BD16912EFV-C [ROHM]

BD16912EFV-C是内置通过功率DMOSFET由H桥构成的1ch电机驱动部的车载用驱动器。通过直接PWM控制或恒流PWM控制可实现高效率驱动。搭载输出电流检测放大器和异常检测信号输出功能,实现了低导通电阻、小型封装,有助于实现整机的高可靠性化、低耗电量化、省空间化。;
BD16912EFV-C
型号: BD16912EFV-C
厂家: ROHM    ROHM
描述:

BD16912EFV-C是内置通过功率DMOSFET由H桥构成的1ch电机驱动部的车载用驱动器。通过直接PWM控制或恒流PWM控制可实现高效率驱动。搭载输出电流检测放大器和异常检测信号输出功能,实现了低导通电阻、小型封装,有助于实现整机的高可靠性化、低耗电量化、省空间化。

放大器 电机 驱动 驱动器
文件: 总43页 (文件大小:3066K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
Motor/Actuator Driver DC Brush Motor Series  
40V/3A Rating H Bridge Driver  
for Automotive  
BD16912EFV-C  
General Description  
Key Specifications  
Operating Power Supply Voltage Range:6 V to 18 V  
Motor Drive Output Current Rating: 3 A  
Junction Temperature Range: –40 °C to +150 °C  
Motor Drive Output ON Resistance(Sum of High Side  
BD16912EFV-C is a 1-ch H-bridge DMOS FET driver for  
automotive application.  
High efficiency driving is possible by direct PWM control  
or constant current PWM control.  
It is equipped with Output Current Detection Amplifier,  
Abnormality Detection Signal Output, low ON resistance  
and small package, contributing to high reliability, low  
power consumption and space saving of the set.  
and Low Side):  
0.36 Ω during VVS=12 V (Typ)  
Package  
HTSSOP-B20  
W (Typ) x D (Typ) x H (Max)  
6.50 mm x 6.40 mm x 1.00 mm  
Features  
AEC-Q100 Qualified (Note 1)  
Small Package with Backside Exposed PAD  
Driver with Built-in Power DMOS FET  
2 Input Control (Forward Rotation, Reverse Rotation,  
Idle Rotation, Brake)  
Direct PWM Control  
Constant Current PWM Control (Current limit)  
Power Save (Standby)  
Through Current Prevention  
Output Current Detection Amplifier  
Abnormality Detection Signal Output  
Abnormality Detection (Over Current, Over Voltage,  
Thermal Shutdown: TSD, Thermal Warning: TW)  
Output Protection (Over Current, Over Voltage,  
Thermal Shutdown: TSD)  
HTSSOP-B20  
Application  
Under Voltage Lock Out: UVLO  
Automotive DC Brush Motor  
(Note 1) Grade 1  
Typical Application Circuit  
5V  
5V  
1
2
GND  
IN+  
ST2  
ST1  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
Controller  
3
IN−  
AMPO  
N.C.  
4
PSB  
VREF  
N.C.  
OUT+  
OUT+  
RNF  
RNF  
5
12V  
6
VS  
7
OUT−  
OUT−  
GND  
CS  
8
9
10  
M
Figure 1. Basic Application Circuit  
Product structure : Silicon monolithic integrated circuit This product has no designed protection against radioactive rays  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 14 • 001  
TSZ02201-0H5H0C302020-1-2  
20.Mar.2018 Rev.001  
1/40  
 
 
 
 
 
 
BD16912EFV-C  
Contents  
General Description........................................................................................................................................................................1  
Features..........................................................................................................................................................................................1  
Key Specifications ..........................................................................................................................................................................1  
Package..........................................................................................................................................................................................1  
Application ......................................................................................................................................................................................1  
Typical Application Circuit ...............................................................................................................................................................1  
Contents .........................................................................................................................................................................................2  
Absolute Maximum Ratings ............................................................................................................................................................3  
Recommended Operating Conditions.............................................................................................................................................3  
Thermal Resistance........................................................................................................................................................................3  
Pin Configuration ............................................................................................................................................................................4  
Block Diagram ................................................................................................................................................................................4  
Pin Description................................................................................................................................................................................4  
I / O Truth Table ..............................................................................................................................................................................5  
Electrical Characteristics.................................................................................................................................................................6  
Typical Performance Curves...........................................................................................................................................................8  
Application Example .....................................................................................................................................................................24  
1.  
2.  
Variable Speed Control Application by Direct PWM Control. ..........................................................................................24  
Variable Speed Control Application by Constant Current PWM Control .........................................................................25  
Description of Blocks ....................................................................................................................................................................26  
1.  
2.  
3.  
4.  
5.  
6.  
7.  
8.  
Under Voltage Lock Out: UVLO......................................................................................................................................26  
Over Voltage Protection: OVP........................................................................................................................................26  
Over Current Protection: OCP........................................................................................................................................27  
Thermal Warning: TW, Thermal Shutdown: TSD............................................................................................................28  
Direct PWM Control........................................................................................................................................................29  
Output Current Detection Amp (AMPO Pin) ...................................................................................................................30  
Constant Current PWM Control (Current Limit)..............................................................................................................30  
Power Save (PSB Pin) ...................................................................................................................................................31  
I / O Equivalence Circuits..............................................................................................................................................................32  
Heat Loss......................................................................................................................................................................................33  
1.  
2.  
3.  
Thermal Resistance........................................................................................................................................................33  
Power Dissipation...........................................................................................................................................................33  
Thermal De-rating Curve................................................................................................................................................33  
Safety Measures...........................................................................................................................................................................34  
1.  
2.  
3.  
4.  
Countermeasure against Destruction of Reverse Connection Power Supply.................................................................34  
Measures to Raise the Power Supply Pin Voltage by Back Electromotive Force...........................................................34  
Countermeasures against Unstable Power Supply ........................................................................................................35  
Prohibition of Ground Line PWM Switching Input...........................................................................................................35  
Operational Notes.........................................................................................................................................................................36  
Ordering Information.....................................................................................................................................................................38  
Marking Diagram ..........................................................................................................................................................................38  
Physical Dimension and Packing Information...............................................................................................................................39  
Revision History............................................................................................................................................................................40  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0H5H0C302020-1-2  
20.Mar.2018 Rev.001  
2/40  
 
