.com  
TSZ02201-0G6G1G300040-1-2  
11.May.2020 Rev.001  
© 2020 ROHM Co., Ltd. All rights reserved.  
3/40  
TSZ22111 15 001  
BV1HAL85EFJ  
Definition  
IIN  
IN  
VDS VIN  
IEN  
EN  
IOUT  
OUT  
VOUT  
IFLAG  
ISS  
FLAG  
SS  
VFLAG  
IILIM  
ILIM  
GND  
IGND  
Figure 1. Voltage and Current Definition  
www.rohm.com  
TSZ02201-0G6G1G300040-1-2  
11.May.2020 Rev.001  
© 2020 ROHM Co., Ltd. All rights reserved.  
4/40  
TSZ22111 15 001  
BV1HAL85EFJ  
Absolute Maximum Ratings (Ta = 25 °C)  
Item  
Symbol  
Rating  
unit  
Power Supply Output Voltage  
Power Supply Voltage (IN)  
Storage Temperature Range  
Maximum Junction Temperature  
EN Input Voltage  
VDS  
VIN  
-0.3 to Internal limit(Note 1)  
-0.3 to +34  
-55 to +150  
150  
V
V
Tstg  
Tjmax  
VEN  
°C  
°C  
V
-0.3 to +7.0  
-0.3 to +7.0  
Internal limit(Note 2)  
10  
FLAG Output Voltage  
VFLAG  
IOUT  
V
Output Current  
A
FLAG Output Current  
IFLAG  
mA  
Active Clamp Capability (single pulse)  
46.0  
mJ  
EAS  
Tj(START) = 25 °C, IOUT(START) = 1 A(Note 3)(Note 4)  
Caution 1: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit  
between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is operated  
over the absolute maximum ratings.  
Caution 2: Should by any chance the maximum junction temperature rating be exceeded the rise in temperature of the chip may result in deterioration of the  
properties of the chip. In case of exceeding this absolute maximum rating, design a PCB with thermal resistance taken into consideration by increasing  
board size and copper area so as not to exceed the maximum junction temperature rating.  
(Note 1) Internal limit according to output clamp voltage  
(Note 2) Internal limit according to fixed overcurrent limit  
(Note 3) This is the maximum value of active clamp tolerance (single pulse) under the conditions of IOUT(START) = 1 A, VIN = 24 V.  
The OUT pin potential drops less than 0 V during turned off when L load is connected in the OUT pin.  
The energy at this time is consumed in BV1HAL85EFJ. This energy is expressed in the equation below.  
× ꢁ푂푈푇ꢂ푆푇퐴ꢃ푇)  
퐼푁  
퐷푆  
ꢀ  
퐴푆 = 퐷푆  
×
× [  
× 푙푛 (1 −  
ꢄ + ꢁ푂푈푇ꢂ푆푇퐴ꢃ푇)]  
ꢀ  
푉 − 퐷푆  
퐼푁  
Following equation simplifies under the assumption of RL = 0 Ω.  
1
2
퐼푁  
퐴푆  
=
× 퐿 × ꢁ푂푈푇ꢂ푆푇퐴ꢃ푇)× ꢂ 1 −  
)
퐼푁  
퐷푆  
(Note 4) Not 100 % tested.  
www.rohm.com  
TSZ02201-0G6G1G300040-1-2  
11.May.2020 Rev.001  
© 2020 ROHM Co., Ltd. All rights reserved.  
5/40  
TSZ22111 15 001  
BV1HAL85EFJ  
Thermal Resistance(Note 1)  
Parameter  
Symbol  
Typ  
Unit  
Condition  
HTSOP-J8  
(Note 2)  
123.1  
38.3  
27.0  
°C/W  
°C/W  
°C/W  
1s  
2s  
Between Junction and Surroundings Temperature  
Thermal Resistance  
(Note 3)  
(Note 4)  
θJA  
2s2p  
(Note 1) The thermal impedance is based on JESD51-2A (Still-Air) standard. It is used in the chip of BV1HAL85EFJ.  
(Note 2) JESD51-3 standard FR4 114.3 mm x 76.2 mm x 1.57 mm 1-layer (1s)  
(Top copper foil: ROHM recommended Footprint + wiring to measure, 2 oz. copper.)  
(Note 3) JESD51-5 standard FR4 114.3 mm x 76.2 mm x 1.60 mm 2-layers (2s)  
(Top copper foil: ROHM recommended Footprint + wiring to measure / Copper foil area on the reverse side of PCB: 74.2 mm x 74.2 mm,  
copper (top & reverse side) 2 oz.)  
(Note 4) JESD51-5/- 7 standard FR4 114.3 mm x 76.2 mm x 1.60 mm 4-layers (2s2p)  
(Top copper foil: ROHM recommended Footprint + wiring to measure / 2 inner layers and copper foil area on the reverse side of PCB: 74.2 mm x 74.2 mm,  
copper (top & reverse side/inner layers) 2 oz./1 oz.)  
PCB Layout 1 Layer (1s)  
Figure 2. PCB Layout 1 Layer (1s)  
Dimension  
Board Finish Thickness  
Board Dimension  
Value  
1.57 mm ± 10 %  
76.2 mm x 114.3 mm  
FR4  
Board Material  
Copper Thickness (Top/Bottom Layers)  
Copper Foil Area Dimension  
0.070 mm (Cu : 2 oz)  
Footprint / 100 mm2 / 600 mm2 / 1200 mm2  
www.rohm.com  
TSZ02201-0G6G1G300040-1-2  
11.May.2020 Rev.001  
© 2020 ROHM Co., Ltd. All rights reserved.  
6/40  
TSZ22111 15 001  
BV1HAL85EFJ  
Thermal Resistance continued  
PCB Layout 2 Layers (2s)  
Figure 3. PCB Layout 2 Layers (2s)  
Dimension  
Value  
1.60 mm ± 10 %  
76.2 mm x 114.3 mm  
FR4  
Board Finish Thickness  
Board Dimension  
Board Material  
Copper Thickness (Top/Bottom Layers)  
Thermal Vias Separation / Diameter  
0.070 mm (Cu +Plating)  
1.2 mm / 0.3 mm  
www.rohm.com  
TSZ02201-0G6G1G300040-1-2  
11.May.2020 Rev.001  
© 2020 ROHM Co., Ltd. All rights reserved.  
7/40  
TSZ22111 15 001  
BV1HAL85EFJ  
Thermal Resistance continued  
PCB Layout 4 Layers (2s2p)  
Figure 4. PCB Layout 4 Layers (2s2p)  
Dimension  
Value  
1.60 mm ± 10 %  
76.2 mm x 114.3 mm  
FR4  
Board Finish Thickness  
Board Dimension  
Board Material  
Copper Thickness (Top/Bottom Layers)  
Copper Thickness (Inner Layers)  
Thermal Vias Separation / Diameter  
0.070 mm (Cu +Plating)  
0.035 mm  
1.2 mm / 0.3 mm  
www.rohm.com  
TSZ02201-0G6G1G300040-1-2  
11.May.2020 Rev.001  
© 2020 ROHM Co., Ltd. All rights reserved.  
8/40  
TSZ22111 15 001  
BV1HAL85EFJ  
Thermal Resistance continued  
Transient Thermal Resistance (Single Pulse)  
1000  
100  
10  
1
1s footprint  
2s  
2s2p  
0
0.0001 0.001  
0.01  
0.1  
1
10  
100  
1000  
Pulse Time [s]  
Figure 5. θJA vs Pulse Time  
Thermal Resistance (θJA vs Copper foil area - 1s)  
140  
120  
100  
80  
60  
40  
20  
0
0
200  
400  
600  
800  
1000  
1200  
Copper Foil Area (1s) [mm2]  
Figure 6. θJA vs Copper Foil Area (1s)  
www.rohm.com  
TSZ02201-0G6G1G300040-1-2  
11.May.2020 Rev.001  
© 2020 ROHM Co., Ltd. All rights reserved.  
9/40  
TSZ22111 15 001  
BV1HAL85EFJ  
Recommended Operating Conditions  
Parameter  
Power Supply(Note 1)  
Operating Temperature  
Symbol  
Min  
Typ  
Max  
Unit  
VIN  
8.0  
-40  
-
-
32.0  
+85  
V
Topr  
°C  
(Note 1) Do not exceed the maximum junction temperature.  
Electrical Characteristics (Unless otherwise specified VIN = 8.0 V to 32.0 V, Tj = -40 °C to +85 °C, RLIM = 100 kΩ)  
Parameter  
[Power Supply]  
Symbol  
Min  
Typ  
Max  
Unit  
Condition  
VIN = 24 V, VEN = 0 V,  
Tj = 25 °C  
VIN = 24 V, VEN = 0 V,  
Tj = 25 °C  
Standby Current  
Operating Current  
ISTB  
ICC  
-
-
-
0.5  
µA  
2.00  
3.50  
mA  
UVLO Detection Voltage  
