RT8810B [RICHTEK]

暂无描述;
RT8810B
型号: RT8810B
厂家: RICHTEK TECHNOLOGY CORPORATION    RICHTEK TECHNOLOGY CORPORATION
描述:

暂无描述

文件: 总22页 (文件大小:424K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
RT8810  
Dual-Phase Synchronous Buck PWM Controller  
General Description  
Features  
z Single IC Supply Voltage : 4.5V to 13.2V  
z Supports Manual / Auto Dynamic Phase Number  
Control  
The RT8810 is a dual phase synchronous buck controller  
which can provide users with a compact, high efficient,  
well protected and cost effective solution. The RT8810's  
integrated high driving capability MOSFET drivers makes  
it more attractive for high current application. The built-in  
bootstrap diode simplifies the circuit design and reduces  
external part count and PCB space. For output voltage  
control, the RT8810 can precisely regulate feedback  
voltage according to the internal reference voltage 0.6V or  
external reference voltage from 0.4V to 2.5V.  
z Integrated Bootstrap Diode  
z Lossless RDS(ON) Current Sensing for Current Balance  
z Adjustable Operation Frequency : 100kHz to 1MHz  
z Adjustable Over Current Protection  
z Capacitor Programmable Soft-Start  
z Support 0% to 80% Duty Cycle  
z Selectable Internal/External VREF  
z Voltage Mode PWM Control with External  
Feedback Loop Compensation  
The MODE pin programs single phase or dual phase  
operation, making the RT8810 suitable for dual power input  
applications such as PCI-Express interface graphic cards.  
To set RT8810 at automatic mode, the RT8810 operates  
in single phase at light load condition and maintains high  
efficiency over a wide range of output currents. In addition,  
the RT8810 features adjustable gate driving voltage for  
maximum efficiency and optimum performance.  
z Phase Crosstalk Jitter Suspend (CJSTM  
z Programmable Quick Response  
z Driver Shoot Through Protection  
z Supports Current Reporting  
)
z 16-Lead WQFN and 24-Lead WQFN Packages  
z RoHS Compliant and Halogen Free  
The RT8810 adopts lossless RDS(ON) current sensing  
technique for channel current balance and over current  
protection. Other features include adjustable soft-start,  
adjustable operation phase, and adjustable over current  
threshold.  
Applications  
z GPU Core Power  
z Desktop PC Memory, VTT Power  
z Low Output Voltage, High Power Density DC/DC  
Converters  
z Voltage Regulator Modules  
Ordering Information  
RT8810  
Package Type  
QW : WQFN-16L 3x3 (W-Type)  
QW : WQFN-24L 4x4 (W-Type)  
Lead Plating System  
G : Green (Halogen Free and Pb Free)  
Z : ECO (Ecological Element with  
Halogen Free and Pb free)  
Product Classification  
A : Only for WQFN-24L 4x4  
B : Only for WQFN-16L 3x3  
(With MODE Pin)  
C : Only for WQFN-16L 3x3  
(With REFIN Pin)  
Note :  
Richtek products are :  
` RoHS compliant and compatible with the current require-  
ments of IPC/JEDEC J-STD-020.  
` Suitable for use in SnPb or Pb-free soldering processes.  
D : Only for WQFN-24L 4x4  
DS8810-01 June 2011  
www.richtek.com  
1
RT8810  
Marking Information  
RT8810BGQW  
RT8810CGQW  
RT8810DGQW  
RT8810AGQW  
EL=YM  
DNN  
JU=YM  
DNN  
JV=YM  
DNN  
02=YM  
DNN  
EL= : Product Code  
YMDNN : Date Code  
JU= : Product Code  
YMDNN : Date Code  
JV= : Product Code  
YMDNN : Date Code  
02= : Product Code  
YMDNN : Date Code  
RT8810BZQW  
RT8810CZQW  
RT8810DZQW  
RT8810AZQW  
EL YM  
DNN  
JU YM  
DNN  
JV YM  
DNN  
02 YM  
DNN  
EL : Product Code  
YMDNN : Date Code  
JU : Product Code  
YMDNN : Date Code  
JV : Product Code  
YMDNN : Date Code  
02 : Product Code  
YMDNN : Date Code  
Pin Configurations  
(TOP VIEW)  
24 23 22 21 20 19  
16 15 14 13  
1
2
3
18  
NC  
PGND  
UGATE1  
BOOT1  
AGND  
PHASE2  
1
2
3
4
12  
11  
10  
9
PHASE1  
UGATE1  
BOOT1  
MODE  
PHASE2  
UGATE2  
BOOT2  
SS/EN  
17  
PGND  
UGATE2  
16  
PGND  
PGND  
4
5
6
15  
14  
13  
BOOT2  
SS/EN  
QR1  
17  
25  
REFIN  
5
6
7
8
7
8
9
10 11 12  
WQFN-24L 4x4  
RT8810A  
WQFN-16L 3x3  
RT8810B  
24 23 22 21 20 19  
16 15 14 13  
1
2
3
18  
NC  
PGND  
UGATE1  
BOOT1  
AGND  
PHASE2  
PGND  
UGATE2  
BOOT2  
SS/EN  
QR1  
1
2
3
4
12  
PHASE1  
UGATE1  
BOOT1  
REFIN  
PHASE2  
UGATE2  
BOOT2  
SS/EN  
17  
16  
11  
10  
9
PGND  
PGND  
4
5
6
15  
14  
13  
17  
25  
REFIN  
5
6
7
8
7
8
9 10 11 12  
WQFN-16L 3x3  
RT8810C  
WQFN-24L 4x4  
RT8810D  
www.richtek.com  
DS8810-01 June 2011  
2
RT8810  
Typical Application Circuit  
V
IN  
12V  
C7  
10µF x 5  
RT8810  
R1  
10  
BOOT1  
VCC  
R
0
C
BOOT1  
C1  
1µF  
BOOT1  
0.1µF  
VOUT  
1.1V  
PVCC9  
PVCC  
UGATE1  
Q1  
C6  
1µF  
R
L1  
1µH  
UG1  
0
R2  
0
PHASE1  
LGATE1  
BOOT2  
C2  
1µF  
C8  
820µF x 2  
/2.5V  
C9  
R11*  
C17*  
Q2  
10µF x 4  
/16V  
V
REFIN  
REFIN  
R
0
BOOT2  
C14  
0.1µF  
C
C10  
10µF x 5  
BOOT2  
MODE  
IMAX  
0.1µF  
R
MODE  
Q3  
Q4  
UGATE2  
PHASE2  
L2  
33k  
R
UG2  
0
1µH  
R
IMAX  
100k  
C11  
820µF x 2  
/2.5V  
C13  
NC  
C12  
10µF x 4  
/16V  
RT  
R12*  
LGATE2  
PGND  
FB  
R7  
1.5k  
R
18k  
RT  
SS/EN  
C18*  
R9  
NC  
C
SS  
0.1µF  
24k  
R10  
COMP  
AGND  
R8  
1.8k  
QR2  
QR1  
C5  
4.7nF  
C4  
33pF  
C15  
100pF  
C16  
NC  
R6  
20k  
* : Option  
Figure 1. RT8810A/D  
DS8810-01 June 2011  
www.richtek.com  
3
RT8810  
V
IN  
12V  
C7  
10µF x 5  
R1  
10  
RT8810  
BOOT1  
VCC  
R
0
BOOT1  
C1  
1µF  
C
BOOT1  
0.1µF  
PVCC9  