BD16912EFV-C  
Absolute Maximum Ratings (Ta=25°C)  
Parameter  
Symbol  
VVS  
VO  
Rating  
Unit  
V
Power Supply Voltage  
–0.3 to +40  
–0.3 to +40  
–3.0 to +3.0(Note 1)  
–0.3 to +1  
Motor Drive Output (OUT+, OUT–) Voltage  
Motor Drive Output (OUT+, OUT–) Current  
Motor Drive Ground (RNF) Voltage  
V
IO  
A
VRNF  
VST  
V
Abnormality Detection Signal (ST1, ST2) Output Voltage  
Abnormality Detection Signal (ST1, ST2) Output Current  
Motor Drive Current Detection Signal (AMPO) Output Voltage  
Motor Drive Current Detection Signal (AMPO) Output Current  
Control Input Voltage (IN+, IN–, PSB, CS, VREF)  
Junction Temperature  
–0.3 to +7  
V
IST  
0 to 10  
mA  
V
VAMPO  
IAMPO  
VIN  
–0.3 to +3.6  
–0.05 to +0.3  
–0.3 to +7  
mA  
V
Tj  
–40 to +150  
–55 to +150  
°C  
°C  
Storage Temperature Range  
Tstg  
For the current parameter, the current inflow into the IC is indicated as a positive notation, and the current outflow from the IC as a negative notation.  
(Note 1) Do not exceed power dissipation (Pd), and area of safe operation (ASO).  
The power dissipation is determined by the maximum junction temperature, the thermal resistance in the board’s mounted state, and the ambient  
temperature.  
Caution 1: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit  
between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is  
operated over the absolute maximum ratings.  
Caution 2: Should by any chance the maximum junction temperature rating be exceeded the rise in temperature of the chip may result in deterioration of the  
properties of the chip. In case of exceeding this absolute maximum rating, design a PCB boards with thermal resistance taken into consideration  
by increasing board size and copper area so as not to exceed the maximum junction temperature rating.  
Recommended Operating Conditions  
Limit  
Parameter  
Symbol  
Unit  
Min  
6
Typ  
12  
Max  
18  
Power Supply Voltage  
Operating Temperature  
VVS  
Topr  
fPWM  
V
–40  
+125  
100  
°C  
Control Input PWM Frequency (IN+, IN–)  
kHz  
Thermal Resistance(Note 2)  
Thermal Resistance (Typ)  
Parameter  
Symbol  
Unit  
1s(Note 4)  
2s2p(Note 5)  
HTSSOP-B20  
Junction to Ambient  
Junction to Top Characterization Parameter(Note 3)  
θJA  
°C/W  
°C/W  
143.0  
8
26.8  
4
ΨJT  
(Note 2) Based on JESD51-2A(Still-Air).  
(Note 3) The thermal characterization parameter to report the difference between junction temperature and the temperature at the top center of the outside  
surface of the component package.  
(Note 4) Using a PCB board based on JESD51-3.  
(Note 5) Using a PCB board based on JESD51-5, 7.  
Layer Number of  
Measurement Board  
Material  
FR-4  
Board Size  
Single  
114.3 mm x 76.2 mm x 1.57 mmt  
Top  
Copper Pattern  
Thickness  
70 μm  
Footprints and Traces  
Thermal Via(Note 6)  
Layer Number of  
Measurement Board  
Material  
FR-4  
Board Size  
114.3 mm x 76.2 mm x 1.6 mmt  
2 Internal Layers  
Pitch  
Diameter  
4 Layers  
1.20 mm  
Φ0.30 mm  
Top  
Copper Pattern  
Bottom  
Thickness  
70 μm  
Copper Pattern  
Thickness  
35 μm  
Copper Pattern  
Thickness  
70 μm  
Footprints and Traces  
74.2 mm x 74.2 mm  
74.2 mm x 74.2 mm  
(Note 6) This thermal via connects with the copper pattern of all layers.  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0H5H0C302020-1-2  
20.Mar.2018 Rev.001  
3/40  
BD16912EFV-C  
Pin Configuration  
Block Diagram  
VS  
(TOP VIEW)  
15 16  
1
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
GND  
ST2  
Power Supply  
Clamper  
V source  
I source  
UVLO  
2
IN+  
ST1  
3
PSB  
IN+  
IN–  
Power  
Save  
Power ON  
Reset  
4
2
Clock  
IN-  
AMPO  
N.C.  
VS  
4
OUT+  
OUT–  
RNF  
PSB  
7
8
5
VREF  
Package Rear  
Exposed PAD  
EXP-PAD  
Control  
Logic  
Pre  
Driver  
H Brigde  
3
6
N.C.  
VS  
CURRENT  
LIMITATION COMP.  
7
5
13 14  
OUT+  
OUT-  
OUT-  
GND  
CS  
VREF  
CURRENT  
DETECTION  
8
OUT+  
AMPO  
CS  
AMP.  
18  
19  
20  
1
x5  
11  
10  
9
RNF  
TSD  
TW  
ST1  
10  
9
RNF  
ST2  
OCP  
OVP  
GND  
12  
EXP-PAD  
Pin Description  
Pin No. Pin Name  
Function  
Pin No. Pin Name  
Function  
Motor output current detection amplifier  
input  
1
GND  
Ground (small signal ground)  
11  
CS  
Motor drive logic input +  
Motor drive logic input –  
2
3
4
5
6
7
IN+  
IN–  
12  
13  
14  
15  
16  
17  
GND  
Ground (small signal ground)  
OUT– Motor drive output –  
OUT– Motor drive output –  
PSB  
Power save input  
VREF Motor drive current setting voltage input  
VS  
VS  
Power supply  
N.C.  
No connection  
Motor drive output +  
Power supply  
OUT+  
N.C.  
No connection  
Motor drive output +  
Motor output current detection amplifier  
output  
8
OUT+  
18  
AMPO  
Motor drive ground  
Motor drive ground  
9
RNF  
RNF  
19  
20  
ST1  
ST2  
Abnormality detection signal 1 output  
Abnormality detection signal 2 output  
10  
EXP-PAD Package rear exposed PAD  
Although the unconnected pin (NC) is not connected inside the IC, there is a possibility of causing unexpected troubles such as oscillation, so open on the  
board pattern without making it as a relay point for other wiring.  
Motor drive related pins (VS, RNF, OUT+, OUT–) are short-circuited within the IC within the same name, but in order to lower the impedance of the motor drive  
current path, short between the same name pins on the board pattern.  
Package Rear Exposed PAD should be at the same potential as the ground pin.  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0H5H0C302020-1-2  
20.Mar.2018 Rev.001  
4/40  
BD16912EFV-C  
I / O Truth Table  
Signal Output  
(During Resistance Pull-up for  
ST1 and ST2)  
Driver Input  
Driver Output  
Driver Output State  
Name  
PSB  
L
IN+  
X
IN–  
X
OUT+  
OUT–  
Hi-Z  
Hi-Z  
L
ST1  
H
ST2  
H
AMPO  
L
Hi-Z  
Hi-Z  
H
Power Save  
Idle Rotation  
Forward Rotation  
Reverse Rotation  
Brake  
H
L
L
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
H
H
L
H
L
H
L
H
H
H
H
L
L
H: High, L: Low, X: Don’t care, Hi-Z: High impedance  
Signal Output (Note 1)  
Driver State  
Driver Output  
(During Resistance Pull-up for  
ST1 and ST2)  
UVLO  
Disable  
Enable  
Disable  
Disable  
Disable  
Disable  
Disable  
Disable  
Disable  
Disable  
Disable  
Disable  
Disable  
OCP  
TW  
TSD  
OVP  
OUT+  
Active  
Hi-Z  
Hi-Z  
Active  
Hi-Z  
Hi-Z  
Hi-Z  
L
OUT–  
Active  
Hi-Z  
Hi-Z  
Active  
Hi-Z  
Hi-Z  
Hi-Z  
L
ST1  
H
H
L
ST2  
H
H
H
H
H
H
H
L
AMPO  
Active  
L
Disable  
X
Disable  
X
Disable  
X
Disable  
X
Enable  
Disable  
Disable  
Enable  
Enable  
Disable  
Enable  
Disable  
Disable  
Enable  
Enable  
Disable  
Enable  
Enable  
Enable  
Enable  
Disable  
Disable  
Enable  
Enable  
Enable  
Enable  
Disable  
Disable  
Enable  
Disable  
Enable  
Disable  
Disable  
Disable  
Enable  
Disable  
Enable  
Disable  
Disable  
Disable  
Disable  
Disable  
Enable  
Enable  
Enable  
Enable  
Enable  
Enable  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
M
M
L
L
H
L
Hi-Z  
L
Hi-Z  
L
L
M
M
L
L
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
L
L
L
L
H: High, M: Middle, L: Low, X: Don’t care, Hi-Z: High impedance  
If both IN+ and INare Low, driver output goes to Hi-Z although over voltage is detected.  
(Note 1) 4.7 kΩ for ST1, Middle for pull up  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0H5H0C302020-1-2  
20.Mar.2018 Rev.001  
5/40  
BD16912EFV-C  
Electrical Characteristics  
(Unless otherwise specified Tj=–40 °C to +150 °C, VVS=6 V to 18 V, VPSB=5 V, VCS=VRNF=0 V, VVREF=5 V)  
Limit  
Parameter  
Circuit Current (During Operation)  
Circuit Current (At Standby)  
Symbol  
IQ  
ISTBY1  
ISTBY2  
Unit  
Condition  
Min  
-
Typ  
3
Max  
6
mA VPSB=H  
VPSB=L, Tj=–40 °C to  
+125 °C  
-
-
0
-
10  
40  
μA  
μA  
VPSB=L, Tj=+125 °C to  
+150 °C  
Circuit Current (At Standby)  
VVS=6 V to 12 V, IO=±2 A,  
Tj=+25 °C, Sum of High Side  
and Low Side  
Motor Drive Output ON Resistance 1  
RON1  
RON2  
RON3  
RON4  
RON5  
RON6  
-
-
-
-
-
-
0.40  
0.59  
0.56  
0.45  
0.88  
0.43  
0.83  
VVS=12 V to 18 V, IO=±2 A,  
Tj=+25 °C, Sum of High Side  
and Low Side  
Motor Drive Output ON Resistance 2  
0.36  
VVS=6 V to 12 V, IO=±2 A,  
Tj=–40 °C, Sum of High Side  
and Low Side  
Motor Drive Output ON Resistance 3  
(Reference Value) (Note 1)  
-
-
-
-
VVS=6 V to 12 V, IO=±2 A,  
Tj=+150 °C, Sum of High  
Side and Low Side  
Motor Drive Output ON Resistance 4  
(Reference Value) (Note 1)  
VVS=12 V to 18 V, IO=±2 A,  
Tj=–40 °C, Sum of High Side  
and Low Side  
Motor Drive Output ON Resistance 5  
(Reference Value) (Note 1)  
VVS=12 V to 18 V, IO=±2 A,  
Tj=+150 °C, Sum of High  
Side and Low Side  
Motor Drive Output ON Resistance 6  
(Reference Value) (Note 1)  
Motor Drive Output Higher-Side  
VFOH1  
VFOH2  
VFOH3  
VFOL1  
VFOL2  
VFOL3  
-
-
-
-
-
-
1.0  
1.3  
1.4  
1.2  
1.3  
1.4  
1.2  
V
V
V
V
V
V
IO=+2 A, Tj=+25 °C  
IO=+2 A, Tj=–40 °C  
IO=+2 A, Tj=+150 °C  
IO=–2 A, Tj=+25 °C  
IO=–2 A, Tj=–40 °C  
IO=–2 A, Tj=+150 °C  
Body Diode Voltage 1  
Motor Drive Output Higher-Side  
Body Diode Voltage 2 (Reference Value) (Note 1)  
-
Motor Drive Output Higher-Side  
-
1.0  
-
Body Diode Voltage 3 (Reference Value) (Note 1)  
Motor Drive Output Lower-Side  
Body Diode Voltage 1  
Motor Drive Output Lower-Side  
Body Diode Voltage 2 (Reference Value) (Note 1)  
Motor Drive Output Lower-Side  
-
Body Diode Voltage 3 (Reference Value) (Note 1)  
Motor Drive Output Higher-Side Leakage Current  
Motor Drive Output Lower-Side Leakage Current  
Abnormality Detection Signal ST1 Output Middle  
Output Impedance (Reference Value) (Note 1)  
Abnormality Detection Signal  
IOLH  
IOLL  
–40  
-
-
-
-
μA VO=0 V  
μA VO=VVS  
20  