UVLO Hysteresis Voltage  
[Input (VEN)]  
VUVLO  
-
-
6.0  
1.3  
V
V
VUVHYS  
0.5  
0.9  
EN High Voltage  
VENH  
VENL  
VENHYS  
IENH  
2.1  
-
-
-
-
V
V
EN Low Voltage  
0.9  
0.80  
100  
+1  
EN Hysteresis Voltage  
EN High Input Current  
EN Low Input Current  
[Power MOS Output]  
Output ON Resistance  
0.10  
-
0.45  
50  
-
V
μA  
μA  
VEN = 5 V  
VEN = 0 V  
IENL  
-1  
RON  
ILSW  
-
-
85  
-
120  
0.5  
mΩ  
VEN = 5 V, Tj = 25 °C  
VEN = 0 V, VOUT = 0 V,  
Tj = 25 °C  
Output Leakage Current  
µA  
VIN = 24 V, Tj = 25 °C  
V/ms RSS = 100 kΩ, RL = 100 Ω,  
VOUT:20 %80 %  
Output ON Slew Rate  
SRON  
SROFF  
tON  
0.45  
-
0.75  
0.18  
30  
1.05  
0.60  
42  
VIN = 24 V, Tj = 25 °C  
RSS = 100 kΩ, RL = 100 Ω,  
VOUT:80 %20 %  
VIN = 24 V, Tj = 25 °C  
RSS = 100 , RL = 100 Ω,  
VEN:50 %VOUT:80 %  
VIN = 24 V, Tj = 25 °C  
RSS = 100 kΩ, RL = 100 Ω,  
VEN:50 %VOUT:20 %  
VEN = 0 V,  
Output OFF Slew Rate  
Output ON Delay Time  
V/μs  
18  
ms  
Output OFF Delay Time  
Output Clamp Voltage  
tOFF  
-
180  
50  
450  
55  
μs  
VDSCLP  
45  
V
IOUT = 10 mA  
[FLAG]  
FLAG Low Output Voltage  
FLAG Pin Leakage Current  
VFLAG  
ILFLAG  
-
-
-
-
0.5  
1
V
IFLAG = 1 mA  
VFLAG = 5 V  
µA  
The time from overcurrent  
detection to VFLAG = Low.  
FLAG Output Delay Time  
tBLANK  
15  
30  
45  
ms  
[Diagnostic Functions]  
Thermal Shutdown Detection(Note 1)  
Thermal Shutdown Hysteresis(Note 1)  
ΔTj Protection(Note 1)  
TTSD  
TTSDHYS  
TDTJ  
150  
-
175  
15  
200  
°C  
°C  
°C  
°C  
A
-
-
-
105  
30  
ΔTj Protection Hysteresis(Note 1)  
TDTJHYS  
IOCD1  
-
-
Fixed Overcurrent Limit  
8.7  
3.0  
13.0  
4.5  
17.3  
6.1  
Tj = 25 °C  
Variable Overcurrent Detection  
IOCD2  
A
RLIM = 100 kΩ, Tj = 25 °C  
(Note 1) Not 100 % tested.  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0G6G1G300040-1-2  
11.May.2020 Rev.001  
10/40  
BV1HAL85EFJ  
Typical Performance Curves  
(Unless otherwise specified VIN = 24 V, VEN = 5 V, Tj = 25 °C)  
0.6  
0.4  
0.2  
0
0.6  
0.4  
0.2  
0
-0.2  
-0.2  
-0.4  
-0.6  
-0.4  
VEN = 0 V  
VEN = 0 V  
-0.6  
0
5
10  
15  
20  
25  
30  
35  
-50  
-25  
0
25  
50  
75  
100  
Supply Voltage: VIN [V]  
Junction Temperature: Tj [°C]  
Figure 7. Standby Current vs Supply Voltage  
Figure 8. Standby Current vs Junction Temperature  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
VEN = 5 V  
VEN = 5 V  
0
5
10  
15  
20  
25  
30  
35  
-50  
-25  
0
25  
50  
75  
100  
Supply Voltage: VIN [V]  
Junction Temperature: Tj [°C]  
Figure 9. Operating Current vs Supply Voltage  
Figure 10. Operating Current vs Junction Temperature  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0G6G1G300040-1-2  
11.May.2020 Rev.001  
11/40  
BV1HAL85EFJ  
Typical Performance Curves continued  
(Unless otherwise specified VIN = 24 V, VEN = 5 V, Tj = 25 °C)  
5
4
3
2
1
0
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Junction Temperature: Tj [°C]  
Junction Temperature: Tj [°C]  
Figure 11. UVLO Detection Voltage vs Junction Temperature  
Figure 12. UVLO Hysteresis Voltage vs Junction Temperature  
4.0  
3.5  
3.0  
2.5  
150  
125  
100  
VENH  
2.0  
1.5  
1.0  
0.5  
0.0  
75  
IENH  
50  
VENL  
25  
IENL  
0
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Junction Temperature: Tj [°C]  
Junction Temperature: Tj [°C]  
Figure 13. EN Voltage vs Junction Temperature  
Figure 14. EN Input Current vs Junction Temperature  
www.rohm.com  
TSZ02201-0G6G1G300040-1-2  
11.May.2020 Rev.001  
© 2020 ROHM Co., Ltd. All rights reserved.  
12/40  
TSZ22111 15 001  
BV1HAL85EFJ  
Typical Performance Curves continued  
(Unless otherwise specified VIN = 24 V, VEN = 5 V, Tj = 25 °C)  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
160  
140  
120  
100  
80  
60  
40  
20  
0
-50  
-25  
0
25  
50  
75  
100  
0
5
10  
15  
20  
25  
30  
35  
Junction Temperature: Tj [°C]  
Supply Voltage: VIN [V]  
Figure 15. EN Hysteresis Voltage vs Junction Temperature  
Figure 16. Output ON Resistance vs Supply Voltage  
200  
180  
160  
140  
120  
100  
80  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
60  
40  
20  
0
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Junction Temperature: Tj [°C]  
Junction Temperature: Tj [°C]  
Figure 17. Output ON Resistance vs Junction Temperature  
Figure 18. Output Leakage Current vs Junction Temperature  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0G6G1G300040-1-2  
13/40  
11.May.2020 Rev.001  
BV1HAL85EFJ  
Typical Performance Curves continued  
(Unless otherwise specified VIN = 24 V, VEN = 5 V, Tj = 25 °C)  
1.20  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
RSS = 100 kΩ  
RL = 100 Ω  
RSS = 100 kΩ  
RL = 100 Ω  
1.05  
0.90  
0.75  
0.60  
0.45  
0.30  
0.15  
0.00  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Junction Temperature: Tj [°C]  
Junction Temperature: Tj [°C]  
Figure 19. Output ON Slew Rate vs Junction  
Temperature  
Figure 20. Output OFF Slew Rate vs Junction Temperature  
80  
70  
60  
50  
40  
30  
20  
10  
0
200  
180  
160  
140  
120  
100  
80  
60  
40  
RSS = 100 kΩ  
RL = 100 Ω  
RSS = 100 kΩ  
RL = 100 Ω  
20  
0
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Junction Temperature: Tj [°C]  
Junction Temperature: Tj [°C]  
Figure 21. Output ON Delay Time vs Junction  
Temperature  
Figure 22. Output OFF Delay Time vs Junction Temperature  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0G6G1G300040-1-2  
14/40  
11.May.2020 Rev.001  
BV1HAL85EFJ  
Typical Performance Curves continued  
(Unless otherwise specified VIN = 24 V, VEN = 5 V, Tj = 25 °C)  
80  
70  
60  
50  
40  
30  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
20  
IOUT = 10 mA  
VEN = 0 V  
10  
0
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Junction Temperature: Tj [°C]  
Junction Temperature: Tj [°C]  
Figure 23. Output Clamp Voltage vs Junction  
Temperature  
Figure 24. FLAG Low Output Voltage vs Junction  
Temperature  
20  
18  
16  
14  
12  
10  
8
45  
40  
35  
30  
25  
20  
15  
10  
5
6
4
2
0
0
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Junction Temperature: Tj [°C]  
Junction Temperature: Tj [°C]  
Figure 25. FLAG Output Delay Time vs Junction  
Temperature  
