BD16922EFV-M_15 [ROHM]

Automotive 2ch 60V Max, H-bridge Drivers;
BD16922EFV-M_15
型号: BD16922EFV-M_15
厂家: ROHM    ROHM
描述:

Automotive 2ch 60V Max, H-bridge Drivers

文件: 总31页 (文件大小:1837K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
Motor/Actuator Drivers for DC Brush Motor series  
Automotive 2ch  
60V Max, H-bridge Drivers  
BD16922EFV-M  
General Description  
Key Specifications  
The BD16922EFV-M is a 1.0A-output, 2-channel  
automotive reversible motor driver that allows for  
operation mode selection from four modes; brake,  
forward, reverse, and standby, according to two-input  
logical operation. This motor driver provides high voltage  
(up to a rating of 60V), low ON resistance, and compact  
package, thus leading to contribution to enhancing the  
reliability, reducing the power consumption, and cutting  
the cost of sets.  
Power Supply Voltage  
Output Current  
Output ON Resistance  
(Total of upper and lower resistance)  
Operating Temperature Range -40°C to +110°C  
8V to 36V  
1.0A (Max)  
2.25Ω (Typ)  
Package(s)  
HTSSOP-B24  
W (Typ) x D (Typ) x H (Max)  
7.8mm×7.6mm×1.00mm  
Features  
AEC-Q100 Qualified(Note 1)  
1 Built-in 1.0A DMOS H Bridge Output 2 Circuit  
2 Input Control (Stand By, Forward Rotation,  
Reverse Rotation, Brake)  
Low Standby Current  
Built-in output counter-electromotive force  
absorption diode  
Built-in Overcurrent Protection Circuit (Detection  
and Timer) (OCP)  
Built-in Overvoltage Protection (OVP)  
Built-in Thermal Shutdown (TSD)  
Built-in Overcurrent Protection State Output  
Terminal (PO)  
(Note1 : Grade 2)  
Applications(Note 2)  
For Automotive (Air conditioner, and door mirror)  
Typical Application Circuit  
1
2
3
4
5
6
7
8
9
IN1P  
IN1N  
24  
23  
22  
21  
20  
19  
IN2P  
IN2N  
5V  
5V  
SGND1  
PO1  
SGND2  
PO2  
PGND2  
PGND1  
PGND2  
PGND1 BD16922EFV-M  
OUT2P 18  
OUT2P 17  
OUT2N 16  
OUT2N 15  
PVCC2 14  
PVCC2 13  
OUT1P  
OUT1P  
OUT1N  
M
M
10 OUT1N  
11 PVCC1  
12 PVCC1  
Figure 1. Typical Application Circuit  
(Note 2) Please make sure you consult our company sales representative before mass production of this IC,  
if used other than Door Mirror and HVAC.  
Product structure : Silicon monolithic integrated circuit This product has no designed protection against radioactive rays  
www.rohm.com  
TSZ02201-0G1G0B300330-1-2  
11.Sep.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
1/27  
TSZ2211114001  
BD16922EFV-M  
Pin Configuration  
Pin Description  
Pin No.  
1
Pin Name  
IN1P  
Function  
Output state control  
(TOP VIEW)  
1
2
3
4
IN1P  
IN2P  
IN2N  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
2
IN1N  
Output state control  
Small signal GND  
Output state output (open drain)  
Output part GND  
Output part GND  
Motor output  
IN1N  
SGND1  
PO1  
3
SGND1  
PO1  
SGND2  
PO2  
4
5
PGND1  
PGND1  
OUT1P  
OUT1P  
OUT1N  
OUT1N  
PVCC1  
PVCC1  
PVCC2  
PVCC2  
OUT2N  
OUT2N  
OUT2P  
OUT2P  
PGND2  
PGND2  
PO2  
PGND2  
PGND2  
OUT2P  
OUT2P  
OUT2N  
5
6
PGND1  
PGND1  
OUT1P  
OUT1P  
OUT1N  
OUT1N  
PVCC1  
PVCC1  
THERMAL  
PAD  
(GND)  
6
7
7
8
8
Motor output  
9
9
Motor output  
10  
11  
12  
OUT2N  
PVCC2  
PVCC2  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
Motor output  
Power supply  
Power supply  
Power supply  
Figure 2. Pin Configuration  
Power supply  
Motor output  
Motor output  
Motor output  
Motor output  
Output part GND  
Output part GND  
Output state output (open drain)  
Small signal GND  
Output state control  
Output state control  
SGND2  
IN2N  
IN2P  
Block Diagram  
IN1P  
IN1N  
IN2P  
Internal  
Power  
Supply  
Internal  
Power  
Supply  
IN2N  
OCP  
OVP  
TSD  
OCP  
OVP  
TSD  
SGND1  
PO1  
SGND2  
PO2  
Output  
State  
Detection  
Output  
State  
Detection  
PGND1  
PGND1  
OUT1P  
OUT1P  
OUT1N  
OUT1N  
PVCC1  
PVCC1  
PGND2  
PGND2  
OUT2P  
OUT2P  
OUT2N  
OUT2N  
PVCC2  
PVCC2  
Control State  
Logic  
Control State  
Logic  
Figure 3. Block Diagram  
www.rohm.com  
TSZ02201-0G1G0B300330-1-2  
11.Sep.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
2/27  
TSZ2211115001  
BD16922EFV-M  
Absolute Maximum Ratings (Ta=25°C)  
Parameter  
Symbol  
VCC  
Rating  
60  
Unit  
V
Power Supply Voltage (PVCC1,2)  
Output Voltage  
VOUT  
60  
V
(OUT1P, OUT2P, OUT1N, OUT2N)  
Input Voltage (PO1,2)  
VPO  
VIN  
60  
-0.3 to +20  
1.0  
V
V
Input Voltage (IN1P, IN2P, IN1N, IN2N)  
Output Current (Note 1)  
IO  
A
Power Dissipation (Note 2)  
Pd  
3.99  
W
°C  
°C  
°C  
Operating Temperature Range  
Storage Temperature Range  
Topr  
Tstg  
Tjmax  
-40 to +110  
-55 to +150  
150  
Junction Temperature  
(Note 1) Pd should not be exceeded  
(Note 2) Derating in done 31.9 mW/°C for operating above Ta25°C (Mount on 4-layer 70.0mm x 70.0mm x 1.6mm board, ROHM standard  
board)  
Caution: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an  
open circuit between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in  
case the IC is operated over the absolute maximum ratings.  
Recommended Operating Conditions (Ta=25°C)  
Parameter  
Symbol  
VCC  
Min  
8
Typ  
12  
Max  
36  
Unit  
V
Power Supply Voltage Range (Note 1)  
Input Voltage Range  
(IN1P, IN2P, IN1N, IN2N)(Note 2)  
VIN  
-0.3  
-
+5.0  
5.0  
+6.0  
6.0  
V
V
Output Voltage Range (PO1,2)  
VPO  
(Note 1) Pd should not be exceeded  
(Note 2) In order to start operation while in forward or reverse mode, apply a voltage to all input pins after Vcc exceeds the minimum  
operating voltage range (8V).  
www.rohm.com  
TSZ02201-0G1G0B300330-1-2  
© 2013 ROHM Co., Ltd. All rights reserved.  
3/27  
TSZ2211115001  
11.Sep.2015 Rev.003  
BD16922EFV-M  
Electrical Characteristics (Unless otherwise specified VCC = 8V to 36V, Ta = -40°C to +110°C)  
Limits  
Measurement  
Circuit (Note 1)  
Parameter  
Symbol  
Unit  
Conditions  
Min  
Typ  
0
Max  
10  
8
Circuit Current 1  
Circuit Current 2  
Circuit Current 3  
Input H Voltage  
Input L Voltage  
Input H Current  
Input L Current  
ICC1  
ICC2  
ICC3  
VIH  
VIL  
IIH  
-
-
