HGTP5N120BND [RENESAS]

21A, 1200V, N-CHANNEL IGBT, TO-220AB;
HGTP5N120BND
型号: HGTP5N120BND
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

21A, 1200V, N-CHANNEL IGBT, TO-220AB

局域网 电动机控制 栅 瞄准线 双极性晶体管
文件: 总7页 (文件大小:88K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HGTG5N120BND, HGTP5N120BND,  
HGT1S5N120BNDS  
Data Sheet  
January 2000  
File Number 4597.2  
21A, 1200V, NPT Series N-Channel IGBTs  
with Anti-Parallel Hyperfast Diodes  
Features  
o
• 21A, 1200V, T = 25 C  
C
The HGTG5N120BN, HGTP5N120BND, and  
• 1200V Switching SOA Capability  
HGT1S5N120BNDS are Non-Punch Through (NPT) IGBT  
designs. They are new members of the MOS gated high  
voltage switching IGBT family. IGBTs combine the best  
features of MOSFETs and bipolar transistors. This device  
has the high input impedance of a MOSFET and the low on-  
state conduction loss of a bipolar transistor. The IGBT used  
is the development type TA49308. The Diode used is the  
development type TA49058 (Part number RHRD6120).  
o
Typical Fall Time. . . . . . . . . . . . . . . . 175ns at T = 150 C  
J
• Short Circuit Rating  
• Low Conduction Loss  
Thermal Impedance SPICE Model  
Temperature Compensating SABER™ Model  
www.intersil.com  
• Related Literature  
The IGBT is ideal for many high voltage switching  
applications operating at moderate frequencies where low  
conduction losses are essential, such as: AC and DC motor  
controls, power supplies and drivers for solenoids, relays  
and contactors.  
- TB334 “Guidelines for Soldering Surface Mount  
Components to PC Boards”  
Packaging  
JEDEC STYLE TO-247  
Formerly Developmental Type TA49306.  
E
C
Ordering Information  
COLLECTOR  
(FLANGE)  
G
PART NUMBER  
HGTG5N120BND  
HGTP5N120BND  
HGT1S5N120BNDS  
PACKAGE  
BRAND  
5N120BND  
TO-247  
TO-220AB  
TO-263AB  
5N120BND  
5N120BND  
NOTE: When ordering, use the entire part number. Add the suffix 9A  
to obtain the TO-263AB variant in Tape and Reel, i.e.,  
HGT1S5N120BNS9A.  
JEDEC TO-220AB (ALTERNATE VERSION)  
E
C
G
Symbol  
C
COLLECTOR  
(FLANGE)  
G
JEDEC TO-263AB  
E
COLLECTOR  
(FLANGE)  
G
E
INTERSIL CORPORATION IGBT PRODUCT IS COVERED BY ONE OR MORE OF THE FOLLOWING U.S. PATENTS  
4,364,073  
4,598,461  
4,682,195  
4,803,533  
4,888,627  
4,417,385  
4,605,948  
4,684,413  
4,809,045  
4,890,143  
4,430,792  
4,620,211  
4,694,313  
4,809,047  
4,901,127  
4,443,931  
4,631,564  
4,717,679  
4,810,665  
4,904,609  
4,466,176  
4,639,754  
4,743,952  
4,823,176  
4,933,740  
4,516,143  
4,639,762  
4,783,690  
4,837,606  
4,963,951  
4,532,534  
4,641,162  
4,794,432  
4,860,080  
4,969,027  
4,587,713  
4,644,637  
4,801,986  
4,883,767  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD Handling Procedures.  
SABER™ is a trademark of Analogy, Inc.  
1
1-888-INTERSIL or 321-724-7143 | Copyright © Intersil Corporation 2000  
HGTG5N120BND, HGTP5N120BND, HGT1S5N120BNDS  
o
Absolute Maximum Ratings T = 25 C, Unless Otherwise Specified  
C
HGTG5N120BND  
HGTP5N120BND  
HGT1S5N120BNDS  
UNITS  
Collector to Emitter Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .BV  
1200  
V
CES  
Collector Current Continuous  
o
At T = 25 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
C
21  
10  
A
A
A
V
V
C25  
o
At T = 110 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
C
C110  
Collector Current Pulsed (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
40  
CM  
GES  
GEM  
