RT8800PS [RICHTEK]

General Purpose 2/3-Phase PWM Controller for High-Density Power Supply; 通用三分之二相PWM控制器,用于高密度电源
RT8800PS
型号: RT8800PS
厂家: RICHTEK TECHNOLOGY CORPORATION    RICHTEK TECHNOLOGY CORPORATION
描述:

General Purpose 2/3-Phase PWM Controller for High-Density Power Supply
通用三分之二相PWM控制器,用于高密度电源

控制器
文件: 总26页 (文件大小:533K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
RT8800/B  
General Purpose 2/3-Phase PWM Controller for High-Density  
Power Supply  
General Description  
Features  
5V Power Supply Voltage  
The RT8800/B are general purpose multi-phase  
synchronous buck controllers dedicating for high density  
power supply regulation. The parts implement 2, and 3  
buck switching stages operating in interleaved phase set  
automatically. The output voltage is regulated and  
controlled following the input voltage of FB pin. With such  
a single analog control, the RT8800/B provide a simple,  
flexible, wide-range and extreme cost-effective high-  
density voltage regulation solutions for various high-density  
power supply application. The RT8800/B multi-phase  
architecture provide high output current while maintaining  
low power dissipation on power devices and low stress  
on input and output capacitors. The high equivalent  
operating frequency also reduces the component  
dimension and the output voltage ripple in load transient.  
2/3-Phase Power Conversion with Automatic Phase  
Selection (RT8800 : 2/3-Phase, RT8800B : 2-Phase)  
Output Voltage Controlled by External Reference  
Voltage  
Precise Core Voltage Regulation  
Power Stage Thermal Balance by DCR Current  
Sensing  
Extreme Low-Cost, Lossless Time Sharing Current  
Sensing  
Internal Soft-start  
Hiccup Mode Over-Current Protection  
Over-Voltage Protection  
Adjustable Operating Frequency and Typical at  
300kHz Per Phase  
RT8800/B implement both voltage and current loops to  
achieve good regulation, response and power stage  
thermal balance. The RT8800/B apply the time sharing  
DCR current sensing technology newly as well; with such  
a topology, the RT8800/B extract the DCR of output  
inductor as sense component to deliver a more precise  
load line regulation and better thermal balance capability.  
Moreover, the parts monitor the output voltage for over-  
current and over-voltage protection; Soft-start and  
programmable under-voltage lockout are also provided to  
assure the safety of power system.  
Power Good indication  
Small 16-Lead VQFN Package (For RT8800 only)  
RoHS Compliant and 100% Lead (Pb)-Free  
Ordering Information  
RT8800/B  
Package Type  
QV : VQFN-16L 3x3 (V-Type)  
S : SOP-16  
Operating Temperature Range  
P : Pb Free with Commercial Standard  
G : Green (Halogen Free with Commer-  
cial Standard)  
Applications  
Desktop CPU core power  
2-Phase  
2/3-Phase  
Low Output Voltage, High power density DC-DC  
Converters  
Note :  
Voltage Regulator Modules  
RichTek Pb-free and Green products are :  
`RoHS compliant and compatible with the current require-  
ments of IPC/JEDEC J-STD-020.  
Marking Information  
`Suitable for use in SnPb or Pb-free soldering processes.  
`100% matte tin (Sn) plating.  
For marking information, contact our sales representative  
directly or through a RichTek distributor located in your  
area, otherwise visit our website for detail.  
All brand name or trademark belong to their owner respectively  
DS8800/B-06 March 2007  
www.richtek.com  
1
RT8800/B  
Pin Configurations  
(TOP VIEW)  
16 15 14 13  
16  
15  
14  
13  
12  
VDD  
DACFB  
DACQ  
FB  
DVD  
COMP  
PI  
PWM2  
PWM1  
N/C  
2
3
4
5
DACFB  
DACQ  
FB  
ISP1  
12  
11  
10  
9
1
2
3
4
ISP2  
GND  
ISP1  
ISP3  
ISP2  
PGOOD  
GND  
DVD  
PGOOD  
6
7
8
11  
10  
9
5
6
7
8
RT  
ICOMMON  
SOP-16  
VQFN-16L 3x3  
RT8800  
RT8800B  
Functional Pin Description  
ICOMMON  
DACFB  
Common negative input of current sense amplifiers for all  
three channels.  
Negative input of internal buffer amplifier for reference  
voltage regulation. The pin voltage is locked at internal  
VREF = 0.8V by properly close the buffer amplifier feedback  
loop.  
PGOOD  
Output power-good indication. The signal is implemented  
as an output signal with open-drain type.  
DACQ  
The pin is defined as the output of internal buffer amplifier  
for reference voltage regulation.  
ISP1 , ISP2 , ISP3  
Current sense positive inputs for individual converter  
channel current sense.  
FB  
The pin is defined as the inverting input of internal error  
amplifier.  
PWM1 , PWM2 , PWM3  
PWM outputs for each phase switching drive.  
DVD  
VDD  
The pin is defined as a programmable power UVLO  
detection input. Trip threshold = 0.8V at VDVD rising.  
Chip power supply. Connect this pin to a 5V supply.  
GND  
COMP  
Chip power ground.  
The pin is defined as the output of the error amplifier and  
the input of all PWM comparators.  
Exposed Pad (RT8800)  
PI  
Exposed pad should be soldered to PCB board and  
connected to GND.  
The pin is defined as the positive input of the error amplifier.  