PVCC  
VOUT  
1.1V  
C6  
UGATE1  
Q1  
L1  
1µH  
1µF  
R
R2  
0
UG1  
0
PHASE1  
LGATE1  
BOOT2  
C9  
10µF x 4  
/16V  
C2  
1µF  
C8  
820µF x 2  
/2.5V  
R11*  
C17*  
Q2  
MODE  
IMAX  
R
BOOT2  
0
R
MODE  
33k  
C
BOOT2  
C10  
10µF x 5  
0.1µF  
R
IMAX  
100k  
Q3  
Q4  
UGATE2  
PHASE2  
L2  
1µH  
R
UG2  
0
RT  
R
RT  
18k  
C12  
C13  
NC  
C11  
SS/EN  
R12*  
C18*  
820µF x 2  
10µF x 4  
C
0.1µF  
SS  
LGATE2  
PGND  
FB  
R7  
1.5k  
/2.5V  
/16V  
R9  
NC  
COMP  
R8  
1.8k  
C5  
4.7µF  
AGND  
C4  
33pF  
R6  
20k  
* : Option  
Figure 2. RT8810B  
www.richtek.com  
4
DS8810-01 June 2011  
RT8810  
V
IN  
12V  
C7  
10µF x 5  
R1  
10  
RT8810  
BOOT1  
VCC  
R
0
C
BOOT1  
C1  
1µF  
BOOT1  
0.1µF  
PVCC9  
PVCC  
VOUT  
1.1V  
C6  
UGATE1  
Q1  
L1  
1µH  
1µF  
R
R2  
0
UG1  
0
PHASE1  
LGATE1  
BOOT2  
C2  
1µF  
C9  
10µF x 4  
/16V  
C8  
R11*  
C17*  
Q2  
820µF x 2  
/2.5V  
V
REFIN  
IMAX  
REFIN  
R
0
C14  
0.1µF  
BOOT2  
C10  
C
BOOT2  
10µF x 5  
0.1µF  
R
100k  
IMAX  
Q3  
Q4  
UGATE2  
PHASE2  
L2  
R
RT  
UG2  
0
1µH  
R
18k  
RT  
SS/EN  
C13  
NC  
C12  
10µF x 4  
C11  
820µF x 2  
C
0.1µF  
SS  
R12*  
C18*  
LGATE2  
PGND  
FB  
/16V  
R7  
/2.5V  
R9  
NC  
1.5k  
COMP  
C5  
R8  
1.8k  
4.7nF  
AGND  
C4  
33pF  
R6  
20k  
* : Option  
Figure 3. RT8810C  
DS8810-01 June 2011  
www.richtek.com  
5
RT8810  
Functional Pin Description  
Pin No.  
Pin Name  
Pin Function  
WQFN-16L  
3x3  
WQFN-24L  
4x4  
--  
1
NC  
No Internal Connection.  
Power Ground for the IC. These pins are ground returns for the  
gate drivers. Tie these pins to the ground island/plane through the  
lowest impedance connection available. The exposed pad must be  
soldered to a large PCB and connected to PGND for maximum  
power dissipation.  
2, 17,  
25  
(Exposed Pad)  
17  
PGND  
(Exposed Pad)  
Upper Gate Driver Output for Channel 1. Connect this pin to the  
gate of upper MOSFET. This pin is monitored by the adaptive shoot  
through protection circuitry to determine when the upper MOSFET  
has turned off.  
2
3
4
UGATE1  
BOOT1  
Bootstrap Supply for the Floating Upper Gate Driver of Channel 1.  
Connect the bootstrap capacitor C  
1 between BOOT1 pin and  
BOOT  
3
the PHASE1 pin to form a bootstrap circuit. The bootstrap capacitor  
provides the charge to turn on the upper MOSFET.  
All voltages levels are measured with respect to this pin. Tie this pin  
to the ground island/plane through the lowest impedance  
connection available.  
--  
5
6
AGND  
REFIN  
External Reference Input. This is the input pin for the external  
reference voltage. If external reference voltage is not available,  
leave this pin open for default internal 0.6V reference.  
4
(RT8810C)  
Operation Phase Control Input. Connect a resistor R  
from this  
MODE  
pin to GND to set the threshold current level for single and dual  
phase operations. The RT8810 operates in dual phase if the output  
current is higher than the threshold current level; in single phase if  
the output current is lower than the threshold current level; see the  
related sections for detail. Tie this pin to GND for continuous single  
phase operation. Leave this pin open for continuous dual phase  
operation. Both upper and lower switches of PHASE2 are turned off  
when operating in single phase.  
4
7
MODE  
(RT8810B)  
Output Current Indication. Connect this pin to ground with a resistor  
to set the output over current protection level.  
5
6
8
9
IMAX  
RT  
Operation Frequency Setting. Connect a resistor between this pin  
and AGND to set the operation frequency.  
Error Amplifier Output. This is the output of the Error Amplifier (EA)  
and the non-inverting input of the PWM comparators. Use this pin in  
combination with the FB pin to compensate the voltage-control  
feedback loop of the converter  
7
8
10  
11  
COMP  
FB  
Feedback Voltage. This pin is the inverting input to the error  
amplifier. Aresistor divider from the output to GND is used to set the  
regulation voltage.  
--  
--  
12  
13  
QR2  
QR1  
Quick Response Setting Pin for Load Transition.  
Quick Response Setting Pin for Load Transition.  
Soft-Start Output. Connect a capacitor from this pin to GND to set  
the soft-start interval. Pulling this pin low to 0.4V will shut down the  
RT8810.  
9
14  
SS/EN  
To be continued  
www.richtek.com  
6
DS8810-01 June 2011  
RT8810  
Pin No.  
Pin Name  
Pin Function  
WQFN-16L WQFN-24L  
3x3  
4x4  
Bootstrap Supply for the Floating Upper Gate Driver of Channel 2.  
Connect the bootstrap capacitor between BOOT2 pin and the PHASE2  
pin to form a bootstrap circuit. The bootstrap capacitor provides the  
charge to turn on the upper MOSFET.  
10  
15  
BOOT2  
Upper Gate Driver Output for Channel 2. Connect this pin to the gate of  
upper MOSFET. This pin is monitored by the adaptive shoot through  
protection circuitry to determine when the upper MOSFET has turned off.  
11  
12  
16  
18  
UGATE2  
Switch Node for Channel 2. Connect this pin to the source of the upper  
MOSFET and the drain of the lower MOSFET. This pin is used as the sink  
for the UGATE2 driver. This pin is also monitored by the adaptive shoot  
through protection circuitry to determine when the upper MOSFET has  
turned off.  
PHASE2  
Lower Gate Driver Output for Channel 2. Connect this pin to the gate of  
