RT8801BPQV [RICHTEK]

Multi-Phase PWM Controller for K8 CPU Core Power Supply with Serial Programming Interface; 对于K8 CPU内核电源多相PWM控制器,串行编程接口
RT8801BPQV
型号: RT8801BPQV
厂家: RICHTEK TECHNOLOGY CORPORATION    RICHTEK TECHNOLOGY CORPORATION
描述:

Multi-Phase PWM Controller for K8 CPU Core Power Supply with Serial Programming Interface
对于K8 CPU内核电源多相PWM控制器,串行编程接口

多相元件 控制器
文件: 总23页 (文件大小:491K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Preliminary  
RT8801B  
Multi-Phase PWM Controller for K8 CPU Core Power  
Supply with Serial Programming Interface  
General Description  
Features  
z Multi-Phase Power Conversion with Automatic  
The RT8801B is a multi-phase synchronous buck controller  
which is implemented with full control functions for AMD  
K8 compliant CPU. The RT8801B could be operated with  
2, 3 or 4 buck switching stages operating in interleaved  
phase set automatically. The multiphase architecture  
provides high output current while maintaining low power  
dissipation on power devices and low stress on input and  
output capacitors.  
Phase Selection  
z 6-bits AMD K8 DAC Output with Active Droop  
Compensation for Fast Load Transient  
z Smooth VCORE Transition at VID Jump  
z Power Stage Thermal Balance by DCR Current  
Sense  
z Hiccup Mode Over-Current Protection  
z Adjustable Switching Frequency (50kHz to 400kHz  
per Phase)  
RT8801B is one of RichTek CPU core power solutions  
which integrates a specific series programming interface  
for the controller peration configuration. There are several  
registers implemented for the specific parameters  
configuration including VID for core power, and signal for  
load current indication. User can program the configuration  
of the parameters easily via the specific programming  
interface. With the implementation of RT8801B, the part  
provides more flexibility and feature for customers advanced  
segment product design.  
z Under-Voltage Lockout and Soft-Start  
z High Ripple Frequency Times Channel Number  
z 2-Wires Programming Interface  
z Software Programmable VID  
z 32-Lead VQFN Package  
z RoHS Compliant and 100% Lead (Pb)-Free  
Applications  
z AMD K8 compliant Processors Voltage Regulator  
z Low Output Voltage, High power density DC-DC  
Converters  
The RT8801B applies theDCR sensing technology newly  
as well; with such a topology, the RT8801B extracts the  
DCR of output inductor as sense component to deliver a  
more precise load line regulation and better thermal  
balance for next generation processor application. For  
current sense setting, droop tuning, VCORE initial offset  
and over current protection are independent to  
compensation circuit of voltage loop. The feature greatly  
facilitates the flexibility of CPU power supply design and  
tuning. The DAC output of RT8801B supports AMD CPU  
with 6-bit VID input, precise initial value & smooth VCORE  
transient at VID jump. The IC monitors the VCORE voltage  
for over-voltage protection. Soft-start, over-current  
protection and programmable under-voltage lockout are  
also provided to assure the safety of microprocessor and  
power system. The RT8801B comes to the package of  
VQFN-32L 5x5.  
z Voltage Regulator Modules  
Ordering Information  
RT8801B  
Package Type  
QV : VQFN-32L 5x5 (V-Type)  
Operating Temperature Range  
P : Pb Free with Commercial Standard  
G : Green (Halogen Free with Commer-  
cial Standard)  
Note :  
Richtek Pb-free and Green products are :  
`RoHS compliant and compatible with the current require-  
ments of IPC/JEDEC J-STD-020.  
`Suitable for use in SnPb or Pb-free soldering processes.  
`100% matte tin (Sn) plating.  
All brandname or trademark belong to their owner respectively  
DS8801B-04 August 2007  
www.richtek.com  
1
Preliminary  
RT8801B  
Pin Configurations  
(TOP VIEW)  
32 31 30 29 28 27 26 25  
24  
23  
22  
21  
20  
19  
18  
17  
SLOT_OCC  
DATA  
1
2
3
4
5
6
7
8
PWM3  
PWM2  
PWM1  
CSP1  
CSP2  
CSP3  
CSP4  
ADJ  
CLK  
RST  
AD_SEL  
GND  
GND  
IC_OUT  
FB  
33  
9
10 11 12 13 14 15 16  
VQFN-32L 5x5  
Registers  
0x00 Hi-I setting registers; Default 0x00  
Bit4-0 :  
Bit4 Bit3 Bit2 Bit1 Bit0 VID Offset (mV)  
Bit4 Bit3 Bit2 Bit1 Bit0 VID Offset (mV)  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