IST1=+0.5 mA, Thermal  
RST1  
VSTL1  
VSTL2  
IST  
3.3  
4.7  
0.1  
0.1  
-
6.1  
0.3  
0.3  
10  
kΩ  
V
Warning (TW)  
IST1=+1.1 mA, Overcurrent  
Detection  
-
-
-
ST1 Output Low Voltage  
Abnormality Detection Signal  
IST2=+1.1 mA, Overvoltage  
Detection  
V
ST2 Output Low Voltage  
Abnormality Detection Signal  
μA VST=7 V  
Output Leakage Current  
Motor Drive Logic Input High Level Input Voltage  
Motor Drive Logic Input Low Level Input Voltage  
Motor Drive Logic Input High Level Input Current  
Motor Drive Logic Input Low Level Input Current  
VINH  
VINL  
IINH  
IINL  
2.5  
-
-
-
-
V
0.8  
100  
+10  
V
25  
–10  
50  
0
μA VIN+, VIN– =5 V  
μA VIN+, VIN– =0 V  
For the current parameter, the current inflow into the IC is indicated as a positive notation, and the current outflow from the IC as a negative notation.  
(Note 1) Reference value is the design value on which evaluation confirmation was carried out, and shipment inspection is not carried out.  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0H5H0C302020-1-2  
20.Mar.2018 Rev.001  
6/40  
BD16912EFV-C  
Electrical Characteristics - continued  
(Unless otherwise specified Tj=–40 °C to +150 °C, VVS=6 V to 18 V, VPSB=5 V, VCS=VRNF=0 V, VVREF=5 V)  
Limit  
Parameter  
Symbol  
Unit  
Condition  
Min  
2.7  
-
Typ  
-
Max  
-
Power Save Input High Voltage  
Power Save Input Low Voltage  
Power Save Input High Current  
Power Save Input Low Current  
CS Pin Input Bias Current  
VPSBH  
VPSBL  
IPSBH  
IPSBL  
ICS  
V
-
0.8  
V
25  
50  
0
100  
+10  
+0.1  
+0.1  
μA VPSB=5 V  
μA VPSB=0 V  
–10  
–0.1  
–0.1  
0
μA VCS=0 V to 1 V  
μA VVREF=0 V to 5 V  
VREF Pin Input Bias Current  
IVREF  
0
Motor Drive Current Setting Input Voltage Range  
(Constant Current PWM Control Setting Range)  
AMPO Output Saturation Voltage  
Current Limit Comparator Offset Voltage  
Motor Output Current Detection Amplifier  
Output Voltage 1  
VRVREF  
0
-
2.8  
V
VAMPOMAX  
VOFFSET  
-
3.0  
0
3.2  
V
VCS=0.7 V  
–20  
+20  
mV VAMPO=0 V to 2.8 V  
VAMPO1  
VAMPO2  
GAMP  
0.4  
2.25  
4.8  
0.5  
2.5  
5.0  
33  
0.6  
2.75  
5.2  
V
V
VCS1=0.1 V  
Motor Output Current Detection Amplifier  
Output Voltage 2  
VCS2=0.5 V  
GAMP=(VAMPO2-VAMPO1)/(VCS2  
-
Motor Output Current Detection Amplifier Gain  
V/V  
kHz  
VCS1  
)
For Constant Current PWM  
Control  
Constant Current PWM Control Carrier Frequency fVREF  
19  
49  
OCP Detect Current  
IOCP  
3.0  
-
8.0  
0.7  
8
A
μs  
ms  
V
OCP Output ON Time (Reference Value) (Note 1)  
OCP Output OFF Time  
OVP Detect Voltage  
tON  
-
2
0.4  
4
tOFF  
VOVPON  
VOVPHYS  
30  
-
33  
2
36  
-
OVP Hysteresis  
V
TSD Detect Temperature (Reference Value) (Note 1) TTSDON  
150  
-
175  
25  
160  
25  
5.0  
0.5  
200  
-
°C  
°C  
°C  
°C  
V
TSD Hysteresis (Reference Value) (Note 1)  
TW Detect Temperature (Reference Value) (Note 1)  
TW Hysteresis (Reference Value) (Note 1)  
UVLO Detect Voltage  
TTSDHYS  
TTWON  
135  
-
185  
-
TTWHYS  
VUVLOON  
VUVLOHYS  
4.5  
-
5.5  
-
UVLO Hysteresis  
V
From IN+, IN– to OUT+,  
OUT–  
Motor Drive I/O Delay Time (Note2)  
tINOUT  
-
-
10  
μs  
For the current parameter, the current inflow into the IC is indicated as a positive notation, and the current outflow from the IC as a negative notation.  
(Note 1) Reference value is the design value on which evaluation confirmation was carried out, and shipment inspection is not carried out.  
(Note 2) tINOUT is total delay time of logic and through current prevention.  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0H5H0C302020-1-2  
20.Mar.2018 Rev.001  
7/40  
BD16912EFV-C  
Typical Performance Curves  
(Reference Data)  
6.0  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
VPSB=5 V  
VIN+=0 V  
VIN-=0 V  
VPSB=5 V  
VIN+=0 V  
VIN-=5 V  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
+150 °C  
+25 °C  
-40 °C  
+150 °C  
+25 °C  
-40 °C  
Operating Voltage Range  
Operating Voltage Range  
0
5
10  
15  
20  
0
5
10  
15  
20  
Power Supply Voltage : VVS [V]  
Power Supply Voltage : VVS [V]  
Figure 2. Circuit Current vs Power Supply Voltage  
(During Operation, VIN+/VIN-=L/L)  
Figure 3. Circuit Current vs Power Supply Voltage  
(During Operation, VIN+/VIN-=L/H)  
6.0  
6.0  
VPSB=5 V  
VIN+=5 V  
VIN-=0 V  
VPSB=5 V  
VIN+=5 V  
VIN-=5 V  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
+150 °C  
+25 °C  
-40 °C  
+150 °C  
+25 °C  
-40 °C  
Operating Voltage Range  
Operating Voltage Range  
0
5
10  
15  
20  
0
5
10  
15  
20  
Power Supply Voltage : VVS [V]  
Power Supply Voltage : VVS [V]  
Figure 4. Circuit Current vs Power Supply Voltage  
(During Operation, VIN+/VIN-=H/L)  
Figure 5. Circuit Current vs Power Supply Voltage  
(During Operation, VIN+/VIN-=H/H)  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0H5H0C302020-1-2  
20.Mar.2018 Rev.001  
8/40  
BD16912EFV-C  
Typical Performance Curves - continued  
(Reference Data)  
10  
40  
30  
20  
10  
0
VPSB=0 V  
VPSB=0 V  
8
6
4
Operating Voltage Range  
Operating Voltage Range  
2
+25 °C  
-40 °C  
+150 °C  
0
0
5
10  
15  
20  
0
5
10  
15  
20  
Power Supply Voltage : VVS [V]  
Power Supply Voltage : VVS [V]  
Figure 6. Circuit Current vs Power Supply Voltage  
(At Standby)  
Figure 7. Circuit Current vs Power Supply Voltage  
(At Standby)  
1.0  
1.0  
VVS=6 V  
VVS=6 V  
0.8  
0.6  
0.4  
0.2  
0.0  
0.8  
0.6  
0.4  
0.2  
0.0  
+150 °C  
+25 °C  
-40 °C  
+150 °C  
+25 °C  
-40 °C  
0
1
2
3
0
1
2
3
Motor Drive Output Current : IOUT [A]  
Motor Drive Output Current : IOUT [A]  
Figure 8. Motor Drive Output ON Resistance  
vs Motor Drive Output Current  
Figure 9. Motor Drive Output ON Resistance  
vs Motor Drive Output Current  
(Sum of OUT+ High Side + OUT- Low Side)  
(Sum of OUT+ Low Side + OUT- High Side)  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0H5H0C302020-1-2  
20.Mar.2018 Rev.001  
9/40  
BD16912EFV-C  
Typical Performance Curves - continued  
(Reference Data)  
1.0  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
VVS=12 V  
VVS=12 V  
0.8  
0.6  
0.4  
0.2  
0.0  
+150 °C  
+25 °C  
-40 °C  
+150 °C  
+25 °C  
-40 °C  
0
1
2
3
0
1
2
3
Motor Drive Output Current : IOUT [A]  
Motor Drive Output Current : IOUT [A]  
Figure 10. Motor Drive Output ON Resistance  
vs Motor Drive Output Current  
Figure 11. Motor Drive Output ON Resistance  
vs Motor Drive Output Current  
(Sum of OUT+ High Side + OUT- Low Side)  
(Sum of OUT+ Low Side + OUT- High Side)  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
VVS=18 V  
VVS=18 V  
+150 °C  
+25 °C  
-40 °C  
+150 °C  
+25 °C  
-40 °C  
0
1
2
3
0
1
2
3
Motor Drive Output Current : IOUT [A]  
Motor Drive Output Current : IOUT [A]  
Figure 12. Motor Drive Output ON Resistance  
vs Motor Drive Output Current  
Figure 13. Motor Drive Output ON Resistance  
vs Motor Drive Output Current  
(Sum of OUT+ High Side + OUT- Low Side)  
(Sum of OUT+ Low Side + OUT- High Side)  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0H5H0C302020-1-2  
20.Mar.2018 Rev.001  
10/40  
BD16912EFV-C  
Typical Performance Curves - continued  
(Reference Data)  
1.0  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
IO=2 A  
IO=2 A  
0.8  
0.6  
+150 °C  
+25 °C  
-40 °C  
+150 °C  
+25 °C  
-40 °C  
0.4  
0.2  
0.0  
Operating Voltage Range  
Operating Voltage Range  
0
5
10  
15  
20  
0
5
10  
15  
20  
Power Supply Voltage : VVS [V]  
Power Supply Voltage : VVS [V]  
Figure 14. Motor Drive Output ON Resistance  
vs Power Supply Voltage  
Figure 15. Motor Drive Output ON Resistance  
vs Power Supply Voltage  
(Sum of OUT+ High Side + OUT- Low Side)  
(Sum of OUT+ Low Side + OUT- High Side)  
1.4  
1.0  
0.6  
0.2  
1.4  
1.0  
0.6  
0.2  
-40 °C  
+25 °C  
+150 °C  
-40 °C  
+25 °C  
+150 °C  
0
1
2
3
0
1
2
3
Motor Drive Output Current : IOUT [A]  
Motor Drive Output Current : IOUT [A]  
Figure 16. Motor Drive Output High Side Body Diode Voltage Figure 17. Motor Drive Output High Side Body Diode Voltage  
vs Motor Drive Output Current  
(OUT+)  
vs Motor Drive Output Current  
(OUT-)  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0H5H0C302020-1-2  
20.Mar.2018 Rev.001  
11/40  
BD16912EFV-C  
Typical Performance Curves - continued  
(Reference Data)  
1.4  
1.0  
1.4  
1.0  
0.6  
0.2  
-40 °C  
+25 °C  
+150 °C  
-40 °C  
+25 °C  
+150 °C  
0.6  
0.2  
-3  
-2  
-1  
0
-3  
-2  
-1  
0
Motor Drive Output Current : IOUT [A]  
Motor Drive Output Current : IOUT [A]  
Figure 18. Motor Drive Output Low Side Body Diode Voltage  
Figure 19. Motor Drive Output Low Side Body Diode Voltage  
vs Motor Drive Output Current  
(OUT+)  
vs Motor Drive Output Current  
(OUT-)  
40  
40  
VVS=18 V  
VO=0 V  
VVS=18 V  
VO=0 V  
30  
20  
30  
20  
10  
10  
Junction Temperature Range  
Junction Temperature Range  
0
0
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
Junction Temperature : Tj [°C]  
Junction Temperature : Tj [°C]  
Figure 20. Motor Drive Output Higher-Side Leakage Current  
Figure 21. Motor Drive Output Higher-Side Leakage Current  
vs Junction Temperature  
(OUT+)  
vs Junction Temperature  
(OUT-)  
www.rohm.com  
TSZ02201-0H5H0C302020-1-2  
20.Mar.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
12/40  
TSZ22111 • 15 • 001  
BD16912EFV-C  
Typical Performance Curves - continued  
(Reference Data)  
20  
20  
15  
10  
5
VVS=18 V  
VO=18 V  
VVS=18 V  
VO=18 V  
15  
10  
5
Junction Temperature Range  
Junction Temperature Range  
0
0
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
Junction Temperature : Tj [°C]  
Junction Temperature : Tj [°C]  
Figure 22. Motor Drive Output Lower-Side Leakage Current  
Figure 23. Motor Drive Output Lower-Side Leakage Current  