lower MOSFET. This pin is monitored by the adaptive shoot through  
protection circuitry to determine when the lower MOSFET has turn off.  
13  
14  
19  
20  
LGATE2  
VCC  
Supply Voltage. This pin is the input pin of the internal 9V LDO, which  
provides current for PVCC9 and PVCC pins. Place a minimum 1μF  
ceramic capacitor physically near the pin to locally bypass the supply  
voltage.  
21  
(RT8810A)  
22  
Supply Input. This pin receives a supply voltage from 4.5V to 13.2V and  
provides bias current for the internal control circuit. Physically place a  
minimum 1μF ceramic capacitor near it. This pin to bypass it.  
--  
PVCC  
(RT8810D)  
22  
Supply Input. This pin is the output of the internal 9V LDO regulator. It  
provides current for lower gate drivers and bootstrap current for upper  
drivers.  
(RT8810A)  
21  
(RT8810D)  
15  
16  
PVCC9  
Lower Gate Driver Output for Channel 1. Connect this pin to the gate of  
lower MOSFET. This pin is monitored by the adaptive shoot through  
protection circuitry to determine when the lower MOSFET has turn off.  
23  
24  
LGATE1  
Switch Node for Channel 1. Connect this pin to the source of the upper  
MOSFET and the drain of the lower MOSFET. This pin is used as the sink  
for the UGATE driver. This pin is also monitored by the adaptive shoot  
through protection circuitry to determine when the upper MOSFET has  
turned off.  
1
PHASE1  
DS8810-01 June 2011  
www.richtek.com  
7
RT8810  
Function Block Diagram  
SS/EN  
PVCC  
VCC  
LV  
Regulator  
HV  
Regulator  
Bias  
REF  
SEL  
Soft-Start  
REFIN  
+
-
POR  
PVCC9  
FB  
COMP  
SD  
Fault  
BOOT2  
BOOT1  
-
+
OC  
UGATE2  
Logic  
UGATE1  
Gate  
Control  
+
-
+
-
Gate  
Control  
PHASE2  
LGATE2  
PHASE1  
LGATE1  
+
-
+
-
Current  
Balance  
S/H  
S/H  
PGND  
AGND  
VB  
VB  
Phase  
Control  
Oscillator  
+
Transient  
Response  
Enhancement  
QR1  
QR2  
IMAX  
MODE  
RT  
www.richtek.com  
8
DS8810-01 June 2011  
RT8810  
Absolute Maximum Ratings (Note 1)  
z VCC, PVCC, PVCC9 to AGND---------------------------------------------------------------- 15V  
z BOOTx to PHASEx ------------------------------------------------------------------------------ 15V  
z PHASEx to PGNDx  
DC---------------------------------------------------------------------------------------------------- 0.5V to 15V  
<20ns ----------------------------------------------------------------------------------------------- 5V to 25V  
z UGATEx to PHASEx  
DC---------------------------------------------------------------------------------------------------- 0.3V to (BOOTx PHASEx+ 0.3V)  
<20ns ----------------------------------------------------------------------------------------------- 5V to (BOOTx PHASEx + 5V)  
z LGATEx to PGNDx  
DC---------------------------------------------------------------------------------------------------- 0.3V to (PVCC9 + 0.3V)  
<20ns ----------------------------------------------------------------------------------------------- 5V to (PVCC9 + 5V)  
z Input, Output or I/O Voltage -------------------------------------------------------------------- (AGND 0.3V) to 6V  
z Power Dissipation, PD @ TA = 25°C  
WQFN-16L 3x3 ----------------------------------------------------------------------------------- 1.471W  
WQFN-24L 4x4 ----------------------------------------------------------------------------------- 1.923W  
z Package Thermal Resistance (Note 2)  
WQFN-16L 3x3, θJA ------------------------------------------------------------------------------ 68°C/W  
WQFN-16L 3x3, θJC ----------------------------------------------------------------------------- 7.5°C/W  
WQFN-24L 4x4, θJA ------------------------------------------------------------------------------ 52°C/W  
WQFN-24L 4x4, θJC ----------------------------------------------------------------------------- 7°C/W  
z Junction Temperature ---------------------------------------------------------------------------- 150°C  
z Lead Temperature (Soldering, 10 sec.)------------------------------------------------------ 260°C  
z Storage Temperature Range ------------------------------------------------------------------- 65°C to 150°C  
z ESD Susceptibility (Note 3)  
HBM (Human Body Mode) --------------------------------------------------------------------- 2kV  
MM (Machine Mode) ----------------------------------------------------------------------------- 200V  
Recommended Operating Conditions (Note 4)  
z Supply Voltage, VCC ----------------------------------------------------------------------------- 4.5V to 13.2V  
z Junction Temperature Range------------------------------------------------------------------- 40°C to 125°C  
z Ambient Temperature Range------------------------------------------------------------------- 40°C to 85°C  
DS8810-01 June 2011  
www.richtek.com  
9
RT8810  
Electrical Characteristics  
(VCC = 12V, VPVCC9 = 9V, TA = 25°C, unless otherwise specified)  
Parameter  
Supply Input  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
Bias Voltage  
VPVCC  
VPVCC9  
ICC  
4.5  
8
--  
9
13.2  
10  
--  
V
V
Regulated Bias Voltage  
Supply Current  
UGATE, LGATE Open  
UGATE, LGATE Open  
--  
6.5  
4
mA  
mA  
Shutdown Current  
Power-On Reset  
VCC POR Threshold  
Power On Reset Hysteresis  
Oscillator  
ISHDN  
--  
--  
VPVCC9R_th VCC9 Rising  
VPVCC9_hys  
3.8  
--  
4.1  
0.3  
4.4  
