RT8805CPQVA [RICHTEK]

Two Phase General Purpose PWM Controller; 两相通用PWM控制器
RT8805CPQVA
型号: RT8805CPQVA
厂家: RICHTEK TECHNOLOGY CORPORATION    RICHTEK TECHNOLOGY CORPORATION
描述:

Two Phase General Purpose PWM Controller
两相通用PWM控制器

控制器
文件: 总18页 (文件大小:380K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Preliminary  
RT8805C  
Two Phase General Purpose PWM Controller  
General Description  
Features  
z 12V Power Supply Voltage  
The RT8805C is the most compact dual-phase  
synchronous buck controller in the industry specifically  
designed for high power density applications. This part is  
capable of delivering up to 60A output current due to its  
embedded bootstrapped drivers that support 12V + 12V  
driving capability.  
z 2 Phase Power Conversion  
z Embedded 12V Boot Strapped Driver  
z Precise Core Voltage Regulation  
z Low Side MOSFET RDS(ON) Current Sensing for  
Power Stage Current Balance  
z External Compensation  
The phase currents are sensed by innovative time sharing  
z Adjustable Soft-Start  
RDS(ON) current sensing technique for current balance and  
z Adjustable Frequency and Typical at 300kHz Per  
Phase  
over current balance. Using one commonGM amplifier to  
sense two phase currents eliminates offset and  
nonlinearity of the GM amplifier and yields good current  
balance. Other features include adjustable operation  
frequency from 50kHz to 1MHz, adjustable soft-start,  
PGOOD, external compensation, enable/shutdown for  
various application and performance consideration.  
z Power Good Indication  
z Adjustable Over Current Protection  
z External Reference Voltage Tracking (RT8805CxQVA)  
z Small 16-Lead and 24-Lead VQFN Packages  
z RoHS Compliant and 100% Lead (Pb)-Free  
The RT8805C comes to a tiny footprint package of  
VQFN-16L 3x3 and VQFN-24L 4x4 packages.  
Applications  
z Middle-High EndGPU Core Power  
z High End Desktop PC Memory Core Power  
z Low Output Voltage, High PowerDensityDC-DC  
Converters  
Ordering Information  
RT8805C  
Package Type  
QV : VQFN-16L 3x3 (V-Type)  
QVA : VQFN-24L 4x4 (V-Type)  
z Voltage Regulator Modules  
Operating Temperature Range  
P : Pb Free with Commercial Standard  
G : Green (Halogen Free with Commer-  
cial Standard)  
Marking Information  
For marking information, contact our sales representative  
directly or through a Richtek distributor located in your  
area, otherwise visit our website for detail.  
Note :  
Richtek Pb-free and Green products are :  
`RoHS compliant and compatible with the current require-  
ments of IPC/JEDEC J-STD-020.  
`Suitable for use in SnPb or Pb-free soldering processes.  
`100% matte tin (Sn) plating.  
DS8805C-03 August 2007  
www.richtek.com  
1
Preliminary  
RT8805C  
Pin Configurations  
(TOP VIEW)  
24 23 22 21 20 19  
1
2
3
4
5
6
18  
17  
16  
15  
14  
13  
PHASE1  
UGATE1  
BOOT1  
AGND  
IMAX  
UGATE2  
BOOT2  
PGOOD  
PI  
16 15 14 13  
UGATE1  
BOOT1  
AGND  
12 PHASE2  
1
2
3
4
UGATE2  
BOOT2  
PGOOD  
11  
10  
9
GND  
GND  
17  
IMAX  
FB  
5
6
7
8
25  
NC  
COMP  
7
8
9
10 11 12  
VQFN-16L 3x3  
VQFN-24L 4x4  
Typical Application Circuit  
V
IN  
RT8805CxQV  
C5  
R
R8  
9
BOOT1  
2
1
3.3V  
12V  
PGOOD  
CC  
CC  
BOOT1  
R9  
14  
C9  
VCC  
C4  
UGATE1  
Q1  
Q2  
R
UGATE1  
R1  
R2  
L1  
5
16  
15  
RT  
V
PHASE1  
LGATE1  
OUT  
4
3
R
C
PHASE1  
PHASE1  
IMAX  
AGND  
C8  
R
8
7
BOOT2  
10  
11  
FB  
BOOT2  
UGATE2  
PHASE2  
LGATE2  
C1  
COMP  
C6  
C7  
L2  
C2  
Q5  
Q3  
Q4  
R3  
R
UGATE2  
12  
13  
6
SS  
R
PHASE2  
PHASE2  
EN  
GND  
C3  
R
C
R4  
C
R5  
FigureA. Application Circuit for RT8805CxQV (VQFN-16L 3x3)  
www.richtek.com  
DS8805C-03 August 2007  
2
Preliminary  
RT8805C  
V
IN  
RT8805CxQVA  
C5  
R
R8  
C9  
BOOT1  
16  
3
2
3.3V  
12V  
PGOOD  
CC  
BOOT1  
R9  
21  
22  
VCC  
CC  
C4  
UGATE1  
Q1  
Q2  
R
UGATE1  
15  
7
L1  
PI  
1
V
PHASE1  
LGATE1  
OUT  
R1  
R2  
RT  
R
C
PHASE1  
PHASE1  
23  
5
4
IMAX  
C8  
R
AGND  
BOOT2  
17  
18  
BOOT2  
UGATE2  
PHASE2  
LGATE2  
14  
13  
FB  
C1  
C6  
C7  
L2  
Q3  
Q4  
COMP  
R
UGATE2  
C2  
R3  
19  
12  
11  
SS  
R
PHASE2  
PHASE2  
20  
EN  
GND  
Q5  
C3  
R
C
R4  
R5  
C
Figure B. Application Circuit for RT8805CxQVA(VQFN-24L 4x4)-Standalone Mode (PIDisabled)  
V
IN  
RT8805CxQVA  
C5  
R
R8  
C9  
BOOT1  
16  
3
2
3.3V  
12V  
PGOOD  
CC  
BOOT1  
R9  
21  
22  
VCC  
CC  
C4  
UGATE1  
Q1  
Q2  
R
UGATE1  
15  
7
L1  
R
PI  
1
V
PHASE1  
LGATE1  
OUT  
R1  
R2  