μA CH1 & CH2 : VIN 0.4V  
1
1
1
1
1
1
1
4
mA CH1 or CH2 : 0.4V < VIN  
-
8
16  
-
mA CH1 & CH2 : 0.4V < VIN  
3.0  
-
-
V
-
1.0  
100  
10  
V
25  
-
50  
0
μA VIN = 5.0V, Inflow Current  
IIL  
μA VIN = 0.0V, Outflow Current  
Io = 0.1A to 0.8A,  
Ta = -40°C to +25°C,  
Upper and Lower Total  
Io = 0.1A to 0.8A,  
Ta = 25°C to 110°C,  
Upper and Lower Total  
2
2
Output ON Resistance 1  
Output ON Resistance 2  
RON1  
-
-
2.25  
3.50  
3.50  
4.50  
Ω
RON2  
Ω
Output Leak Current H  
Output Leak Current L  
Output Diode Voltage H  
Output Diode Voltage L  
ILH  
ILL  
-
0
10  
10  
μA VOUT = 0V, Stand-By Mode  
μA VOUT = VCC, Stand-By Mode  
3
3
2
2
-
0
VFH  
VFL  
0.2  
0.2  
0.9  
0.9  
1.4  
1.4  
V
V
IO = 0.6A, VCC = 0V, Stand-By Mode  
IO = 0.6A, VCC = 0V, Stand-By Mode  
Protection Output Pin  
Voltage L  
IPO = 3mA, For Activating the  
Overcurrent Protection  
VLPO  
-
-
0.2  
0
0.6  
10  
V
2
3
Protection Output Pin  
Leakage Current  
VPO = VCC, For Activating the  
Overcurrent Protection  
ILPO  
μA  
Overcurrent Detect Current  
IOCP  
1.050 1.275 1.550  
45 50 55  
A
V
2
1
Overvoltage Detect Voltage  
VOVP  
(Note 1) See pages 15 and 16.  
Truth Table  
Input  
Output  
Operating Mode  
Brake  
IN1P, IN2P  
IN1N, IN2N  
OUT1P, OUT2P  
OUT1N, OUT2N  
H
H
L
H
L
L
H
L
L
Forward Rotation  
Reverse Rotation  
Stand-By  
H
L
L
H
L
Open  
Open  
www.rohm.com  
TSZ02201-0G1G0B300330-1-2  
11.Sep.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
4/27  
TSZ2211115001  
BD16922EFV-M  
Typical Performance Curves (Reference Data)  
(Unless otherwise specified VCC = 8V to 36V, Ta = -40°C to +110°C)  
10  
9
8
7
6
5
4
3
2
1
0
10  
9
8
7
6
5
4
VCC=36V  
Ta=25°C  
3
Ta=110°C  
VCC=12V  
2
1
0
Ta=-40°C  
VCC=8V  
-50  
0
50  
100  
150  
0
10  
20  
30  
40  
50  
60  
Temperature Ta[°C]  
SupplyVoltage VCC[V]  
Figure 5. Circuit Current vs Temperature  
Figure 4. Circuit Current vs Supply Voltage  
(Circuit Current 1 ICC1, VCC=0V to 60V,  
VIN=0V (Stand-By Mode))  
(Circuit Current 1 ICC1  
,
VIN=0V (Stand-By Mode))  
8
7
6
5
4
3
2
1
0
8
7
6
5
4
3
2
1
0
VCC=36V  
Ta=110°C  
VCC=12V  
Ta=25°C  
Ta=-40°C  
VCC=8V  
5
10  
15  
20  
25  
30  
35  
40  
-50  
0
50  
100  
150  
SupplyVoltage VCC[V]  
Temperature Ta[°C]  
Figure 7. Circuit Current vs Temperature  
(Circuit Current 2 ICC2  
Figure 6. Circuit Current vs Supply Voltage  
(Circuit Current 2 ICC2  
,
,
CH1 : VIN=5.0V (Brake Mode),  
CH2 : VIN=0V (Stand-By Mode))  
CH1 : VIN=5.0V (Brake Mode),  
CH2 : VIN=0V (Stand-By Mode))  
www.rohm.com  
TSZ02201-0G1G0B300330-1-2  
11.Sep.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
5/27  
TSZ2211115001  
BD16922EFV-M  
Typical Performance Curves (Reference Data) - continued  
(Unless otherwise specified VCC = 8V to 36V, Ta = -40°C to +110°C)  
16  
14  
16  
14  
12  
10  
8
12  
VCC=36V  
Ta=110°C  
10  
8
VCC=12V  
Ta=25°C  
6
4
2
0
6
VCC=8V  
Ta=-40°C  
4
2
0
5
10  
15  
20  
25  
30  
35  
40  
-50  
0
50  
100  
150  
SupplyVoltage VCC[V]  
Temperature Ta[°C]  
Figure 9. Circuit Current vs Temperature  
(Circuit Current 3 ICC3  
VIN=5.0V (Brake Mode))  
Figure 8. Circuit Current vs Supply Voltage  
(Circuit Current 3 ICC3  
VIN=5.0V (Brake Mode))  
,
,
8
7
6
5
4
3
2
1
0
Ta=110°C  
Ta=25°C  
Ta=-40°C  
0
5
10  
15  
20  
Input Voltage VIN[V]  
Figure 10. Circuit Current vs Input Voltage  
(Circuit Current 2 ICC2, VCC=12V)  
www.rohm.com  
TSZ02201-0G1G0B300330-1-2  
11.Sep.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
6/27  
TSZ2211115001  
BD16922EFV-M  
Typical Performance Curves (Reference Data) - continued  
(Unless otherwise specified VCC = 8V to 36V, Ta = -40°C to +110°C)  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
3.0  
2.8  
2.6  
VCC=36V  
VCC=12V  
Ta=25°C  
2.4  
Ta=-40°C  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
Ta=110°C  
VCC=8V  
-50  
0
50  
100  
150  
5
10  
15  
20  
25  
30  
35  
40  
Temperature Ta[°C]  
SupplyVoltage VCC[V]  
Figure 12. Input Voltage vs Temperature  
Figure 11. Input Voltage vs Supply Voltage  
(Input H Voltage VIH, VIN=0V5.0V)  
(Input H Voltage VIH, VIN=0V5.0V)  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
VCC=12V  
VCC=36V  
Ta=25°C  
Ta=-40°C  
Ta=110°C  
VCC=8V  
-50  
0
50  
100  
150  
5
10  
15  
20  
25  
30  
35  
40  
Temperature Ta[°C]  
SupplyVoltage VCC[V]  
Figure 14. Input Voltage vs Temperature  
Figure 13. Input Voltage vs Supply Voltage  
(Input L Voltage VIL, VIN=5.0V0V)  
(Input L Voltage VIL, VIN=5.0V0V)  
www.rohm.com  
TSZ02201-0G1G0B300330-1-2  
11.Sep.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
7/27  
TSZ2211115001  
BD16922EFV-M  
Typical Performance Curves (Reference Data) - continued  
(Unless otherwise specified VCC = 8V to 36V, Ta = -40°C to +110°C)  
1.15  
1.15  
1.10  
1.05  
1.00  
0.95  
0.90  
0.85  
0.80  
VCC=12V  
1.10  
Ta=-40°C  
1.05  
VCC=8V  
Ta=25°C  
1.00  
VCC=36V  
0.95  
0.90  
Ta=110°C  
0.85  
0.80  
5
10  
15  
20  
25  
30  
35  
40  
-50  
0
50  
100  
150  
SupplyVoltage VCC[V]  
Temperature Ta[°C]  
Figure 16. Input Voltage vs Temperature  
Figure 15. Input Voltage vs Supply Voltage  
(Circuit Current Active Voltage, VIN=0V5.0V)  
(Circuit Current Active Voltage, VIN=0V5.0V)  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Ta=110°C  
Ta=25°C  
Ta=110°C  
Ta=25°C  
Ta=-40°C  
Ta=-40°C  
0
0
5
10  
15  
20  
0
1
2
3
4
5
Input Voltage VIN[V]  
Input Voltage VIN[V]  
Figure 18. Input Current vs Input Voltage  
(Input Current IIH, IIL)  
Figure 17. Input Current vs Input Voltage  
(Input Current IIH, IIL)  
www.rohm.com  
TSZ02201-0G1G0B300330-1-2  
11.Sep.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
8/27  
TSZ2211115001  
BD16922EFV-M  
Typical Performance Curves (Reference Data) - continued  
(Unless otherwise specified VCC = 8V to 36V, Ta = -40°C to +110°C)  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
2.5  
Ta=110°C  
2.0  
VCC=8V  
Ta=25°C  
1.5  
VCC=12V  
VCC=36V  
1.0  
Ta=-40°C  
0.5  
0.0  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
Output Current Io[A]  