Gate to Emitter Voltage Continuous. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V  
±20  
Gate to Emitter Voltage Pulsed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
o
±30  
Switching Safe Operating Area at T = 150 C (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . SSOA  
J
30A at 1200V  
167  
o
Power Dissipation Total at T = 25 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P  
C
W
D
o
o
Power Dissipation Derating T > 25 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
1.33  
W/ C  
C
o
Operating and Storage Junction Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . T , T  
J
-55 to 150  
C
STG  
Maximum Lead Temperature for Soldering  
o
Leads at 0.063in (1.6mm) from case for 10s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T  
300  
260  
8
C
L
o
Package Body for 10s, see Tech Brief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .T  
C
pkg  
Short Circuit Withstand Time (Note 2) at V  
Short Circuit Withstand Time (Note 2) at V  
= 15V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .t  
µs  
µs  
GE  
SC  
SC  
= 12V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .t  
15  
GE  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTES:  
1. Pulse width limited by maximum junction temperature.  
o
2. V  
= 840V, T = 125 C, R = 25Ω.  
J G  
CE(PK)  
o
Electrical Specifications  
T = 25 C, Unless Otherwise Specified  
C
PARAMETER  
SYMBOL  
BV  
TEST CONDITIONS  
= 250µA, V = 0V  
MIN  
TYP  
MAX  
-
UNITS  
V
Collector to Emitter Breakdown Voltage  
Collector to Emitter Leakage Current  
I
1200  
-
-
CES  
C
GE  
o
I
V
= BV  
CES  
T
= 25 C  
-
-
250  
-
µA  
µA  
mA  
V
CES  
CE  
C
C
C
C
C
o
T
T
T
T
= 125 C  
100  
-
o
= 150 C  
-
1.5  
2.7  
4.2  
-
o
Collector to Emitter Saturation Voltage  
V
I
= 5A,  
= 15V  
= 25 C  
-
2.45  
3.7  
6.8  
-
CE(SAT)  
C
V
GE  
o
= 150 C  
-
V
Gate to Emitter Threshold Voltage  
Gate to Emitter Leakage Current  
Switching SOA  
V
I
= 45µA, V  
= V  
GE  
6.0  
-
V
GE(TH)  
C
CE  
I
V
= ±20V  
±250  
-
nA  
A
GES  
GE  
o
SSOA  
T = 150 C, R = 25Ω, V  
= 15V,  
30  
-
J
G
GE  
= 1200V  
L = 5mH, V  
CE(PK)  
Gate to Emitter Plateau Voltage  
On-State Gate Charge  
V
I
I
= 5A, V  
= 5A,  
= 0.5 BV  
CE CES  
-
-
-
-
-
-
-
-
-
10.5  
53  
-
V
GEP  
C
Q
V
= 15V  
65  
nC  
nC  
ns  
ns  
ns  
ns  
µJ  
µJ  
G(ON)  
C
GE  
V
= 0.5 BV  
CES  
CE  
V
= 20V  
o
60  
72  
GE  
Current Turn-On Delay Time  
Current Rise Time  
t
IGBT and Diode at T = 25 C,  
22  
25  
d(ON)I  
J
I
= 5A,  
CE  
t
15  
20  
rI  
V
V
R
= 0.8 BV  
= 15V,  
,
CES  
CE  
Current Turn-Off Delay Time  
Current Fall Time  
t
GE  
160  
130  
450  
390  
180  
160  
600  
450  
d(OFF)I  
= 25,  
G
t
fI  
L = 5mH,  
Test Circuit (Figure 20)  
Turn-On Energy  
E
ON  
Turn-Off Energy (Note 3)  
E
OFF  
2
HGTG5N120BND, HGTP5N120BND, HGT1S5N120BNDS  
o
Electrical Specifications  
PARAMETER  
T
= 25 C, Unless Otherwise Specified (Continued)  
C
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
20  
MAX  
25  
UNITS  
ns  
o
Current Turn-On Delay Time  
Current Rise Time  
t
IGBT and Diode at T = 150 C,  
-
-
-
-
-
-
-
-
-
-
-
d(ON)I  
J
I
= 5A,  
CE  
t
15  
20  
ns  
rI  
d(OFF)I  
V
= 0.8 BV  
= 15V,  
,
CES  
CE  
V
Current Turn-Off Delay Time  
Current Fall Time  
t
GE  
182  
175  
1000  
560  
2.70  
50  
280  
200  
1300  
800  
3.50  
60  
ns  
R
= 25,  
G
t
ns  
fI  
L = 5mH,  
Test Circuit (Figure 20)  
Turn-On Energy  
E
µJ  
ON  
Turn-Off Energy (Note 3)  