400  
425  
450  
475  
500  
525  
550  
575  
600  
625  
650  
675  
700  
725  
750  
800  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
25  
50  
75  
100  
125  
150  
175  
200  
225  
250  
275  
300  
325  
350  
375  
All brandname or trademark belong to their owner respectively  
www.richtek.com  
2
DS8801B-04 August 2007  
Preliminary  
RT8801B  
0x01 Core Current. Default 0x00 (read only). The core current full scale is over current trigger point.  
Bit6-0 : Show core voltage current.  
0x03 MISC. Default 0x04.  
Bit2 : Slot_OCC Detection. This bit be written clear and only can be written 0.  
0 : Normal 1 : Slot_OCC ever be pulled high  
Bit1 : The reset pin ever be pull low when bit0 = 1 and only can be written 0.  
0 : Never issue reset 1 : Ever issue reset  
Bit0 : Reset control. When this bit be write 1, the WatchingDog timer (Reset pin) will repeat counter 1400ms then pull  
low 200ms.Reset pin be pull low, if this bit = 1 will reset all registers to default exception MISC(Index 0x03).  
0 : Disable 1 : Enable  
Note : If SLOT_OCC pin = 1 reset all registers value to default.  
RST enable  
0x03 bit 0  
T
delay  
7 x T  
delay  
WD Timer  
RST  
Product information registers (Read Only)  
0x13 Revision_ID  
0x00  
All brandname or trademark belong to their owner respectively  
DS8801B-04 August 2007  
www.richtek.com  
3
Preliminary  
RT8801B  
Typical Application Circuit  
CSN  
RT  
PWM4  
VDD  
VID4  
VID3  
VID2  
VID1  
VID0  
VID5  
VID4  
VID3  
VID2  
VID1  
PGOOD  
SS  
DVD  
VOSS  
VID0  
VID5  
SGND  
COMP  
All brandname or trademark belong to their owner respectively  
www.richtek.com  
4
DS8801B-04 August 2007  
Preliminary  
RT8801B  
Functional Pin Description  
SLOT_OCC (Pin 1)  
pin; the internal trip threshold = 0.9V at VDVD rising.  
CPU socket occupied; the signal is defined to indicate if  
the CPU has been changed/ removed and it will reset all  
chip. There is one register implemented for the status  
indication. The register will be reset when the VDD power  
removed or CPU changed/removed. The pin is  
implemented as an input, TTL level, and active-low signal.  
SS (Pin 13)  
The pin is defined to set soft-start ramp rate; a capacitor  
is attached to set the start time interval. Pull this pin lower  
than 1.0V (ramp valley of saw-tooth wave in pulse width  
modulator) will shut the converter down.  
PGOOD (Pin 14)  
DATA (Pin 2), CLK (Pin 3)  
PowerGood Indication. PGOODis an open drain output.  
PGOODwill go high impedance when SS voltage greater  
than 3.7V and no fault occurs.  
2-wires programming interface.  
RST (Pin 4)  
This pin be pull low (the Watching Dog = Low), it will  
reset some register, when 0x03 bit 0 be setting.  
RT (Pin 15)  
Default operation switching frequency setting. A resistor  
is attached to set the default operation frequency.  
AD_SEL (Pin 5)  
The pin select series bus address. Pin =1,Address = 0x5E  
& Pin = 0, Address = 0x5C.  
CSN (Pin 16)  
The pin is defined to sense load current of CPU. The pin  
should be connected to the output node of choke.  
GND (Pin 6)  
Chip power ground.  
ADJ (Pin 17)  
Pin for active droop adjustment. An external resistor is  
attached to GND for load droop setting.  
IC_OUT (Pin 7)  
The pin is defined as a reference current output.Acapacitor  
is attached to set the default Watching Dog low pluse  
time. Write the index 0x03 bit0 = 1 delay 7 times Tdelay  
time then issue Tdelay low pluse,  
CSP1 (Pin 21), CSP2 (Pin 20), CSP3 (Pin 19),  
CSP4 (Pin 18)  
Current sense inputs from the individual converter  
channels.  
COUT  
ICOUT  
where Tdelay  
=
× VCOUT  
FB (Pin 8)  
PWM1 (Pin 22), PWM2 (Pin 23), PWM3 (Pin 24),  
PWM4 (Pin 25)  
The pin is defined as an inverting input of internal error  
amplifier.  
PWM outputs for each phase switching drive.  
COMP (Pin 9)  
VDD (Pin 26)  
The pin is defined as an output of the error amplifier and an  
input of the PWM comparator.  
Chip powers supply. Connect this pin to a 5VSB or VCC5  
supply.  
SGND (Pin 10)  
VID4 (Pin 27), VID3 (Pin 28), VID2 (Pin 29),  
VID1 (Pin 30), VID0 (Pin 31), VID5 (Pin 32)  
Difference ground sense of VCORE  
.
DAC voltage identification. The pins are internally pulled  