RT  
R10  
PHASE1  
PHASE1  
23  
5
4
C
IMAX  
C8  
R
AGND  
BOOT2  
17  
18  
BOOT2  
UGATE2  
PHASE2  
LGATE2  
14  
13  
FB  
C1  
C6  
C7  
L2  
Q3  
Q4  
COMP  
R
UGATE2  
C2  
R3  
19  
12  
11  
SS  
R
PHASE2  
PHASE2  
20  
EN  
GND  
Q5  
C3  
R
R4  
R5  
C
C
Figure C. Application Circuit for RT8805CxQVA(VQFN-24L 4x4)-Tracking Mode (PI Enabled)  
DS8805C-03 August 2007  
www.richtek.com  
3
Preliminary  
RT8805C  
Function Block Diagram  
RT8805CxQV (VQFN-16L 3x3)  
V
BOOT1  
CC  
PWMCP  
-
UGATE1  
PHASE1  
PGOOD  
PWM1  
Logic  
+
V
CC  
0.8V  
+
LGATE1  
EA  
FB  
-
BOOT2  
V
CC  
COMP  
UGATE2  
PHASE2  
PWMCP  
+
External  
Soft Start  
PWM2  
Logic  
V
CC  
-
SS  
LGATE2  
RAMP1  
RAMP2  
CLK1  
CLK2  
AGND  
Current  
Balance  
PHASE2  
PHASE1  
-
MUX  
S/H  
GM  
+
OCP  
OC  
IMAX  
VCC  
To PWM Logic  
Reg  
V
DD  
Central  
Logic  
PGOOD  
CLK1  
CLK2  
Clock  
RT  
OC  
GND  
RT8805CxQVA(VQFN-24L 4x4)  
BOOT1  
V
CC  
PGOOD  
0.8V  
PWMCP  
UGATE1  
PHASE1  
-
PWM1  
Logic  
+
V
CC  
V
REF_SEL  
+
LGATE1  
PI  
EA  
FB  
-
BOOT2  
V
CC  
COMP  
UGATE2  
PHASE2  
PWMCP  
External  
Soft Start  
+
-
PWM2  
Logic  
V
CC  
SS  
LGATE2  
RAMP1  
RAMP2  
CLK1  
CLK2  
S/H  
AGND  
Current  
Balance  
PHASE2  
PHASE1  
-
MUX  
GM  
+
OCP  
OC  
IMAX  
VCC  
To PWM Logic  
Reg  
V
DD  
Central  
Logic  
PGOOD  
CLK1  
CLK2  
Clock  
RT  
OC  
GND  
www.richtek.com  
4
DS8805C-03 August 2007  
Preliminary  
RT8805C  
Functional Pin Description  
Pin No.  
Pin Name  
Pin Function  
VQFN-16L 3x3  
16  
VQFN-24L 4x4  
1
These pins are return nodes of the high-side driver. Connect  
These pins to high-side MOSFET sources together with the  
low-side MOSFET drains and the inductors.  
PHASE1  
12  
1
19  
2
PHASE2  
UGATE1  
UGATE2  
BOOT1  
BOOT2  
AGND  
Upper Gate Drive. These pins drive the gates of the high  
side MOSFETs.  
11  
2
18  
3
Bootstrap Power Pin. These pins power the high-side  
MOSFET drivers. Connect These pins to the junctions of the  
bootstrap capacitors.  
10  
3
17  
4
Chip Analog Ground.  
Maximum Current Setting. This pin sets the current limiting  
level. Connect this pin with resistor to ground to set the  
current limit.  
4
5
IMAX  
--  
5
6, 8, 9, 10, 24 NC  
No Internal Connection.  
Timing Resistor. Connect a resistor from RT to AGND to set  
the clock frequency.  
7
RT  
11,  
The exposed pad must be soldered to a large PCB and  
connected to GND for maximum power dissipation.  
Soft-Start Pin. This pin provides soft-start function for  
controller. The COMP voltage of the converter follows the  
ramping voltage on the SS pin.  
Exposed Pad (17)  
6
GND  
Exposed Pad (25)  
12  
SS  
Compensation Pin. This pin is output node of the error  
amplifier.  
Feedback Pin. This pin is negative input pin of the error  
amplifier.  
7
8
13  
14  
COMP  
FB  
Power Good. PGOOD is an open drain output used to  
indicate the status of the voltages on SS pin and FB pin.  
PGOOD will go high impedance when SS > 3.7V and FB >  
0.6V.  
9
16  
PGOOD  
15  
13  
23  
20  
LGATE1  
LGATE2  
Lower Gate Drive. These pins drive the gate of the lowside  
MOSFETs.  
The VCC pin is the external 12V power. Internal 5V power  
14  
--  
21, 22  
15  
VCC  
PI  
(V ) is regulated from this pin. This pin also powers the low  
side MOSFET drivers.  
DD  
External reference voltage pin. This pin sets the voltage of  
FB pin when close loop.  
DS8805C-03 August 2007  
www.richtek.com  
5
Preliminary  
RT8805C  
Absolute Maximum Ratings (Note 1)  
z Supply Voltage, VCC -------------------------------------------------------------------------------------------------- 0.3V to 16V  
z PHASE to GND  
DC------------------------------------------------------------------------------------------------------------------------- 5V to 15V  
< 200ns ------------------------------------------------------------------------------------------------------------------ 10V to 30V  
z BOOT to PHASE ------------------------------------------------------------------------------------------------------ 15V  
z BOOT toGND  
DC------------------------------------------------------------------------------------------------------------------------- 0.3V to VCC+15V  
< 200ns ------------------------------------------------------------------------------------------------------------------ 0.3V to 42V  
z Input, Output or I/O Voltage ----------------------------------------------------------------------------------------- GND-0.3V to 7V  