vs Junction Temperature  
(OUT+)  
vs Junction Temperature  
(OUT-)  
6.1  
0.30  
Overcurrent  
Detection  
IST1=+0.5 mA  
Thermal Warning  
5.7  
0.25  
5.3  
4.9  
4.5  
0.20  
+150 °C  
+25 °C  
-40 °C  
0.15  
0.10  
0.05  
0.00  
4.1  
TW Detect Temperature Range  
3.7  
Junction Temperature Range  
3.3  
-50  
0
50  
100  
150  
200  
0
2
4
6
8
10  
Junction Temperature : Tj [°C]  
ST1 Current : IST1 [mA]  
Figure 24. Abnormality Detection Signal ST1 Output  
Middle Output Impedance vs Junction Temperature  
Figure 25. Abnormality Detection Signal ST1 Output  
Low Voltage vs ST1 Current  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0H5H0C302020-1-2  
20.Mar.2018 Rev.001  
13/40  
BD16912EFV-C  
Typical Performance Curves - continued  
(Reference Data)  
0.30  
10  
8
VST1=7 V  
Overcurrent  
Detection  
0.25  
0.20  
6
+150 °C  
+25 °C  
-40 °C  
0.15  
0.10  
0.05  
0.00  
4
2
Junction Temperature Range  
0
0
2
4
6
8
10  
-50  
0
50  
100  
150  
ST2 Current : IST2 [mA]  
Junction Temperature : Tj [°C]  
Figure 26. Abnormality Detection Signal ST2 Output  
Low Voltage vs ST2 Current  
Figure 27. Abnormality Detection Signal Output  
Leakage Current vs Junction Temperature  
(ST1)  
10  
VST2=7 V  
2.4  
2.0  
1.6  
1.2  
0.8  
8
6
4
+150 °C  
+25 °C  
-40 °C  
+25 °C  
-40 °C  
150 °C  
2
Operating Voltage Range  
Junction Temperature Range  
0
-50  
0
50  
100  
150  
0
5
10  
15  
20  
Junction Temperature : Tj [°C]  
Power Supply Voltage : VVS [V]  
Figure 28. Abnormality Detection Signal Output  
Leakage Current vs Junction Temperature  
(ST2)  
Figure 29. Motor Drive Logic Input High/Low Level  
Input Voltage vs Power Supply Voltage  
(IN+)  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0H5H0C302020-1-2  
20.Mar.2018 Rev.001  
14/40  
BD16912EFV-C  
Typical Performance Curves - continued  
(Reference Data)  
100  
75  
50  
25  
0
2.4  
+150 °C  
+25 °C  
-40 °C  
2.0  
+25 °C  
-40 °C  
+150 °C  
1.6  
1.2  
0.8  
+150 °C  
+25 °C  
-40 °C  
Operating Voltage Range  
0
5
10  
15  
20  
0
1
2
3
4
5
Power Supply Voltage : VVS [V]  
IN+ Voltage : VIN+ [V]  
Figure 30. Motor Drive Logic Input High/Low Level  
Input Voltage vs Power Supply Voltage  
(IN-)  
Figure 31. Motor Drive Logic Input High/Low Level  
Input Current vs Control Input Voltage  
(IN+)  
100  
2.4  
75  
50  
25  
0
-40 °C  
+25 °C  
+150 °C  
2.0  
1.6  
1.2  
0.8  
+150 °C  
+25 °C  
-40 °C  
Operating Voltage Range  
0
1
2
3
4
5
0
5
10  
15  
20  
IN- Voltage : VIN- [V]  
Power Supply Voltage : VVS [V]  
Figure 32. Motor Drive Logic Input High/Low Level  
Input Current vs Control Input Voltage  
(IN-)  
Figure 33. Power Save Input High/Low Voltage  
vs Power Supply Voltage  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0H5H0C302020-1-2  
20.Mar.2018 Rev.001  
15/40  
BD16912EFV-C  
Typical Performance Curves - continued  
(Reference Data)  
100  
75  
0.10  
0.05  
+150 °C  
+25 °C  
-40 °C  
50  
0.00  
+150 °C  
+25 °C  
-40 °C  
25  
0
-0.05  
-0.10  
0
1
2
3
4
5
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
PSB Voltage : VPSB [V]  
CS Voltage : VCS [V]  
Figure 34. Power Save Input High/Low Current vs PSB Voltage  
Figure 35. CS Pin Input Bias Current vs CS Voltage  
0.10  
3.5  
3.0  
2.5  
2.0  
0.05  
+150 °C  
+25 °C  
-40 °C  
+150 °C  
+25 °C  
-40 °C  
0.00  
-0.05  
-0.10  
Constant  
Current PWM  
Control Setting  
Range:  
1.5  
1.0  
0.5  
0.0  
VRVREF  
0
1
2
3
4
5
0.00  
0.25  
0.50  
0.75  
1.00  
VREF Voltage : VVREF [V]  
CS Voltage : VCS [V]  
Figure 36. VREF Pin Input Bias Current vs VREF Voltage  
Figure 37. Motor Drive Current Detection Signal (AMPO)  
Output Voltage vs CS Voltage  
(Motor Drive Current Setting Input Voltage Range  
(Constant Current PWM Control Setting Range))  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0H5H0C302020-1-2  
20.Mar.2018 Rev.001  
16/40  
BD16912EFV-C  
Typical Performance Curves - continued  
(Reference Data)  
3.50  
20  
15  
10  
5
VCS=0.7 V  
3.25  
+150 °C  
+25 °C  
-40 °C  
+150 °C  
3.00  
2.75  
2.50  
+25 °C  
-40 °C  
0
-5  
-10  
-15  
-20  
Operating Voltage Range  
0
5
10  
15  
20  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
Motor Drive Current Detection Signal (AMPO)  
Output Voltage : VAMPO [V]  
Power Supply Voltage : VVS [V]  
Figure 38. AMPO Output Saturation Voltage  
vs Power Supply Voltage  
Figure 39. Current Limit Comparator Offset Voltage vs  
Motor Drive Current Detection Signal (AMPO) Output Voltage  
0.60  
0.55  
0.50  
0.45  
0.40  
2.75  
VCS=0.1 V  
VCS=0.5 V  
2.65  
2.55  
+150 °C  
+25 °C  
-40 °C  
+150 °C  
+25 °C  
-40 °C  
2.45  
2.35  
Operating Voltage Range  
Operating Voltage Range  
2.25  
0
5
10  
15  
20  
0
5
10  
15  
20  
Power Supply Voltage : VVS [V]  
Power Supply Voltage : VVS [V]  
Figure 40. Motor Output Current Detection Amplifier  
Output Voltage 1 vs Power Supply Voltage  
Figure 41. Motor Output Current Detection Amplifier  
Output Voltage 2 vs Power Supply Voltage  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0H5H0C302020-1-2  
20.Mar.2018 Rev.001  
17/40  
BD16912EFV-C  
Typical Performance Curves - continued  
(Reference Data)  
5.2  
49.0  
44.0  
39.0  
34.0  
29.0  
24.0  
19.0  
VVREF=1.4 V  
VRNF=VCS  
For Constant Current PWM Control  
VCS=0.1 V to 0.5 V  
5.1  
+150 °C  
+25 °C  
-40 °C  
5.0  
4.9  
4.8  
+150 °C  
+25 °C  
-40 °C  
Operating Voltage Range  
Operating Voltage Range  
0
5
10  
15  
20  
0
5
10  
15  
20  
Power Supply Voltage : VVS [V]  
Power Supply Voltage : VVS [V]  
Figure 42. Motor Output Current Detection Amplifier Gain  
vs Power Supply Voltage  
Figure 43. Constant Current PWM Control Carrier Frequency  
vs Power Supply Voltage  
8.0  
8.0  
7.0  
7.0  
VVS=6 V  
VVS=6 V  
12 V  
18 V  
12 V  
18 V  
6.0  
5.0  
4.0  
3.0  
6.0  
5.0  
4.0  
3.0  
Junction Temperature Range  
Junction Temperature Range  
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
Junction Temperature : Tj [°C]  
Junction Temperature : Tj [°C]  
Figure 44. OCP Detect Current vs Junction Temperature  
Figure 45. OCP Detect Current vs Junction Temperature  
(OUT- High Side)  
(OUT+ High Side)  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0H5H0C302020-1-2  
20.Mar.2018 Rev.001  
18/40  
BD16912EFV-C  
Typical Performance Curves - continued  
(Reference Data)  
8.0  
7.0  
8.0  
7.0  
6.0  
5.0  
4.0  
3.0  
6.0  
5.0  
4.0  
3.0  
VVS=6 V  
12 V  
VVS=6 V  
12 V  
18 V  
18 V  
Junction Temperature Range  
Junction Temperature Range  
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
Junction Temperature : Tj [°C]  
Junction Temperature : Tj [°C]  
Figure 46. OCP Detect Current vs Junction Temperature  
(OUT+ Low Side)  
Figure 47. OCP Detect Current vs Junction Temperature  
(OUT- Low Side)  
0.7  
0.6  
8.0  
7.0  
6.0  
5.0  
0.5  
-40 °C  
+25 °C  
+150 °C  
0.4  
0.3  
0.2  
0.1  
0.0  
-40 °C  
+25 °C  
+150 °C  
4.0  
3.0  
2.0  
Operating Voltage Range  
Operating Voltage Range  
0
5
10  
15  
20  
0
5
10  
15  
20  
Power Supply Voltage : VVS [V]  
Power Supply Voltage : VVS [V]  
Figure 48. OCP Output ON Time vs Power Supply Voltage  
Figure 49. OCP Output OFF Time vs Power Supply Voltage  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0H5H0C302020-1-2  
19/40  
20.Mar.2018 Rev.001  
BD16912EFV-C  
Typical Performance Curves - continued  
(Reference Data)  
36  
35  
34  
33  
32  
3.0  
2.5  
2.0  
1.5  
1.0  
31  
Junction Temperature Range  
Junction Temperature Range  
30  
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
Junction Temperature : Tj [°C]  
Junction Temperature : Tj [°C]  
Figure 50. OVP Detect Voltage vs Junction Temperature  
Figure 51. OVP Hysteresis vs Junction Temperature  
200  
190  
180  
170  
50  
40  
30  
20  
160  
10  
Operating Voltage Range  
Operating Voltage Range  
150  
0
0
5
10  
15  
20  
0
5
10  
15  
20  
Power Supply Voltage : VVS [V]  
Power Supply Voltage : VVS [V]  
Figure 52. TSD Detect Temperature vs Power Supply Voltage  
Figure 53. TSD Hysteresis vs Power Supply Voltage  
www.rohm.com  
TSZ02201-0H5H0C302020-1-2  
20.Mar.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
20/40  
TSZ22111 • 15 • 001  
BD16912EFV-C  
Typical Performance Curves - continued  
(Reference Data)  
185  
175  
165  
155  
40  
35  
30  
25  
20  
15  
10  
145  
Operating Voltage Range  
Operating Voltage Range  
135  
0
5
10  
15  
20  
0
5
10  
15  
20  
Power Supply Voltage : VVS [V]  
Power Supply Voltage : VVS [V]  
Figure 54. TW Detect Temperature vs Power Supply Voltage  
Figure 55. TW Hysteresis vs Power Supply Voltage  
5.50  
5.25  
5.00  
0.80  
0.70  
0.60  
0.50  
0.40  
4.75  
0.30  
Junction Temperature Range  
Junction Temperature Range  
4.50  
0.20  
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
Junction Temperature : Tj [°C]  
Junction Temperature : Tj [°C]  
Figure 56. UVLO Detect Voltage vs Junction Temperature  
Figure 57. UVLO Hysteresis vs Junction Temperature  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0H5H0C302020-1-2  
20.Mar.2018 Rev.001  
21/40  
BD16912EFV-C  
Typical Performance Curves - continued  
(Reference Data)  
100  
100  
10  
1
VVS=28 V  
Ta=25 °C  
X : Breakdown Point  
VVS=28 V  
Ta=25 °C  
X : Breakdown Point  
10  
1
Motor Drive Output Current Range  
Motor Drive Output Current Range  
0.1  
0.1  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
Current Pulse ON Time : tDSON [ms]  
Current Pulse ON Time : tDSON [ms]  
Figure 58. Drain-Source Current vs Current Pulse ON Time  
(Motor Drive Output Channel Operating Limit,  
Output High State, OUT+ Higher MOS)  
Figure 59. Drain-Source Current vs Current Pulse ON Time  
(Motor Drive Output Channel Operating Limit,  