RT  
Switching frequency setting. Connect this pin toGNDwith  
a resistor to set the frequency.  
All brand name or trademark belong to their owner respectively  
www.richtek.com  
2
DS8800/B-06 March 2007  
RT8800/B  
Typical Application Circuit  
(Note : The inductor’ s DCR value must be large than 0.3mΩ  
: X7R/R-type capacitor is required for all time constant setting capacitor of DCR sensing.)  
13  
15 PWM1  
ISP1  
1
9
8
VDD  
ICOMMON  
RT  
4
FB  
6
5
COMP  
DVD  
Figure A. 2-phase with resistive DAC  
All brand name or trademark belong to their owner respectively  
DS8800/B-06 March 2007  
www.richtek.com  
3
RT8800/B  
N C  
D V D  
E T 2 L G A  
2 C C P V  
A T G E L 1  
1 C C P V  
S E 2 P H A  
A S H E P 1  
E T 2  
U G A  
E T 1  
U G A  
12  
8
13 PWM1  
ISP1  
16  
VDD  
ICOMMON  
RT  
3
7
FB  
5
4
COMP  
DVD  
Figure B. 3-phase with resistive DAC  
All brand name or trademark belong to their owner respectively  
www.richtek.com  
4
DS8800/B-06 March 2007  
RT8800/B  
N C  
D V D  
E T 2 L G A  
2 C C P V  
A T G E L 1  
1 C C P V  
E S 2 P H A  
A S H E P 1  
E T 2  
U G A  
E T 1  
U G A  
12  
8
13 PWM1  
ISP1  
16  
VDD  
ICOMMON  
RT  
3
7
FB  
5
4
COMP  
DVD  
Figure C. 3-phase with RT9401A/B DAC generator  
All brand name or trademark belong to their owner respectively  
DS8800/B-06 March 2007  
www.richtek.com  
5
RT8800/B  
Function Block Diagram  
x
M u  
All brand name or trademark belong to their owner respectively  
www.richtek.com  
6
DS8800/B-06 March 2007  
RT8800/B  
Table. Output Voltage Program  
VID5  
VID4  
VID3  
VID2  
VID1  
VID0  
Nominal Output Voltage (V)  
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1.0800  
1.1000  
1.1125  
1.1250  
1.1375  
1.1500  
1.1625  
1.1750  
1.1875  
1.2000  
1.2125  
1.2250  
1.2375  
1.2500  
1.2625  
1.2750  
1.2875  
1.3000  
1.3125  
1.3250  
1.3375  
1.3500  
1.3625  
1.3750  
1.3875  
1.4000  
1.4125  
1.4250  
1.4375  
1.4500  
1.4625  
1.4750  
1.4875  
1.5000  
1.5125  
1.5250  
1.5375  
1.5500  
To be continued  
All brand name or trademark belong to their owner respectively  
DS8800/B-06 March 2007  
www.richtek.com  
7
RT8800/B  
Table. Output Voltage Program  
VID5  
VID4  
VID3  
VID2  
VID1  
VID0  
Nominal Output Voltage (V)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
0
0
0
0
0
1
1
1
1
0
0
0
0
0
1
1
1
0
0
1
1
0
0
1
1
0
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1.5625  
1.5750  
1.5875  
1.6000  
1.6250  
1.6500  
1.6750  
1.7000  
1.7250  
1.7500  
1.7750  
1.8000  
1.8250  
1.8500  
1
0
1
1
1
1
1
1
1
1
1
1
1
Note: 1 : Open  
0 : VSS or GND  
All brand name or trademark belong to their owner respectively  
www.richtek.com  
DS8800/B-06 March 2007  
8
RT8800/B  
Absolute Maximum Ratings (Note 1)  
Supply Voltage, VDD ------------------------------------------------------------------------------------------- 7V  
Input, Output or I/O Voltage ---------------------------------------------------------------------------------- GND0.3V to VDD+ 0.3V  
Power Dissipation, PD @ TA = 25°C  
VQFN-16L3X3 -------------------------------------------------------------------------------------------------- 1.47W  
SOP-16 ----------------------------------------------------------------------------------------------------------- 1W  
Package Thermal Resistance (Note 4)  
VQFN-16L 3X3, θJA --------------------------------------------------------------------------------------------- 68°C/W  
SOP-16, θJA ----------------------------------------------------------------------------------------------------- 100°C/W  
Junction Temperature ------------------------------------------------------------------------------------------ 150°C  
Lead Temperature (Soldering, 10 sec.)-------------------------------------------------------------------- 260°C  
Storage Temperature Range --------------------------------------------------------------------------------- 65°C to 150°C  
ESD Susceptibility (Note 2)  
HBM (Human Body Mode) ----------------------------------------------------------------------------------- 2kV  
MM (Machine Mode) ------------------------------------------------------------------------------------------- 200V  
Recommended Operating Conditions (Note 3)  
Supply Voltage, VDD ------------------------------------------------------------------------------------------- 5V 10%  
Ambient Temperature Range--------------------------------------------------------------------------------- 0°C to 70°C  
Junction Temperature Range--------------------------------------------------------------------------------- 0°C to 125°C  
Electrical Characteristics  
(VDD = 5V, TA = 25°C, unless otherwise specified)  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max Units  
V
DD  
Supply Current  
Nominal Supply Current  
PWM 1,2,3 Open  
--  
5
--  
mA  
I
DD  
Power-On Reset  
Rising  
4.0  
0.2  
0.75  
--  
4.2  
0.5  
0.8  
65  
4.5  
--  
V
V
V
DD  
Threshold  
Hysteresis  
DVD Rising Threshold  
DVD Hysteresis  