Output Current Io[A]  
Figure 20. Output On Resistance vs Output Current  
(Output ON Resistance High Side, Ta=25°C)  
Figure 19. Output On Resistance vs Output Current  
(Output ON Resistance High Side, VCC=12V)  
1.5  
1.5  
Ta=110°C  
1.2  
1.2  
VCC=12V  
VCC=8V  
0.9  
0.9  
Ta=25°C  
0.6  
0.6  
VCC=36V  
Ta=-40°C  
0.3  
0.3  
0.0  
0.0  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
Output Current Io[A]  
Output Current Io[A]  
Figure 21. Output On Resistance vs Output Current  
(Output ON Resistance Low Side, VCC=12V)  
Figure 22. Output On Resistance vs Output Current  
(Output ON Resistance Low Side, Ta=25°C)  
www.rohm.com  
TSZ02201-0G1G0B300330-1-2  
11.Sep.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
9/27  
TSZ2211115001  
BD16922EFV-M  
Typical Performance Curves (Reference Data) - continued  
(Unless otherwise specified VCC = 8V to 36V, Ta = -40°C to +110°C)  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
2.5  
Ta=110°C  
VCC=8V  
2.0  
VCC=36V  
VCC=12V  
Ta=25°C  
1.5  
1.0  
Ta=-40°C  
0.5  
0.0  
-50  
0
50  
100  
150  
5
10  
15  
20  
25  
30  
35  
40  
Temperature Ta[°C]  
SupplyVoltage VCC[V]  
Figure 24. Output On Resistance vs Temperature  
(Output ON Resistance High Side, IO=0.8A)  
Figure 23. Output On Resistance vs Supply Voltage  
(Output ON Resistance High Side, IO=0.8A)  
1.5  
1.5  
Ta=110°C  
1.2  
0.9  
0.6  
0.3  
0.0  
1.2  
0.9  
0.6  
0.3  
0.0  
VCC=8V  
Ta=25°C  
Ta=-40°C  
VCC=36V  
VCC=12V  
5
10  
15  
20  
25  
30  
35  
40  
-50  
0
50  
100  
150  
SupplyVoltage VCC[V]  
Temperature Ta[°C]  
Figure 25. Output On Resistance vs Supply Voltage  
(Output ON Resistance Low Side, IO=0.8A)  
Figure 26. Output On Resistance vs Output Current  
(Output ON Resistance Low Side, IO=0.8A)  
www.rohm.com  
TSZ02201-0G1G0B300330-1-2  
11.Sep.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
10/27  
TSZ2211115001  
BD16922EFV-M  
Typical Performance Curves (Reference Data) - continued  
(Unless otherwise specified VCC = 8V to 36V, Ta = -40°C to +110°C)  
10  
9
8
7
6
5
4
3
2
1
0
10  
9
8
7
6
5
4
3
2
1
0
0
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
40  
50  
60  
SupplyVoltage VCC[V]  
SupplyVoltage VCC[V]  
Figure 28. Leak Current vs Supply Voltage  
(Output Leak Current Low Side ILL,  
VOUT=VCC, Ta=110°C)  
Figure 27. Leak Current vs Supply Voltage  
(Output Leak Current High Side ILH,  
VOUT=0V, Ta=110°C)  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
Ta=-40°C  
Ta=25°C  
Ta=-40°C  
Ta=25°C  
Ta=110°C  
Ta=110°C  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
Input Current IO[A]  
Input Current IO[A]  
Figure 30. Output Voltage vs Input Current  
(Output Diode Voltage Low Side VFL, VCC=0V)  
Figure 29. Output Voltage vs Input Current  
(Output Diode Voltage High Side VFH, VCC=0V)  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0G1G0B300330-1-2  
11.Sep.2015 Rev.003  
11/27  
BD16922EFV-M  
Typical Performance Curves (Reference Data) - continued  
(Unless otherwise specified VCC = 8V to 36V, Ta = -40°C to +110°C)  
600  
500  
600  
500  
400  
300  
200  
100  
0
400  
Ta=110°C  
VCC=36V  
300  
Ta=25°C  
200  
VCC=12V  
VCC=8V  
Ta=-40°C  
100  
0
5
10  
15  
20  
25  
30  
35  
40  
-50  
0
50  
100  
150  
SupplyVoltage VCC[V]  
Temperature Ta[°C]  
Figure 32. PO output Voltage vs Temperature  
(PO Pin Output Voltage VLPO, IPO=3mA,  
For Activating the Overcurrent Protection)  
Figure 31. PO Output Voltage vs Supply Voltage  
(PO Pin Output Voltage VLPO, IPO=3mA,  
For Activating the Overcurrent Protection)  
10  
9
8
7
6
5
4
3
2
1
0
0
10  
20  
30  
40  
50  
60  
Input Voltage VPO[V]  
Figure 33. Leak Current vs Input Voltage  
(PO Pin Leak Current ILPO, VPO=VCC, Ta=110°C)  
www.rohm.com  
TSZ02201-0G1G0B300330-1-2  
11.Sep.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
12/27  
TSZ2211115001  
BD16922EFV-M  
Typical Performance Curves (Reference Data) - continued  
(Unless otherwise specified VCC = 8V to 36V, Ta = -40°C to +110°C)  
1.55  
1.50  
1.45  
1.40  
1.35  
1.30  
1.25  
1.20  
1.15  
1.10  
1.05  
1.55  
1.50  
1.45  
1.40  
1.35  
Ta=25°C  
Ta=25°C  
Ta=-40°C  
1.30  
1.25  
1.20  
1.15  
Ta=-40°C  
Ta=110°C  
Ta=110°C  
1.10  
1.05  
5
10  
15  
20  
25  
30  
35  
40  
5
10  
15  
20  
25  
30  
35  
40  
SupplyVoltage VCC[V]  
SupplyVoltage VCC[V]  
Figure 35. OCP Detect Current vs Supply Voltage  
Figure 34. OCP Detect Current vs Supply Voltage  
(OCP Detect Current Low Side IOCP, IO=1.05A1.55A)  
(OCP Detect Current High Side IOCP, IO=1.05A1.55A)  
1.55  
1.50  
1.45  
1.40  
1.55  
1.50  
1.45  
1.40  
1.35  
1.35  
VCC=8V  
VCC=36V  
VCC=8V  
1.30  
1.30  
1.25  
1.20  
1.25  
1.20  
VCC=12V  
1.15  
VCC=12V  
1.15  
VCC=36V  
1.10  
1.05  
1.10  
1.05  
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
Temperature Ta[°C]  
Temperature Ta[°C]  
Figure 37. OCP Detect Current vs Temperature  
Figure 36. OCP Detect Current vs Temperature  
(OCP Detect Current Low Side IOCP, IO=1.05A1.55A)  
(OCP Detect Current High Side IOCP, IO=1.05A1.55A)  
www.rohm.com  
TSZ02201-0G1G0B300330-1-2  
11.Sep.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
13/27  
TSZ2211115001  
BD16922EFV-M  
Typical Performance Curves (Reference Data) - continued  
(Unless otherwise specified VCC = 8V to 36V, Ta = -40°C to +110°C)  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
Temperature Ta[°C]  
Temperature Ta[°C]  
Figure 39. Supply Voltage vs Temperature  
Figure 38. Supply Voltage vs Temperature  
(OVP Release Voltage, VCC=50V40V)  
(OVP Detect Voltage VOVP, VCC=45V55V)  
www.rohm.com  
TSZ02201-0G1G0B300330-1-2  
11.Sep.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
14/27  
TSZ2211115001  
BD16922EFV-M  
Typical Performance Curves Measurement Circuits (Reference Data)  
(Unless otherwise specified VCC = 8V to 36V, Ta = -40°C to +110°C)  
1.  
ICC1, ICC2, ICC3, VIH, VIL, IIH, IIL, VOVP  
(1) ICC1  
VCC=0Vto60V, VIN=0V  
ICC1, ICC2, ICC3  
VOVP  
(2) ICC2  
CH1 : VIN=5.0V (Brake Mode),  
CH2 : VIN=0V  