Figure 26. Fixed Overcurrent Limit vs Junction Temperature  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0G6G1G300040-1-2  
15/40  
11.May.2020 Rev.001  
BV1HAL85EFJ  
Typical Performance Curves continued  
(Unless otherwise specified VIN = 24 V, VEN = 5 V, Tj = 25 °C)  
8
7
6
5
4
3
2
1
0
1000  
100  
10  
Tj(START) = 25 ºC  
Tj(START) = 150 ºC  
1
-50  
-25  
0
25  
50  
75  
100  
0.1  
1.0  
Output Current: IOUT [A]  
10.0  
Junction Temperature: Tj [°C]  
Figure 27. Variable Overcurrent Detection vs Junction  
Temperature  
Figure 28. Active Clamp Energy vs Output Current  
www.rohm.com  
TSZ02201-0G6G1G300040-1-2  
11.May.2020 Rev.001  
© 2020 ROHM Co., Ltd. All rights reserved.  
16/40  
TSZ22111 15 001  
BV1HAL85EFJ  
Measurement Setup  
VIN  
VIN  
IN  
IN  
SS  
SS  
OUT  
EN  
OUT  
EN  
ILIM  
ILIM  
FLAG  
FLAG  
5.1 kΩ  
GND  
GND  
VEN  
VEN  
VFLAG  
Figure 29. Standby Current  
Figure 30. Operating Current  
EN Low Input Current  
Output Leakage Current  
FLAG Pin Leakage Current  
VIN  
VIN  
IN  
IN  
SS  
SS  
OUT  
OUT  
IOUT  
ILIM  
ILIM  
1 kΩ  
EN  
EN  
FLAG  
FLAG  
GND  
VEN  
GND  
VEN  
Figure 31. UVLO Detection Voltage  
UVLO Hysteresis Voltage  
EN High Voltage  
Figure 32. Output ON Resistance  
Output Clamp Voltage  
EN Low Voltage  
EN Hysteresis Voltage  
EN High Input Current  
EN Low Input Current  
Thermal Shutdown Detection  
Thermal Shutdown Hysteresis  
www.rohm.com  
TSZ02201-0G6G1G300040-1-2  
11.May.2020 Rev.001  
© 2020 ROHM Co., Ltd. All rights reserved.  
17/40  
TSZ22111 15 001  
BV1HAL85EFJ  
Measurement Setup continued  
VIN  
VIN  
IN  
IN  
SS  
SS  
OUT  
EN  
OUT  
EN  
IOUT  
100 Ω  
Monitor  
RSS  
ILIM  
ILIM  
FLAG  
FLAG  
Monitor  
5.1 kΩ  
GND  
GND  
5.1 kΩ  
Monitor  
VEN  
VFLAG  
VEN  
VFLAG  
Figure 33. Output ON Slew Rate  
Output OFF Slew Rate  
Figure 34. FLAG Low Output Voltage  
Output ON Delay Time  
Output OFF Delay Time  
FLAG Output Delay Time  
VIN  
IN  
SS  
OUT  
EN  
IOUT  
ILIM  
RLIM  
FLAG  
5.1 kΩ  
GND  
VEN  
Monitor  
VFLAG  
Figure 35. Fixed Overcurrent Limit  
Variable Overcurrent Detection  
www.rohm.com  
TSZ02201-0G6G1G300040-1-2  
11.May.2020 Rev.001  
© 2020 ROHM Co., Ltd. All rights reserved.  
18/40  
TSZ22111 15 001  
BV1HAL85EFJ  
Timing Chart  
Input Voltage  
VIN  
t
50 %  
EN Voltage  
VEN  
50 %  
t
tOFF  
tON  
80 %  
80 %  
Output Voltage  
VOUT  
20 %  
20 %  
t
SRON  
SROFF  
Error Flag  
VFLAG  
t
Figure 36. Output ON / OFF Timing Chart  
www.rohm.com  
TSZ02201-0G6G1G300040-1-2  
11.May.2020 Rev.001  
© 2020 ROHM Co., Ltd. All rights reserved.  
19/40  
TSZ22111 15 001  
BV1HAL85EFJ  
Function Description  
1. Truth Table  
Table 1. Protection Detection and Error FLAG Output  
Control  
Logic  
EN  
Input  
Voltage  
VIN  
Junction  
Temperature  
Tj  
Output  
Current  
IOUT  
Output State  
OUT  
Error Flag Output  
VFLAG  
Mode  
IOUT < IOCD2  
ON  
ON  
H
H
Normal  
Overcurrent  
Detection  
IOUT > IOCD2  
Tj < TTSD  
IOUT > IOCD2  
tBLANK after  
Latch Off  
L
Latch Off (Note 1)  
VIN > VUVLO  
H
Output  
Limited  
Overcurrent  
Limitation  
IOUT > IOCD1  
H
Tj > TTSD  
-
-
-
-
OFF  
OFF  
OFF  
OFF  
L
L
TSD protection  
ΔTj protection  
Stand-by  
ΔTj(Note 2 ) > TDTJ  
VIN < VUVLO  
-
-
H
H
L
-
Stand-by  
(Note 1) When thermal shutdown protection is triggered while overcurrent protection is active, output is Latch Off even if t < tBLANK. The condition of Latch Off release is  
switching of EN voltage (VEN) or IN voltage (VIN).  
(Note 2) The temperature difference of Power MOS FET and control in the IC.  
www.rohm.com  
TSZ02201-0G6G1G300040-1-2  
© 2020 ROHM Co., Ltd. All rights reserved.  
20/40  
TSZ22111 15 001  
11.May.2020 Rev.001  
BV1HAL85EFJ  
Function Description continued  
2. Overcurrent Protection  
This IC has two overcurrent detection functions: Fixed Overcurrent Limit (IOCD1) to protect the IC and Variable Overcurrent  
Detection (IOCD2) to protect the load. Variable Overcurrent Detection (IOCD2) is set by an external resistor RLIM at the ILIM  
Pin.  
2.1 Latch-off due to Fixed Overcurrent Limit (IOCD1  
)
Figure 37 and Figure 38 show the timing chart of the Latch-off function when Fixed Overcurrent Limit (IOCD1) is  
detected.  
EN Voltage  
VEN  
t
Output Voltage  
VOUT  
t
Latch-off  
IOCD1  
IOCD2  
Output Current  
IOUT  
Normal Current  
t
tSS  
tBLANK  
Error FLAG  
VFLAG  
t
Figure 37. The timing chart with Latch-off when IOUT after Fixed Overcurrent Limit (IOCD1) detection is equal to IOCD2 or higher  
When IOUT exceeds the Fixed Overcurrent Limit (IOCD1), IOUT decreases momentarily then becomes  
IOUT ≥ IOCD2  
IOUT increases until it reaches IOCD1  
The time it takes for IOUT = IOCD1 (tSS) depends on the setting of Soft Start Function by external resistor RSS (Table  
3, 4). When IOUT = IOCD1, Output voltage (VOUT) = Load resistance (RL) × Fixed Overcurrent Limit (IOCD1  
.
.
)
When IOUT exceeds the Variable Overcurrent Detection (IOCD2) and the duration exceeds tBLANK, output is latched  
off and Error FLAG VFLAG is set to Low.  
When EN is turned OFF, Latch-Off function is released and Error FLAG VFLAG is set to High.  
www.rohm.com  
TSZ02201-0G6G1G300040-1-2  
© 2020 ROHM Co., Ltd. All rights reserved.  
21/40  
TSZ22111 15 001  
11.May.2020 Rev.001  
BV1HAL85EFJ  
2.1 Latch-off due to Fixed Overcurrent Limit (IOCD1) continued  
EN Voltage  
VEN  
t
t
t
t
Output Voltage  
VOUT  
Latch-off  
IOCD1  
IOCD2  
Output Current  
IOUT  
Normal Current  
tSS  
tBLANK  
Error FLAG  
VFLAG  
Figure 38. The timing chart with Latch-off when IOUT after Fixed Overcurrent Limit (IOCD1) detection is less than IOCD2  
When IOUT exceeds the Fixed Overcurrent Limit (IOCD1), IOUT decreases momentarily then becomes  
IOUT < IOCD2  
IOUT increases until it reaches IOCD1  
The time it takes for IOUT = IOCD1 (tSS) depends on the setting of Soft Start Function by external resistor RSS (Table  
3, 4). When IOUT = IOCD1, Output voltage (VOUT) = Load resistance (RL) × Fixed Overcurrent Limit (IOCD1  
.
.
)
When IOUT exceeds the Variable Overcurrent Detection (IOCD2) and the duration exceeds tBLANK, output is latched  
off and Error FLAG VFLAG is set to Low.  