0.85  
--  
V
mV  
Oscillator  
Free Running Frequency  
Frequency Adjustable Range  
Ramp Amplitude  
170  
50  
--  
200  
--  
230  
400  
--  
kHz  
kHz  
V
f
f
R
R
= 16kΩ  
= 16kΩ  
OSC  
RT  
RT  
OSC_ADJ  
1.7  
1.0  
66  
ΔV  
OSC  
Ramp Valley  
--  
--  
V
V
RV  
Maximum On-Time of Each Channel  
Minimum On-Time of Each Channel  
RT Pin Voltage  
62  
--  
75  
--  
%
120  
0.82  
ns  
V
0.77  
0.87  
V
R
= 16kΩ  
RT  
RT  
To be continued  
All brand name or trademark belong to their owner respectively  
DS8800/B-06 March 2007  
www.richtek.com  
9
RT8800/B  
Parameter  
Reference Voltage  
Reference Voltage  
DACFB Sourcing Capability  
Error Amplifier  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Units  
0.79  
--  
0.8  
--  
0.81  
10  
V
V
DACFB  
mA  
DC Gain  
--  
--  
--  
65  
10  
8
--  
--  
--  
dB  
Gain-Bandwidth Product  
Slew Rate  
GBW  
SR  
C = 10pF  
MHz  
V/μs  
L
C = 10pF  
L
Current Sense GM Amplifier  
Recommended Full Scale Source Current  
--  
100  
190  
--  
μA  
μA  
OCP trip level  
I
160  
220  
OCP  
Protection  
Over-Voltage Trip (V - V  
)
--  
500  
--  
mV  
FB  
DACQ  
Power Good  
PGOOD Output Low Voltage  
PGOOD Delay  
V
I
= 4mA  
--  
4
--  
--  
0.2  
8
V
PGOOD  
PGOOD  
T
90% * V  
to PGOOD_H  
ms  
PGOOD_Delay  
OUT  
Note 1. Stresses listed as the above "Absolute Maximum Ratings" may cause permanent damage to the device. These are for  
stress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the  
operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended  
periods may remain possibility to affect device reliability.  
Note 2. Devices are ESD sensitive. Handling precaution recommended.  
Note 3. The device is not guaranteed to function outside its operating conditions.  
Note 4. θJA is measured in the natural convection at TA = 25°C on a low effective thermal conductivity test board of  
JEDEC 51-3 thermal measurement standard.  
All brand name or trademark belong to their owner respectively  
www.richtek.com  
10  
DS8800/B-06 March 2007  
RT8800/B  
Typical Operating Characteristics  
Efficiency vs. Output Current  
Load Line  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1.4  
RLL = 1.5mΩ, RICOMMON2 = 10kΩ, RDROOP = 100Ω  
VIN = 12V, VOUT = 1.4V  
VIN = 12V  
1.38  
1.36  
1.34  
1.32  
1.3  
1.28  
1.26  
1.24  
Driver RT9605  
0
10 20 30 40 50 60 70 80 90 100  
Output Current (A)  
0
10 20 30 40 50 60 70 80 90 100  
Output Current (A)  
Frequency vs. RRT  
GM  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
90  
RICOMMON1 = 430Ω  
80  
70  
60  
50  
40  
30  
20  
10  
0
GM3  
GM2  
GM1  
0
5
10 15 20 25 30 35 40 45 50 55 60  
0
10 20 30 40 50 60 70 80 90 100 110  
VC (mV)  
RRT ((kΩ)  
VREF vs. Temperature  
OCP Trip Point vs. Temperature  
0.815  
0.81  
240  
210  
180  
150  
120  
90  
0.805  
0.8  
0.795  
0.79  
60  
0.785  
0.78  
30  
0
-25 -10  
5
20 35 50 65 80 95 110 125  
-25  
-10  
5
20  
35  
50  
65  
80  
95  
Temperature (°C)  
(°C)  
Temperature  
All brand name or trademark belong to their owner respectively  
DS8800/B-06 March 2007  
www.richtek.com  
11  
RT8800/B  
Frequency vs. Temperature  
Load Transient Response  
350  
300  
250  
200  
150  
100  
50  
VCORE  
(200mV/Div)  
UGATE1  
(20V/Div)  
UGATE2  
(20V/Div)  
UGATE3  
(20V/Div)  
RRT = 16kΩ  
phase 1, IOUT = 5A to 85A @SR = 93A/us)  
0
-25 -10  
5
20 35 50 65 80 95 110 125  
Time (2.5μs/Div)  
Temperature (°C)  
Load Transient Response  
Load Transient Response  
VCORE  
(200mV/Div)  
VCORE  
(200mV/Div)  
UGATE1  
(20V/Div)  
UGATE1  
(20V/Div)  
UGATE2  
(20V/Div)  
UGATE2  
(20V/Div)  
UGATE3  
(20V/Div)  
UGATE3  
(20V/Div)  
phase2, IOUT = 5A to 85A @SR = 93A/us)  
phase 3, IOUT = 5A to 85A @SR = 93A/us)  
Time (2.5μs/Div)  
Time (2.5μs/Div)  
Over Current Protection  
Over Current Protection  
Short After Turn_On  
Short While Turn_On  
IL1+IL2  
(50A/Div)  
IL1+IL2  
(50A/Div)  
VCORE  
(1V/Div)  
VCORE  
(1V/Div)  
PWM1  
PWM1  
(10V/Div)  
(10V/Div)  
VCOMP  
(2V/Div)  
VCOMP  
(2V/Div)  
Time (10ms/Div)  
Time (10ms/Div)  
All brand name or trademark belong to their owner respectively  
www.richtek.com  
12  
DS8800/B-06 March 2007  
RT8800/B  
VID On the Fly Falling  
VID On the Fly Falling  
IOUT = 5A  
IOUT = 90A  
VCORE  
(50mV/Div)  
PWM  
(5V/Div)  
PWM  
(5V/Div)  
VCORE  
(100mV/Div)  
VFB  
(200mV/Div)  
VFB  
(200mV/Div)  
VID0  
(2V/Div)  
VID0  
(2V/Div)  
Time (25μs/Div)  
Time (25μs/Div)  
VID On the Fly Rising  
VID On the Fly Rising  
IOUT = 90A  
IOUT = 5A  
PWM  
(5V/Div)  
PWM  
(5V/Div)  
VCORE  
(200mV/Div)  
VCORE  
(200mV/Div)  
VFB  
(200mV/Div)  
VFB  
(200mV/Div)  
VID0  
(2V/Div)  
VID0  
(2V/Div)  
Time (10μs/Div)  
Time (10μs/Div)  
All brand name or trademark belong to their owner respectively  
DS8800/B-06 March 2007  
www.richtek.com  
13  
RT8800/B  
Application Information  
duty width according to its magnitude above the ramp  
signal. The output follows the ramp signal, SS. However  