--  
V
V
Frequency  
fOSC  
RRT = 30kΩ  
175  
100  
--  
200  
--  
225  
1000  
--  
kHz  
kHz  
VP-P  
%
Frequency Range  
Ramp Amplitude  
Minimum Duty Cycle  
Minimum LGATE Pulse  
Reference  
ΔVOSC  
2
0
--  
--  
--  
300  
--  
ns  
Nominal Feedback Voltage  
Error Amplifier  
VFB  
0.59  
0.6  
0.61  
V
Open Loop DC Gain  
Gain Bandwidth  
ADC  
GBW  
SR  
Guaranteed by Design  
--  
--  
--  
--  
70  
10  
6
--  
--  
--  
--  
dB  
Guaranteed by Design  
MHz  
V/μs  
mA/V  
Slew Rate  
Guaranteed by Design, CL = 10pF  
Transconductance  
gm  
1.8  
Maximum Current (Source &  
Sink)  
ICOMPsk  
--  
360  
--  
μA  
Soft-Start  
SS Source Current  
ISS  
VSS/EN = 0V  
7
10  
13  
--  
μA  
Re-Soft-Start Threshold  
Level  
--  
0.5  
V
Current Sense  
Current Sense Gain  
Mode Pin Voltage  
145  
--  
165  
0.6  
185  
--  
μA/V  
VMODE  
IMODE  
V
Forced Single Phase  
Operation  
250  
--  
--  
--  
--  
1
μA  
μA  
Forced Dual Phase  
Operation  
IMODE  
To be continued  
www.richtek.com  
10  
DS8810-01 June 2011  
RT8810  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
PWM Controller Gate Driver  
V
V  
= 12V, Max.  
PHASEx  
BOOTx  
Upper Gate Sourcing Ability  
I
--  
1.5  
--  
A
UGATEsr  
Source Current  
V = 0.1V  
PHASEx  
Upper Gate R  
Sinking  
R
V
--  
--  
--  
2
1.5  
2
--  
--  
--  
Ω
A
DS(ON)  
UGATEsk  
UGATEx  
Lower Gate Sourcing Ability  
I
V
V
= 12V, Max. Source Current  
= 0.1V  
LGATEsr  
CC  
Lower Gate R  
Deadtime  
Sinking  
R
Ω
DS(ON)  
LGATEsk  
LGATEx  
V
V
V  
= 1.2V  
= 1.2V to  
PHASEx  
UGATEx  
LGATEx  
--  
30  
--  
ns  
Protection  
Over Current Threshold  
SS Enable Threshold  
V
V
2.75  
0.3  
3
3.25  
0.5  
V
V
IMAX  
EN  
0.4  
Note 1. Stresses listed as the above "Absolute Maximum Ratings" may cause permanent damage to the device. These are for  
stress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the  
operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended  
periods may remain possibility to affect device reliability.  
Note 2. θJA is measured in natural convection at TA = 25°C on a high effective thermal conductivity four-layer test board of  
JEDEC 51-7 thermal measurement standard. The measurement case position of θJC is on the exposed pad of the  
packages.  
Note 3. Devices are ESD sensitive. Handling precaution is recommended.  
Note 4. The device is not guaranteed to function outside its operating conditions.  
DS8810-01 June 2011  
www.richtek.com  
11  
RT8810  
Typical Operating Characteristics  
VREF vs. Temperature  
Efficiency vs. Load Current  
100  
0.610  
0.608  
0.606  
0.604  
0.602  
0.600  
0.598  
0.596  
0.594  
0.592  
0.590  
Phase 2 Active  
95  
90  
85  
80  
75  
70  
65  
60  
VIN = VCC = 12V, VOUT = 1.1V  
30 40 50 60  
VIN = VCC = 12V, No Load  
50 75 100 125  
55  
0
10  
20  
-50  
-25  
0
25  
Temperature (°C)  
Load Current (A)  
Frequency vs. Temperature  
RRT vs. Frequency  
315  
310  
305  
300  
295  
290  
285  
650  
600  
550  
500  
450  
400  
350  
300  
250  
200  
150  
VIN = VCC = 12V, No Load  
VIN = VCC = 12V, No Load  
50 75 100 125  
-50  
-25  
0
25  
5
10  
15  
20  
25  
30  
35  
40  
Temperature (°C)  
RRT (kΩ)  
Power On from EN  
Inductor Current vs. Output Current  
32  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
SS/EN  
(1V/Div)  
Phase1  
Phase2  
VOUT  
(1V/Div)  
UGATE1  
(20V/Div)  
6
4
2
0
UGATE2  
(20V/Div)  
VIN = VCC = 12V  
VIN = VCC = 12V, IOUT = 40A  
5
10 15 20 25 30 35 40 45 50 55 60  
Output Current (A)  
Time (4ms/Div)  
www.richtek.com  
12  
DS8810-01 June 2011  
RT8810  
Power Off from EN  
Power On from VCC  
VCC  
SS/EN  
(10V/Div)  
(1V/Div)  
VOUT  
(1V/Div)  
VOUT  
(1V/Div)  
UGATE1  
(20V/Div)  
UGATE1  
(20V/Div)  
UGATE2  
(20V/Div)  
UGATE2  
(20V/Div)  
VIN = VCC = 12V, IOUT = 40A  
VIN = VCC = 12V, IOUT = 40A  
Time (4ms/Div)  
Time (200μs/Div)  
Dynamic Output Voltage Control  
Power Off from VCC  
VREFIN  
(1V/Div)  
VCC  
(10V/Div)  
VOUT  
(1V/Div)  
UGATE1  
(20V/Div)  
VOUT  
(1V/Div)  
UGATE1  
(20V/Div)  
UGATE2  
(20V/Div)  
UGATE2  
(20V/Div)  
VIN = VCC = 12V, IOUT = 20A, VREFIN = 0V to 1.1V  
VIN = VCC = 12V, IOUT = 40A  
Time (20ms/Div)  
Time (400μs/Div)  
Dynamic Output Voltage Control  
Load Transient Response  
VIN = VCC = 12V, IOUT = 0A to 40A  
UGATE1  
(20V/Div)  
VREFIN  
(1V/Div)  
UGATE2  
(20V/Div)  
VOUT  
(1V/Div)  
UGATE1  
(20V/Div)  
IOUT  
(50A/Div)  
UGATE2  
(20V/Div)  
VOUT  
(50mV/Div)  
Time (400μs/Div)  
Time (10μs/Div)  
DS8810-01 June 2011  
www.richtek.com  
13  
RT8810  
Mode Transition  
Load Transient Response  
VIN = VCC = 12V, IOUT = 40A to 0A  
UGATE1  
(20V/Div)  
UGATE1  
(20V/Div)  
UGATE2  
(20V/Div)  
UGATE2  
(20V/Div)  
IOUT  
(50A/Div)  
VOUT  
VOUT  
(20mV/Div)  
(50mV/Div)  
VIN = VCC = 12V, single to dual phase  
Time (10μs/Div)  
Time (10μs/Div)  
Mode Transition  
Over Current Protection  
UGATE1  
(20V/Div)  
VOUT  
(500mV/Div)  
UGATE2  
(20V/Div)  
IL1  
(10A/Div)  
VOUT  
(20mV/Div)  
IL2  
(10A/Div)  
VIN = VCC = 12V, dual to single phase  
VIN = VCC = 12V  
Time (10ms/Div)  
Time (10μs/Div)  
www.richtek.com  
14  
DS8810-01 June 2011  
RT8810  
Application Information  
Frequency vs. RRT  
Dual Supply Voltage (VCC, PVCC) with Internal  
Regulator  
700  
600  
500  
400  
300  
200  
100  
The RT8810 requires an external bias supply for PVCC  