PVCC1  
PVCC2  
PVCC2  
PO2  
5V  
5V  
10μF  
10μF  
PVCC1  
10kΩ  
10kΩ  
(3) ICC3  
VIN=5.0V (CH1 & CH2 : Brake Mode)  
PO1  
IIH, IIL  
IIH, IIL  
IN2P  
IN1P  
VIH, VIL  
VIH, VIL  
IIH, IIL  
(4) VIH  
VIN=0V5.0V,  
VIN for switching the operation mode  
IIH, IIL  
ININ  
IN2N  
VIH, VIL  
OUT1P  
VIH, VIL  
OUT2P  
OUT2P  
OUT2N  
OUT2N  
SGND2  
PGND2  
PGND2  
(5) VIL  
VIN=5.0V0V,  
VIN for switching the operation mode  
OUT1P  
OUT1N  
OUT1N  
SGND1  
PGND1  
(6) IIH, IIL  
VCC=0V, VIN=0Vto20V  
(8) VOVP  
VCC=45V→55V→40V  
VCC for activating the overvoltage protection  
PGND1  
Figure 40. Measurement Circuit 1  
2.  
RON1, RON2, VFH, VFL, VLPO, IOCP  
(1) RON1, RON2  
CH1, CH2 : Forward or Reverse Rotate Mode  
IO=0Ato1.0A,  
High Side  
Switch : L  
VLPO  
VLPO  
0
0
Low Side  
Switch : H  
PVCC1  
PVCC1  
PVCC2  
PVCC2  
PO2  
5V  
5V  
(2) VFH, VFL  
10μF  
10μF  
CH1, CH2 : Stand-By Mode  
VCC=0V, VIN=0.0V,  
IO=0Ato1.0A,  
VFH  
Switch : H  
VFL  
RPO  
RPO  
PO1  
IN1P  
ININ  
IN2P  
VCC  
VCC  
IN2N  
Switch : L  
OUT1P  
OUT1P  
OUT1N  
OUT2P  
OUT2P  
OUT2N  
OUT2N  
SGND2  
PGND2  
PGND2  
H
L
H
L
VCC  
VCC  
IOCP  
IOCP  
(3) VLPO  
VFH, VFL  
RON1, RON2  
VFH, VFL  
RON1, RON2  
CH1, CH2 : Forward or Reverse Rotate Mode  
RPO=1.6kΩ (IPO=3mA),  
IO=1.55A,  
H
L
IOCP  
IOCP  
H
L
OUT1N  
SGND1  
PGND1  
VFH, VFL  
RON1, RON2  
VFH, VFL  
RON1, RON2  
Switch : H or L  
(4) IOCP  
CH1, CH2 : Forward or Reverse Rotate Mode  
RPO=10,  
PGND1  
IO=1.05A1.55A,  
High Side  
Figure 41. Measurement Circuit 2  
Switch : L  
Low Side  
Switch : H  
IO for activating the overcurrent protection  
www.rohm.com  
TSZ02201-0G1G0B300330-1-2  
11.Sep.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
15/27  
TSZ2211115001  
BD16922EFV-M  
Typical Performance Curves Measurement Circuits (Reference Data) - continued  
(Unless otherwise specified VCC = 8V to 36V, Ta = -40°C to +110°C)  
3. ILH, ILL, ILPO  
(1) ILH, ILL  
VOUT=0V60V  
(2) ILPO  
VPO=0V60V  
PVCC1  
PVCC1  
PVCC2  
PVCC2  
PO2  
ILPO  
ILPO  
PO1  
IN1P  
ININ  
IN2P  
IN2N  
OUT1P  
OUT1P  
OUT1N  
OUT2P  
OUT2P  
OUT2N  
OUT2N  
SGND2  
PGND2  
PGND2  
ILH, ILL  
ILH, ILL  
ILH, ILL  
ILH, ILL  
OUT1N  
SGND1  
PGND1  
PGND1  
Figure 42. Measurement Circuit 3  
www.rohm.com  
TSZ02201-0G1G0B300330-1-2  
11.Sep.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
16/27  
TSZ2211115001  
BD16922EFV-M  
Timing Chart  
1. Overcurrent Protection (OCP) Timing Chart (INP=H, INN=L, Forward Rotate Mode, Ta=25°C)  
Normal  
Abnormal  
Normal  
IOCP  
IO  
0
Operating State (H)  
OUT1P/2P  
OUT1N/2N  
Open State  
Open State  
Operating State (L)  
H
L
PO1,2  
TOFF  
TON  
TON = 10μsec(Typ), 4μsec(Min), 22μsec(Max)  
TOFF = 255μsec(Typ), 170μsec(Min), 340μsec(Max)  
Figure 43. Overcurrent Protection Timing Chart  
(1) The overcurrent protection circuit is designed to conduct protection operation by the channel (i.e.,  
OUT1P&OUT1N or OUT2P&OUT2N).  
(2) The overcurrent protection circuit uses an output voltage detection system (output current output  
ON resistance).  
(3) If 1.275A (Typ) or more current passes through the circuit for a period of 10µsec (Typ), the protection  
circuit will put the output pins into an open state for a period of 255µsec (Typ) and subsequently  
return to the normal operation. If overcurrent continues to pass through the circuit even after  
returning to the normal operation, the said protection operation will be repeated.  
2. Overvoltage Protection (OVP) Timing Chart (INP=H, INN=L, Forward Rotate Mode, Ta=25°C)  
50V(Typ)  
45V(Typ)  
PVCC1,2  
Operating State (H)  
OUT1P/2P  
Open State  
Open State  
OUT1N/2N  
Operating State (L)  
H
PO1,2  
L
Normal  
Protection  
Normal  
Figure 44. Overvoltage Protection Timing Chart  
(1) The overvoltage protection circuit is designed to conduct protection operation by the channel (i.e.,  
OUT1P&OUT1N or OUT2P&OUT2N).  
(2) If voltage applied to PVCC1or 2 pin exceeds 50V (Typ), the protection circuit will put the output pins into an  
open state and if the voltage falls below 45V (Typ), it will return to the normal operation.  
(3) The protection circuit is activated only while in forward, reverse, or brake mode and not activated while in  
standby mode.  
(4) If power supply voltage exceeds the absolute maximum rating even when the overvoltage protection circuit  
is activated, the motor driver can break down.  
www.rohm.com  
TSZ02201-0G1G0B300330-1-2  
© 2013 ROHM Co., Ltd. All rights reserved.  
17/27  
TSZ2211115001  
11.Sep.2015 Rev.003  
BD16922EFV-M  
Timing Chart - continued  
3. Thermal Shutdown (TSD) Timing Chart (INP=H, INN=L, Forward Rotate Mode)  
175°C(Typ)  
150°C(Typ)  
Temp  
Operating State (H)  
OUT1P/2P  
OUT1N/2N  
PO1,2  
Open State  
Open State  
Operating State (L)  
H
L
Normal  
Protection  
Normal  
Figure 45. Thermal Shutdown Timing Chart  
(1) The thermal shutdown circuit is designed to conduct protection operation by the channel (i.e.,  
OUT1P&OUT1N or OUT2P&OUT2N).  
(2) If IC chip temperature (Tj) exceeds 175C (Typ), the circuit will put the output pins into an open state and if  
the temperature falls below 150C (Typ), it will return to the normal operation.  
www.rohm.com  
TSZ02201-0G1G0B300330-1-2  
© 2013 ROHM Co., Ltd. All rights reserved.  
18/27  
TSZ2211115001  
11.Sep.2015 Rev.003  
BD16922EFV-M  
Recommended Application Example(Note 1)(Note 2)  
Input 3  
Input 4  
Motor 2  
10μF  
5V  
M
4.7kΩ  
to  
100kΩ  
BD16922EFV-M  
THERMAL PAD  
4.7kΩ  
to  
100kΩ  
M
5V  
10μF  
Motor 1  
Input 1  
Input 2  
Figure 46. BD16922EFV-M Recommended Application Example  
(Note 1) The external circuit constants shown in the diagram above represent a recommended value, respectively.  
(Note 2) The external resistors PO1 and PO2 are a pull-up resistor.  
Cautions on Designing of Application Circuits  
1. Applicable Motors  
Be noted that The BD16922EFV-M motor driver can only drive DC motors and cannot drive stepping motors. Furthermore,  