VOSS (Pin 11)  
to 1.2V (pull high 50μA) if left open.  
VCORE initial value offset. Connect this pin to GND with a  
resistor to set the offset value.  
GND (Exposed Pad (33)]  
The exposed pad must be soldered to a large PCB and  
connected to GND for maximum power dissipation.  
DVD (Pin 12)  
Hardware adjustable system power UVLO detection; input  
All brandname or trademark belong to their owner respectively  
DS8801B-04 August 2007  
www.richtek.com  
5
Preliminary  
RT8801B  
Function Block Diagram  
All brandname or trademark belong to their owner respectively  
www.richtek.com  
6
DS8801B-04 August 2007  
Preliminary  
RT8801B  
Table 1. Output Voltage Program  
Pin Name  
Nominal Output Voltage DACOUT  
VID5  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
VID4  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
VID3  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
VID2  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
VID1  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
VID0  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1.5500  
1.5250  
1.5000  
1.4750  
1.4500  
1.4250  
1.4000  
1.3750  
1.3500  
1.3250  
1.3000  
1.2750  
1.2500  
1.2250  
1.2000  
1.1750  
1.1500  
1.1250  
1.1000  
1.075  
1.050  
1.025  
1.0000  
0.975  
0.950  
0.925  
0.900  
0.875  
0.850  
0.825  
0.800  
0.775  
0.7625  
0.7500  
To be continued  
All brandname or trademark belong to their owner respectively  
DS8801B-04 August 2007  
www.richtek.com  
7
Preliminary  
RT8801B  
Table 1. Output Voltage Program  
Pin Name  
Nominal Output Voltage DACOUT  
VID5  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
VID4  
VID3  
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
VID2  
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
VID1  
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
VID0  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0.7375  
0.7250  
0.7125  
0.7000  
0.6875  
0.6750  
0.6625  
0.6500  
0.6375  
0.6250  
0.6125  
0.6000  
0.5875  
0.5750  
0.5625  
0.5500  
0.5375  
0.5250  
0.5125  
0.5000  
0.4875  
0.4750  
0.4625  
0.4500  
0.4375  
0.4250  
0.4125  
0.4000  
0.3875  
0.3750  
Note: (1) 0 : Connected to GND  
(2) 1 : Open  
All brandname or trademark belong to their owner respectively  
www.richtek.com  
8
DS8801B-04 August 2007  
Preliminary  
Absolute Maximum Ratings (Note 1)  
RT8801B  
z Supply Voltage, VDD --------------------------------------------------------------------------------------------- 7V  
z Input, Output or I/O Voltage ------------------------------------------------------------------------------------ GND-0.3V to VDD+ 0.3V  
z PowerDissipation, PD @ TA = 25°C  
VQFN-32L5x5 ---------------------------------------------------------------------------------------------------- 2.78W  
z Package Thermal Resistance (Note 4)  
VQFN-32L 5x5, θJA ----------------------------------------------------------------------------------------------- 36°C/W  
z Junction Temperature -------------------------------------------------------------------------------------------- 150°C  
z Lead Temperature (Soldering, 10 sec.)---------------------------------------------------------------------- 260°C  
z Storage Temperature Range ----------------------------------------------------------------------------------- 65°C to 150°C  
z ESD Susceptibility (Note 2)  
HBM (Human Body Mode) ------------------------------------------------------------------------------------- 2kV  
MM (Machine Mode) --------------------------------------------------------------------------------------------- 200V  
Recommended Operating Conditions (Note 3)  
z Supply Voltage, VDD --------------------------------------------------------------------------------------------- 5V 10%  
z Ambient Temperature Range----------------------------------------------------------------------------------- 0°C to 70°C  
z Junction Temperature Range----------------------------------------------------------------------------------- 0°C to 125°C  
Electrical Characteristics  
(VDD = 5V, TA = 25°C, unless otherwise specified)  
Parameter  
VDD Supply Current  
Symbol  
Test Conditions  
Min  
Typ  
Max Units  
Nominal Supply Current  
Power-On Reset  