and VCC. PVCC receives a supply voltage from 4.5V to  
13.2V and provides bias current for internal control circuit.  
VCC is the input pin of the internal 9V LDO which provides  
current for the PVCC9 pin. PVCC9 is the output pin of the  
internal 9V LDO regulator. It provides current for lower  
gate drivers and bootstrap current for upper drivers.  
Physically place a minimum 1μF ceramic capacitor near  
PVCC and VCC to locally bypass the supply voltage.  
The Power-On-Reset (POR) circuit monitors the supply  
voltage at the PVCC pin. If PVCC exceeds the POR rising  
threshold voltage, the controller is reset and prepares the  
PWM for operation. If PVCC falls below the POR falling  
threshold during normal operation, all MOSFETs stop  
switching. The POR rising and falling threshold has a  
hysteresis to prevent noise caused reset.  
5
10  
15  
20  
25  
30  
35  
RRT (kΩ)  
Figure 4. RRT vs. Switching Frequency  
A resistor of 8.6kΩ to 18kΩ corresponds to a switching  
frequency of 500kHz to 300kHz, respectively.  
External Reference Input  
The RT8810 supports external reference input to provide  
more flexible applications. The REFINpin is implemented  
to be the external reference input. The mode selection is  
determined and latched after POR. If REFINpin is floating,  
a 10μA current source will pull high the REFIN pin and if  
the pin voltage exceeds 2.8V, the FB pin will follow the  
internal reference voltage 0.6V. On the other hand, if an  
external voltage is applied to the REFIN pin, the RT8810  
enters tracking mode and regulates FB to be close to this  
voltage. The applied voltage must be within the tracking  
range (typically between 0.4V to 2.5V).  
Soft-Start  
The RT8810 provides external soft-start function to prevent  
large inrush current and output voltage overshoot when  
the converter starts up. The soft-start begins when OCP  
programming is complete.  
During soft-start, an internal current source (10μA) is used  
to charge the external soft-start capacitor at the SS/EN  
pin. VSS/EN rises up, and the PWM logic and gate drives  
become enabled. When the feedback voltage crosses  
0.6V, the internal 0.6V reference takes over the behavior  
of the error operational transconductance amplifier and soft-  
start is complete. The RT8810 turns off the internal 10μA  
current source when soft-start is complete.  
If the applied voltage is less than 0.3V, the controller will  
be shut down.  
Current Sensing and Reporting  
Switching Frequency  
The RT8810 monitors per phase current for current balance  
and over current protection. Per phase current is sensed  
by the on-resistance of low side MOSFET when turned  
on. The GM amplifier senses the voltage drop across the  
lower switch and converts it into a current signal each  
time it turns on. The sensed current is expressed as :  
High frequency operation optimizes the application by  
allowing smaller component size, but trades off efficiency  
due to higher switching losses. Low frequency operation  
offers the best overall efficiency, but at the expense of  
component size and board space.  
Connect a resistor (RRT) between RT and ground to set  
the switching frequency (fSW) per phase. Users can refer  
to Figure 4 for switching frequency setting.  
ICS = 3.3 x IL x RDS(ON) x 104 + 5.5μA  
DS8810-01 June 2011  
www.richtek.com  
15  
RT8810  
where IL is the per phase current inAmpere, RDS(ON) is the  
on-resistance of low side MOSFET in mΩ, and 5.5μAis a  
constant to compensate the offset of the current sensing  
circuit. Note that the valley inductor current is sampled  
and held. The sampled and hold current is the averaged  
inductor current minus half of inductor ripple current :  
MOSFETs but continues to charge CSS with a constant  
current of 10μA until soft-start ends. The shutdown status  
can only be reset by the POR function.  
Current Balance  
The RT8810 senses each phase current from low side  
MOSFET RDS(ON), and fine tunes the duty cycle of each  
phase for current balance as shown in Figure 5. If the  
current of PHASE1 is smaller than the current of PHASE2,  
the RT8810 increases the duty cycle of the corresponding  
phase to increase its phase current accordingly.  
1
2  
IL_SH = IL_AVG  
x ΔIL  
where ΔIL is the inductor ripple current  
One half of the summation of the sampled and hold current  
signal (ICS1 + ICS2) / 2 is injected to the IMAX pin, that  
results in a voltage VIMAX across the resistor RIMAX  
connecting IMAX and AGND for over current protection.  
And VIMAX is equal to  
PWM1  
V
+
+
-
COMP  
Ramp1  
+
+
+
I
I
CS1  
-
-
PWM2  
+
-
CS2  
ICS1 + ICS2  
+
V
IMAX  
=
x RIMAX  
Ramp2  
2
+
3.3 x I  
+ IL2_SH xRDS(ON)x104 + 11μA  
(
)
L1_SH  
=
2
Figure 5. Current Balance Control Circuit  
Therefore, IMAX pin could be used for current reporting.  
Dynamic Phase Number Control  
The RT8810 adaptively controls the operation phase  
number according to the load current. Figure 6 shows the  
dynamic phase number control circuit. The phase adding  
Over Current Protection  
The RT8810 features over current protection. The voltage  
at the IMAX pin (VIMAX) is compared with a 3.0V reference  
voltage. If VIMAX is higher than 3.0V, OCP is triggered.  
The over current setting resistor (RIMAX) value for dual phase  
threshold can be calculated according to  