in order to use this motor driver for any motors other than automotive motors (for air conditioners and door mirrors),  
contact your ROHM representative.  
2. Use of Only Either One of CH1 and CH2  
To use only either one of CH1 and CH2, cause a short circuit between PVCC1 and PVCC2 as shown in Figure 46., and  
then fix the input not to be used to the L (low) level.  
3. PVCC1 and PVCC2  
Be sure to mount a power supply decoupling capacitor in the vicinity of the IC pins between the power supply and the  
ground. Determine the capacitance of the capacitor after fully ensuring that it presents no problems in characteristics.  
Furthermore, cause a short circuit between PVCC1 and PVCC2 (set them to the same potential) before using the IC.  
4. Input Pin Voltage  
This IC provides guarantee for circuit operation at input H voltage and input L voltage (see page 4). Using the IC at  
intermediate potential (with VIN set to 1.0V to 3.0V) may disable the normal operation of any of the protection functions.  
To avoid that, apply 50mV/µs or more input voltage.  
5. Counter-Electromotive Force  
The counter-electromotive force may vary with operating conditions and environment, and individual motor characteristics.  
Fully ensure that the counter-electromotive force presents no problems in the operation or the IC.  
6. Fluctuations in Output Pin Voltage  
If any output pin makes a significant fluctuation in the voltage to fall below GND potential due to heat generation  
conditions, power supply, motor to be used, or other conditions, this may result in malfunctions or other failures. In such  
cases, take appropriate measures, including the addition of a Schottky diode between the output pin and ground.  
www.rohm.com  
TSZ02201-0G1G0B300330-1-2  
© 2013 ROHM Co., Ltd. All rights reserved.  
19/27  
TSZ2211115001  
11.Sep.2015 Rev.003  
BD16922EFV-M  
Cautions on Designing of Application Circuits - Continued  
7. Large-Current Lines  
A large current passes through the power supply pins PVCC1 and 2 of the IC motor block and the PGND1 and 2 pins of  
the motor block. This large current causes backflow depending on board pattern layout or external circuit constants such  
as the capacitance of the capacitor between the power supply and ground, thus leading to malfunctions, oscillation, or  
other unfavorable results. To avoid that, layout a board pattern using thick interconnects wherever possible and  
recommended values like those shown in Figure 46. as external circuit constants, and then fully ensure that the layout  
presents no problems in characteristics. After that, determine the board pattern layout.  
8. Rush Current  
This IC has no built-in circuit that limits rush currents caused by applying current to the power supply or switching  
operation mode. To avoid the rush currents, take physical measures such as adding a current-limiting resistor between  
PVCC1/2 pins and the power supply.  
9. Thermal Pad  
Since a thermal pad is connected to the sub side of this IC, connect it to the ground potential. Furthermore, do not use  
the thermal pad as ground interconnect.  
10. Overvoltage Protection  
This IC has a built-in overvoltage protection function that protects output pins when overvoltage is applied. If voltage  
applied to PVCC1 and 2 pins exceeds 50V (Typ), the output pin will open. However, note that this function is only  
enabled while in forward, reverse, or brake mode and disabled while in standby mode. Furthermore, since the built-in  
overvoltage protection function may break down if voltage exceeds the absolute maximum rating of power supply voltage,  
do not apply voltage exceeding the absolute maximum rating.  
11. Overcurrent Protection  
This IC has a built-in overcurrent protection function that protects it from breakdown when the output pin is short-circuited.  
Overcurrent protection is a function that protects the IC from breakdown due to short-circuited output pin, but is likely to  
cause the IC to generate heat or deteriorate if it remains in the overcurrent state and eventually break down. If  
overcurrent continues to flow (if PO pin behaves as shown in Figure 43.), take measures to make the IC standby in terms  
of application.  
12. Thermal Shutdown  
This IC has a built-in thermal shutdown circuit as an overheat-protection measure. The thermal shutdown circuit is a  
circuit absolutely intended to protect the IC from thermal runaway, not intended to protect or guarantee the IC.  
Consequently, do not operate the thermal shutdown circuit based on the subsequent continuous use or operation of the  
circuit.  
www.rohm.com  
TSZ02201-0G1G0B300330-1-2  
© 2013 ROHM Co., Ltd. All rights reserved.  
20/27  
TSZ2211115001  
11.Sep.2015 Rev.003  
BD16922EFV-M  
Power Dissipation  
(プラスチックモールド)  
PdW]  
3.99  
3.0  
2.0  
1.0  
Ta[℃]  
0
25  
50  
75  
100 110  
125  
150  
Figure 47. BD16922EFV-M Power Dissipation  
Derating in done 31.9 mW/°C for operating above Ta25°C (Mount on 4-layer 70.0mm x 70.0mm x 1.6mm board, ROHM  
standard board)  
www.rohm.com  
TSZ02201-0G1G0B300330-1-2  
11.Sep.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
21/27  
TSZ2211115001  
BD16922EFV-M  
I/O Equivalence Circuits(Note 1)  
Pin No.  
Pin Name  
I/O Equivalence Circuit  
PVCC1,2  
11 12 13 14  
100kΩ  
100kΩ  
IN1P/2P  
IN1N/2N  
1
2
23  
24  
IN1P  
IN1N  
IN2N  
IN2P  
1
2
23  
24  
SGND1,2  
3
22  
3
22  
SGND1  
SGND2  
-
30Ω  
PO1,2  
4
21  
4
21  
PO1  
PO2  
SGND1,2  
3
22  
5
6
19  
20  
PGND1  
PGND1  
PGND2  
PGND2  
-
PVCC1,2  
11 12 13 14  
7
8
9
10  
15  
16  
17  
18  
OUT1P  
OUT1P  
OUT1N  
OUT1N  
OUT2N  
OUT2N  
OUT2P  
OUT2P  
OUT1P/2P  
OUT1N/2N  
7
8
9
10  
15 16 17 18  
PGND1,2  
5
6
19 20  
11  
12  
13  
14  
PVCC1  
PVCC1  
PVCC2  
PVCC2  
-
(Note 1) Resistance values shown in the diagrams above represent a typical limit, respectively.  
www.rohm.com  
TSZ02201-0G1G0B300330-1-2  
11.Sep.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
22/27  
TSZ2211115001  
BD16922EFV-M  
Operational Notes  
1.  
2.  
Reverse Connection of Power Supply  
Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when  
connecting the power supply, such as mounting an external diode between the power supply and the ICs power  
supply pins.  
Power Supply Lines  
Design the PCB layout pattern to provide low impedance supply lines. Separate the ground and supply lines of the  
digital and analog blocks to prevent noise in the ground and supply lines of the digital block from affecting the analog  
block. Furthermore, connect a capacitor to ground at all power supply pins. Consider the effect of temperature and  
aging on the capacitance value when using electrolytic capacitors.  
3.  
4.  
Ground Voltage  
Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition.  
Ground Wiring Pattern  
When using both small-signal and large-current ground traces, the two ground traces should be routed separately but  
connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal  
ground caused by large currents. Also ensure that the ground traces of external components do not cause variations  
on the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance.  
5.  
Thermal Consideration  
Should by any chance the power dissipation rating be exceeded the rise in temperature of the chip may result in  
deterioration of the properties of the chip. The absolute maximum rating of the Pd stated in this specification is when  
the IC is mounted on a 70mm x 70mm x 1.6mm glass epoxy board. In case of exceeding this absolute maximum  
rating, increase the board size and copper area to prevent exceeding the Pd rating.  
6.  
7.  
Recommended Operating Conditions  
These conditions represent a range within which the expected characteristics of the IC can be approximately obtained.  
The electrical characteristics are guaranteed under the conditions of each parameter.  
Inrush Current  
When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush  
current may flow instantaneously due to the internal powering sequence and delays, especially if the IC  
has more than one power supply. Therefore, give special consideration to power coupling capacitance,  
power wiring, width of ground wiring, and routing of connections.  
8.  
9.  
Operation Under Strong Electromagnetic Field  
Operating the IC in the presence of a strong electromagnetic field may cause the IC to malfunction.  
Testing on Application Boards  
When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may  
subject the IC to stress. Always discharge capacitors completely after each process or step. The IC’s power supply  
should always be turned off completely before connecting or removing it from the test setup during the inspection  
process. To prevent damage from static discharge, ground the IC during assembly and use similar precautions during  
transport and storage.  
10. Inter-pin Short and Mounting Errors  
Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in  
damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin.  
Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment) and  
unintentional solder bridge deposited in between pins during assembly to name a few.  
www.rohm.com  
TSZ02201-0G1G0B300330-1-2  
11.Sep.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
23/27  
TSZ2211115001  
BD16922EFV-M  
Operational Notes - continued  
11. Unused Input Pins  
Input pins of an IC are often connected to the gate of a MOS transistor. The gate has extremely high impedance and  
extremely low capacitance. If left unconnected, the electric field from the outside can easily charge it. The small  
charge acquired in this way is enough to produce a significant effect on the conduction through the transistor and  
cause unexpected operation of the IC. So unless otherwise specified, unused input pins should be connected to the  
power supply or ground line.  
12. Regarding the Input Pin of the IC  
This monolithic IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them  
isolated. P-N junctions are formed at the intersection of the P layers with the N layers of other elements, creating a  
parasitic diode or transistor. For example (refer to figure below):  
When GND > Pin A and GND > Pin B, the P-N junction operates as a parasitic diode.  
When GND > Pin B, the P-N junction operates as a parasitic transistor.  
Parasitic diodes inevitably occur in the structure of the IC. The operation of parasitic diodes can result in mutual  
interference among circuits, operational faults, or physical damage. Therefore, conditions that cause these diodes to  
operate, such as applying a voltage lower than the GND voltage to an input pin (and thus to the P substrate) should  
be avoided.  
Resistor  
Transistor (NPN)  
Pin A  
Pin B  
Pin B  
B
E
C
Pin A  
B
C
E
P
P+  
P+  
N
P+  
P
P+  
N
N
N
N
N
N
N
Parasitic  
Elements  
Parasitic  
Elements  
P Substrate  
GND GND  
P Substrate  
GND  
GND  
Parasitic  
Elements  
Parasitic  
Elements  
N Region  
close-by  
Figure 48. Example of monolithic IC structure  
13. Ceramic Capacitor  
When using a ceramic capacitor, determine the dielectric constant considering the change of capacitance with  
temperature and the decrease in nominal capacitance due to DC bias and others.  
14. Area of Safe Operation (ASO)  
Operate the IC such that the output voltage, output current, and power dissipation are all within the Area of Safe  
Operation (ASO).  
15. Thermal Shutdown Circuit(TSD)  
This IC has a built-in thermal shutdown circuit that prevents heat damage to the IC. Normal operation should always  
be within the IC’s power dissipation rating. If however the rating is exceeded for a continued period, the junction  
temperature (Tj) will rise which will activate the TSD circuit that will turn OFF all output pins. When the Tj falls below  
the TSD threshold, the circuits are automatically restored to normal operation.  
Note that the TSD circuit operates in a situation that exceeds the absolute maximum ratings and therefore, under no  
circumstances, should the TSD circuit be used in a set design or for any purpose other than protecting the IC from  