while VOUT increases, the difference between VOUT and  
SSE(SS VGS) is reduced and COMP leaves the  
saturation and declines. The takeover of SS lasts until it  
meets the COMP. During this interval, since the feedback  
path is broken, the converter is operated in the open loop.  
RT8800/B are multiphaseDC/DC controllers for extreme  
low cost applications that precisely regulate CPU core  
voltage and balance the current of different power channels  
using time sharing current sensing method. The converter  
consisting of RT8800/B and its companion MOSFET driver  
RT96xx series provide high quality CPU power and all  
protection functions to meet the requirement of modern  
VRM.  
3) Mode3 ( Cross-over< SS < VGS + VREF  
)
When the Comp takes over the non-inverting input for PWM  
Amplifier and when SSE (SS VGS) < VREF, the output of  
the converter follows the ramp input, SSE (SS VGS).  
Before the crossover, the output follows SS signal. And  
when Comp takes over SS, the output is expected to follow  
SSE (SS VGS). Therefore the deviation of VGS is  
represented as the falling of VOUT for a short while. The  
COMP is observed to keep its decline when it passes the  
cross-over, which shortens the duty width and hence the  
falling of VOUT happens.  
Phase Setting and Converter Start Up  
RT8800/B interface with companion MOSFET drivers (like  
RT9602, RT9603, and RT9605) for correct converter  
initialization. RT8800/B will sense the voltage on PWM  
pins at the instant of POR rising. If the voltage is smaller  
than (VDD 1.2V) the related channel is activated. Tie the  
PWM to VDD and the corresponding current sense pins to  
GNDor left float if the channel is unused. For example, for  
2-Channel application, tie PWM3 to VDD and ISP3 toGND  
(or let ISP3 open).  
Since there is a feedback loop for the error amplifier, the  
outputs response to the ramp input, SSE (SS VGS) is  
lower than that in Mode 2.  
PGOOD Function and Soft Start  
To indicate the condition of multiphase converter,  
RT8800/B provide PGOODsignal through an open drain  
connection. The output becomes high impedance after  
internal SS ramp > 3.5V.  
4) Mode 4 (SS > VGS + VREF  
)
When SS > VGS + VREF, the output of the converter follows  
the desired VREF signal and the soft start is completed  
now.  
Voltage Control  
The voltage control loop consists of error amplifier,  
multiphase pulse width modulator, driver and power  
components. As conventional voltage mode PWM  
controller, the output voltage is locked at the positive input  
of error amplifier and the error signal is used as the control  
signal of pulse width modulator. The PWM signals of  
different channels are generated by comparison of EA  
output and split-phase sawtooth wave. Power stage  
transforms VIN to output by PWM signal on-time ratio.  
COMP  
V
RAMP_Valley  
Cross-over  
SS_Internal  
VCORE  
SSE_Internal  
1) Mode 1 (SS< Vramp_valley)  
Output Voltage Program  
Initially the COMP stays in the positive saturation. When  
SS< VRAMP_Valley, there is no non-inverting input available  
to produce duty width. So there is no PWM signal and  
VOUT is zero.  
The output voltage of a RT8800/B converter is programmed  
to discrete levels between 1.08V and 1.85V. The voltage  
identification (VID) pins program an external voltage  
reference (DACQ) with a 6-bit digital-to-analog converter  
(DAC). The level of DACQ also sets the OVP threshold.  
The output voltage should not be adjusted while the  
converter is delivering power. Remove input power before  
2) Mode 2 (VRAMP_Valley< SS< Cross-over)  
When SS>VRAMP_Valley, SS takes over the non-inverting  
input and produce the PWM signal and the increasing  
All brand name or trademark belong to their owner respectively  
www.richtek.com  
14  
DS8800/B-06 March 2007  
RT8800/B  
VCORE vs. Temperature  
changing the output voltage. Adjusting the output voltage  
during operation may trigger the over-voltage protection.  
TheDAC function is a precision non-inverting summation  
amplifier shown in Figure 1. The resistor values shown  
are only approximations of the actual precision values  
used.Grounding any combination of the VID pins increases  
the DACQ voltage. The opencircuit voltage on the VID  
pins is the band gap reference voltage (VREF = 0.8V).  
1.38  
1.375  
1.37  
CPU : P4-2.8G  
CORE = 1.35V  
V
R = 1/3  
1.365  
1.36  
1.355  
1.35  
R = 1/9  
1.345  
1.34  
The Original R  
R
V
VID0  
VID1  
VID2  
VID3  
VID4  
VID5  
REF  
+
(0.8V)  
R
R
V
OP  
1.335  
DACQ  
-
30  
35  
40  
45  
50  
55  
60  
65  
70  
V
DACFB  
(°C)  
Temperature  
Figure 3  
RF  
R
R
R
RG  
VCORE vs. Temperature  
1.66  
1.64  
1.62  
1.6  
CPU : Celeron 2.0G  
VCORE = 1.55V  
The Original R  
Figure 1. The Structure ofDiscreteDACGenerator  
DAC Design Guideline  
In high temperature environment, V  
becomes  
CORE  
unstable for the leakage current in VID pins is increasing.  
The leakage will increase current consumption of CPU,  
and then raise RT8800's VDACQ reference output, so does  