and dropping threshold can be set by a resistor, RMODE  
,
which is connected from the MODE pin to AGND. A  
current, IMODE, flows through the resistor, RMODE, as  
0.6  
I
=
RIMAX  
=
MODE  
R
MODE  
3V  
1.65 x IO_MAX − ΔIL x RDS(ON) x 104 + 5.5μA  
Once IIMAX is higher than 3 / 5 of IMODE, the controller will  
transit to 2-phase operation. When IIMAX is lower than 2 / 5  
of IMODE, the active phase number will return to one phase.  
(
)
And the RIMAX value for single phase threshold will be  
R
For example, if RMODE = 30kΩ, RDS(ON) = 3mΩ,ΔIL = 5A.  
The load current threshold for adding phase can be  
calculated as  
IMAX  
3V  
=
4  
1.5 x 1.65x I  
− ΔI x R  
x10 + 2.75μA  
(
)
O_MAX  
L
DS(ON)  
3 x IMODE  
The RT8810 features hiccup and shutdown mode OCP. If  
OCP is triggered after soft-start ends, the RT8810 turns  
off both upper and lower MOSFETs and discharges CSS  
with a constant current of 10μA. When VSS exceeds 0.5V,  
the RT8810 initiates another soft-start cycle. The RT8810  
shuts down after 3 hiccups. If the OCP is triggered during  
soft-start cycle, the RT8810 turns off both upper and lower  
5
4  
3.3 x10 x I  
2.5 A x 3mΩ + 5.5μA  
(
)
OUT_2P  
=
2
IOUT_2P = 21.2A  
And the load current threshold for dropping phase can be  
calculated as  
www.richtek.com  
16  
DS8810-01 June 2011  
RT8810  
2 x IMODE  
V
QR2  
RT8810  
5
EAP  
3.3 x 104x I  
5 A x 3mΩ + 11μA  
V
FB  
(
)
OUT_2P  
1µA  
=
2
QR comp.  
-
QR2  
Min. on  
IOUT_2P = 10A  
+
R
QR2  
EAP  
FB  
2/5 x I  
3/5 x I  
MODE  
V
FB  
-
+
2/5  
3/5  
QR  
C
QR1  
Drop Phase  
Add Phase  
QR1  
T
QR  
MODE  
+
-
Figure 7. Quick Response Active  
Feedback and Compensation  
0.6V  
+
-
I
I
IMAX  
CS1  
CS2  
I
MODE  
The RT8810 allows the output voltage of the DC/DC  
converter to be adjusted from 0.6V to 85% of VIN supply  
via an external resistor divider. It will try to maintain the  
feedback pin at internal reference voltage (0.6V).  
I
R
MODE  
Figure 6. Dynamic PhaseNumber Control Circuit  
V
OUT  
Manual Phase Number Control  
R1  
R2  
FB  
The RT8810 supports manual selecting of single phase or  
dual phase operation. If IMODE is higher than 150μA, the  
RT8810 operates in forced single phase mode. If IMODE is  
smaller than 4μA, the RT8810 operates in forced dual  
phase mode.  
According to the resistor divider network above, the output  
voltage is set as :  
V
REF  
Note that, the MODE pin is not available for the RT8810C.  
It supports only two phase operation.  
R = R x  
2
1
V
V  
OUT  
REF ⎠  
The RT8810 is a voltage mode controller and requires  
external compensation to have an accurate output voltage  
regulation with fast transient response.  
Load Transient Quick Response  
The RT8810 utilizes a new quick response feature to supply  
heavy load current demand during instantaneous load  
application transient. The RT8810 detects load transient  
and reacts via VOUT pin. When VOUT drops during load  
application transient, the quick response comparator will  
send asserted signals to turn on high side MOSFETs and  
turn off low side MOSFETs. The QR signal will turn on all  
phase' high side MOSFETs while turning off low side  
MOSFETs. Therefore, the influence of total quick response  
function of the RT8810 is adjustable. The quick response  
The RT8810 uses a high gain Operational  
Transconductance Amplifier (OTA) as the error amplifier.  
As Figure 8 shows, the OTA works as the voltage  
controlled current source. The characteristic of OTAis as  
below :  
ΔIOUT  
gm =  
,
ΔVM  
where ΔV = V  
V  
(
IN−  
and ΔVCOMP = ΔIOUT x ZOUT  
(
)
)
M
IN+  
threshold can be set by RQR2. QR is triggered if VEAP  
>
I
OUT  
V
IN+  
+
-
1μA x RQR2 + VFB. The QR width can be set according  
to :  
GM  
V
COMP  
V
IN-  
Z
OUT  
C
QR1  
x 0.8V  
T
QR  
=
300μA  
Figure 8. Operational TransconductanceAmplifier, OTA  
DS8810-01 June 2011  
www.richtek.com  
17  
RT8810  
Figure 9 shows a typical buck control loop using Type II  
compensator. The control loop consists of the power stage,  
PWM comparator and a compensator. The PWM  
comparator compares VCOMP with oscillator (OSC)  
sawtooth wave to provide a Pulse-Width Modulated (PWM)  
with an amplitude of VIN at the PHASE node. The PWM  
wave is smoothen by the output filter LOUT and COUT. The  
output voltage (VOUT) is sensed and fed to the inverting  
input of the error amplifier.  
The DC gain of the modulator is the input voltage (VIN)  
divided by the peak-to-peak oscillator voltage VOSC  
.
V
IN  
Gain  
=
modulator  
ΔV  
OSC  
The output LC filter introduces a double pole, 40dB/decade  
gain slope above its corner resonant frequency, and a total  
phase lag of 180 degrees. The resonant frequency of the  
LC filter is expressed as :  
V
IN  
fLC  
=
V
IN  
2π LOUT x COUT  
The ESR zero is contributed by the ESR associated with  
the output capacitance. Note that this requires the output  
capacitor to have enough ESR to satisfy stability  
requirements. The ESR zero of the output capacitor is  
expressed as follows :  
UGATE  
PHASE  
PWM  
L
OUT  
Comparator  
V
OUT  
+
-
Driver  
Logic  
C
OUT  
LGATE  
V
OSC  
V
+
REF  
R
FB1  
GM  
FB  
-
1
R
f
=
FB2  
ESR  
2π x C  
x ESR  
OUT  
The goal of the compensation network is to provide  
adequate phase margin (usually greater than 45 degrees)  