z Power Dissipation, PD @ TA = 25°C  
VQFN16L 3x3--------------------------------------------------------------------------------------------------------- 1.47W  
VQFN24L 4x4--------------------------------------------------------------------------------------------------------- 1.923W  
z Package Thermal Resistance (Note 4)  
VQFN16L 3x3, θJA --------------------------------------------------------------------------------------------------- 68°C/W  
VQFN24L 4x4, θJA --------------------------------------------------------------------------------------------------- 52°C/W  
z Junction Temperature ------------------------------------------------------------------------------------------------- 150°C  
z Lead Temperature (Soldering, 10 sec.)--------------------------------------------------------------------------- 260°C  
z ESD Susceptibility (Note 2)  
HBM (Human Body Mode) ------------------------------------------------------------------------------------------ 1.5kV  
MM (Machine Mode) -------------------------------------------------------------------------------------------------- 200V  
Recommended Operating Conditions (Note 3)  
z Supply Voltage --------------------------------------------------------------------------------------------------------- 9V to 14V  
z Junction Temperature Range---------------------------------------------------------------------------------------- 40°C to 125°C  
z Ambient Temperature Range---------------------------------------------------------------------------------------- 40°C to 85°C  
Electrical Characteristics  
(VIN = 12V, TA = 25°C, unless otherwise specified)  
Parameter  
Supply Input  
Symbol  
Test Conditions  
Min  
Typ  
Max Units  
Power Supply Voltage  
Power On Reset  
V
--  
5.4  
--  
12  
5.9  
0.3  
10  
15  
6.5  
--  
V
V
CC  
V
CC  
Power On Reset Hysteresis  
Power Supply Current  
V
I
V
SS  
= 0V  
--  
--  
mA  
V
VCC  
ON  
PI Threshold  
VEN  
VEN  
--  
0.3  
50  
--  
Hysteresis  
--  
--  
mV  
Soft Start  
Soft Start Current  
Oscillator  
I
8
10  
15  
μA  
SS  
Free Running Frequency  
Frequency Variation  
Frequency Range  
Maximum Duty Cycle  
f
RT = 33kΩ  
255  
-15  
50  
300  
--  
345  
15  
kHz  
%
OSC  
300  
75  
1000  
80  
kHz  
%
70  
To be continued  
www.richtek.com  
6
DS8805C-03 August 2007  
Preliminary  
RT8805C  
Parameter  
Ramp Amplitude  
Symbol  
Test Conditions  
Min  
Typ  
Max Units  
--  
1.6  
0.8  
--  
V
V
Reference Voltage  
Feedback Voltage  
Error Amplifier  
V
V
FB  
= 0.8V  
0.792  
0.808  
FB  
DC Gain  
60  
6
70  
10  
--  
--  
--  
--  
dB  
MHz  
μA/V  
μA  
Gain-Bandwidth Product  
Trans-conductance  
MAX Current (Source & Sink)  
Current Sense GM Amplifier  
OC  
GBW  
GM  
C
R
= 5pF  
LOAD  
600  
300  
660  
360  
= 20kΩ  
= 2.5V  
LOAD  
I
V
COMP  
COMP  
--  
-220  
--  
mV  
V
R
= 33kΩ  
IMAX  
PHASE  
Gate Driver  
Maximum Upper Drive Source  
Upper Drive Sink  
I
BOOT PHASE = 12V  
1
--  
1
--  
3.5  
--  
--  
7
A
Ω
A
Ω
UGATE(MAX)  
R
V
= 1V  
= 12V  
= 1V  
UGATE  
UGATE  
Maximum Lower Drive Source  
I
PV  
V
--  
4
LGATE(MAX)  
CC  
Lower Drive Sink  
R
--  
2
LGATE  
LGATE  
Protection  
Under Voltage Protection  
Power Sequence  
0.55  
0.6  
0.65  
V
Power Good Threshold  
Power Good Output Low Voltage  
Measure SS Voltage  
3.4  
--  
3.8  
4.2  
0.2  
V
V
0.05  
I
= 4mA  
PGOOD  
Note 1. Stresses listed as the above "Absolute Maximum Ratings" may cause permanent damage to the device. These are for  
stress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the  
operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended  
periods may remain possibility to affect device reliability.  
Note 2. Devices are ESD sensitive. Handling precaution recommended.  
Note 3. The device is not guaranteed to function outside its operating conditions.  
Note 4. θJA is measured in the natural convection at TA = 25°C on a high effective four layers thermal conductivity test board of  
JEDEC 51-7 thermal measurement standard.  
DS8805C-03 August 2007  
www.richtek.com  
7
Preliminary  
RT8805C  
Typical Operating Characteristics  
Phase Loading vs. Output Loading  
VREF vs. Temperature  
30  
0.7945  
0.794  
Low-Side : IPD06N03  
High-Side : IPD09N03  
25  
0.7935  
0.793  
20  
PHASE2  
0.7925  
0.792  
15  
PHASE1  
0.7915  
0.791  
10  
0.7905  
0.79  
5
0
0.7895  
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Output Loading (A)  