POR Threshold  
Hysteresis  
PWM 1,2,3,4 Open  
--  
12  
16  
mA  
I
DD  
4.0  
0.2  
0.8  
--  
4.2  
0.5  
0.9  
70  
4.5  
--  
V
V
V
V
V
V
V
DD  
Rising  
DDRTH  
DDHYS  
DVDTP  
DVDHYS  
Trip (Low to High)  
Hysteresis  
Enable  
1.0  
--  
V
V
DVD  
Threshold  
mV  
Oscillator  
Free Running Frequency  
Frequency Adjustable Range  
Ramp Amplitude  
250  
50  
--  
300  
--  
350  
400  
--  
kHz  
kHz  
V
f
R
R
= 22.5kΩ  
OSC  
RT  
RT  
f
OSC_ADJ  
1.9  
1.0  
66  
ΔV  
= 22.5kΩ  
OSC  
Ramp Valley  
0.7  
62  
1.7  
--  
V
V
RV  
Maximum On-Time of Each Channel  
RT Pin Voltage  
75  
1.9  
%
1.8  
V
V
R
= 22.5kΩ  
1V  
RT  
RT  
Reference and DAC  
--  
--  
--  
--  
+1  
+10  
0.8  
--  
%
mV  
V
1  
10  
--  
V
V
DAC  
DACOUT Voltage Accuracy  
ΔV  
DAC  
< 1V  
DAC  
DAC (VID0-VID5) Input Low  
DAC (VID0-VID5) Input High  
V
V
ILDAC  
V
1.4  
IHDAC  
To be continued  
All brandname or trademark belong to their owner respectively  
DS8801B-04 August 2007  
www.richtek.com  
9
Preliminary  
RT8801B  
Parameter  
Symbol  
Test Conditions  
Min  
3  
Typ  
--  
Max  
3
Units  
%
Offset Voltage  
VOSS Pin Voltage  
Error Amplifier  
1.6  
1.7  
1.8  
V
VVOSS  
RVOSS = 100kΩ  
DC Gain  
--  
--  
--  
85  
10  
3
--  
--  
--  
dB  
Gain-Bandwidth Product  
Slew Rate  
GBW  
SR  
MHz  
V/μs  
COMP = 10pF  
Current Sense GM Amplifier  
CSN Full Scale Source Current  
CSN Current for OCP  
Protection  
150  
--  
--  
--  
--  
μA  
μA  
IISPFSS  
150  
SS Current  
8
13  
18  
μA  
ISS  
VSS = 1V  
VSEN  
Over-Voltage Trip  
130  
140  
150  
%
ΔOVT  
VDACOUT + VOFFSET  
Delay Time  
--  
--  
200  
--  
--  
ms  
ms  
WD Timer, TDL (CL = 100nF)  
WD Timer, TDH (CL = 100nF)  
Power Good  
1400  
Output Low Voltage  
--  
--  
0.2  
V
VPGOODL IPGOOD = 4mA  
Note 1. Stresses listed as the above "Absolute Maximum Ratings" may cause permanent damage to the device. These are for  
stress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the  
operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended  
periods may remain possibility to affect device reliability.  
Note 2. Devices are ESD sensitive. Handling precaution recommended.  
Note 3. The device is not guaranteed to function outside its operating conditions.  
Note 4. θJA is measured in the natural convection at TA = 25°C on a low effective thermal conductivity test board of  
JEDEC 51-3 thermal measurement standard.  
All brandname or trademark belong to their owner respectively  
www.richtek.com  
10  
DS8801B-04 August 2007  
Preliminary  
Typical Operating Characteristics  
RT8801B  
Linearity of each PWM  
Adjustable Frequency  
3
2.8  
2.6  
2.4  
2.2  
2
450  
400  
350  
300  
250  
200  
150  
100  
50  
PWM2  
PWM3  
PWM1  
PWM4  
1.8  
1.6  
1.4  
1.2  
1
fOSC = 200k  
0
0
500  
1000 1500 2000 2500 3000 3500  
Pulse Width (ns)  
0
20  
40  
60  
80  
100  
120  
R
RT (kΩ)  
Load Transient Response  
Load Transient Response  
VCORE  
VCORE  
Phase1  
Phase2  
Phase  
CH1: (500mV/Div)  
IOUT  
VADJ  
CH2: (10V/Div)  
CH3: (50A/Div)  
CH4: (100mV/Div)  
Phase3  
CH1: (500mV/Div), CH2: (10V/Div)  
CH3: (10V/Div), CH4: (10V/Div)  
Time (5μs/Div)  
Time (5μs/Div)  
Relationship Between Inductor  
Current and VADJ  
Power-Off @ IOUT = 60A  
CH1:(5V/Div)  
CH2:(5V/Div)  
PWM  
PWM  
CH1:(5V/Div)  
CH2:(20V/Div)  
VSS  
UGATE  
CH3:(10V/Div)  
CH4:(1V/Div)  
VADJ  
LGATE  
VCOMP  
CH3:(50mV/Div)  
CH4:(20A/Div)  
IL  
Time (10μs/Div)  
Time (25ms/Div)  
All brandname or trademark belong to their owner respectively  
DS8801B-04 August 2007  
www.richtek.com  
11  
Preliminary  
RT8801B  
Power-On @ IOUT = 60A  
CH1:(5V/Div)  
CH2:(5V/Div)  
VSS  
PWM  
UGATE  
LGATE  
CH3:(20V/Div)  
CH4:(10V/Div)  
Time (10ms/Div)  
All brandname or trademark belong to their owner respectively  
www.richtek.com  
12  
DS8801B-04 August 2007  
Preliminary  
RT8801B  
Application Information  
voltage positioningcan reduce the output voltage ripple  
at load transient and the LC filter size.  
RT8801B is a multi-phaseDC/DC controller that precisely  
regulates CPU core voltage and balances the current of  
different power channels. The converter consisting of  
RT8801B and its companion MOSFET driver RT9607/  
RT9607A provides high quality CPUpower and all  