Output High State, OUT- Higher MOS)  
100  
100  
X : Breakdown Point  
VVS=28 V  
Ta=25 °C  
X : Breakdown Point  
VVS=28 V  
Ta=25 °C  
10  
10  
1
1
Motor Drive Output Current Range  
Motor Drive Output Current Range  
0.1  
0.1  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
Current Pulse ON Time : tDSON [ms]  
Current Pulse ON Time : tDSON [ms]  
Figure 60. Drain-Source Current vs Current Pulse ON Time  
(Motor Drive Output Channel Operating Limit,  
Output Low State, OUT+ Lower MOS)  
Figure 61. Drain-Source Current vs Current Pulse ON Time  
(Motor Drive Output Channel Operating Limit,  
Output Low State, OUT- Lower MOS)  
www.rohm.com  
TSZ02201-0H5H0C302020-1-2  
20.Mar.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
22/40  
TSZ22111 • 15 • 001  
BD16912EFV-C  
Typical Performance Curves - continued  
(Reference Data)  
100  
100  
10  
1
X : Breakdown Point  
X : Breakdown Point  
VVS=28 V  
Ta=150 °C  
VVS=28 V  
Ta=150 °C  
10  
1
Motor Drive Output Current Range  
Motor Drive Output Current Range  
0.1  
0.1  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
Current Pulse ON Time : tD [ms]  
Current Pulse ON Time : tD [ms]  
Figure 62. Body Diode Current vs Current Pulse ON Time  
(Motor Drive Output Body Diode Operating Limit,  
Output Hi-Z State, OUT+, OUT- Higher MOS)  
Figure 63. Body Diode Current vs Current Pulse ON Time  
(Motor Drive Output Body Diode Operating Limit,  
Output Hi-Z State, OUT+, OUT- Lower MOS)  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0H5H0C302020-1-2  
20.Mar.2018 Rev.001  
23/40  
BD16912EFV-C  
Application Example  
(External components can be used if necessary. Refer to the below values.)  
1. Variable Speed Control Application by Direct PWM Control.  
This is an application circuit example that directly PWM controls the motor drive output by the PWM duty input to the  
motor drive logic input pin (IN+, IN-) and varies the motor rotation speed.  
Bypass Capacitor and Voltage Clamp Zener Diodes.  
Located near the power supply pin and on the side of the  
current inflow path as countermeasures against power rise by  
disturbance and regenerative braking  
VS  
15 16  
Power Supply  
Clamper  
V Source  
I Source  
UVLO  
Reverse Protection Diode  
Noise removal snubber.  
Insert if necessary.  
PSB  
IN+  
IN–  
Power  
Save  
Power ON  
Reset  
4
2
Clock  
OUT+  
OUT–  
RNF  
7
8
Controls the number  
of motor rotations by  
input of PWM duty  
Control  
Logic  
Pre  
Driver  
H Bridge  
3
M
5 V  
CURRENT  
LIMITATION COMP.  
Controller  
5
13 14  
VREF  
CURRENT  
DETECTION  
0 Ω  
to 10 kΩ  
AMPO  
CS  
100 pF  
to 1 μF  
AMP.  
18  
19  
20  
1
x5  
11  
10  
5 V  
1 kΩ  
TSD  
TW  
to 47 kΩ  
ST1  
9
5 V  
0 Ω  
to 1 Ω  
1 kΩ  
to 47 kΩ  
ST2  
OCP  
OVP  
GND  
12  
EXP-PAD  
Because the abnormality  
detection signal is an open  
drain output, connect a pull-  
up resistor externally  
RNF voltage false  
Motor drive current  
detection resistor.  
Pay attention to the  
power consumption of  
resistance.  
detection prevention low  
pass filter.  
Insert if necessary.  
Pay attention to the  
common impedance with  
the current detection path.  
Figure 64. Direct PWM Control Application Circuit  
OUT± Pins  
Current: IO [A]  
When VREF voltage3.2 V  
(Current Limit Function OFF)  
ISET  
Current limit setting (ISET) can  
be varied by VREF voltage  
IN± Pins  
PWM Input  
ON Duty  
DIN [%]  
0
100  
Figure 65. OUT± Pins Current vs VREF Pin Input Voltage  
Characteristic Image  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0H5H0C302020-1-2  
20.Mar.2018 Rev.001  
24/40  
BD16912EFV-C  
Application Example - continued  
(External components can be used if necessary. Refer to the below values.)  
2. Variable Speed Control Application by Constant Current PWM Control  
This is an application circuit example in which the motor drive output is subjected to constant current PWM control  
depending on the DC voltage that is input to the motor drive current setting voltage input pin (VREF), and varies the  
motor rotation speed.  
Bypass Capacitor and Voltage Clamp Zener Diodes.  
Located near the power supply pin and on the side of the  
current inflow path as countermeasures against power rise by  
disturbance and regenerative braking  
VS  
15 16  
Power Supply  
Clamper  
V source  
I Source  
UVLO  
Noise removal snubber.  
Insert if necessary.  
Reverse protection diode  
PSB  
IN+  
IN–  
Power  
Save  
Power ON  
Reset  
4
2
Clock  
OUT+  
OUT–  
RNF  
7
8
Input is used to  
change the output  
state (Forward,  
reverse, idling and  
brake)  
Control  
Logic  
Pre  
H Bridge  
3
M
Driver  
CURRENT  
LIMITATION COMP.  
Controller  
5
13 14  
VREF  
CURRENT  
DETECTION  
0 Ω  
to 10 kΩ  
Output current is  
controlled by DC  
voltage to apply on  
VREF pin  
AMPO  
CS  
100 pF  
to 1 μF  
AMP.  
18  
19  
20  
1
x5  
11  
10  
5 V  
1 kΩ  
to 47 kΩ  
TSD  
TW  
ST1  
9
5 V  
0 Ω  
to 1 Ω  
1 kΩ  
to 47 kΩ  
ST2  
OCP  
OVP  
GND  
12  
EXP-PAD  
RNF voltage false  
Because the abnormality  
detection signal is an open  
drain output, connect a pull-  
up resistor externally  
detection prevention low  
pass filter.  
Motor drive current  
detection resistor.  
Pay attention to the  
power consumption of  
resistance.  
Insert if necessary.  
Pay attention to the  
common impedance with  
the current detection path.  
Figure 66. Constant Current PWM Control Application Circuit  
OUT± Pins  
Current: IO [A]  
Depending on the  
RNF resistance and  
Input Duty, output  
current adjustment  
is possible  
VREF Pin  
Input Voltage  
VVREF [V]  
0
3.0(Typ)  
Figure 67. VREF Pin Input Voltage vs OUT± Pins Current  
Characteristic Image  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0H5H0C302020-1-2  
20.Mar.2018 Rev.001  
25/40  
BD16912EFV-C  
Description of Blocks  
1. Under Voltage Lock Out: UVLO.  
When the voltage applied to the VS pin becomes 5.0 V (Typ) or less, the driver output becomes Hi-Z.  
It returns when the voltage applied to the VS pin becomes 5.5 V (Typ) or more.  
UVLO function, and Abnormality Detection Signal Output ST1 and ST2 are not linked.  
Normal  
Protection  
Normal  
VS  
VUVLOOFF=5.5 V (Typ)  
VUVLOON=5.0 V(Typ)  
VUVLOHYS=0.5 V(Typ)  
ACTIVE  
Hi-Z  
OUT+,OUT-  
Figure 68. UVLO Timing Chart  
2. Over Voltage Protection: OVP  
When the voltage applied to the VS pin becomes 33 V (Typ) or more, the driver output and the ST2 output becomes  
Low.  
If the driver output is HI-Z during this state, output remains at HI-Z  
It returns when the voltage applied to the VS pin becomes 31 V (Typ) or less.  
Normal  
Protection  
Normal  
VOVPON=33 V(Typ)  
VOVPOFF=31 V(Typ)  
VOVPHYS=2 V(Typ)  
VS  
ACTIVE  
OUT+,OUT-  
L
H
L
ST1  
H
L
ST2  
Figure 69. OVP Timing Chart  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0H5H0C302020-1-2  
20.Mar.2018 Rev.001  
26/40  
BD16912EFV-C  
Description of Blocks - continued  
3. Over Current Protection: OCP  
When the output current exceeds the rated current, OCP is detected at OUT+/OUTpins, higher/lower sides respectively  
and both the driver outputs (OUT+/OUT) go to Hi-Z at the same time. The driver output turns ON for tON=0.4 μs (Typ)  
or more and turns OFF for tOFF=4 ms (Typ).  
If overcurrent state is continued, Hi-Z is repeated again. Also, when overcurrent is detected, ST1 goes low and retains  
low while the overcurrent continues.  
ST1 goes high after tMASK=1 ms (Typ) once recovering from overcurrent.  
Output Load: Abnormal  
Output Load: Normal  
ACTIVE  
Output Load: Normal  
OUT+,OUT-  
Hi-Z  
IOCP  
IO  
0
tON  
tOFF  
tON  
tOFF  
tON  
tOFF  
H
ST1  
ST2  
L
H
L
tMASK  
Figure 70. OCP Timing Chart  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0H5H0C302020-1-2  
20.Mar.2018 Rev.001  
27/40  
BD16912EFV-C  
Description of Blocks - continued  
4. Thermal Warning: TW, Thermal Shutdown: TSD  
To prevent IC from thermal destruction, thermal warning and thermal shutdown are built-in.  
Make sure that the junction temperature Tj is 150 °C and below, but if that is crossed by any possibility, and the junction  
temperature reaches 160 °C (Typ) or higher, the thermal warning is in operation and ST1 pin voltage VST1 depends on  
the pull up resistance value.  
The formula is as follows.  
VPULLUP(External)  
RPULLUP(External)  
ꢀꢁꢂ  
푆푇1  
=
ꢃꢄꢅꢅꢄꢃ [V]  
ST1(Pin19)  
VST1  
×푅  
ꢀꢁꢂ  
푃푈퐿퐿푈푃  
RST1(Internal)=4.7 kΩ(Typ)  
where:  
V
R
R
PULLUP is ST1 pin resistance pull up power supply voltage.  
PULLUP is ST1 pin pull up resistance value.  
STꢆ is ST1 pin internal impedance for thermal warning.  
NMOS(Internal):ON at TW  
Figure 71. ST1 Pin Circuit for TW  
RST1 is 4.7 kΩ (Typ).  
If VPULLUP=5V for example, VST1=2.5 V (Middle) for RPULLUP=4.7 kΩ, VST1=0.45 V (Low) for RPULLUP=47 kΩ.  
When the junction temperature further rises to 175 °C (Typ) or more, TSD is in operation and sets the driver output to  
Hi-Z. After that, when the temperature reaches 150 °C (Typ) or less, the driver output returns, and when the temperature  
reaches 135 °C (Typ) or less, ST1 also returns.  
Note: While the thermal warning and thermal shutdown is in operation, ST1 goes the above voltage VST1, but since it is  
in the state exceeding the rated temperature, there is a possibility that the state of ST1 and other functions cannot be  
retained.  
Thermal Warning(TW)  
Normal  
Normal  
Thermal Shutdown(TSD)  
TTSDON =175 °C(Typ)  
TTWON =160 °C(Typ)  
TTSDOFF =150 °C(Typ)  
TTWOFF =135 °C(Typ)  
TTSDHYS =25 °C(Typ)  
TTWHYS =25 °C(Typ)  
Tj  
ACTIVE  
Hi-Z  
OUT+,OUT-  
H
M
L
ST1  
H
L
ST2  
Figure 72 TW, TSD Timing Chart  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0H5H0C302020-1-2  