Temperature (°C)  
FOSC vs. Temperature  
Dead Time  
306  
304  
302  
300  
298  
296  
294  
Low-Side : IPD06N03  
High-Side : IPD09N03  
No Load  
RRT = 33k  
UGATE  
PHASE  
LGATE  
UGATE-PHASE  
(5V/Div)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Time (100ns/Div)  
(°C)  
Temperature  
OCP  
OCP  
Start up then Short, CSS = 0.1μF  
VOUT  
(1V/Div)  
VOUT  
(100mV/Div)  
SS  
(5V/Div)  
IL  
IL  
(20A/Div)  
(10A/Div)  
SS  
UGATE  
(2V/Div)  
(20V/Div)  
Short then Start up, CSS = 0.1μF  
Time (25ms/Div)  
Time (25ms/Div)  
www.richtek.com  
8
DS8805C-03 August 2007  
Preliminary  
RT8805C  
Power On  
Power Off  
No Load  
IOUT = 3A  
VOUT  
VOUT  
(1V/Div)  
(1V/Div)  
UGATE  
(20V/Div)  
UGATE  
(20V/Div)  
LGATE  
(10V/Div)  
IL  
LGATE  
(10V/Div)  
IL  
(5A/Div)  
(5A/Div)  
Time (1ms/Div)  
Time (100μs/Div)  
Short Pulse  
Shutdown by SS Pin  
During Soft Start  
Low-Side : IPD06N03  
High-Side : IPD09N03  
No Load  
UGATE  
UGATE-PHASE  
VOUT  
(500mV/Div)  
PHASE  
LGATE  
UGATE  
(10V/Div)  
LGATE  
(10V/Div)  
(5V/Div)  
Time (100μs/Div)  
Time (100ns/Div)  
UVP  
Start Up by SS Pin  
VIN = 0V, CSS = 0.1μF  
No Load, CSS = 0.1μF  
VOUT  
(20mV/Div)  
VOUT  
(1V/Div)  
LGATE  
(10V/Div)  
SS  
(2V/Div)  
LGATE  
(10V/Div)  
UGATE  
(10V/Div)  
UGATE  
(1V/Div)  
SS  
(1V/Div)  
Time (50ms/Div)  
Time (5ms/Div)  
DS8805C-03 August 2007  
www.richtek.com  
9
Preliminary  
RT8805C  
Applications Information  
Power On Reset  
Frequency setting  
RT8805C operates with input voltage at VCC pin ranging  
from 5.9V to 15V. An internal linear regulator regulates  
the input voltage to 5V for internal control circuit use. The  
POR (power on reset) circuitry monitors the supply voltage  
to make sure the supply voltage is high enough for  
RT8805C normal work. When the regulated power  
exceeds 4.2V typically, the RT8805C releases the reset  
state and works according to the setting. Once the  
regulated voltage is lower than 4.0V, POR circuitry resets  
the chip. Hysteresis between the rising and falling  
thresholds assure that once enabled, the RT8805C will  
not inadvertently turn off unless the bias voltage drops  
substantially (see Electrical Specifications).  
The converter switching frequency is programmed by  
connecting a resistor from the RT pin to GND. Figure 2  
illustrates switching frequency vs. RRT.  
Switching Frequency vs. RT Resistance  
1200  
1000  
800  
600  
400  
200  
0
Enable, Soft Start and Power Good  
Once POR releases, the RT8805C begins its soft start  
cycle as shown in Figure 1. A10μAsource current charges  
the capacitor CSS connected to SS to control the soft start  
behavior of RT8805C. During soft start, SS voltage  
increases linearly and clamps the error amplifier output.  
Duty cycle and output voltage increase accordingly. The  
soft start limits inrush current from input capacitors.  
0
20  
40  
60  
80  
100  
RT Resistance
(kΩ)  
Figure 2. Switching Frequency vs. RRT.  
Voltage Control  
The voltage control loop consists of error amplifier,  
multiphase pulse width modulator, drivers and power  
components. As conventional voltage mode PWM  
controller, the output voltage is locked at the positive input  
of error amplifier and the error signal is used as the control  
signal of pulse width modulator. The PWM signals of  
different channels are generated by comparison of EA  
output and split-phase sawtooth wave. Power stage  
transforms VIN to output by PWM signal on-time ratio.  
The RT8805C regards SS pin voltage higher than 3.7V as  
the end of soft start cycle. Then RT8805C trip PGOOD to  
high impedance if no fault occurs indicating power good.  
The SS pin also act as the timer during OCP and UVP  
hiccup as described in the later sections.  
VDD  
POR  
> 3.7V  
Current Sensing Setting  
SS  
RT8805C senses the current of low side MOSFET in each  
synchronous rectifier when it is conducting for channel  
current balance and OCP detecting. The multiplexer and  
sensing GM amplifier converts the voltage on the sense  
component (can be a sense resistor or the RDS(ON) of the  
low side MOSFET) to current signal into internal circuit  
(see Figure 3).  
SSH  
> 0.6V  
FB  
PGOOD  
Figure 1. Power Sequence  
www.richtek.com  
10  
DS8805C-03 August 2007  
Preliminary  
RT8805C  
Current Balance  
PHASE1  
PHASE2  
RT8805C senses the voltage drop of the low-side MOS  