heat damage.  
16. Over Current Protection Circuit (OCP)  
This IC incorporates an integrated overcurrent protection circuit that is activated when the load is shorted. This  
protection circuit is effective in preventing damage due to sudden and unexpected incidents. However, the IC should  
not be used in applications characterized by continuous operation or transitioning of the protection circuit.  
www.rohm.com  
TSZ02201-0G1G0B300330-1-2  
11.Sep.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
24/27  
TSZ2211115001  
BD16922EFV-M  
Ordering Information  
E F  
V
B D 1 6 9 2 2  
-
ME2  
Package  
EFV:HTSSOP-B24  
Packaging and forming specification  
M : for Automotive  
Part Number  
E2: Embossed tape and reel  
Marking Diagrams  
HTSSOP-B24 (TOP VIEW)  
Part Number Marking  
LOT Number  
1 6 9 2 2 E F V  
1PIN MARK  
www.rohm.com  
TSZ02201-0G1G0B300330-1-2  
11.Sep.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
25/27  
TSZ2211115001  
BD16922EFV-M  
Physical Dimension, Tape and Reel Information  
Package Name  
HTSSOP-B24  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0G1G0B300330-1-2  
11.Sep.2015 Rev.003  
26/27  
BD16922EFV-M  
Revision History  
Date  
Revision  
001  
Changes  
03.Oct.2013  
29.May.2015  
11.Sep.2015  
New Release  
P.1  
Note1 add comment  
Note2 add comment  
002  
003  
None (adjust revision number between Japanese version and English version)  
www.rohm.com  
TSZ02201-0G1G0B300330-1-2  
11.Sep.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
27/27  
TSZ2211115001  
Daattaasshheeeett  
Notice  
Precaution on using ROHM Products  
(Note 1)  
1. If you intend to use our Products in devices requiring extremely high reliability (such as medical equipment  
,
aircraft/spacecraft, nuclear power controllers, etc.) and whose malfunction or failure may cause loss of human life,  
bodily injury or serious damage to property (“Specific Applications”), please consult with the ROHM sales  
representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any  
ROHM’s Products for Specific Applications.  
(Note1) Medical Equipment Classification of the Specific Applications  
JAPAN  
USA  
EU  
CHINA  
CLASS  
CLASSⅣ  
CLASSb  
CLASSⅢ  
CLASSⅢ  
CLASSⅢ  
2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3. Our Products are not designed under any special or extraordinary environments or conditions, as exemplified below.  
Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the  
use of any ROHM’s Products under any special or extraordinary environments or conditions. If you intend to use our  
Products under any special or extraordinary environments or conditions (as exemplified below), your independent  
verification and confirmation of product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of  
flux is recommended); or Washing our Products by using water or water-soluble cleaning agents for cleaning  
residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4. The Products are not subject to radiation-proof design.  
5. Please verify and confirm characteristics of the final or mounted products in using the Products.  
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse. is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7. De-rate Power Dissipation (Pd) depending on Ambient temperature (Ta). When used in sealed area, confirm the actual  
ambient temperature.  
8. Confirm that operation temperature is within the specified range described in the product specification.  
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Precaution for Mounting / Circuit board design  
1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must  
be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products,  
please consult with the ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Notice-PAA-E  
Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
Precautions Regarding Application Examples and External Circuits  
1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2. You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
QR code printed on ROHM Products label is for ROHM’s internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign  
trade act, please consult with ROHM in case of export.  
Precaution Regarding Intellectual Property Rights  
1. All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data.  
2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the  
Products with other articles such as components, circuits, systems or external equipment (including software).  
3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM  
will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to  
manufacture or sell products containing the Products, subject to the terms and conditions herein.  
Other Precaution  
1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
4. The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice-PAA-E  
Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
General Precaution  
1. Before you use our Pro ducts, you are requested to care fully read this document and fully understand its contents.  
ROHM shall not be in an y way responsible or liable for failure, malfunction or accident arising from the use of a ny  
ROHM’s Products against warning, caution or note contained in this document.  
2. All information contained in this docume nt is current as of the issuing date and subj ect to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the la test information with a ROHM sale s  
representative.  
3. The information contained in this doc ument is provi ded on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate an d/or error-free. ROHM shall not be in an y way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
Notice – WE  
Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  
Datasheet  
BD16922EFV-M - Web Page  
Part Number  
Package  
Unit Quantity  
BD16922EFV-M  
HTSSOP-B24  
2000  
Minimum Package Quantity  
Packing Type  
Constitution Materials List  
RoHS  
2000  
Taping  
inquiry  
Yes  