and the highest bandwidth (0dB crossing frequency). It is  
also recommended to manipulate loop frequency response  
so that its gain crosses over 0dB at a slope of 20dB/  
dec. According to Figure 8, the compensation network  
frequency is as below :  
COMP  
V
COMP  
C
R
C
C
P
C
Figure 9. Typical Voltage Mode Buck Converter Control  
Loop  
The modulator transfer function is the small signal transfer  
function of VOUT / VCOMP (output voltage over the error  
amplifier output). This transfer function is dominated by a  
DC gain, a double pole, and an ESR zero as shown in  
Figure 10.  
F
P1 = 0  
1
F
P2  
=
=
CC x CP  
2π x RC x  
CC + CP ⎠  
1
FZ1  
2π x RC x CC  
Determining the 0dB crossing frequency (FC, control loop  
bandwidth) is the first step of compensator design. Usually,  
FC is set to 0.1 to 0.3 times the switching frequency. The  
second step is to calculate the open loop modulator gain  
and find out the gain loss at FC. The third step is to design  
a compensator gain that can compensate the modulator  
gain loss at FC. The final step is to design FZ1 and FZ2 to  
allow the loop sufficient phase margin.  
FZ1 is designed to cancel one of the double poles of  
modulator. Usually, FZ1 is placed before fLC. FP2 is usually  
placed below the switching frequency (typically, 0.5 to  
1.0 times switching frequency) to eliminate high frequency  
noise.  
Figure 10. Typical Bode plot of a Voltage Mode Buck  
Converter  
www.richtek.com  
18  
DS8810-01 June 2011  
RT8810  
Inductor Selection  
package, PCB layout, rate of surrounding airflow, and  
difference between junction and ambient temperature. The  
maximum power dissipation can be calculated by the  
following formula :  
The inductor plays an important role in the buck converter  
because energy from the input power rail is stored in it  
and then released to the load. From the viewpoint of  
efficiency, the inductor'sDC Resistance (DCR) should be  
as small as possible since the inductor constantly carries  
current. In addition, the inductor takes up most of the  
board space, so its size is also important. Low profile  
inductors can save board space, especially when there is  
a height limitation.  
PD(MAX) = (TJ(MAX) TA) / θJA  
where TJ(MAX) is the maximum junction temperature, TAis  
the ambient temperature, and θJA is the junction to ambient  
thermal resistance.  
For recommended operating condition specifications of  
the RT8810, the maximum junction temperature is 125°C  
and TA is the ambient temperature. The junction to ambient  
thermal resistance, θJA, is layout dependent. For WQFN-  
16L 3x3 packages, the thermal resistance, θJA, is 68°C/  
Won a standard JEDEC 51-7 four-layer thermal test board.  
For WQFN-24L 4x4 packages, the thermal resistance,  
θJA, is 52°C/W on a standard JEDEC 51-7 four-layer  
thermal test board. The maximum power dissipation at TA  
= 25°C can be calculated by the following formula :  
Additionally, larger inductance results in lower ripple  
current, and therefore lower power loss. However, the  
inductor current rising time increases with inductance value.  
This means the inductor will have a longer charging time  
before its current reaches the required output current.  
Since the response time is increased, the transient  
response performance will be decreased. Therefore, the  
inductor design is a trade-off between performance, size  
and cost.  
PD(MAX) = (125°C 25°C) / (68°C/W) = 1.471W for  
WQFN-16L 3x3 package  
In general, inductance is designed such that the ripple  
current ranges between 20% to 30% of full load current.  
The inductance can be calculated using the following  
equation.  
PD(MAX) = (125°C 25°C) / (52°C/W) = 1.923W for  
WQFN-24L 4x4 package  
V
IN VOUT  
VOUT  
The maximum power dissipation depends on the operating  
ambient temperature for fixed TJ(MAX) and thermal  
resistance, θJA. For the RT8810 package, the derating  
curves in Figure 11 allow the designer to see the effect of  
rising ambient temperature on the maximum power  
dissipation.  
L(MIN)  
=
x
fSW x k x IOUT(MAX)  
V
IN  
where k is 0.2 to 0.3.  
Output Capacitor Selection  
Output capacitors are used to maintain high performance  
for the output beyond the bandwidth of the converter itself.  
Two different settings of output capacitors can be found,  
bulk capacitors closely located to the inductors and  
ceramic output capacitors in close proximity to the load.  
Latter ones are for mid frequency decoupling with  
especially small ESR and ESL values, while the bulk  
capacitors have to provide enough stored energy to  
overcome the low frequency bandwidth gap between the  
regulator and theGPU.  
2.0  
Four-Layer PCB  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
WQFN-24L 4x4  
WQFN-16L 3x3  
Thermal Considerations  
0
25  
50  
75  
100  
125  
For continuous operation, do not exceed absolute  
maximum junction temperature. The maximum power  
dissipation depends on the thermal resistance of the IC  
Ambient Temperature (°C)  
Figure 11.Derating Curves for the RT8810 Packages  
DS8810-01 June 2011  
www.richtek.com  
19  
RT8810  
Layout Considerations  
` Place all of the high frequency decoupling ceramic  
capacitors close to their decoupling targets.  
Careful PC board layout is critical to achieve low switching  
losses and clean, stable operation. The switching power  