protection functions to meet the requirement of modern  
VRM.  
Fault Detection  
The chip detects FB for over voltage. The hiccup mode”  
operation of over current protection is adopted to reduce  
the short circuit current. The inrush current at the start up  
is suppressed by the soft start circuit through clamping  
the pulse width and output voltage.  
Voltage Control  
RT8801B senses the CPU VCORE by SGND pin to sense  
the return of CPU to minimize the voltage drop on PCB  
trace at heavy load. OVP is sensed at FB pin. The internal  
high accuracy VIDDAC provides the reference voltage for  
AMD K8 compliance. Control loop consists of error  
amplifier, multi-phase pulse width modulator, driver and  
power components. As conventional voltage mode PWM  
controller, the output voltage is locked at the VREF of error  
amplifier and the error signal is used as the control signal  
of pulse width modulator. The PWM signals of different  
channels are generated by comparison of EA output and  
split-phase sawtooth wave. Power stage transforms VIN  
to output by PWM signal on-time ratio.  
Phase Setting and Converter Start Up  
RT8801B interfaces with companion MOSFET drivers (like  
RT9619, RT9607 series) for correct converter initialization.  
The tri-state PWM output (high, low and high impedance)  
senses its interface voltage when IC POR acts (both VDD  
andDVDtrip). The channel is enabled if the pin voltage is  
1.2V less than VDD. Tie the PWM to VDD and the  
corresponding current sense pins to GND or left float if  
the channel is unused. For example, for 3-Channel  
application, connect PWM4 high.  
Current Sensing Setting  
RT8801B senses the current flowing through inductor via  
itsDCR for channel current balance and droop tuning. The  
differential sensing GM amplifier converts the voltage on  
the sense component (can be a sense resistor or the  
DCR of the inductor) to current signal into internal circuit  
(see Figure 1).  
Current Balance  
RT8801B senses the inductor current via inductor'sDCR  
for channel current balance and droop tuning. The  
differential sensing GM amplifier converts the voltage on  
the sense component (can be a sense resistor or the  
DCR of the inductor) to current signal into internal balance  
circuit.  
VC  
L
= R× C VC = DCR×IL IX  
=
DCR  
RCSN  
The current balance circuit sums and averages the current  
signals and then produces the balancing signals injected  
to pulse width modulator. If the current of some power  
channel is larger than average, the balancing signal  
reduces that channels pulse width to keep current balance.  
The use of singleGM amplifier via time sharing technique  
to sense all inductor currents can reduce the offset errors  
and linearity variation between GMs. Thus it can greatly  
improve signal processing especially when dealing with  
such small signal as voltage drop across DCR.  
L
DCR  
+ V  
-
C
R
C
+
-
R
CSN  
GMx  
I
x
Figure 1. Current Sense Circuit  
Figure 2 is the test circuit for GM. We apply test signal at  
GM inputs and observe its signal process output at ADJ  
pin. Figure 3 shows the variation of signal processing of  
all channels. We observe zero offsets and good linearity  
between phases.  
Load Droop  
The sensed power channel current signals regulate the  
reference of DAC to form an output voltage droop  
proportional to the load current. The droop or so call active  
All brandname or trademark belong to their owner respectively  
DS8801B-04 August 2007  
www.richtek.com  
13  
Preliminary  
RT8801B  
L
DCR  
Over Current Protection  
RT8801B uses an external resistor RCSN to set a  
programmable over current trip point. OCP comparator  
compares each inductor current with this reference current.  
RT8801B uses hiccup mode to eliminate fault detection  
of OCP or reduce output current when output is shorted  
to ground.  
ESR  
R
V
X
V
V
CSP  
+
CSN  
-
CSN  
GMx  
1k  
I
OCP Comparator  
x
I
+
-
X
Figure 2. The Test Circuit of GM  
150uA  
Figure 5. Over Current Comparator  
GM  
300  
250  
200  
150  
100  
50  
Over Current Protection  
PWM  
CH1:(5V/Div)  
CH2:(2V/Div)  
CH3:(1V/Div)  
VSS  
0
VCORE  
0
20  
40  
60  
80  
100  
120  
140  
VX (mV)  