20.Mar.2018 Rev.001  
28/40  
BD16912EFV-C  
Description of Blocks - continued  
5. Direct PWM Control  
Direct PWM control by IN+ and IN- pins is possible.  
There is no restriction to input for pin switching order of PSB, IN+ and IN-.  
Regarding the DECAY mode, it supports both SLOW DECAY and FAST DECAY modes.  
Because of RNF pin voltage and the output pin voltage may swing to GND or less at the FAST DECAY status, set within  
the absolute maximum ratings.  
SLOW DECAY (Forward Rotation)  
Driver Input  
Driver Output  
State  
PSB  
H
IN+  
H
IN–  
L
OUT+  
OUT–  
H
L
L
L
L
L
L
ON  
SLOW DECAY  
ON  
H
H
H
L
H
H
H
L
H
H
H
L
SLOW DECAY  
ON  
H
H
H
FAST DECAY (Synchronous Rectification, Forward Rotation)  
Driver Input  
Driver Output  
State  
PSB  
H
IN+  
H
IN–  
L
OUT+  
OUT–  
H
L
L
H
L
ON  
FAST DECAY  
ON  
H
L
H
L
H
H
H
L
H
L
H
L
H
L
FAST DECAY  
ON  
H
H
H
SLOW DECAY  
FAST DECAY  
H
H
L
IN+  
IN-  
H
L
H
L
H
L
H
L
OUT+  
OUT-  
IO  
H
L
L
(1) (2)  
(1) (2)  
(1)Output ON (2)Current Decay  
Figure 73. I/O Waveform of Each DECAY Mode  
SLOW DECAY  
FAST DECAY  
ONOFF  
OFF  
ONOFF  
OFFON  
M
M
OFFON  
ON  
OFFON  
ONOFF  
(1) Output ON  
(2) Current Decay  
(1) Output ON  
(2) Current Decay  
Figure 74. Current Path of Each DECAY Mode  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0H5H0C302020-1-2  
20.Mar.2018 Rev.001  
29/40  
BD16912EFV-C  
Description of Blocks - continued  
6. Output Current Detection Amp (AMPO Pin)  
The AMPO pin outputs GAMP=5 times (Typ) of the CS pin voltage with reference to the ground voltage.  
For example, VAMPO=0.5 V (Typ) for VCS=0.1 V.  
By connecting the current detection resistor RRNF to the RNF pin and connecting it with the CS pin, the AMPO pin voltage  
can be used for output current monitoring.  
In the case that this function is not used, set the AMPO pin to OPEN.  
The AMPO pin has the circuit to limit the output voltage internally. The limit voltage is VAMPOMAX is 3 V (Typ).  
When the AMPO pin voltage exceeds 3.6 V, the test mode function for Mass Production check is enabled and the driver  
output is set to Hi-Z. Do not exceed the pin rated 3.6 V and add a capacitor between AMPO pin and GND if necessary  
to smooth AMPO pin voltage. In case of that AMPO pin has 25 kΩ (Typ) resistance as output impedance internally and  
there will be delay due to additional capacitor and time constant of internal resistance. Note: The delay has effect on  
constant current PWM control.  
In the case of constant current PWM control and the output current detection amplifier not being used together, set the  
VREF pin to be 3.2 V or higher and 7 V or lower, and connect the RNF pin and CS pin to the ground.  
7. Constant Current PWM Control (Current Limit)  
Constant current PWM control with VREF pin is possible.  
The motor drive current ISET can be set by the VREF pin voltage VVREF, the current detection resistor RRNF connected to  
the RNF pin, and the current detection amplifier gain GAMP  
.
The relation between ISET, VVREF, RRNF and GAMP is given below.  
ꢈꢉꢊ퐹  
푆퐸푇  
=
[A]  
×푅  
ꢉ푁퐹  
퐴푀푃  
The constant current PWM control setting range of VREF pin VRVREF is 0 V to 2.8 V and it is the output range for PWM.  
If ISET tends to 0, percentage error of IO with ISET increases. Consider the below following characteristic and use in the  
appropriate range according to applications. However, this reference characteristic isn't guaranteed value but evaluation  
value.  
50  
VVS=12 V  
VPSB=5 V  
VIN+=5 V  
VIN-=0 V  
40  
VCS=RNF  
Motor Inductance=2.3 mH  
30  
20  
10  
0
0
50  
100  
150  
200  
250  
Motor Drive Current : ISET [mA]  
Figure 75. Error of IO with ISET ((IO-ISET)/ISET) vs Motor Drive Current ISET  
(Reference Data)  
The voltage generated at the RNF pin is detected from the CS pin. If necessary, a low-pass filter can be added between  
the RNF pin and the CS pin to smooth the RNF pin voltage fluctuation.  
Carrier frequency is 33 kHz (Typ).  
In the case of constant current PWM control and the output current detection amplifier not being used together, set the  
VREF pin to be 3.2 V or higher and 7 V or lower, and connect the RNF pin and CS pin to the ground.  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0H5H0C302020-1-2  
20.Mar.2018 Rev.001  
30/40  
BD16912EFV-C  
7. Constant Current PWM Control (Current Limit) - continued  
Ex. VREF=1 V  
Ex. VREF=2 V  
H
H
IN+  
IN-  
L
L
2 V  
VREF  
Internal Clock  
OUT+  
OUT-  
RNF  
1 V  
H
L
H
L
H
L
H
L
L
L
CS  
ISET  
IO  
ISET  
1
2
푆퐸푇  
=
[A] 푆퐸푇  
=
[A]  
퐴푀푃  
×푅  
×푅  
퐴푀푃 ꢉ푁퐹  
ꢉ푁퐹  
Figure 76. I/O Waveform during Constant Current PWM Control  
8. Power Save (PSB Pin)  
IC internal circuits can be used as power saved state and power consumption can be reduced by lowering PSB pin  
voltage. Driver output goes Hi-Z at the time. Refer I/O truth table for details of other pin state.  
There is no restriction to input for pin switching order of PSB, IN+ and IN-.  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0H5H0C302020-1-2  
20.Mar.2018 Rev.001  
31/40  
BD16912EFV-C  
I / O Equivalence Circuits (Resistance Values are Typical)  
2.IN+, 3.IN–  
4.PSB  
Internal  
Regulator  
30 kΩ 100 kΩ  
Pin4  
10 kΩ  
20 kΩ  
50 kΩ  
Pin2,3  
100 kΩ  
Pin1,12  
Pin1,12 Pin1,12 Pin1,12 Pin1,12  
Pin1,12  
Pin1,12  
Pin1,12  
5.VREF  
7,8.OUT+, 9,10.RNF, 13,14.OUT–  
Internal  
Regulator  
Pin15,16  
10 kΩ  
10 kΩ  
Pin7, 8, 13, 14  
Pin9,10  
Pin5  
Pin1,12  
Pin1,12  
11.CS  
15,16.VS  
Internal  
Regulator  
Pin15,16  
10 kΩ  
Pin11  
Pin1,12  
Pin1,12  
18.AMPO  
19.ST1  
Internal  
Regulator  
Internal  
Regulator  
15 Ω  
Pin19  
4.7 kΩ  
Pin18  
25 kΩ  
20 kΩ  
5 kΩ  
Internal  
Regulator  
1 kΩ  
Pin1,12  
Pin1,12 Pin1,12  
Pin1,12 Pin1,12 Pin1,12 Pin1,12  
20.ST2  
-
-
15 Ω  
Pin20  
Pin1,12  
Pin1,12  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0H5H0C302020-1-2  
20.Mar.2018 Rev.001  
32/40  
BD16912EFV-C  
Heat Loss  
1. Thermal Resistance  
The heat generated by the consumption of power by the IC is dissipated from the mold resin of the package or the lead  
frame etc.  
The parameter indicating the heat dissipation property (heat dissipation difficulty) is called thermal resistance, and the  
thermal resistance from the chip junction to the ambient environment in the board mounted state is represented by θja  
[°C/W], and the thermal characteristic parameter from the chip junction to top surface center of package is expressed  
as ψjt [°C/W].  
The thermal resistance is divided into the package part and the substrate part, the thermal resistance of the package  
part depends on the constituent material such as the mold resin or the lead frame etc., on the other hand, the thermal  
resistance of the substrate part depends on the substrate heat dissipation properties such as quality of material, size,  
copper foil area etc.  
Therefore, by heat dissipating counter-measures like installing a heat sink on the mounting board, thermal resistance  
can be reduced.  
The thermal resistance model is shown in Figure 77, and the thermal resistance calculation formula is shown in Equation  
1, Equation 2 respectively.  
Tj Ta  
Ambient Temperature Ta[°C]  
ja   
jt   
[C/W] (Equation1)  
[C/W] (Equation 2)  
P
Tj Tt  
P
Package Surface Temperature Tt[°C]  
θja[°C/W]  
Chip Junction Temperature Tj[°C]  
θja: Thermal Resistance from the Junction to the Ambient  
Environment [°C/W]  
ψjt[°C/W]  
ψjt: Thermal Characteristic Parameter from the Junction to  
Top Surface Center of Package [°C/W]  
Tj: Junction Temperature [°C]  
Backside Heat Sink  
Mounting Board  
Ta: Ambient Temperature [°C]  
Tt: Package Surface Temperature [°C]  
P: Power Consumption [W]  
Figure 77. Thermal Resistance Model of  
Backside Exposed Package with Heat Sink  
Thermal resistances θja, ψjt vary depending on the measurement environment such as chip size or  
power consumption of the mounted IC, and ambient temperature, mounting conditions, wind speed, etc.  
even if the same package is used.  
2. Power Dissipation  
Power dissipation (total loss) is the power that the IC can consume at ambient temperature Ta = 25 °C (normal  
temperature). The IC generates heat when it consumes electric power, and the temperature of the IC chip becomes  
higher than the ambient temperature. The allowable temperature of the IC chip in the package (the junction temperature  
specified by the absolute maximum rating) is determined by the circuit configuration or the manufacturing process etc.  
Power dissipation is determined by its maximum junction temperature, thermal resistance in board mounted condition,  
and ambient temperature.  
3. Thermal De-rating Curve  
The thermal de-rating curve shows the power (power dissipation) that the IC can consume against the ambient  
temperature. The power dissipation decays from ambient temperature 25 °C, and becomes zero at the maximum  
junction temperature 150 °C. The slope is reduced by the reciprocal of the thermal resistance θja.  
Ta=25 °C or higher, it is reduced with a  
slope of 1 / θja  
(1) 4.66 W  
Ta=25 °C  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
(1) 114.3 mm x 76.2 mm x 1.6 mmt  
FR-4 4 layer substrate (Backside  
copper foil area 74.2 mm x 74.2 mm)  
(2) 114.3 mm x 76.2 mm x 1.57 mmt  
FR-4 1 layer substrate  
(1) 0.93 W, Ta=125 °C  
(2) 0.17 W, Ta=125 °C  
(1) 1/θja=37.3 [mW/°C]  
(2) 1/θja=7.0 [mW/°C]  
(2) 0.87 W  
Ta=25 °C  
0
25  
50  
75  
100  
125  
150  
Ambient Temperature: Ta[°C]  
Figure 78. Thermal De-rating Curve by Mounting Board (Reference Value)  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0H5H0C302020-1-2  
20.Mar.2018 Rev.001  
33/40  
 