When EN is turned OFF, Latch-Off function is released and Error FLAG VFLAG is set to High.  
www.rohm.com  
TSZ02201-0G6G1G300040-1-2  
© 2020 ROHM Co., Ltd. All rights reserved.  
22/40  
TSZ22111 15 001  
11.May.2020 Rev.001  
BV1HAL85EFJ  
2. Overcurrent Protection continued  
2.2 Duration of Fixed Overcurrent Limit (IOCD1) is less than tBLANK  
Figure 39 and Figure 40 show the timing chart without the Latch-off function when Fixed Overcurrent Limit (IOCD1) is  
detected.  
EN Voltage  
VEN  
t
Output Voltage  
VOUT  
t
t
t
IOCD1  
IOCD2  
Output Current  
IOUT  
Normal Current  
tSS  
tBLANK  
Error FLAG  
VFLAG  
Figure 39. The timing chart without Latch-off when IOUT after Fixed Overcurrent Limit (IOCD1) detection is equal to IOCD2 or higher  
When IOUT exceeds the Fixed Overcurrent Limit (IOCD1), IOUT decreases momentarily then becomes  
IOUT ≥ IOCD2  
IOUT increases until it reaches IOCD1  
The time it takes for IOUT = IOCD1 (tSS) depends on the setting of Soft Start Function by external resistor RSS (Table  
3, 4). When IOUT = IOCD1, Output voltage (VOUT) = Load resistance (RL) × Fixed Overcurrent Limit (IOCD1  
.
.
)
When the duration where IOUT exceeds the Variable Overcurrent Detection (IOCD2) is less than tBLANK  
the output does not latch off.  
,
Indicates tBLANK  
.
www.rohm.com  
TSZ02201-0G6G1G300040-1-2  
11.May.2020 Rev.001  
© 2020 ROHM Co., Ltd. All rights reserved.  
23/40  
TSZ22111 15 001  
BV1HAL85EFJ  
2.2 Duration of Fixed Overcurrent Limit (IOCD1) is less than tBLANK continued  
EN Voltage  
VEN  
t
t
t
t
Output Voltage  
VOUT  
IOCD1  
IOCD2  
Output Current  
IOUT  
Normal Current  
tSS  
tBLANK  
Error FLAG  
VFLAG  
Figure 40. The timing chart without Latch-off when IOUT after Fixed Overcurrent Limit (IOCD1) detection is less than IOCD2  
When IOUT exceeds the Fixed Overcurrent Limit (IOCD1), IOUT decreases momentarily then becomes  
IOUT < IOCD2  
IOUT increases until it reaches IOCD1  
The time it takes for IOUT = IOCD1 (tSS) depends on the setting of Soft Start Function by external resistor RSS (Table  
3, 4). When IOUT = IOCD1, Output voltage (VOUT) = Load resistance (RL) × Fixed Overcurrent Limit (IOCD1  
.
.
)
When the duration where IOUT exceeds the Variable Overcurrent Detection (IOCD2) is less than tBLANK  
the output does not latch off.  
,
Indicates tBLANK  
.
www.rohm.com  
TSZ02201-0G6G1G300040-1-2  
11.May.2020 Rev.001  
© 2020 ROHM Co., Ltd. All rights reserved.  
24/40  
TSZ22111 15 001  
BV1HAL85EFJ  
2. Overcurrent Protection continued  
2.3 Latch-off due to Variable Overcurrent Detection (IOCD2  
)
Figure 41 shows the timing chart of the Latch-off function when Variable Overcurrent Detection (IOCD2) is detected.  
EN Voltage  
VEN  
t
Output Voltage  
VOUT  
t
t
t
Latch-off  
Output Current  
IOUT  
IOCD1  
IOCD2  
Normal Current  
tBLANK  
Error FLAG  
VFLAG  
Figure 41. The timing chart of Latch-off function due to Variable Overcurrent Detection (IOCD2  
)
When IOUT exceeds the Variable Overcurrent Detection (IOCD2) but is the Fixed Overcurrent Limit (IOCD1) or less,  
IOUT is not limited.  
When IOUT exceeds the Variable Overcurrent Detection (IOCD2) and the duration exceeds tBLANK, output is latched  
off and Error FLAG is set to Low.  
When EN is turned OFF, Latch-Off function is released and Error FLAG is set to High.  
2.4 Duration of Variable Overcurrent Detection (IOCD2) is less than tBLANK  
Figure 42 shows the timing chart without the Latch-off function when Variable Overcurrent Detection (IOCD2) is  
detected.  
EN Voltage  
VEN  
t
Output Voltage  
VOUT  
t
t
t
IOCD1  
IOCD2  
Output Current  
IOUT  
Normal Current  
tBLANK  
Error FLAG  
VFLAG  
Figure 42. The timing chart of Variable Overcurrent Detection (IOCD2) without latch-off function  
When IOUT exceeds the Variable Overcurrent Detection (IOCD2) but is the Fixed Overcurrent Limit (IOCD1) or less,  
IOUT is not limited.  
When the duration where IOUT exceeds the Variable Overcurrent Detection (IOCD2) is less than tBLANK  
,
the output does not latch off.  
Indicates tBLANK  
.
www.rohm.com  
TSZ02201-0G6G1G300040-1-2  
11.May.2020 Rev.001  
© 2020 ROHM Co., Ltd. All rights reserved.  
25/40  
TSZ22111 15 001  
BV1HAL85EFJ  
2. Overcurrent Protection continued  
2.5 Setting Variable Overcurrent Detection  
This IC has a Variable Overcurrent Detection (IOCD2) that can be set by an external resistor RLIM. The Variable  
Overcurrent Detection (IOCD2) value is set by RLIM value as shown below. RLIM should be set from 50 kΩ to 200 kΩ.  
Table 2. Variable Overcurrent Detection against RLIM Value  
Variable Overcurrent Detection (IOCD2) [A]  
RLIM [kΩ]  
Min  
Typ  
Max  
50  
4.20  
6.46  
8.72  
70  
3.60  
2.93  
2.53  
2.33  
1.65  
1.51  
5.53  
4.50  
3.89  
3.59  
2.64  
2.44  
7.47  
6.08  
5.25  
4.85  
3.69  
3.66  
100  
120  
130  
170  
200  
10  
9
8
7
6
5
4
3
2
1
0
Max  
Typ  
Min  
0
50  
100  
150  
200  
250  
RLIM [kΩ]  
Figure 43. Variable Overcurrent Detection vs RLIM  
www.rohm.com  
TSZ02201-0G6G1G300040-1-2  
11.May.2020 Rev.001  
© 2020 ROHM Co., Ltd. All rights reserved.  
26/40  
TSZ22111 15 001  
BV1HAL85EFJ  
Function Description continued  
3. Setting Soft Start Function  
This IC has a soft start function that can be set by an external resistor RSS  
.
The output on delay time (tON) and output on slew rate (SRON) set against RSS value at VIN = 12 V and VIN = 24 V is  
shown below. Set RSS within 15 kΩ to 120 kΩ range. (Note 1) (Note 2)  
Table 3. Output On Delay Time against RSS Value (Tj = 25 °C)  
Output ON Delay Time (tON) [ms]  
RSS [kΩ]  
VIN = 12 V  
Typ  
VIN = 24 V  
Typ  
Min  
Max  
7.64  
Min  
Max  
9.64  
15  
20  
3.27  
5.45  
6.58  
4.13  
6.89  
8.32  
3.95  
5.21  
9.21  
4.99  
6.60  
11.65  
15.40  
18.48  
23.19  
26.85  
42.00  
49.97  
30  
8.68  
12.15  
15.46  
19.68  
21.97  
34.30  
41.44  
11.00  
13.20  
16.56  
19.18  
30.00  
35.69  
40  
6.63  
11.05  
14.06  
15.70  
24.50  
29.60  
7.92  
50  
8.43  
9.94  
60  
9.42  
11.51  
18.00  
21.42  
100  
120  
14.70  
17.76  
60  
50  
40  
30  
20  
10  
0
Max  
Typ  
Min  
VIN = 12 V,  
Tj = 25 °C  
0
20  
40  
60  
80  
100  
120  
140  
RSS [kΩ]  
Figure 44. Output ON Delay Time vs RSS (VIN = 12 V, Tj = 25 °C)  