R = 1/3  
R = 1/9  
1.58  
1.56  
1.54  
1.52  
V
voltage. Below are four comparison charts for  
CORE  
different CPUs.  
Note: In Below Figure 2 to Figure 5, The Original R means  
the resister values shown in typical application circuit.  
R=1/3 and R=1/9 mean that The Original R is divided  
by 3 or 9.  
30  
35  
40  
45  
50  
55  
60  
65  
70  
Temperature (°C)  
Figure 4  
VCORE vs. Temperature  
VCORE vs. Temperature  
1.68  
1.64  
1.63  
1.62  
1.61  
1.6  
CPU : P4-3.06G  
VCORE = 1.55V  
CPU : P4-3.2G  
VCORE = 1.55V  
The Original R  
1.66  
The Original R  
1.64  
1.62  
R = 1/3  
1.59  
1.58  
1.57  
1.56  
1.55  
1.54  
R = 1/3  
1.6  
1.58  
R = 1/9  
R = 1/9  
1.56  
1.54  
30  
35  
40  
45  
50  
55  
60  
65  
70  
30  
35  
40  
45  
50  
55  
60  
65  
70  
(°C)  
Temperature  
(°C)  
Temperature  
Figure 5  
Figure 2  
All brand name or trademark belong to their owner respectively  
DS8800/B-06 March 2007  
www.richtek.com  
15  
RT8800/B  
In order to maintain the VDACQ within 1% tolerance in the  
worst case, the total driver current of the DAC regulator  
should support up to 40mA. As the design of RT8800/B,  
the maximum driving current of the internal OP is 10mA.  
As shown in Figure 6, we suggest to add an external  
transistor 2N3904 for higher current for VDAC regulation.  
for switching, period = TS  
VIN - VO  
VO - (  
) x TS  
DCR  
VIN  
2L  
IX(S/H) = IL(AVG) -  
x
RICOMMON1  
V
CC  
Falling Slope = Vo/L  
Inductor Current  
I
L
1.34k  
V
I
VID0  
VID1  
VID2  
VID3  
VID4  
VID5  
REF  
L(AVG)  
+
VDACQ  
(0.8V)  
Q1  
2N3904  
645  
310  
OP  
I
-
L(S/H)  
VDACFB  
43  
162  
81  
PI  
2.63k  
121  
PWM Signal & High Side MOSFET Gate Signal  
Figure 6. Immune circuit against CPU Leakage Current  
Current Sensing Setting  
Low Side MOSFET Gate Signal  
RT8800/B senses the current flowing through inductor  
via itsDCR for channel current balance and droop tuning.  
The differential sensing GM amplifier converts the  
voltage on the sense component (can be a sense  
resistor or the DCR of the inductor) to current signal  
into internal circuit (see Figure 7).  
Figure 8. Inductor current and PWM signal  
Figure 9 is the test circuit for GM. We apply test signal at  
GM inputs and observe its signal process output by PI  
pin sinking current. Figure 10 shows the variation of signal  
processing of all channels. We observe zero offsets and  
good linearity between phases.  
L
V
C
= R×C V = DCR×I  
I =  
X
C
L
DCR  
R
ICOMMON1  
L
DCR  
C
L
DCR  
I
L
C
R
+
-
V
C
+
-
ESR  
+
-
V
C
V
V
ISPX  
+
-
R
ICOMMON  
ICOMMON  
GMx  
R
ICOMMON1  
GMx  
I
1k  
x
Figure 7. Current Sense Circuit  
I
x
IL x DCR  
Figure 9. The Test Circuit of GM  
IX =  
The sensing circuit gets  
feedback.  
by local  
RICOMMON1  
IX is sampled and held just before low side MOSFET turns  
off (Figure 8).  
IL(S/H) x DCR  
RICOMMON1  
VO TOFF  
IX(S/H) =  
;IL(S/H) = IL(AVG) -  
x
L
2
TOFF = (VIN - VO ) x TS  
VIN  
All brand name or trademark belong to their owner respectively  
www.richtek.com  
16  
DS8800/B-06 March 2007  
RT8800/B  
For some case with preferable current ratio instead of  
current balance, the corresponding technique is provided.  
Due to different physical environment of each channel, it  
is necessary to slightly adjust current loading between  
channels. Figure 12. shows the application circuit of GM  
for current ratio requirement. Applying KVL along L+DCR  
branch and R1+C//R2 branch:  
GM  
70  
60  
50  
40  
30  
20  
10  
0
GM3  
GM2  
dIL  
dt  
VC  
R2  
dVC  
dt  
L
+ DCR x IL = R1  
+ C  
+ VC  
GM1  
dVC R1+ R2  
= R1x C  
For VC =  
+
VC  
dt  
R2  
R1+ R2  
R2  
DCR x IL  
0
20  
40  
60  
80  
100  
VC (mV)  
Figure 10. The Linearity of GMx  
Look for its corresponding conditions:  
dIL  
dIL  
dt  
L
+ DCR x IL = (R1//R2) x C x DCR x  
+ DCR x IL  
dt  
Figure 11 shows the time sharing technique of GM  
amplifier. We apply test signal at phase 3 and observe the  
waveforms at both pins of GM amplifier. The waveforms  
show time sharing mechanism and the perfomance ofGM  
to hold both input pins equal when the shared time is on.  
L
Let  
= (R1//R2) x C  
DCR  
L
Thus if  
= (R1//R2) x C  
DCR  
R2  
Then VC =  
x DCR x IL  
Time Sharing of GM  
R1+ R2  
CH1:(2V/Div)  
With internal current balance function, this phase would  
share (R1+R2)/R2 times current than other phases.  
Figure 13 &14 show different settings for the power stages.  
CH2:(50mV/Div)  
CH3:(50mV/Div)  
PWM3  
I
L
1.5uH  
1m  
VISP3  
VICOMMON  
VISP3  
and  
3k  
1uF  
3k  
VI  
COMMON  
Time (1μs/Div)  
Figure 13. GM3 Setting for current ratio function  
Figure 11  
Current Ratio Setting  
I
L
I
L
1.5uH  
1m  
L
DCR  
C
1.5k  
1uF  
+
-
R1  
V
C
Figure 14. GM1,2 Setting for current ratio function  
R2  
Figure 12. Application circuit for current ratio setting  
All brand name or trademark belong to their owner respectively  
DS8800/B-06 March 2007  
www.richtek.com  
17  
RT8800/B  
L
DCR  
C