BD16912EFV-C  
Safety Measures  
1. Countermeasure against Destruction of Reverse Connection Power Supply  
In reverse connection of the power supply, current flows through a route different from the normal one, which may cause  
IC breakdown or deterioration. If there is a possibility of reverse connection, it is necessary to insert the reverse  
connection breakdown prevention diode between power supply and power supply pin.  
During normal energization  
Without reverse connection prevention measure  
During reverse connection of power supply  
Reverse protection diode insertion  
During reverse connection of power supply  
VS  
VS  
VS  
Circuit  
block  
Circuit  
block  
Circuit  
block  
GND  
GND  
GND  
Internal circuit impedance is high  
High current flow  
Will not destroy  
Low current flow  
Thermal destruction, detorioration  
Figure 79. Current Flow during Supply Power Reverse Connection  
2. Measures to Raise the Power Supply Pin Voltage by Back Electromotive Force  
Back EMF generates regenerative current to supply power-source. However, when the reverse connection breakdown  
prevention diode is connected, or when the power source supplied does not have sufficient current absorption ability,  
the power supply pin and motor drive output pin voltage will rise during regenerative braking.  
ON  
Phase  
switching  
ON  
M
M
ON  
ON  
Figure 80. Power Supply Pin and Motor Drive Output Pin Voltage Rise by Back Electromotive Force  
If there is a possibility of exceeding the absolute maximum rating due to voltage rise by the back electromotive force,  
connect a capacitor, a Zener diode, or both as a regenerative current path between the power supply pin and the ground  
pin. Also connect a Zener diode between output pin and the ground pin.  
ON  
M
ON  
Figure 81. Voltage Rise Countermeasure of Power Supply Pin and Output Pin during Regenerative Braking  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0H5H0C302020-1-2  
20.Mar.2018 Rev.001  
34/40  
BD16912EFV-C  
Safety Measures - continued  
3. Countermeasures against Unstable Power Supply  
If there is a possibility that the power supply pin may exceed the absolute maximum rating or the reduced voltage  
malfunction prevention is operating due to the fluctuation of the power supply, insert an inductor such as a resistor or  
ferrite beads between the supplied power and the power supply pin and then form a filter.  
In that case, use a bypass capacitor together, lower the impedance of the power supply line and supply a stable voltage  
to the driver.  
Motor Unit  
Motor Unit  
Driver  
Driver  
Inductor  
Resistor  
VS  
VS  
Connector  
Connector  
GND  
GND  
Connector  
Connector  
Place the bypass capacitor near the power supply pin  
Place the bypass capacitor near the power supply pin  
Figure 83. Stable Power Supply  
Measure (LC Filter)  
Figure 82. Stable Power Supply  
Measure (RC Filter)  
4. Prohibition of Ground Line PWM Switching Input  
The control method of varying the motor speed by PWM switching the ground line is prohibited as it cannot keep the IC  
ground pin at the lowest potential.  
Motor Unit  
Controller  
OUT+  
PWM Input  
M
OUT−  
Prohibition  
Figure 84. Prohibition of Ground Line PWM Switching  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0H5H0C302020-1-2  
20.Mar.2018 Rev.001  
35/40  
BD16912EFV-C  
Operational Notes  
1.  
2.  
3.  
Reverse Connection of Power Supply  
Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when  
connecting the power supply, such as mounting an external diode between the power supply and the IC’s power supply  
pins.  
Power Supply Lines  
Design the PCB layout pattern to provide low impedance supply lines. Furthermore, connect a capacitor to ground at  
all power supply pins. Consider the effect of temperature and aging on the capacitance value when using electrolytic  
capacitors.  
Ground Voltage  
Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition. However,  
pins that drive inductive loads (e.g. motor driver outputs, DC-DC converter outputs) may inevitably go below ground  
due to back EMF or electromotive force. In such cases, the user should make sure that such voltages going below  
ground will not cause the IC and the system to malfunction by examining carefully all relevant factors and conditions  
such as motor characteristics, supply voltage, operating frequency and PCB wiring to name a few.  
4.  
Ground Wiring Pattern  
When using both small-signal and large-current ground traces, the two ground traces should be routed separately but  
connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal  
ground caused by large currents. Also ensure that the ground traces of external components do not cause variations  
on the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance.  
5.  
6.  
Recommended Operating Conditions  
The function and operation of the IC are guaranteed within the range specified by the recommended operating  
conditions. The characteristic values are guaranteed only under the conditions of each item specified by the electrical  
characteristics.  
Inrush Current  
When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may flow  
instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power supply.  
Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring, and routing  
of connections.  
7.  
8.  
Operation Under Strong Electromagnetic Field  
Operating the IC in the presence of a strong electromagnetic field may cause the IC to malfunction.  
Testing on Application Boards  
When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may subject  
the IC to stress. Always discharge capacitors completely after each process or step. The IC’s power supply should  
always be turned off completely before connecting or removing it from the test setup during the inspection process. To  
prevent damage from static discharge, ground the IC during assembly and use similar precautions during transport and  
storage.  
9.  
Inter-pin Short and Mounting Errors  
Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in  
damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin.  
Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment) and  
unintentional solder bridge deposited in between pins during assembly to name a few.  
10. Unused Input Pins  
Input pins of an IC are often connected to the gate of a MOS transistor. The gate has extremely high impedance and  
extremely low capacitance. If left unconnected, the electric field from the outside can easily charge it. The small charge  
acquired in this way is enough to produce a significant effect on the conduction through the transistor and cause  
unexpected operation of the IC. So unless otherwise specified, unused input pins should be connected to the power  
supply or ground line.  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0H5H0C302020-1-2  
20.Mar.2018 Rev.001  
36/40  
BD16912EFV-C  
Operational Notes continued  
11. Regarding the Input Pin of the IC  
This monolithic IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them  
isolated. P-N junctions are formed at the intersection of the P layers with the N layers of other elements, creating a  
parasitic diode or transistor. For example (refer to figure below):  
When GND > Pin A and GND > Pin B, the P-N junction operates as a parasitic diode.  
When GND > Pin B, the P-N junction operates as a parasitic transistor.  
Parasitic diodes inevitably occur in the structure of the IC. The operation of parasitic diodes can result in mutual  
interference among circuits, operational faults, or physical damage. Therefore, conditions that cause these diodes to  
operate, such as applying a voltage lower than the GND voltage to an input pin (and thus to the P substrate) should be  
avoided.  
Resistor  
Transistor (NPN)  
Pin A  
Pin B  
Pin B  
B
E
C
Pin A  
B
C
E
P
P+  
P+  
N
P+  
P
P+  
N
N
N
N
N
N
N
Parasitic  
Elements  
Parasitic  
Elements  
P Substrate  
GND GND  
P Substrate  
GND  
GND  
Parasitic  
Elements  
Parasitic  
Elements  
N Region  
close-by  
Figure 85. Example of Monolithic IC Structure  
12. Ceramic Capacitor  
When using a ceramic capacitor, determine a capacitance value considering the change of capacitance with  
temperature and the decrease in nominal capacitance due to DC bias and others.  
13. Area of Safe Operation (ASO)  
Operate the IC such that the output voltage, output current, and the maximum junction temperature rating are all within  
the Area of Safe Operation (ASO).  
14. Thermal Shutdown Circuit (TSD)  
This IC has a built-in thermal shutdown circuit that prevents heat damage to the IC. Normal operation should always  
be within the IC’s maximum junction temperature rating. If however the rating is exceeded for a continued period, the  
junction temperature (Tj) will rise which will activate the TSD circuit that will turn OFF power output pins. When the Tj  
falls below the TSD threshold, the circuits are automatically restored to normal operation.  
Note that the TSD circuit operates in a situation that exceeds the absolute maximum ratings and therefore, under no  
circumstances, should the TSD circuit be used in a set design or for any purpose other than protecting the IC from heat  
damage.  
15. Over Current Protection Circuit (OCP)  
This IC incorporates an integrated overcurrent protection circuit that is activated when the load is shorted. This  
protection circuit is effective in preventing damage due to sudden and unexpected incidents. However, the IC should  
not be used in applications characterized by continuous operation or transitioning of the protection circuit.  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0H5H0C302020-1-2  
20.Mar.2018 Rev.001  
37/40  
BD16912EFV-C  
Ordering Information  
B
D
1
6
9
1
2
E
F
V
C
E
2
Parts Number  
Package Type  
Product Rank  
Packaging Specification  
EFV; HTSSOP-B20  
C; for Automotive  
E2; Embossed Type and Reel  
Marking Diagram  
HTSSOP-B20 (TOP VIEW)  
Part Number Marking  
LOT Number  
1 6 9 1 2  
Pin 1 Mark  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0H5H0C302020-1-2  
20.Mar.2018 Rev.001  
38/40  
BD16912EFV-C  
Physical Dimension and Packing Information  
Package Name  
HTSSOP-B20  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0H5H0C302020-1-2  
20.Mar.2018 Rev.001  
39/40  
BD16912EFV-C  
Revision History  
Date  
Revision  
001  
Contents  
20.Mar.2018  
Newly created  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0H5H0C302020-1-2  
20.Mar.2018 Rev.001  
40/40  
Notice  
Precaution on using ROHM Products  
(Note 1)  
1. If you intend to use our Products in devices requiring extremely high reliability (such as medical equipment  
,
aircraft/spacecraft, nuclear power controllers, etc.) and whose malfunction or failure may cause loss of human life,  
bodily injury or serious damage to property (Specific Applications), please consult with the ROHM sales  
representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any  
ROHMs Products for Specific Applications.  
(Note1) Medical Equipment Classification of the Specific Applications  
JAPAN  
USA  
EU  
CHINA  
CLASS  
CLASSⅣ  
CLASSb  
CLASSⅢ  
CLASSⅢ  
CLASSⅢ  
2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3. Our Products are not designed under any special or extraordinary environments or conditions, as exemplified below.  
Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the  
use of any ROHM’s Products under any special or extraordinary environments or conditions. If you intend to use our  
Products under any special or extraordinary environments or conditions (as exemplified below), your independent  
verification and confirmation of product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of  
flux is recommended); or Washing our Products by using water or water-soluble cleaning agents for cleaning  
residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4. The Products are not subject to radiation-proof design.  
5. Please verify and confirm characteristics of the final or mounted products in using the Products.  
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse. is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7. De-rate Power Dissipation depending on ambient temperature. When used in sealed area, confirm that it is the use in  
the range that does not exceed the maximum junction temperature.  
8. Confirm that operation temperature is within the specified range described in the product specification.  
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Precaution for Mounting / Circuit board design  
1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must  
be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products,  
please consult with the ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Notice-PAA-E  
Rev.003  
© 2015 ROHM Co., Ltd. All rights reserved.  
Precautions Regarding Application Examples and External Circuits  
1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2. You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
A two-dimensional barcode printed on ROHM Products label is for ROHMs internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign  
trade act, please consult with ROHM in case of export.  
Precaution Regarding Intellectual Property Rights  
1. All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data.  
2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the  
Products with other articles such as components, circuits, systems or external equipment (including software).  
3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM  
will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to  
manufacture or sell products containing the Products, subject to the terms and conditions herein.  
Other Precaution  
1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
4. The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice-PAA-E  
Rev.003  
© 2015 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
General Precaution  
1. Before you use our Products, you are requested to carefully read this document and fully understand its contents.  
ROHM shall not be in any way responsible or liable for failure, malfunction or accident arising from the use of any  
ROHM’s Products against warning, caution or note contained in this document.  
2. All information contained in this document is current as of the issuing date and subject to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the latest information with a ROHM sales  
representative.  
3. The information contained in this document is provided on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate and/or error-free. ROHM shall not be in any way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
Notice – WE  
Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  