(Note 1) In the case that VIN is 12 V, the Approximate expression for the output rising edge delay time (tON) set against RSS value is expressed in the equation  
below.  
푂푁 ꢂꢆ푦푝) = 0.23 × 푅푆푆 + 1.5  
www.rohm.com  
TSZ02201-0G6G1G300040-1-2  
11.May.2020 Rev.001  
© 2020 ROHM Co., Ltd. All rights reserved.  
27/40  
TSZ22111 15 001  
BV1HAL85EFJ  
3. Setting Soft Start Function continued  
60  
Max  
VIN = 24 V,  
Tj = 25 °C  
Typ  
Min  
50  
40  
30  
20  
10  
0
0
20  
40  
60  
80  
100  
120  
140  
RSS [kΩ]  
Figure 45. Output ON Delay Time vs RSS (VIN = 24 V, Tj = 25 °C)  
(Note 2) In the case that VIN is 24 V, the Approximate expression for the output rising edge delay time (tON) set against RSS value is expressed in the equation  
below.  
푂푁 ꢂꢆ푦푝) = 0.27 × 푅푆푆 + 2.56  
www.rohm.com  
TSZ02201-0G6G1G300040-1-2  
11.May.2020 Rev.001  
© 2020 ROHM Co., Ltd. All rights reserved.  
28/40  
TSZ22111 15 001  
BV1HAL85EFJ  
3. Setting Soft Start Function continued  
Table 4. Output ON Slew Rate against RSS Value (Tj = 25 °C)  
Output ON Slew Rate (SRON) [V/ms]  
RSS [kΩ]  
VIN = 12 V  
Typ  
VIN = 24 V  
Typ  
Min  
Max  
3.42  
Min  
Max  
4.42  
15  
20  
1.46  
2.44  
2.17  
1.66  
1.24  
0.93  
0.81  
0.54  
0.49  
1.89  
3.15  
2.84  
2.12  
1.55  
1.34  
1.09  
0.75  
0.61  
1.30  
1.00  
0.74  
0.56  
0.49  
0.32  
0.29  
3.03  
2.32  
1.73  
1.30  
1.13  
0.75  
0.69  
1.71  
1.27  
0.93  
0.80  
0.65  
0.45  
0.37  
3.98  
2.97  
2.17  
1.88  
1.52  
1.05  
0.86  
30  
40  
50  
60  
100  
120  
4
3
2
1
0
VIN = 12 V,  
Tj = 25 °C  
Max  
Typ  
Min  
0
20  
40  
60  
80  
100  
120  
140  
RSS [kΩ]  
Figure 46. Output ON Slew Rate vs RSS (VIN = 12 V, Tj = 25 °C)  
5
4
3
2
1
0
VIN = 24 V,  
Tj = 25 °C  
Max  
Typ  
Min  
0
20  
40  
60  
80  
100  
120  
140  
RSS [kΩ]  
Figure 47. Output ON Slew Rate vs RSS (VIN = 24 V, Tj = 25 °C)  
www.rohm.com  
TSZ02201-0G6G1G300040-1-2  
11.May.2020 Rev.001  
© 2020 ROHM Co., Ltd. All rights reserved.  
29/40  
TSZ22111 15 001  
BV1HAL85EFJ  
Function Description continued  
4. Thermal Shutdown Function, ΔTj Protection Function  
4.1 Thermal Shutdown Function (Thermal Shutdown Detection TTSD, Thermal Shutdown Hysteresis TTSDHYS  
)
This IC has a built-in TSD function. When the temperature of the IC reaches Thermal Shutdown Detection (TTSD) =  
175 °C (Typ) or more, the output is turned off, and the FLAG outputs Low. Hysteresis (TTSDHYS) is installed for thermal  
shutdown function, and output automatically returns to normal when chip temperature become 160 °C (Typ) or less.  
The condition for Latch-Off is when Variable Overcurrent Detection (IOCD2) is reached and the temperature of IC  
reaches Thermal Shutdown Detection (TTSD) = 175 °C (Typ) or more. The condition for Latch-off Release is the  
switching of EN voltage (VEN) or IN voltage (VIN).  
4.2 ΔTj Protection Function (ΔTj Protection TDTJ, ΔTj Protection Hysteresis TDTJHYS  
)
This IC has a ΔTj protection function. The output is turned off when chip temperature difference (ΔTj) of Power MOS  
FET (TPOWER-MOS) and control (TAMB) in the IC rises to 105 °C (Typ) or more. Furthermore, hysteresis (TDTJHYS) is  
installed for ΔTj protection function, and returns to its normal state when ΔTj becomes 75 °C (Typ) or less.  
Figure 48 is shown that the timing chart of thermal shutdown function and ΔTj protection function with Latch-off  
function.  
The condition for Latch-off is when Thermal Shutdown Detection (TTSD) is operated and Variable Overcurrent  
Detection (IOCD2) is reached.  
EN  
IOCD1  
IOCD2  
IOUT  
TPOWER-MOS  
Thermal Shutdown Detection  
TTSD  
Δ Tj Protection  
Detect  
TAMB  
TDTJ  
TDTJ - TDTJHYS  
Tj  
FLAG  
Latch-off Release  
Latch-off  
ΔTj Protection Operation  
Figure 48. Timing chart of thermal shutdown function and ΔTj protection function with Latch-off function  
www.rohm.com  
TSZ02201-0G6G1G300040-1-2  
11.May.2020 Rev.001  
© 2020 ROHM Co., Ltd. All rights reserved.  
30/40  
TSZ22111 15 001  
BV1HAL85EFJ  
4.2 ΔTj Protection Function (ΔTj Protection TDTJ, ΔTj Protection Hysteresis TDTJHYS) continued  
Figure 49 is shown that the timing chart of thermal shutdown function and ΔTj protection function without Latch-off  
function.  
The condition for without the activation of the Latch-off is when Thermal Shutdown Detection (TTSD) is operated and  
Variable Overcurrent Detection (IOCD2) is not reached.  
EN  
IOCD1  
IOCD2  
IOUT  
Thermal Shutdown  
Detection  
TPOWER-MOS  
TTSD  
TTSDHYS  
Δ Tj Protection  
Detect  
TAMB  
TDTJ - TDTJHYS  
TDTJ  
Tj  
FLAG  
ΔTj Protection Operation  
TSD Operation  
Enable OFF  
Figure 49. Timing chart of thermal shutdown function and ΔTj protection function without Latch-off function  
4.3 The case of connecting the capacitance load  
At startup, the load connected is used to detect ΔTj protection function. The RSS region where ΔTj protection function  
is detected versus the output current (IOUT  
protection function.  
)
(Note 3) are shown in Figure 50 to Figure 55(Note 4). Pay attention to detect ΔTj  
(Note 3) IOUT is not including the capacitance load current at startup.  
(Note 4) This results are used evaluation board of ROHM.  
www.rohm.com  
TSZ02201-0G6G1G300040-1-2  
11.May.2020 Rev.001  
© 2020 ROHM Co., Ltd. All rights reserved.  
31/40  
TSZ22111 15 001  
BV1HAL85EFJ  
4.3 The case of connecting the capacitance load continued  
120  
105  
90  
VIN = 12 V,  
Tj = 25 °C,  
COUT = 0 to 470 μF  
SRON (MIN)  
SRON (TYP)  
SR (MAX)  
ON  
75  
ΔTj Protection  
not detected  
60  
45  
30  
15  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
IOUT [A]  
Figure 50. ΔTj protection function detection region at startup (VIN = 12 V, COUT = 0 to 470 μF)  
120  
VIN = 24 V,  
Tj = 25 °C,  
COUT = 0 μF  
ΔTj  
Protection  
detected  
105  
90  
75  
60  
45  
30  
15  
SRON (MIN)  
SRON (TYP)  
SRON (MAX)  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
IOUT [A]  
Figure 51. ΔTj protection function detection region at startup (VIN = 24 V, COUT = 0 μF)  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0G6G1G300040-1-2  
11.May.2020 Rev.001  
32/40  
BV1HAL85EFJ  
4.3 The case of connecting the capacitance load continued  
120  
105  
90  