Figure 3. The Linearity of GMx  
Time (25ms/Div)  
Figure 6. Over Current Protection at steady state  
Figure 4 shows the time sharing technique ofGM amplifier.  
We apply test signal at phase 4 and observe the waveforms  
at both pins of GM amplifier. The waveforms show time  
sharing mechanism and the perfomance of GM to hold  
both input pins equal when the shared time is on.  
Current Ratio Setting  
Time Sharing of GM  
CH1:(2V/Div)  
CH2:(50mV/Div)  
CH3:(50mV/Div)  
PWM3  
Figure 7. Application circuit for current ratio setting  
VCSP4  
For some case with preferable current ratio instead of  
current balance, the corresponding technique is provided.  
Due to different physical environment of each channel, it  
is necessary to slightly adjust current loading between  
channels. Figure 7 shows the application circuit ofGM for  
current ratio requirement. Applying KVL along L+DCR  
branch and R1+C//R2 branch:  
VCSP4  
and  
VCSN  
VCSN  
Time (1μs/Div)  
Figure 4  
All brandname or trademark belong to their owner respectively  
www.richtek.com  
14  
DS8801B-04 August 2007  
Preliminary  
RT8801B  
Current Ratio Function  
dIL  
dt  
VC  
R2  
dVC  
dt  
35  
L
+DCR×IL = R1(  
dVC R1 +R2  
+ C  
)+ VC  
IL4  
30  
25  
20  
15  
10  
5
= R1C  
+
VC  
dt  
R2  
R2  
R1 +R2  
For VC  
=
DCR×IL  
IL3  
IL2  
IL1  
Look for its corresponding conditions:  
dI  
L
dI  
L
L
+DCR×I = (R1//R2)×C×DCR×  
+DCR×I  
L
L
dt  
dt  
L
Let  
= (R1//R2)×C  
DCR  
0
0
15  
30  
45  
60  
75  
90  
L
Thus if  
Then  
= (R1//R2)×C  
IOUT (A)  
DCR  
R2  
Figure 10  
Current Balance Function  
VC  
=
×DCR×IL  
R1+R2  
25  
20  
15  
10  
5
With internal current balance function, this phase would  
share (R1+R2)/R2 times current than other phases.  
Figure 8 & 9 show different settings for the power stages.  
Figure 10 shows the performance of current ratio compared  
with conventional current balance function in Figure 11.  
IL1  
IL4  
IL2  
IL3  
0
-5  
0
20  
40  
60  
80  
100  
IOUT (A)  
Figure 8. GM4 Setting for current ratio function  
Figure 11  
L
DCR  
C
ESR  
V
V
CSP  
CSN  
R
+
-
Figure 9. GM1~3 Setting for current ratio function  
CSN1  
GMx  
Ix  
R
CSN2  
Figure 12. Application circuit of GM  
All brandname or trademark belong to their owner respectively  
DS8801B-04 August 2007  
www.richtek.com  
15  
Preliminary  
RT8801B  
For load line design, with application circuit in Figure 12,  
it can eliminate the dead zone of load line at light loads.  
VID on the Fly  
With external pull up resistors tied to VID pins, RT8801B  
converters different VID codes from CPU into output  
voltage. Figure 14 and Figure 15 show the waveforms of  
VID on the fly function.  
VCSP = VOUT +IL x DCR  
if GM holds input voltages equal, then  
VCSP = VCSN  
VCSN IL ×DCR  
VID on the Fly (Falling)  
IX  
=
=
+
RCSN2  
RCSN1  
VOUT + IL ×DCR IL ×DCR  
PWM  
VCORE  
+
RCSN2  
RCSN1  
VFB  
VOUT IL DCR IL DCR  
×
×
=
+
+
RCSN2  
RCSN2  
RCSN1  
CH3:(500mV/Div)  
CH4:(1V/Div)  
CH1:(5V/Div)  
CH2:(500mV/Div)  
For the lack of sinking capability of GM, RCSN2 should be  
small enough to compensate the negative inductor valley  
current especially at light loads.  
VID5  
VDAC = 1.500, IOUT = 5A  
VCSN  
IL ×DCR  
RCSN2  
RCSN1  
Time (25μs/Div)  
Figure 14  
Assume the negative inductor valley current is 5A at no  
load, then for  
VID on the Fly (Rising)  
RCSN1 = 330Ω, RADJ = 160Ω, VOUT = 1.300V  
1.3V  
- 5A ×1mΩ  
330Ω  
PWM  
R
CSN2  
VCORE  
RCSN2 85.8kΩ  
VFB  
Choose RCSN2 = 82kΩ  
CH1:(5V/Div)  
CH2:(500mV/Div)  
CH3:(500mV/Div)  
CH4:(1V/Div)  
Load Line without dead zone at light loads  
1.31  
VID5  
1.3  
VDAC = 1.500, IOUT = 5A  
1.29  
1.28  
1.27  
1.26  
1.25  
1.24  
1.23  
Time (25μs/Div)  
Figure 15  
RCSN2 open  
RCSN2 = 82k  
1/4 I  
VOSS  
RB1  
-
EA  
+
0
5
10  
15  
20  
25  
V
-V  
DAC ADJ  
IOUT (A)  
Figure 13  
Figure 16  
All brandname or trademark belong to their owner respectively  
www.richtek.com  
16  
DS8801B-04 August 2007  
Preliminary  
RT8801B  
Output Voltage Offset Function  
EA Rising Slew Rate  
To meet Intel® requirement of initial offset of load line,  
RT8801B provides programmable initial offset function.  
External resistor RVOSS and voltage source at VOSS pin  