Diode Forward Voltage  
Diode Reverse Recovery Time  
E
µJ  
OFF  
V
I
I
I
= 10A  
V
EC  
EC  
EC  
EC  
t
= 7A, dl /dt = 200A/µs  
EC  
ns  
rr  
= 1A, dl /dt = 200A/µs  
EC  
30  
40  
ns  
o
Thermal Resistance Junction To Case  
NOTE:  
R
IGBT  
-
0.75  
1.75  
C/W  
θJC  
o
Diode  
-
C/W  
3. Turn-Off Energy Loss (E  
) is defined as the integral of the instantaneous power loss starting at the trailing edge of the input pulse and  
OFF  
ending at the point where the collector current equals zero (I  
= 0A). All devices were tested per JEDEC Standard No. 24-1 Method for  
CE  
Measurement of Power Device Turn-Off Switching Loss. This test method produces the true total Turn-Off Energy Loss.  
Typical Performance Curves Unless Otherwise Specified  
25  
35  
o
V
= 15V  
T
= 150 C, R = 25, V  
= 15V, L = 5mH  
GE  
J
G
GE  
30  
25  
20  
15  
10  
5
20  
15  
10  
5
0
0
25  
50  
75  
100  
125  
150  
0
200  
400  
600  
800  
1000  
1200  
1400  
o
T
, CASE TEMPERATURE ( C)  
V
CE  
, COLLECTOR TO EMITTER VOLTAGE (V)  
C
FIGURE 1. DC COLLECTOR CURRENT vs CASE  
TEMPERATURE  
FIGURE 2. MINIMUM SWITCHING SAFE OPERATING AREA  
3
HGTG5N120BND, HGTP5N120BND, HGT1S5N120BNDS  
Typical Performance Curves Unless Otherwise Specified (Continued)  
40  
35  
30  
25  
20  
15  
10  
80  
70  
60  
50  
40  
30  
20  
o
o
V
= 840V, R = 25, T = 125 C  
G J  
CE  
T
= 150 C, R = 25, L = 5mH,  
V
G
= 960V  
J
CE  
200  
100  
50  
o
T
= 75 C, V = 15V  
T
GE  
V
C
C
GE  
IDEAL DIODE  
I
o
SC  
15V  
12V  
75 C  
o
75 C  
f
f
P
= 0.05 / (t  
d(OFF)I  
+ t )  
d(ON)I  
MAX1  
t
SC  
= (P - P ) / (E  
+ E  
)
MAX2  
D
C
ON  
OFF  
= CONDUCTION DISSIPATION  
(DUTY FACTOR = 50%)  
T
V
15V  
12V  
C
C
GE  
10  
o
110 C  
110 C  
o
o
R
= 0.75 C/W, SEE NOTES  
ØJC  
10  
11  
12  
13  
14  
15  
2
4
6
8
10  
V
, GATE TO EMITTER VOLTAGE (V)  
GE  
I
, COLLECTOR TO EMITTER CURRENT (A)  
CE  
FIGURE 3. OPERATING FREQUENCY vs COLLECTOR TO  
EMITTER CURRENT  
FIGURE 4. SHORT CIRCUIT WITHSTAND TIME  
30  
30  
25  
20  
15  
10  
5
DUTY CYCLE <0.5%, V  
GE  
PULSE DURATION = 250µs  
= 12V  
25  
20  
15  
10  
5
o
= 25 C  
o
o
= -55 C  
o
T
T
= 150 C  
T
C
T
= -55 C  
C
C
C
o
T
= 25 C  
C
o
T
= 150 C  
C
DUTY CYCLE <0.5%, V  
= 15V  
PULSE DURATION = 250µs  
GE  
0
0
0
2
4
6
8
10  
0
2
4
6
8
10  
V
, COLLECTOR TO EMITTER VOLTAGE (V)  
CE  
V
, COLLECTOR TO EMITTER VOLTAGE (V)  
CE  
FIGURE 5. COLLECTOR TO EMITTER ON-STATE VOLTAGE  
FIGURE 6. COLLECTOR TO EMITTER ON-STATE VOLTAGE  
3000  
900  
R
= 25, L = 5mH, V  
= 960V  
CE  
R
= 25, L = 5mH, V  
= 960V  
CE  
G
G
800  
700  
600  
500  
400  
300  
200  
2500  
2000  
1500  
1000  
500  
o
T
= 150 C, V  
= 12V, V  
= 15V  
J
GE  
GE  
o
T
= 150 C, V  
= 12V OR 15V  
J
GE  
o
T
= 25 C, V = 12V OR 15V  
GE  
J
o
T
= 25 C, V  
= 12V, V  
8
= 15V  
9
J
GE  
7
GE  
0
2
3
4
5
6
10  
2
3
4
5
6
7
8
9
10  
I
, COLLECTOR TO EMITTER CURRENT (A)  
CE  
I
, COLLECTOR TO EMITTER CURRENT (A)  
CE  
FIGURE 7. TURN-ON ENERGY LOSS vs COLLECTOR TO  
EMITTER CURRENT  
FIGURE 8. TURN-OFF ENERGY LOSS vs COLLECTOR TO  
EMITTER CURRENT  
4
HGTG5N120BND, HGTP5N120BND, HGT1S5N120BNDS  
Typical Performance Curves Unless Otherwise Specified (Continued)  
40  
35  
30  
25  
20  
40  
35  
30  
25  
20  
15  
R
= 25, L = 5mH, V  
= 960V  
CE  
R
J
= 25, L = 5mH, V  
= 960V  
CE  
G
G
o
o
T
= 25 C, T = 150 C, V  
= 12V  
GE  
J
o
o
T
= 25 C, T = 150 C, V  
= 12V  
GE  
J
J
15  
10  
0
o
o
o
o
T