Load Line without dead zone at light loads  
1.31  
1.3  
1.29  
1.28  
1.27  
1.26  
1.25  
1.24  
1.23  
ESR  
+
-
V
C
V
V
ISPX  
+
ICOMMON  
-
RICOMMOM2 open  
R
ICOMMON1  
GMx  
Ix  
R
ICOMMON2  
RICOMMON2 = 82k  
Figure 15. Application circuit of GM  
0
5
10  
15  
20  
25  
For load line design, with application circuit in Figure 15,  
it can eliminate the dead zone of load line at light loads.  
IOUT (A)  
VISPX = VOUT +IL x DCR  
Figure 16  
if GM holds input voltages equal, then  
VISPX = VICOMMON  
Current Balance  
RT8800/B senses the inductor current via inductorsDCR  
for channel current balance and droop tuning. The  
differential sensing GM amplifier converts the voltage on  
the sense component (can be a sense resistor or the  
DCR of the inductor) to current signal into internal balance  
circuit.  
V
IL ×DCR  
ICOMMON  
IX  
=
=
+
RICOMMON2 RICOMMON1  
VOUT +IL ×DCR  
RICOMMON2  
IL ×DCR  
RICOMMON1  
+
The current balance circuit sums and averages the current  
signals and then produces the balancing signals injected  
to pulse width modulator. If the current of some power  
channel is larger than average, the balancing signal  
reduces that channels pulse width to keep current balance.  
VOUT  
IL ×DCR  
IL ×DCR  
=
+
+
RICOMMON2 RICOMMON2 RICOMMON1  
For the lack of sinking capability ofGM, RICOMMON2 should  
be small enough to compensate the negative inductor  
valley current especially at light loads.  
The use of singleGM amplifier via time sharing technique  
to sense all inductor currents can reduce the offset errors  
and linearity variation between GMs. Thus it can greatly  
improve signal processing especially when dealing with  
such small signal as voltage drop across DCR.  
V
I ×DCR  
ICOMMON  
L
R
R
ICOMMON1  
ICOMMON2  
Assume the negative inductor valley current is 5A at no  
load, then for  
Voltage Reference for Converter Output & Load Droop  
The positive input of error amplifier is PI pin that sinks  
current proportional to the sum of converter output current.  
VDRP = 2ISINK x RDRP. The load droop proportional to load  
current can be set by the resistor between PI pin & external  
VDACQ produced by either buffer amplifier or other voltage  
source. The PI pin voltage should be larger than 0.8V for  
good droop circuit performance.  
RICOMMON1 = 330Ω, RADJ = 160Ω, VOUT = 1.300  
1.3V  
-5A ×1mΩ  
330Ω  
R
ICOMMON2  
RICOMMON2 85.8kΩ  
Choose RICOMMON2 = 82kΩ  
All brand name or trademark belong to their owner respectively  
www.richtek.com  
18  
DS8800/B-06 March 2007  
RT8800/B  
Over Current Protection  
-
FB  
V
EA  
PI  
-
CH1:(5V/Div)  
CH2:(5V/Div)  
V
+
DACQ  
+
DRP  
I
SINK  
2xI  
2xI  
2xI  
X1  
X2  
X3  
PWM  
Figure 17. LoadDroop Circuit  
DAC Offset Voltage Tuning  
IL  
The Intel specification requires that at no load the nominal  
output voltage of the regulator be offset to a value lower  
than the nominal voltage corresponding to the VID code.  
The offset is tuning from RG in the DAC generator as  
Figure 18.  
Time (25ms/Div)  
Figure 19. The Over Current Protection in the interval  
R
V
VID0  
VID1  
VID2  
VID3  
VID4  
VID5  
REF  
+
Over Current Protection  
(0.8V)  
R
R
VDACQ  
OP  
-
VDACFB  
CH1:(5V/Div)  
CH2:(5V/Div)  
RF  
R
R
R
RG  
PWM  
Figure 18. The Structure ofDiscreteDACGenerator  
If VID0~6 is set at VSS (Ground), and to suppose that  
shunt resistance is Rs.  
VSS  
From below equation, we can tune the value of RG to  
Time (25ms/Div)  
increase or decrease the base voltage of VDACQ  
.
Figure 20. Over Current Protection at steady state  
RF  
VDACQ = (1+ RF ) x VREF +  
x VREF  
RG  
RS  
Fault Detection  
Over Current Protection  
The hiccup modeoperation of over current protection  
is adopted to reduce the short circuit current. The in-rush  
current at the start up is suppressed by the soft start  
circuit through clamping the pulse width and output voltage  
by an internal slow rising ramp.  
OCP comparator co\mpares each inductor current sensed  
& sample/hold by current sense circuit with this reference  
current(150uA). RT8800/B uses hiccup mode to eliminate  
fault detection of OCP or reduce output current when  
output is shorted to ground.  
All brand name or trademark belong to their owner respectively  
DS8800/B-06 March 2007  
www.richtek.com  
19  
RT8800/B  
LC Filter Pole = 1.45kHz and  
ESR Zero =3.98kHz  
Design Procedure Suggestion  
a.Output filter pole and zero (Inductor, output capacitor  
value & ESR).  
b. EA Compensation Network:  
b.Error amplifier compensation & sawtooth wave amp-  
litude (compensation network).  
Select R1 = 4.7k, R2 = 15k, C1 = 12nF, C2 = 68pF  
and use the Type 2 compensation scheme shown in  
Figure 21. By calculation, the FZ = 0.88kHz,  
FP = 322kHz and Middle Band Gain is 3.19 (i.e  
10.07dB).  
Current Loop Setting  
a.GM amplifier S/H current (current sense component  
DCR, ICOMMON pin external resistor value).  
C2 68pF  
b.Over-current protection trip point (RICOMMON1 resistor).  
C1  
RB2  
VRM Load Line Setting  