VVOSS  
generate offset current  
.
IVOSS  
=
RVOSS  
VFB  
One quarter of IVOSS flows through RB1 as shown in Figure  
16. Error amplifier would hold the inverting pin equal to  
VDAC - VADJ. Thus output voltage is subtracted from VDAC  
- VADJ for a constant offset voltage.  
RFB1  
4×RVOSS  
CH1:(1V/Div)  
CH2:(2V/Div)  
VCOMP  
VCORE = VDAC - VADJ  
-
A positive output voltage offset is possible by connecting  
RVOSS to VDD instead of to GND. Please note that when  
RVOSS is connected to VDD, VVOSS is VDD 2V typically  
and half of IVOSS flows through RFB1. VCORE is rewritten as:  
Time (250ns/Div)  
Figure 18. EA Falling Transient with 10pF Loading;  
Slew Rate = 8V/us  
RFB1  
RVOSS  
VCORE = VDAC - VADJ  
+
4.7k  
4.7k  
B
-
A
Error Amplifier Characteristic  
EA  
+
For fast response of converter to meet stringent output  
current transient response, RT8801B provides large slew  
rate capability and high gain-bandwidth performance.  
V
REF  
Figure 19. Gain-Bandwidth Measurement by signalA  
divided by signal B  
EA Falling Slew Rate  
PGOOD Function  
To indicate the condition of multiphase converter, RT8801  
provides PGOODsignal through an open drain connection.  
As shown in Figure 20. PGOOD pin is externally pulled  
high when SS pin voltage higher than 3.7V and no fault  
occurs.  
VFB  
VDD  
CH1:(1V/Div)  
VCOMP  
CH4:(2V/Div)  
R
PGOOD  
Time (250ns/Div)  
V
PGOOD  
Figure 17. EA Rising Transient with 10pF Loading; Slew  
Rate = 10V/us  
SS > 3.7V  
Figure 20  
All brandname or trademark belong to their owner respectively  
DS8801B-04 August 2007  
www.richtek.com  
17  
Preliminary  
RT8801B  
where VRAMP : ramp amplitude of saw-tooth wave  
LC Filter Pole = 1.45kHz and  
Design Procedure Suggestion  
a.Output filter pole and zero (Inductor, output capacitor  
value & ESR).  
ESR Zero = 3.98kHz  
b.Error amplifier compensation & sawtooth wave amp-  
litude (compensation network).  
b. EA Compensation Network :  
Select R1 = 4.7k, R2 = 15k, C1 = 12nF, C2 = 68pF and  
use the Type 2 compensation scheme shown in  
Figure 21. By calculation, the FZ = 0.88kHz, FP = 322kHz  
and Middle Band Gain is 3.19 (i.e 10.07dB).  
c.Kelvin sense for VCORE  
.
Current Loop Setting  
GM amplifier S/H current (current sense componentDCR,  
CSN pin external resistor value).  
C2 68pF  
VRM Load Line Setting  
C1  
RB2  
a.Droop amplitude (ADJ pin resistor).  
15k  
12nF  
RB1  
4.7k  
-
b.No load offset (RCSN2  
)
EA  
+
c.DAC offset voltage setting (VOSS pin & compensation  
network resistor RB1).  
Figure 21. Type 2 compensation network of EA  
Power Sequence & SS  
The bode plot of EA compensation is shown as Figure 22.  
DVD pin external resistor and SS pin capacitor.  
The bode plot of power stage is shown as Figure 23. The  
total loop gain is in Figure 24.  
PCB Layout  
a.Kelvin sense for current sense GM amplifier input.  
2. Over-Current Protection Setting  
Consider the temperature coefficient of copper  
b.Refer to layout guide for other items.  
3900ppm/°C,  
Voltage Loop Setting  
Design Example  
IL ×DCR  
= 150μA  
RCSN  
40A ×1.39mΩ  
Given:  
RCSN  
=
150μA  
Apply for four phase converter  
RCSN = 370Ω  
VIN = 12V  
VCORE = 1.5V  
ILOAD (MAX) = 100A  
3. Soft-Start Capacitor Selection  
For most application cases, 0.1μF is a good engineering  
value.  
VDROOP = 100mV at full load (1mΩ Load Line)  
OCP trip point set at 40A for each channel (S/H)  
DCR = 1mΩ of inductor at 25°C  
L = 1.5μH  
COUT = 8000μF with 5mΩ equivalent ESR.  
1. Compensation Setting  
a. Modulator Gain, Pole and Zero :  
From the following formula :  
Modulator Gain = VIN/VRAMP = 12/1.9 = 6.3 (i.e 16dB)  
All brandname or trademark belong to their owner respectively  
www.richtek.com  
18  
DS8801B-04 August 2007  
Preliminary  
RT8801B  
0dB  
180°  
Figure 22. EA Frequency Response with closed loop gain set at 0db to observe gain-bandwidth product; -3dB at  
10.86MHz  
0dB  
-180°  
Figure 23. The Frequency Response of the CompensatorNetwork  
All brandname or trademark belong to their owner respectively  
DS8801B-04 August 2007  
www.richtek.com  
19  
Preliminary  
RT8801B  
0dB  
-180°  
Figure 24. The Frequency Response of Power Stage  
0dB  
-180°  
Figure 25. The LoopGain of Converter  