= 25 C, T = 150 C, V  
= 15V  
J
J
GE  
T
= 25 C, T = 150 C, V  
= 15V  
7
J
J
GE  
2
3
4
5
6
7
8
9
10  
2
3
4
5
6
8
9
10  
I
, COLLECTOR TO EMITTER CURRENT (A)  
CE  
I
, COLLECTOR TO EMITTER CURRENT (A)  
CE  
FIGURE 9. TURN-ON DELAY TIME vs COLLECTOR TO  
EMITTER CURRENT  
FIGURE 10. TURN-ON RISE TIME vs COLLECTOR TO  
EMITTER CURRENT  
250  
250  
R
= 25, L = 5mH, V  
= 960V  
G
CE  
R
= 25, L = 5mH, V  
= 960V  
CE  
G
225  
200  
175  
150  
125  
100  
o
V
= 12V, V = 15V, T = 150 C  
GE J  
GE  
200  
150  
o
T
= 150 C, V  
= 12V OR 15V  
J
GE  
o
= 25 C, V  
100  
50  
T
= 12V OR 15V  
GE  
J
o
= 15V, T = 25 C  
V
= 12V, V  
GE  
GE  
J
2
3
I
4
5
6
7
8
9
10  
2
3
4
5
6
7
8
9
10  
, COLLECTOR TO EMITTER CURRENT (A)  
CE  
I
, COLLECTOR TO EMITTER CURRENT (A)  
CE  
FIGURE 11. TURN-OFF DELAY TIME vs COLLECTOR TO  
EMITTER CURRENT  
FIGURE 12. TURN-OFF FALL TIME vs COLLECTOR TO  
EMITTER CURRENT  
16  
80  
o
I
= 1mA, R = 120, T = 25 C  
G(REF)  
L
C
DUTY CYCLE <0.5%, V  
= 20V  
CE  
14  
12  
10  
8
70  
60  
50  
40  
30  
20  
PULSE DURATION = 250µs  
V
= 1200V  
CE  
V
= 800V  
CE  
V
= 400V  
o
CE  
T
o
= 25 C  
C
6
4
o
T
= 150 C  
T
= -55 C  
C
C
2
10  
0
0
0
10  
20  
30  
40  
50  
60  
7
8
9
10  
11  
12  
13  
14  
15  
V
, GATE TO EMITTER VOLTAGE (V)  
Q , GATE CHARGE (nC)  
G
GE  
FIGURE 13. TRANSFER CHARACTERISTIC  
FIGURE 14. GATE CHARGE WAVEFORMS  
5
HGTG5N120BND, HGTP5N120BND, HGT1S5N120BNDS  
Typical Performance Curves Unless Otherwise Specified (Continued)  
10  
8
2.0  
1.5  
1.0  
0.5  
0
o
DUTY CYCLE < 0.5%, T = 110 C  
C
PULSE DURATION = 250µs  
FREQUENCY = 1MHz  
6
C
IES  
V
= 15V  
GE  
V
= 10V  
GE  
4
2
C
OES  
C
RES  
0
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
0
5
10  
15  
20  
25  
V
, COLLECTOR TO EMITTER VOLTAGE (V)  
CE  
V
, COLLECTOR TO EMITTER VOLTAGE (V)  
CE  
FIGURE 15. CAPACITANCE vs COLLECTOR TO EMITTER  
VOLTAGE  
FIGURE 16. COLLECTOR TO EMITTER ON-STATE VOLTAGE  
0
10  
0.5  
0.2  
0.1  
-1  
10  
0.05  
0.02  
t
1
P
D
DUTY FACTOR, D = t / t  
1
2
0.01  
SINGLE PULSE  
t
2
PEAK T = (P x Z  
x R ) + T  
J
D
θJC  
θJC C  
-2  
10  
-5  
10  
-4  
-3  
10  
-2  
-1  
0
10  
10  
10  
10  
t , RECTANGULAR PULSE DURATION (s)  
1
FIGURE 17. NORMALIZED TRANSIENT THERMAL RESPONSE, JUNCTION TO CASE  
100  
10  
1
60  
o
= 25 C, dl  
T
/ dt = 200A/µs  
EC  
C
50  
40  
30  
20  
10  
0
t
rr  
o
150 C  
t
a
o
25 C  
t
b
o
-55 C  
0
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
V , FORWARD VOLTAGE (V)  
I , FORWARD CURRENT (A)  
F
F
FIGURE 18. DIODE FORWARD CURRENT vs FORWARD  
VOLTAGE DROP  
FIGURE 19. RECOVERY TIMES vs FORWARD CURRENT  
6
HGTG5N120BND, HGTP5N120BND, HGT1S5N120BNDS  
Test Circuit and Waveforms  
HGTG5N120BND  
90%  
OFF  
10%  
ON  
V
GE  
E
L = 2mH  
E
V
CE  
R
= 25Ω  
G
90%  
+
-
10%  
t
d(OFF)I  
I
CE  
V
= 960V  
DD  
t
rI  
t
fI  
t
d(ON)I  
FIGURE 20. INDUCTIVE SWITCHING TEST CIRCUIT  
FIGURE 21. SWITCHING TEST WAVEFORMS  
Handling Precautions for IGBTs  
Operating Frequency Information  
Insulated Gate Bipolar Transistors are susceptible to gate-  
insulation damage by the electrostatic discharge of energy  
through the devices. When handling these devices, care  
should be exercised to assure that the static charge built in the  
handler’s body capacitance is not discharged through the  
device. With proper handling and application procedures,  
however, IGBTs are currently being extensively used in  