VIN = 24 V,  
Tj = 25 °C,  
COUT = 100 μF  
SRON (MIN)  
SRON (TYP)  
SRON (MAX)  
75  
ΔTj  
Protection  
detected  
60  
45  
30  
15  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
IOUT [A]  
Figure 52. ΔTj protection function detection region at startup (VIN = 24 V, COUT = 100 μF)  
120  
VIN = 24 V,  
Tj = 25 °C,  
105  
COUT = 220 μF  
SRON (MIN)  
90  
75  
60  
45  
30  
15  
SRON (TYP)  
SRON (MAX)  
ΔTj  
Protection  
detected  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
IOUT [A]  
Figure 53. ΔTj protection function detection region at startup (VIN = 24 V, COUT = 220 μF)  
www.rohm.com  
TSZ02201-0G6G1G300040-1-2  
11.May.2020 Rev.001  
© 2020 ROHM Co., Ltd. All rights reserved.  
33/40  
TSZ22111 15 001  
BV1HAL85EFJ  
4.3 The case of connecting the capacitance load continued  
120  
105  
90  
VIN = 24 V,  
Tj = 25 °C,  
COUT = 330 μF  
SRON (MIN)  
SRON (TYP)  
SR (MAX)  
ON  
75  
ΔTj  
Protection  
detected  
60  
45  
30  
15  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
IOUT [A]  
Figure 54. ΔTj protection function detection region at startup (VIN = 24 V, COUT = 330 μF)  
120  
VIN = 24 V,  
Tj = 25 °C,  
COUT = 470 μF  
105  
90  
75  
60  
45  
30  
15  
SRON (MIN)  
SRON (TYP)  
SR (MAX)  
ON  
ΔTj  
Protection  
detected  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
IOUT [A]  
Figure 55. ΔTj protection function detection region at startup (VIN = 24 V, COUT = 470 μF)  
5. Output Load is Open  
When EN is OFF and no load is connected to OUT, output voltage does not fall to GND potential.  
www.rohm.com  
TSZ02201-0G6G1G300040-1-2  
11.May.2020 Rev.001  
© 2020 ROHM Co., Ltd. All rights reserved.  
34/40  
TSZ22111 15 001  
BV1HAL85EFJ  
I/O Equivalence Circuit  
SS  
ILIM  
4 kΩ 10 kΩ  
10 kΩ  
1 kΩ 12 kΩ  
10 kΩ  
SS  
ILIM  
FLAG  
EN  
10 kΩ  
10 kΩ  
150 Ω  
EN  
FLAG  
OUT  
IN  
OUT  
Resistance in the figures are typical values.  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0G6G1G300040-1-2  
11.May.2020 Rev.001  
35/40  
BV1HAL85EFJ  
Operational Notes  
1. Reverse Connection of Power Supply  
Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when  
connecting the power supply, such as mounting an external diode between the power supply and the ICs power  
supply pins.  
2. Power Supply Lines  
Design the PCB layout pattern to provide low impedance supply lines. Furthermore, connect a capacitor to ground at  
all power supply pins. Consider the effect of temperature and aging on the capacitance value when using electrolytic  
capacitors.  
3. Ground Voltage  
Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition.  
4. Ground Wiring Pattern  
When using both small-signal and large-current ground traces, the two ground traces should be routed separately but  
connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal  
ground caused by large currents. Also ensure that the ground traces of external components do not cause variations  
on the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance.  
5. Recommended Operating Conditions  
The function and operation of the IC are guaranteed within the range specified by the recommended operating  
conditions. The characteristic values are guaranteed only under the conditions of each item specified by the electrical  
characteristics.  
6. Inrush Current  
When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may flow  
instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power  
supply. Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring, and  
routing of connections.  
7. Testing on Application Boards  
When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may  
subject the IC to stress. Always discharge capacitors completely after each process or step. The IC’s power supply  
should always be turned off completely before connecting or removing it from the test setup during the inspection  
process. To prevent damage from static discharge, ground the IC during assembly and use similar precautions during  
transport and storage.  
8. Inter-pin Short and Mounting Errors  
Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in  
damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin.  
Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment) and  
unintentional solder bridge deposited in between pins during assembly to name a few.  
9. Unused Input Pins  
Input pins of an IC are often connected to the gate of a MOS transistor. The gate has extremely high impedance and  
extremely low capacitance. If left unconnected, the electric field from the outside can easily charge it. The small  
charge acquired in this way is enough to produce a significant effect on the conduction through the transistor and  
cause unexpected operation of the IC. So unless otherwise specified, unused input pins should be connected to the  
power supply or ground line.  
10. Ceramic Capacitor  
When using a ceramic capacitor, determine a capacitance value considering the change of capacitance with  
temperature and the decrease in nominal capacitance due to DC bias and others.  
11. Thermal Shutdown Function (TSD)  
This IC has a built-in thermal shutdown function that prevents heat damage to the IC. Normal operation should always  
be within the IC’s maximum junction temperature rating. If however the rating is exceeded for a continued period, the  
junction temperature (Tj) will rise which will activate the TSD function that will turn OFF power output pins. When the Tj  
falls below the TSD threshold, the circuits are automatically restored to normal operation.  
Note that the TSD function operates in a situation that exceeds the absolute maximum ratings and therefore, under no  
circumstances, should the TSD function be used in a set design or for any purpose other than protecting the IC from  
heat damage.  
www.rohm.com  
TSZ02201-0G6G1G300040-1-2  
© 2020 ROHM Co., Ltd. All rights reserved.  
36/40  
TSZ22111 15 001  
11.May.2020 Rev.001  
BV1HAL85EFJ  
Operational Notes continued  
12. Over Current Protection Function (OCP)  
This IC incorporates an integrated overcurrent protection function that is activated when the load is shorted. This  