All brandname or trademark belong to their owner respectively  
www.richtek.com  
20  
DS8801B-04 August 2007  
Preliminary  
RT8801B  
Layout Guide  
Place the high-power switching components first, and separate them from sensitive nodes.  
1. Most critical path: the current sense circuit is the most sensitive part of the converter. The current sense  
resistors tied to CSP1,2,3,4 and CSN should be located not more than 0.5 inch from the IC and away from  
the noise switching nodes. The PCB trace of sense nodes should be parallel and as short as possible.  
Kelvin connection of the sense component (additional sense resistor or Inductor DCR) ensures the accurate  
stable current sensing.  
Keep well Kelvin sense to ensure the stable operation!  
2. Switching ripple current path:  
a. Input capacitor to high side MOSFET.  
b. Low side MOSFET to output capacitor.  
c. The return path of input and output capacitor.  
d. Separate the power and signalGND.  
e. The switching nodes (the connection node of high/low side MOSFET and inductor) is the most noisy points.  
Keep them away from sensitive small-signal node.  
f. Reduce parasitic R, L by minimum length, enough copper thickness and avoiding of via.  
3. MOSFET driver should be closed to MOSFET.  
4. The compensation, bypass and other function setting components should be near the IC and away from the noisy  
power path.  
L1  
SW1  
VOUT  
VIN  
RIN  
COUT  
RL  
CIN  
V
L2  
SW2  
Figure 26. Power Stage Ripple Current Path  
All brandname or trademark belong to their owner respectively  
DS8801B-04 August 2007  
www.richtek.com  
21  
Preliminary  
RT8801B  
Next to IC  
C
+12V or +5V  
+12V  
PWM  
+5V  
VDD  
SB  
0.1uF  
VCC BOOT1  
C
C
BP  
RT  
BOOT  
VOSS  
Next to IC  
PVCC  
COMP  
UGATE1  
SGND  
L
O1  
VCORE  
C
PWM1 PHASE1  
RT9607  
RT8801B  
C
OUT  
R
CSN  
C
IN  
R
C
CSN  
LGATE1  
Kelvin  
Sense  
Locate next  
to FB Pin  
FB  
GND  
R
FB  
CSPx  
ADJ  
Locate near MOSFETs  
GND  
For Thermal Couple  
Figure 27. Layout Consideration  
Figure 28  
Figure 30  
Figure 29  
Figure 31  
All brandname or trademark belong to their owner respectively  
www.richtek.com  
22  
DS8801B-04 August 2007  
Preliminary  
RT8801B  
Outline Dimension  
D
D2  
SEE DETAIL A  
L
1
E
E2  
e
b
1
2
1
2
A
A3  
DETAILA  
A1  
Pin #1 ID and Tie Bar Mark Options  
Note : The configuration of the Pin #1 identifier is optional,  
but must be located within the zone indicated.  
Dimensions In Millimeters  
Dimensions In Inches  
Symbol  
Min  
Max  
Min  
Max  
A
A1  
A3  
b
0.800  
0.000  
0.175  
0.180  
4.950  
3.400  
4.950  
3.400  
1.000  
0.050  
0.250  
0.300  
5.050  
3.750  
5.050  
3.750  
0.031  
0.000  
0.007  
0.007  
0.195  
0.134  
0.195  
0.134  
0.039  
0.002  
0.010  
0.012  
0.199  
0.148  
0.199  
0.148  
D
D2  
E
E2  
e
0.500  
0.020  
L
0.350  
0.450  
0.014  
0.018  
V-Type 32L QFN 5x5 Package  
Richtek Technology Corporation  
Headquarter  
Richtek Technology Corporation  
Taipei Office (Marketing)  
5F, No. 20, Taiyuen Street, Chupei City  
Hsinchu, Taiwan, R.O.C.  
8F, No. 137, Lane 235, Paochiao Road, Hsintien City  
Taipei County, Taiwan, R.O.C.  
Tel: (8863)5526789 Fax: (8863)5526611  
Tel: (8862)89191466 Fax: (8862)89191465  
Email: marketing@richtek.com  
DS8801B-04 August 2007  
www.richtek.com  
23  

相关型号:

RT8801GQV

Multi-Phase PWM Controller for CPU Core Power Supply with Serial Programming Interface
RICHTEK

RT8801PQV

Multi-Phase PWM Controller for CPU Core Power Supply with Serial Programming Interface
RICHTEK

RT8802A

2/3/4/5-Phase PWM Controller for High-Density Power Supply
RICHTEK

RT8802AGQV

2/3/4/5-Phase PWM Controller for High-Density Power Supply
RICHTEK

RT8802APQV

2/3/4/5-Phase PWM Controller for High-Density Power Supply
RICHTEK

RT8802A_12

2/3/4/5-Phase PWM Controller for High-Density Power Supply
RICHTEK

RT8803A

2/3-Phase PWM Controller for High-Density Power Supply
RICHTEK

RT8803A_11

2/3-Phase PWM Controller for High-Density Power Supply
RICHTEK

RT8805

Two Phase General Purpose PWM Controller
RICHTEK

RT8805C

Two Phase General Purpose PWM Controller
RICHTEK

RT8805CGQV

Two Phase General Purpose PWM Controller
RICHTEK

RT8805CGQVA

Two Phase General Purpose PWM Controller
RICHTEK