production by numerous equipment manufacturers in military,  
industrial and consumer applications, with virtually no  
damage problems due to electrostatic discharge. IGBTs can  
be handled safely if the following basic precautions are taken:  
Operating frequency information for a typical device (Figure 3)  
is presented as a guide for estimating device performance for  
a specific application. Other typical frequency vs collector  
current (I ) plots are possible using the information shown  
CE  
for a typical unit in Figures 5, 6, 7, 8, 9 and 11. The operating  
frequency plot (Figure 3) of a typical device shows f  
or  
; whichever is smaller at each point. The information is  
MAX1  
f
MAX2  
based on measurements of a typical device and is bounded  
by the maximum rated junction temperature.  
f
is defined by f  
MAX1  
= 0.05/(t ).  
+ t  
MAX1  
d(OFF)I d(ON)I  
Deadtime (the denominator) has been arbitrarily held to 10%  
of the on-state time for a 50% duty factor. Other definitions are  
1. Prior to assembly into a circuit, all leads should be kept  
shorted together either by the use of metal shorting  
springs or by the insertion into conductive material such as  
“ECCOSORBD™ LD26” or equivalent.  
possible. t  
and t are defined in Figure 19. Device  
d(OFF)I  
d(ON)I  
turn-off delay can establish an additional frequency limiting  
condition for an application other than T . t is  
JM d(OFF)I  
2. When devices are removed by hand from their carriers, the  
hand being used should be grounded by any suitable  
means - for example, with a metallic wristband.  
important when controlling output ripple under a lightly loaded  
condition.  
3. Tips of soldering irons should be grounded.  
f
is defined by f  
MAX2  
= (P - P )/(E  
OFF  
+ E ). The  
ON  
MAX2  
D
C
allowable dissipation (P ) is defined by P = (T - T )/R  
The sum of device switching and conduction losses must  
.
4. Devices should never be inserted into or removed from  
circuits with power on.  
D
D
JM θJC  
C
5. Gate Voltage Rating - Never exceed the gate-voltage  
not exceed P . A 50% duty factor was used (Figure 3) and  
D
rating of V  
. Exceeding the rated V can result in  
the conduction losses (P ) are approximated by  
C
GEM  
GE  
permanent damage to the oxide layer in the gate region.  
P
= (V  
x I )/2.  
C
CE  
CE  
6. Gate Termination - The gates of these devices are  
essentially capacitors. Circuits that leave the gate open-  
circuited or floating should be avoided. These conditions  
can result in turn-on of the device due to voltage buildup on  
the input capacitor due to leakage currents or pickup.  
E
and E  
are defined in the switching waveforms shown  
OFF  
ON  
in Figure 21. E  
loss (I x V ) during turn-on and E  
CE CE OFF  
instantaneous power loss (I x V ) during turn-off. All tail  
is the integral of the instantaneous power  
ON  
is the integral of the  
CE CE  
losses are included in the calculation for E  
OFF  
; i.e., the  
7. Gate Protection - These devices do not have an internal  
monolithic Zener diode from gate to emitter. If gate  
collector current equals zero (I = 0).  
CE  
protection is required an external Zener is recommended.  
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.  
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time with-  
out notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see web site www.intersil.com  
ECCOSORBD™ is a trademark of Emerson and Cumming, Inc.  
7