and translates this to control the ramp signal. We can see  
that the voltage signal finally injected to channel one is  
proportional to (IL1 - IL2). Channel two is proportional to  
(IL2 - IL1). In steady state and current balance situation,  
there is no sensed signal injected into the ramp.  
MUX  
RAMP1  
RAMP2  
CLK1  
CLK2  
Current  
Balance  
-
S/H  
OC  
GM  
+
OCP  
If IL1 > IL2, the ramp bottom of channel 1 will be lifted up  
and decreased the duty of UGATE1. On the other hand,  
the ramp bottom of channel 2 will be pulled low to increase  
the duty of UGATE2. Finally, the loop will be back to the  
balance state through above mentioned negative feedback  
scheme. Figure 5 shows this scheme.  
IMAX  
Figure 3. Current Sensing Loop  
The sensing circuit gets IX = IL(S/H) x RDS(ON) x GM by  
local feedback. IX is sampled and held just before low side  
MOSFET turns off (See Figure 4). Therefore,  
V
-
+
IN2  
COMP  
V
REF  
Logic  
&
Driver  
+
-
I
L2  
V
RAMP2  
OUT  
IX(S/H) = IL(S/H) x RDS(ON) x GM  
L2  
VOUT TOFF  
V
IL(S/H) = IL(AVG)  
×
,
ON2  
k2 = k x R  
L
2
ON2  
CL  
V
= k2 x I = k x V  
L2  
V
IN VOUT  
1
2
CSO2  
ON2  
V
TOFF  
=
×5μs,  
V
IN  
IN1  
RL  
FSW = 200kHz  
Logic  
&
Driver  
+
-
I
L1  
RAMP1  
V
IN VOUT  
L1  
VOUT  
×
×5μs  
V
IN  
IX(S/H) = IL(AVG)  
2L  
k1 = k x R  
V
ON1  
ON1  
V
= k1 x I  
L1  
CSO1  
= k x V  
ON1  
×RDS(ON) ×GM  
Figure 5. Current Balance  
Falling Slope = V  
/L  
Gate control  
OUT  
IL  
a. Before SS signal reach the valley of the ramp voltage,  
UGATE and LGATE will be off.  
I
L(AVG)  
I
L(S/H)  
Inductor Current  
b. If SS pin is pulled down 0.4V, UGATE and LGATE will  
be off.  
c. UV protect function caused by FB < 0.6V and SS >  
3.7V, and controller will trigger Always Hiccup Mode.  
High Side MOSFET Gate Signal  
d. When OC function occurs and SS > 3.7V, a constant  
current of 10μA starts to discharge the capacitor  
connected to SS pin right away. When OC occurs,  
UGATE and LGATE will be off. When the voltage at the  
capacitor connected to SS pin pass about 0.4V, a  
constant current of 10μAstarts to charge the capacitor.  
The PWM signal is enable to pass to UGATE and  
Low Side MOSFET Gate Signal  
Figure 4. Inductor Current andGate signals  
DS8805C-03 August 2007  
www.richtek.com  
11  
Preliminary  
RT8805C  
LGATE. OCP function monitors both channels, either  
one can activate OCP. If the OC protection occurs three  
times, OCSD(Over Current ShutDown) will be activated  
and shut down the chip.  
The first step is to calculate the complex conjugate poles  
contributed by the LC output filter.  
The output LC filter introduces a double pole, 40dB/decade  
gain slope above its corner resonant frequency, and a total  
phase lag of 180 degrees. The resonant frequency of the  
LC filter expressed as follows :  
e. When fault conditions occur or SS < 0.4V, the current  
sense function will be disabled.  
1
F
P(LC)  
=
Power Good  
2π × L  
×C  
OUT  
OUT  
PGOODgoes high when soft-start voltage > 3.7V, and no  
fault conditions.  
The next step of compensation design is to calculate the  
ESR zero. The ESR zero is contributed by the ESR  
associated with the output capacitance. Note that this  
requires that the output capacitor should have enough ESR  
to satisfy stability requirements. The ESR zero of the  
output capacitor expressed as follows :  
Feedback Loop Compensation  
The RT8805C is a voltage mode controller ; the control  
loop is a single voltage feedback path including an error  
amplifier and PWM comparator. In order to achieve fast  
transient response and accurate output regulation, an  
adequate compensator design is necessary. The goal of  
the compensation network is to provide adequate phase  
margin (greater than 45 degrees) and the highest 0dB  
crossing frequency. To manipulate loop frequency response  
under its gain crosses over 0dB at a slope of -20dB/  
decade.  
1
FZ(ESR)  
=
2π ×COUT ×ESR  
2) Compensation Frequency Equations  
The compensation network consists of the error amplifier  
and the impedance networks as Figure 7 shown.  
V
REF  
+
R1  
V
GM  
COMP  
V
-
OUT  
FB  
C2  
R2  
1) Modulator Frequency Equations  
C1  
R
RT8805C is a voltage mode buck converter using the high  
gain error amplifier with transconductance (OTA,  
Operational Transconductance Amplifier), as Figure 6  
shown.  
F
Figure 7. Compensation Loop  
1
FZ1  
=
The Transconductance:  
2π × R2× C2  
P1 = 0  
ΔI  
ΔV  
OUT  