stage requires particular attention. If possible, mount all  
of the power components on the top side of the board  
with their ground terminals flush against one another.  
Follow these guidelines for optimum PC board layout :  
` Small signal components should be located as close to  
the IC as possible. The small signal components include  
the feedback components, current sensing components,  
the compensation components, function setting  
components and any bypass capacitors. These  
components belong to the high impedance circuit loop  
and are inherently sensitive to noise pick-up. Therefore,  
they must be located close to their respective controller  
pins and away from the noisy switching nodes.  
` Power components should be placed first. Place the  
input capacitors close to the power MOSFETs, then  
locate the filter inductors and output capacitors between  
the power MOSFETs and the load.  
` A multi layer PCB design is recommended. Make use  
of one single layer as the power ground and have a  
separate control signal ground as the reference of all  
signals.  
` Place both the ceramic and bulk input capacitor close to  
the drain pin of the high side MOSFET. This can reduce  
the impedance presented by the input bulk capacitance  
at high switching frequency. If there is more than one  
high side MOSFET in parallel, each should have its own  
individual ceramic capacitor.  
` Keep the power loops as short as possible. For low  
voltage high current applications, power components  
are the most critical part in the layout because they  
switch a large amount of current. The current transition  
from one device to another at high speed causes voltage  
spikes due to the parasitic components on the circuit  
board. Therefore, all of the high current switching loops  
should be kept as short as possible with large and thick  
copper traces to minimize the radiation of  
electromagnetic interference.  
` Minimize the trace length between the power MOSFETs  
and its drivers. Since the drivers use short, high current  
pulses to drive the power MOSFETs, the driving traces  
should be sized as short and wide as possible to reduce  
the trace inductance. This is especially true for the low  
side MOSFET, since this can reduce the possibility of  
shoot through.  
` Provide enough copper area around the power MOSFETs  
and the inductors to aid in heat sinking. Use thick  
copper PCB to reduce the resistance and inductance  
for improved efficiency.  
` The bank of output capacitor should be placed physically  
close to the load. This can minimize the impedance  
seen by the load, and then improve the transient  
response.  
www.richtek.com  
20  
DS8810-01 June 2011  
RT8810  
Outline Dimension  
SEE DETAIL A  
D
D2  
L
1
E
E2  
1
2
1
2
e
b
DETAILA  
A
A3  
Pin #1 ID and Tie Bar Mark Options  
A1  
Note : The configuration of the Pin #1 identifier is optional,  
but must be located within the zone indicated.  
Dimensions In Millimeters  
Dimensions In Inches  
Symbol  
Min  
Max  
Min  
Max  
A
A1  
A3  
b
0.700  
0.000  
0.175  
0.180  
2.950  
1.300  
2.950  
1.300  
0.800  
0.050  
0.250  
0.300  
3.050  
1.750  
3.050  
1.750  
0.028  
0.000  
0.007  
0.007  
0.116  
0.051  
0.116  
0.051  
0.031  
0.002  
0.010  
0.012  
0.120  
0.069  
0.120  
0.069  
D
D2  
E
E2  
e
0.500  
0.020  
L
0.350  
0.450  
0.014  
0.018  
W-Type 16L QFN 3x3 Package  
DS8810-01 June 2011  
www.richtek.com  
21  
RT8810  
D2  
SEE DETAIL A  
L
D
1
E
E2  
1
2
1
2
e
b
DETAILA  
A
Pin #1 ID and Tie Bar Mark Options  
A3  
A1  
Note : The configuration of the Pin #1 identifier is optional,  
but must be located within the zone indicated.  
Dimensions In Millimeters  
Dimensions In Inches  
Symbol  
Min  
Max  
Min  
Max  
A
A1  
A3  
b
0.700  
0.000  
0.175  
0.180  
3.950  
2.300  
3.950  
2.300  
0.800  
0.050  
0.250  
0.300  
4.050  
2.750  
4.050  
2.750  
0.028  
0.000  
0.007  
0.007  
0.156  
0.091  
0.156  
0.091  
0.031  
0.002  
0.010  
0.012  
0.159  
0.108  
0.159  
0.108  
D
D2  
E
E2  
e
0.500  
0.020  
L
0.350  
0.450  
0.014  
0.018  
W-Type 24L QFN 4x4 Package  
Richtek Technology Corporation  
Headquarter  
Richtek Technology Corporation  
Taipei Office (Marketing)  
5F, No. 20, Taiyuen Street, Chupei City  
Hsinchu, Taiwan, R.O.C.  
5F, No. 95, Minchiuan Road, Hsintien City  
Taipei County, Taiwan, R.O.C.  
Tel: (8863)5526789 Fax: (8863)5526611  
Tel: (8862)86672399 Fax: (8862)86672377  
Email: marketing@richtek.com  
Information that is provided by Richtek Technology Corporation is believed to be accurate and reliable. Richtek reserves the right to make any change in circuit design,  
specification or other related things if necessary without notice at any time. No third party intellectual property infringement of the applications should be guaranteed  
by users when integrating Richtek products into any application. No legal responsibility for any said applications is assumed by Richtek.  
www.richtek.com  
22  
DS8810-01 June 2011  

相关型号:

RT8810C

暂无描述
RICHTEK

RT8810D

暂无描述
RICHTEK

RT8811C

暂无描述
RICHTEK

RT8812A

暂无描述
RICHTEK

RT8812C

暂无描述
RICHTEK

RT8813A

暂无描述
RICHTEK

RT8813D

暂无描述
RICHTEK

RT8815A

暂无描述
RICHTEK

RT8816A

暂无描述
RICHTEK

RT8816B

暂无描述
RICHTEK

RT8841

4/3/2/1-Phase PWM Controller for High-Density Power Supply
RICHTEK

RT8841A

暂无描述
RICHTEK