相关型号:

HGTP5N120CN

25A, 1200V, NPT Series N-Channel IGBT
INTERSIL

HGTP5N120CND

25A, 1200V, NPT Series N-Channel IGBT with Anti-Parallel Hyperfast Diode
INTERSIL

HGTP5N120CNS

TRANSISTOR | IGBT | N-CHAN | 1.2KV V(BR)CES | 25A I(C) | TO-263AB
ETC

HGTP5N120CNS9A

TRANSISTOR | IGBT | N-CHAN | 1.2KV V(BR)CES | 25A I(C) | TO-263AB
ETC

HGTP6N120B3D

1200V, N-CHANNEL IGBT, TO-220AB
RENESAS

HGTP7N60A4

600V, SMPS Series N-Channel IGBT
FAIRCHILD

HGTP7N60A4

600V, SMPS Series N-Channel IGBT
INTERSIL

HGTP7N60A4

34A, 600V, N-CHANNEL IGBT, TO-220AB, TO-220AB, 3 PIN
ROCHESTER

HGTP7N60A4

IGBT,600V,SMPS
ONSEMI

HGTP7N60A4-F102

IGBT,600V,SMPS
ONSEMI

HGTP7N60A4D

600V, SMPS Series N-Channel IGBT with Anti-Parallel Hyperfast Diode
FAIRCHILD

HGTP7N60A4D

600V, SMPS Series N-Channel IGBT with Anti-Parallel Hyperfast Diode
INTERSIL