GM =  
F
M
1
Δ VM = (EA+) - (EA-) ; Δ IOUT = E/A output current.  
F
P2  
=
C1× C2  
V
OUT  
2π × R2×  
C1+C2  
+
EA+  
EA-  
Figure 8 shows theDC-DC converter's gain vs. frequency.  
The compensation gain uses external impedance networks  
to provide a stable, high bandwidth loop. High crossover  
frequency is desirable for fast transient response, but often  
jeopardize the system stability. In order to cancel one of  
the LC filter poles, place FZ1 before the LC filter resonant  
frequency. In the experience, place FZ1 at 10% LC filter  
resonant frequency. Crossover frequency should be higher  
than the ESR zero but less than 1/5 of the switching  
frequency. The FP2 should be place at half the switching  
frequency.  
GM  
R
OUT  
-
Figure 6. OTATopology  
This transfer function of OTAis dominated by a higherDC  
gain and the output filter (LOUT and COUT) with a double  
pole frequency at FLC and a zero at FESR. The DC gain of  
the modulator is the input voltage (VIN) divided by the  
peak to peak oscillator voltage VRAMP  
.
www.richtek.com  
12  
DS8805C-03 August 2007  
Preliminary  
RT8805C  
80
60  
Type 3 will induce additional one pole and one zero.  
Loop Gain  
Zeros :  
FZ2  
40
20  
1
Compensation  
Gain  
=
2π × (R1+ R3)× C3  
0
Poles :  
Modulator  
Gain  
-20  
1
F
P3  
=
-40  
2π × R3 × C3  
10  
-60  
100k  
1M  
which is in the origin.  
100  
1k  
10k  
Frequency (Hz)  
We recommend FZ1 placed in 0.5 x FP(LC); FZ2 placed in  
Figure 8. Type 2 Bode Plot  
FP(LC); FP3 placed in FESR and FP2 placed in 0.5 x FSW  
.
Figure 11 shows Type 3 Bode Plot.  
There is another type of compensation called Type 3  
compensation that adds a pole-zero pair to the Type 2  
network. It's used to compensate output capacitor whose  
ESR value is much lower (pure MLCC or OSCON  
Capacitors).  
Loop Gain  
60  
40  
Compensation Gain  
20  
As shown in Figure 9, to insert a network between VOUT  
and FB in the original Type 2 compensation network can  
result in Type 3 compensation. Figure 10 shows the  
difference of theirAC response. Type 3 compensation has  
an additional pole-zero pair that causes a gain boost at  
the flat gain region. But the gain boosted is limited by the  
ratio (R1+R4)/R4; if R3 << R4.  
0
Gain  
-20  
-40  
Modulator Gain  
-60  
-80  
2
3
4
5
6
7
C3  
R3  
Log Frequency  
+
R1  
V
Figure 11. Type 3 Bode Plot  
GM  
FB  
COMP  
V
-
OUT  
C2  
R2  
C1  
R4  
Protection  
OCP  
The RT8805C uses Cycle by Cyclecurrent comparison.  
The over current level is set by IMAX pin. When OC  
function occurs and SS > 3.7V, a constant current of 10μA  
starts to discharge the capacitor connected to SS pin  
right away. When OC occurs, UGATE and LGATE will be  
off.  
Figure 9. AdditionalNetwork of Type 3 Compensation  
(Add between VOUT and FB)  
F
P1  
Add Type 3 compensation  
Pole  
F
P2  
F
P3  
F
P2  
F
F
Z1  
Z2  
Original Type 2 compensation  
Figure 10. AC Response Curves of Type 2 and 3  
DS8805C-03 August 2007  
www.richtek.com  
13  
Preliminary  
RT8805C  
When the voltage at the capacitor connected to SS pin  
pass about 0.4V, a constant current of 10μA starts to  
charge the capacitor. The PWM signal is enabled to pass  
to the UGATE and LGATE. OCP function monitors both  
channels, either one can activate OCP. If the OC protection  
occurs three times, the chip will shut down and the state  
will only be released by POR.  
UVP  
VIN = 0V  
VOUT  
(20mV/Div)  
SS  
(2V/Div)  
RT8805C uses an external resistor RIMAX to set a  
programmable over current trip point. OCP comparator  
compares each inductor current with this reference current.  
RT8805C uses hiccup mode to eliminate fault detection  
of OCP or reduce output current when output is shorted  
to ground. The OCP comparator compares the difference  
LGATE  
(10V/Div)  
UGATE  
(1V/Div)  
Time (50ms/Div)  
between IX and IIMAX  
.
Figure 12. UVP (Always Hiccup Mode)  
OCP Comparator  
OTP  
I
+
-
IMAX  
I
Monitor the temperature near the driver part within the  
chip. Shutdown the chip when OTP (Typical trip point :  
170°C).  
X
For example:  
From Electrical Specifications : RIMAX = 33kΩ  
General Design Guide  
VPHASE = -220mV  
This design guide is intended to provide a high-level  
explanation of the steps necessary to create a multi-phase  
power converter. It is assumed that the reader is familiar  
with many of the basic skills and techniques referenced  
below.  
Assume Low side MOSFET RDS(ON) = 3mΩ.  