相关型号:

BD16933EFV-C

Automotive 3ch Half Bridge Driver
ROHM

BD16933EFV-E2

Automotive 3ch Half Bridge Driver
ROHM

BD16938AEFV-C

BD16938AEFV-C是面向车载应用设计的8ch半桥驱动器。可直接驱动小型DC有刷电机,能够以High输出、Low输出、Hi-Z输出等3种模式独立控制各输出。通过16bit 串行接口(SPI)可从外部MCU进行控制。实现了高耐压(最大额定40V)、低导通电阻、小型封装,可有助于实现整机的高可靠性、低功耗、低成本化。
ROHM

BD16939AEFV-C

BD16939AEFV-C是面向车载应用设计的6ch半桥驱动器。可直接驱动小型DC有刷电机,能够以High输出、Low输出、Hi-Z输出等3种模式独立控制各输出。通过16bit 串行接口(SPI)可从外部MCU进行控制。实现了高耐压(最大额定40V)、低ON电阻、小型封装,可有助于实现整机的高可靠性、低功耗、低成本化。
ROHM

BD16950EFV-C

BD16950EFV是符合AEC-Q100的2ch半桥栅极驱动器。可通过从外部MCU执行16位串行外设接口(SPI)进行控制。可独立控制高边/低边Nch-MOSFET,可通过MCU以各种模式进行控制。而且,用于调整转换速率的可变驱动电流设定适用于EMI和高效率驱动。错误信号可通过MCU读取。还可通过MCU复位各种设定寄存器。
ROHM

BD16952EFV-ME2

Brush DC Motor Controller, PDSO24, HTSSOP-24
ROHM

BD170

TRANSISTOR | BJT | PNP | 80V V(BR)CEO | 1.5A I(C) | TO-126
ETC

BD1722J50100A00

Ultra Low Profile 0805 Balun 50 to 100 Balanced
ANAREN

BD1722J50150A00

Ultra Low Profile 0805 Balun 50ヘ to 150ヘ Balanced
ANAREN

BD1722J50200A00

Ultra Low Profile 0805 Balun 50ヘ to 200ヘ Balanced
ANAREN

BD1722J50200AHF

RF Transformer, 1700MHz Min, 2200MHz Max,
ANAREN

BD1722L50200A00

RF Transformer, 1700MHz Min, 2200MHz Max, CHIP, 0805, ROHS COMPLIANT
ANAREN