15k  
12nF  
RB1  
4.7k  
-
a.Droop amplitude (PI pin resistor).  
EA  
+
b.No load offset (RICOMMON2  
)
Figure 21. Type 2 compensation network of EA  
Power Sequence & SS  
DVD pin external resistor and SS pin capacitor.  
2. Over-Current Protection Setting  
PCB Layout  
Consider the temperature coefficient of copper  
3900ppm/°C,  
a.Sense for current sense GM amplifier input.  
b.Refer to layout guide for other items.  
IL ×DCR  
= 150μA  
RICOMMON1  
Voltage Loop Setting  
Design Example  
IL ×1.39mΩ  
= 150μA  
330Ω  
IL = 35.6A  
Given:  
Apply for four phase converter  
VIN = 12V  
VCORE = 1.5V  
ILOAD(MAX) = 100A  
VDROOP = 100mV at full load (1mΩ Load Line)  
OCP trip point set at 35A for each channel (S/H)  
DCR = 1mΩ of inductor at 25°C  
L = 1.5μH  
COUT = 8000μF with 5mΩ equivalent ESR.  
1. Compensation Setting  
a. ModulatorGain, Pole and Zero:  
From the following formula:  
Modulator Gain =VIN/VRAMP =12/2.4=5 (i.e 14dB)  
where VRAMP : ramp amplitude of saw-tooth wave  
All brand name or trademark belong to their owner respectively  
www.richtek.com  
20  
DS8800/B-06 March 2007  
RT8800/B  
Layout Guide  
Place the high-power switching components first, and separate them from sensitive nodes.  
1. Most critical path:  
The current sense circuit is the most sensitive part of the converter. The current sense resistors tied to ISP1,2,3 and  
ICOMMONshould be located not more than 0.5 inch from the IC and away from the noise switching nodes. The PCB  
trace of sense nodes should be parallel and as short as possible. R&C filter of choke should place close to PWM and  
the R & C connect directly to the pin of each output choke, use 10 mil differencial pair, and 20 mil gap to other phase  
pair. Less via as possible.  
2. Switching ripple current path:  
a. Input capacitor to high side MOSFET.  
b. Low side MOSFET to output capacitor.  
c. The return path of input and output capacitor.  
d. Separate the power and signalGND.  
e. The switching nodes (the connection node of high/low side MOSFET and inductor) is the most noisy points.Keep  
them away from sensitive small-signal node.  
f . Reduce parasitic R, L by minimum length, enough copper thickness and avoiding of via.  
3. MOSFET driver should be closed to MOSFET.  
L1  
SW1  
V
V
OUT  
IN  
R
IN  
C
OUT  
R
CIN  
L
V
L2  
SW2  
Figure 22. Power Stage Ripple Current Path  
All brand name or trademark belong to their owner respectively  
DS8800/B-06 March 2007  
www.richtek.com  
21  
RT8800/B  
Next to IC  
0.1uF  
+12V or +5V  
+12V  
VCC  
IN  
PWM  
RT  
+5V  
VCC  
IN  
C
BP  
C
BOOT  
BST  
DRVH  
SW  
Next to IC  
COMP  
GND  
L
O1  
VCORE  
C
C
RT8800/B  
C
R
OUT  
ICOM  
C
RT9603  
DRVL  
IN  
R
C
ICOMMON  
Locate next  
to FB Pin  
FB  
PI  
GND  
R
FB  
R
CSPx  
Locate near MOSFETs  
DRD  
GND  
Figure 23. Layout Consideration  
Figure 24  
All brand name or trademark belong to their owner respectively  
www.richtek.com  
22  
DS8800/B-06 March 2007  
RT8800/B  
Figure 25  
Figure 26  
All brand name or trademark belong to their owner respectively  
DS8800/B-06 March 2007  
www.richtek.com  
23  
RT8800/B  
Figure 27  
All brand name or trademark belong to their owner respectively  
www.richtek.com  
24  
DS8800/B-06 March 2007  
RT8800/B  
Outline Dimension  
SEE DETAIL A  
D
D2  
L
1
E
E2  
1
2
1
2
e
b
DETAILA  
A
A3  
Pin #1 ID and Tie Bar Mark Options  
A1  
Note : The configuration of the Pin #1 identifier is optional,  
but must be located within the zone indicated.  
Dimensions In Millimeters  
Dimensions In Inches  
Symbol  
Min  
Max  
Min  
Max  
A
A1  
A3  
b
0.800  
0.000  
0.175  
0.180  
2.950  
1.300  
2.950  
1.300  
1.000  
0.050  
0.250  
0.300  
3.050  
1.750  
3.050  
1.750  
0.031  
0.000  
0.007  
0.007  
0.116  
0.051  
0.116  
0.051  
0.039  
0.002  
0.010  
0.012  
0.120  
0.069  
0.120  
0.069  
D
D2  
E
E2  
e
0.500  
0.020  
L
0.350  
0.450  
0.014  
0.018  
V-Type 16L QFN 3x3 Package  
All brand name or trademark belong to their owner respectively  
DS8800/B-06 March 2007  
www.richtek.com  
25  
RT8800/B  
H
A
M
J
B
F
C
I
D
Dimensions In Millimeters  
Dimensions In Inches  
Symbol  
Min  
Max  
10.008  
3.988  
1.753  
0.508  
1.346  
0.254  
0.254  
6.198  
1.270  
Min  
Max  
A
B
C
D
F
H
I
9.804  
3.810  
1.346  
0.330  
1.194  
0.178  
0.102  
5.791  
0.406  
0.386  
0.150  
0.053  
0.013  
0.047  
0.007  
0.004  
0.228  
0.016  
0.394  
0.157  
0.069  
0.020  
0.053  
0.010  
0.010  
0.244  
0.050  
J
M
16Lead SOP Plastic Package  
Richtek Technology Corporation  
Headquarter  
Richtek Technology Corporation  
Taipei Office (Marketing)  
5F, No. 20, Taiyuen Street, Chupei City  
Hsinchu, Taiwan, R.O.C.  
8F, No. 137, Lane 235, Paochiao Road, Hsintien City  
Taipei County, Taiwan, R.O.C.  
Tel: (8863)5526789 Fax: (8863)5526611  
Tel: (8862)89191466 Fax: (8862)89191465  
Email: marketing@richtek.com  
All brand name or trademark belong to their owner respectively  
www.richtek.com  
26  
DS8800/B-06 March 2007  