220mV  
3mΩ  
Get the OCP setting current is  
(the valley of inductor's current).  
=73A per PHASE  
Change the setting current which you want from 73A per  
PHASE to 50A per PHASE.  
Power Stages  
Following below steps:  
Designing a multi-phase converter is to determine the  
number of phases. This determination depends heavily  
on the cost analysis which in turn depends on system  
constraints that differ from one design to the next.  
Principally, the designer will be concerned with whether  
components can be mounted on both sides of the circuit  
board, whether through-hole components are permitted,  
the total board space available for power-supply circuitry,  
and the maximum amount of load current. Generally  
speaking, the most economical solutions are those in  
which each phase handles between 20 to 25A(One Upper  
and one Lower MOSFET). All surface-mount designs will  
tend toward the lower end of this current range.  
1. Calculate phase voltage. If Low side MOSFET  
RDS(ON) = 3mΩ, VPHASE_new = -150mV.  
-220mV  
2.RIMAX_new  
=
×33kΩ  
VPHASE_new  
RIMAX_new = 48.4kΩ  
UVP  
By detecting voltage at FB pin when SS > 3.7V. If  
FB < 0.6V, the chip will trigger the always Hiccup mode  
and a constant current source 10μA starts to charge  
capacitor at SS pin when SS pass 0.4V and discharge  
Css when SS > 3.7V. As Figure 12 shown.  
If through-hole MOSFETs and inductors can be used,  
higher per-phase currents are possible. In cases where  
www.richtek.com  
14  
DS8805C-03 August 2007  
Preliminary  
RT8805C  
board space is the limiting constraint, current can be  
pushed as high as 40A per phase, but these designs  
require heat sinks and forced air to cool the MOSFETs,  
inductors and heat dissipating surfaces.  
operated under or over maximum (~125°C) operation  
rating.  
Layout Considerations  
Layout is very important in high frequency switching  
converter design. If designed improperly, the PCB could  
radiate excessive noise and contribute to the converter  
instability.  
MOSFETs  
The choice of MOSFETs depends on the current each  
MOSFET will be required to conduct, the switching  
frequency, the capability of the MOSFETs to dissipate  
heat, and the availability and nature of heat sinking and  
air flow.  
First, place the PWM power stage components. Mount  
all the power components and connections in the top layer  
with wide copper areas. The MOSFETs of Buck, inductor,  
and output capacitor should be as close to each other as  
possible. This can reduce the radiation of EMI due to the  
high frequency current loop. If the output capacitors are  
placed in parallel to reduce the ESR of capacitor, equal  
sharing ripple current should be considered. Place the  
input capacitor directly to the drain of high-side MOSFET.  
In multi-layer PCB, use one layer as power ground and  
have a separate control signal ground as the reference of  
the all signal. To avoid the signal ground is effect by noise  
and have best load regulation, it should be connected to  
the ground terminal of output. Furthermore, follows below  
guidelines can get better performance of IC :  
Package Power Dissipation  
When choosing MOSFETs it is important to consider the  
amount of power being dissipated in the integrated drivers  
located in the controller. Since there are a total of two  
drivers in the controller package, the total power dissipated  
by both drivers must be less than the maximum allowable  
power dissipation for the VQFNpackage. Calculating the  
power dissipation in the drivers for a desired application  
is critical to ensure safe operation. Exceeding the  
maximum allowable power dissipation level will push the  
IC beyond the maximum recommended operating junction  
temperature of 125°C. The maximum allowable IC power  
dissipation for the 3x3 VQFN package is approximately  
1.47W at room temperature.  
1. A multi-layer printed circuit board is recommended.  
2. Use a middle layer of the PC board as a ground plane  
and making all critical component ground connections  
through vias to this layer.  
According below equations at two phases operation, its  
clear to describe that the junction temperature of the chip  
is directly proportional to the total CISS (including CUGATE  
and CLGATE) of all external MOSFETs.  
3. Use another solid layer as a power plane and break this  
plane into smaller islands of common voltage levels.  