protection function is effective in preventing damage due to sudden and unexpected incidents. However, the IC should  
not be used in applications characterized by continuous operation or transitioning of the protection function.  
13. Active Clamp Operation  
The IC integrates the active clamp function to internally absorb the reverse energy which is generated when the  
inductive load is turned off. When the active clamp operates, the thermal shutdown function does not work. Decide a  
load so that the reverse energy is active clamp tolerance (refer to Figure 28. Active Clamp Energy vs Output Current)  
or under when inductive load is used.  
www.rohm.com  
TSZ02201-0G6G1G300040-1-2  
© 2020 ROHM Co., Ltd. All rights reserved.  
37/40  
TSZ22111 15 001  
11.May.2020 Rev.001  
BV1HAL85EFJ  
Ordering Information  
B V 1 H A L  
8
5 E F  
J
-
E 2  
Package  
EFJ: HTSOP-J8  
Packaging and forming specification  
E2: Embossed tape and reel  
Marking Diagram  
HTSOP-J8 (TOP VIEW)  
Part Number Marking  
1 H A L 8 5  
LOT Number  
Pin 1 Mark  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0G6G1G300040-1-2  
11.May.2020 Rev.001  
38/40  
BV1HAL85EFJ  
Physical Dimension and Packing Information  
Package Name  
HTSOP-J8  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0G6G1G300040-1-2  
11.May.2020 Rev.001  
39/40  
BV1HAL85EFJ  
Revision History  
Date  
Revision  
001  
Changes  
11.May.2020  
New Release  
www.rohm.com  
TSZ02201-0G6G1G300040-1-2  
11.May.2020 Rev.001  
© 2020 ROHM Co., Ltd. All rights reserved.  
40/40  
TSZ22111 15 001  
Notice  
Precaution on using ROHM Products  
1. Our Products are designed and manufactured for application in ordinary electronic equipment (such as AV equipment,  
OA equipment, telecommunication equipment, home electronic appliances, amusement equipment, etc.). If you  
intend to use our Products in devices requiring extremely high reliability (such as medical equipment (Note 1), transport  
equipment, traffic equipment, aircraft/spacecraft, nuclear power controllers, fuel controllers, car equipment including car  
accessories, safety devices, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or  
serious damage to property (Specific Applications), please consult with the ROHM sales representative in advance.  
Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any  
damages, expenses or losses incurred by you or third parties arising from the use of any ROHMs Products for Specific  
Applications.  
(Note1) Medical Equipment Classification of the Specific Applications  
JAPAN  
USA  
EU  
CHINA  
CLASS  
CLASSⅣ  
CLASSb  
CLASSⅢ  
CLASSⅢ  
CLASSⅢ  
2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3. Our Products are designed and manufactured for use under standard conditions and not under any special or  
extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses arising from the use of any ROHM’s Products under any  
special or extraordinary environments or conditions. If you intend to use our Products under any special or  
extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of  
product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (Exclude cases where no-clean type fluxes is used.  
However, recommend sufficiently about the residue.) ; or Washing our Products by using water or water-soluble  
cleaning agents for cleaning residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4. The Products are not subject to radiation-proof design.  
5. Please verify and confirm characteristics of the final or mounted products in using the Products.  
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse, is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7. De-rate Power Dissipation depending on ambient temperature. When used in sealed area, confirm that it is the use in  
the range that does not exceed the maximum junction temperature.  
8. Confirm that operation temperature is within the specified range described in the product specification.  
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Precaution for Mounting / Circuit board design  
1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must  
be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products,  
please consult with the ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Notice-PGA-E  
Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
Precautions Regarding Application Examples and External Circuits  
1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2. You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
A two-dimensional barcode printed on ROHM Products label is for ROHMs internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign  
trade act, please consult with ROHM in case of export.  
Precaution Regarding Intellectual Property Rights  
1. All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data.  
2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the  
Products with other articles such as components, circuits, systems or external equipment (including software).  
3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM  
will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to  
manufacture or sell products containing the Products, subject to the terms and conditions herein.  
Other Precaution  
1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
4. The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice-PGA-E  
Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
General Precaution  
1. Before you use our Products, you are requested to carefully read this document and fully understand its contents.  
ROHM shall not be in any way responsible or liable for failure, malfunction or accident arising from the use of any  
ROHM’s Products against warning, caution or note contained in this document.  
2. All information contained in this document is current as of the issuing date and subject to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the latest information with a ROHM sales  
representative.  
3. The information contained in this document is provided on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate and/or error-free. ROHM shall not be in any way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
Notice – WE  
Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  