相关型号:

RT8800_11

General Purpose 2/3-Phase PWM Controller for High-Density Power Supply
RICHTEK

RT8801

Multi-Phase PWM Controller for CPU Core Power Supply with Serial Programming Interface
RICHTEK

RT8801B

Multi-Phase PWM Controller for K8 CPU Core Power Supply with Serial Programming Interface
RICHTEK

RT8801BGQV

Multi-Phase PWM Controller for K8 CPU Core Power Supply with Serial Programming Interface
RICHTEK

RT8801BPQV

Multi-Phase PWM Controller for K8 CPU Core Power Supply with Serial Programming Interface
RICHTEK

RT8801GQV

Multi-Phase PWM Controller for CPU Core Power Supply with Serial Programming Interface
RICHTEK

RT8801PQV

Multi-Phase PWM Controller for CPU Core Power Supply with Serial Programming Interface
RICHTEK

RT8802A

2/3/4/5-Phase PWM Controller for High-Density Power Supply
RICHTEK

RT8802AGQV

2/3/4/5-Phase PWM Controller for High-Density Power Supply
RICHTEK

RT8802APQV

2/3/4/5-Phase PWM Controller for High-Density Power Supply
RICHTEK

RT8802A_12

2/3/4/5-Phase PWM Controller for High-Density Power Supply
RICHTEK

RT8803A

2/3-Phase PWM Controller for High-Density Power Supply
RICHTEK