PD = ( CUGATE x VBOOT-PHASE2 x f ) + ( CLGATE x VCC2 x f ) +  
4. Keep the metal running from the PHASE terminal to  
the output inductor short.  
χ
TJ = TA + ( θJA x PD )  
5. Use copper filled polygons on the top and bottom circuit  
layers for the phase node.  
(χ is the minor factor and could be ignored)  
6. The small signal wiring traces from the LGATE and  
UGATE pins to the MOSFET gates should be kept  
short and wide enough to easily handle the several  
Amperes of drive current.  
For example, according to the application we evaluated  
on board, the CUGATE = 1nF, CLGATE = 5nF (dual MOSFETs  
in parallel), VCC = 12V, VBOOT-PHASE = 12V, and operation  
frequency = 300kHz.  
2
2
7. The critical small signal components include any bypass  
capacitors, feedback components, and compensation  
components. Position those components close to their  
pins with a local GND connection, or via directly to the  
ground plane.  
PD 1nF x 12 x 300kHz + 2 x 5nF x 12 x 300kHz =  
475mW / PHASE  
TJ = 30°C+ 68°C/W x 0.475W x 2 = 94.6°C  
That means the junction temperature is most likely to be  
DS8805C-03 August 2007  
www.richtek.com  
15  
Preliminary  
RT8805C  
8. RT and RIMAX resistors should be near the RT and RIMAX  
pin respectively, and theirGNDreturn should be short,  
and kept away from the noisy MOSFET GND.  
9. Place the compensation components close to the FB  
and COMP pins.  
10. The feedback resistors for both regulators should also  
be located as close as possible to the relevant FB pin  
with vias tied straight to the ground plane as required.  
11. Minimize the length of the connections between the  
input capacitors, CIN and the power switches by placing  
them nearby.  
12. Position both the ceramic and bulk input capacitors  
as close to the upper MOSFET drain as possible, and  
make the GND returns (From the source of lower  
MOSFET to VIN, CVIN, GND) short.  
13. Position the output inductor and output capacitors  
between the upper MOSFET and lower MOSFET and  
the load.  
14. AGNDshould be on the clearer plane, and kept away  
from the noisy MOSFET GND.  
www.richtek.com  
16  
DS8805C-03 August 2007  
Preliminary  
RT8805C  
Outline Dimension  
SEE DETAIL A  
D
D2  
L
1
E
E2  
1
2
1
2
e
b
DETAILA  
A
A3  
Pin #1 ID and Tie Bar Mark Options  
A1  
Note : The configuration of the Pin #1 identifier is optional,  
but must be located within the zone indicated.  
Dimensions In Millimeters  
Dimensions In Inches  
Symbol  
Min  
Max  
Min  
Max  
A
A1  
A3  
b
0.800  
0.000  
0.175  
0.180  
2.950  
1.300  
2.950  
1.300  
1.000  
0.050  
0.250  
0.300  
3.050  
1.750  
3.050  
1.750  
0.031  
0.000  
0.007  
0.007  
0.116  
0.051  
0.116  
0.051  
0.039  
0.002  
0.010  
0.012  
0.120  
0.069  
0.120  
0.069  
D
D2  
E
E2  
e
0.500  
0.020  
L
0.350  
0.450  
0.014  
0.018  
V-Type 16L QFN 3x3 Package  
DS8805C-03 August 2007  
www.richtek.com  
17  
Preliminary  
RT8805C  
D2  
SEE DETAIL A  
D
L
1
E
E2  
1
2
1
2
e
b
DETAILA  
A
Pin #1 ID and Tie Bar Mark Options  
A3  
A1  
Note : The configuration of the Pin #1 identifier is optional,  
but must be located within the zone indicated.  
Dimensions In Millimeters  
Dimensions In Inches  
Symbol  
Min  
Max  
Min  
Max  
A
A1  
A3  
b
0.800  
0.000  
0.175  
0.180  
3.950  
2.300  
3.950  
2.300  
1.000  
0.050  
0.250  
0.300  
4.050  
2.750  
4.050  
2.750  
0.031  
0.000  
0.007  
0.007  
0.156  
0.091  
0.156  
0.091  
0.039  
0.002  
0.010  
0.012  
0.159  
0.108  
0.159  
0.108  
D
D2  
E
E2  
e
0.500  
0.020  
L
0.350  
0.450  
0.014  
0.018  
V-Type 24L QFN 4x4 Package  
Richtek Technology Corporation  
Headquarter  
Richtek Technology Corporation  
Taipei Office (Marketing)  
5F, No. 20, Taiyuen Street, Chupei City  
Hsinchu, Taiwan, R.O.C.  
8F, No. 137, Lane 235, Paochiao Road, Hsintien City  
Taipei County, Taiwan, R.O.C.  
Tel: (8863)5526789 Fax: (8863)5526611  
Tel: (8862)89191466 Fax: (8862)89191465  
Email: marketing@richtek.com  
www.richtek.com  
18  
DS8805C-03 August 2007  

相关型号:

RT8805GQV

Two Phase General Purpose PWM Controller
RICHTEK

RT8805GQVA

Two Phase General Purpose PWM Controller
RICHTEK

RT8805PQV

Two Phase General Purpose PWM Controller
RICHTEK

RT8805PQVA

Two Phase General Purpose PWM Controller
RICHTEK

RT8809B

暂无描述
RICHTEK

RT8810A

暂无描述
RICHTEK

RT8810B

暂无描述
RICHTEK

RT8810C

暂无描述
RICHTEK

RT8810D

暂无描述
RICHTEK

RT8811C

暂无描述
RICHTEK

RT8812A

暂无描述
RICHTEK

RT8812C

暂无描述
RICHTEK