相关型号:

BV1HALA5EFJ

BV1HALA5EFJ是1个电路内置了Nch MOSFET的高边负载开关,输入电压范围为8.0V~32.0V。内置过电流保护功能、过热保护功能、软启动功能、低电压时输出OFF功能,具备过电流和过热的错误FLAG通知引脚。单芯片即可实现电源线的电源管理。
ROHM

BV1HB045EFJ-C

BV1HB045EFJ-C是一款车载用单通道高边开关。内置输出异常模式接地故障检测功能(过电流限制功能)、过热保护功能、负载开路检测功能、低电压时输出OFF功能,还具有检测到异常时的诊断信息输出功能。另外,还配有针对输出电流的电流检测功能。
ROHM

BV1HD045EFJ-C

BV1HD045EFJ-C是一款车载用单通道高边开关。内置过电流保护功能、过热保护功能、负载开路检测功能、低电压时输出OFF功能,还具有检测到异常时的诊断信息输出功能。由于可以通过外置元件将过电流限值和到达限值的时间设置为任意值,因此可以轻松对负载实现更好的过电流保护。
ROHM

BV1HD090FJ-C

BV1HD090FJ-C是车载用1ch高边开关。配备过电流保护功能 (OCP)、过热保护功能 (TSD)、负载开路检测功能(OLD)、低电压时输出OFF功能 (UVLO) ,备有异常检出时诊断输出端子 (ST) 。
ROHM

BV1HD090FJ-CE2

Buffer/Inverter Based Peripheral Driver,
ROHM

BV1HJ045EFJ-C

BV1HJ045EFJ-C是车载用1ch高边开关。内置输出异常模式,即地线短接检测(过电流限制功能)、电源短接检测功能、负载开路检测功能,以及过热保护功能、低电压时输出OFF功能,具有异常检出时诊断输出功能。过电流限制值为5.0A~12.0A。还备有过电流限制值为2.5A~5.5A的BV1HL045EFJ-C。
ROHM

BV1HJ180EFJ-C

BV1HJ180EFJ-C是一款车载单通道高边开关。内置输出异常模式接地故障检测功能(过电流限制功能)、电源故障检测功能、负载开路检测功能和、过热保护功能、低电压时输出OFF功能,还具有检测到异常时的诊断信息输出功能。另外,还支持冷启动,在电源电压大幅下降的情况下也可工作。
ROHM

BV1HJC45EFJ-C

BV1HJC45EFJ-C是一款车载用单通道高边开关。内置输出异常模式接地故障检测功能(过电流限制功能)、电源故障检测功能、负载开路检测功能和、过热保护功能、低电压时输出OFF功能,还具有检测到异常时的诊断信息输出功能。
ROHM

BV1HL045EFJ-C

BV1HL045EFJ-C是车载用1ch高边开关。内置输出异常模式,即地线短接检测(过电流限制功能)、电源短接检测功能、负载开路检测功能,以及过热保护功能、低电压时输出OFF功能,具有异常检出时诊断输出功能。过电流限制值为2.5A~5.5A。还备有过电流限制值为5.0A~12.0A的BV1HJ045EFJ-C。
ROHM

BV1HLC45EFJ-C

BV1HLC45EFJ-C是一款车载用单通道高边开关。内置输出异常模式接地故障检测功能(过电流限制功能)、电源故障检测功能、负载开路检测功能和、过热保护功能、低电压时输出OFF功能,还具有检测到异常时的诊断信息输出功能。
ROHM

BV1LA025EFJ-C

BV1LA025EFJ-C 是车载用1ch低边开关。内置Dual TSD、OCP、有源钳位功能。
ROHM

BV1LB025EFJ-C

BV1LB025EFJ-C是车载用1ch低边开关。内置Dual TSD、OCP、有源钳位功能。
ROHM