相关型号:

BD16922EFV-E2

Automotive 2ch 60V Max, H-bridge Drivers
ROHM

BD16922EFV-M

Automotive 2ch 60V Max, H-bridge Drivers
ROHM

BD16922EFV-ME2

Brush DC Motor Controller, 1A, PDSO24, 7.80 X 7.60 MM, 1 MM HEIGHT, HTSSOP-24
ROHM

BD16922EFV-M_15

Automotive 2ch 60V Max, H-bridge Drivers
ROHM

BD16933EFV-C

Automotive 3ch Half Bridge Driver
ROHM

BD16933EFV-E2

Automotive 3ch Half Bridge Driver
ROHM

BD16938AEFV-C

BD16938AEFV-C是面向车载应用设计的8ch半桥驱动器。可直接驱动小型DC有刷电机,能够以High输出、Low输出、Hi-Z输出等3种模式独立控制各输出。通过16bit 串行接口(SPI)可从外部MCU进行控制。实现了高耐压(最大额定40V)、低导通电阻、小型封装,可有助于实现整机的高可靠性、低功耗、低成本化。
ROHM

BD16939AEFV-C

BD16939AEFV-C是面向车载应用设计的6ch半桥驱动器。可直接驱动小型DC有刷电机,能够以High输出、Low输出、Hi-Z输出等3种模式独立控制各输出。通过16bit 串行接口(SPI)可从外部MCU进行控制。实现了高耐压(最大额定40V)、低ON电阻、小型封装,可有助于实现整机的高可靠性、低功耗、低成本化。
ROHM

BD16950EFV-C

BD16950EFV是符合AEC-Q100的2ch半桥栅极驱动器。可通过从外部MCU执行16位串行外设接口(SPI)进行控制。可独立控制高边/低边Nch-MOSFET,可通过MCU以各种模式进行控制。而且,用于调整转换速率的可变驱动电流设定适用于EMI和高效率驱动。错误信号可通过MCU读取。还可通过MCU复位各种设定寄存器。
ROHM

BD16952EFV-ME2

Brush DC Motor Controller, PDSO24, HTSSOP-24
ROHM

BD170

TRANSISTOR | BJT | PNP | 80V V(BR)CEO | 1.5A I(C) | TO-126
ETC

BD1722J50100A00

Ultra Low Profile 0805 Balun 50 to 100 Balanced
ANAREN