HGTP5N120CN [INTERSIL]

25A, 1200V, NPT Series N-Channel IGBT; 25A , 1200V ,不扩散核武器条约系列N沟道IGBT
HGTP5N120CN
型号: HGTP5N120CN
厂家: Intersil    Intersil
描述:

25A, 1200V, NPT Series N-Channel IGBT
25A , 1200V ,不扩散核武器条约系列N沟道IGBT

晶体 晶体管 电动机控制 瞄准线 双极性晶体管 栅 局域网
文件: 总7页 (文件大小:83K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HGTP5N120CN, HGT1S5N120CNS  
Data Sheet  
January 2000  
File Number 4596.2  
25A, 1200V, NPT Series N-Channel IGBT  
Features  
o
The HGTP5N120CN and HGT1S5N120CNS are Non-Punch  
Through (NPT) IGBT designs. They are new members of the  
MOS gated high voltage switching IGBT family. IGBTs  
combine the best features of MOSFETs and bipolar  
transistors. This device has the high input impedance of a  
MOSFET and the low on-state conduction loss of a bipolar  
transistor.  
• 25A, 1200V, T = 25 C  
C
• 1200V Switching SOA Capability  
o
Typical Fall Time. . . . . . . . . . . . . . . . 350ns at T = 150 C  
J
• Short Circuit Rating  
• Low Conduction Loss  
• Avalanche Rated  
The IGBT is ideal for many high voltage switching  
applications operating at moderate frequencies where low  
conduction losses are essential, such as: AC and DC motor  
controls, power supplies and drivers for solenoids, relays  
and contactors.  
Temperature Compensating SABER™ Model  
Thermal Impedance SPICE Model  
www.intersil.com  
• Related Literature  
- TB334 “Guidelines for Soldering Surface Mount  
Components to PC Boards”  
Formerly Developmental Type TA49309.  
Ordering Information  
Packaging  
PART NUMBER  
PACKAGE  
TO-220AB  
TO-263AB  
BRAND  
G5N120CN  
G5N120CN  
JEDEC TO-220AB ALTERNATE VERSION  
HGTP5N120CN  
E
C
G
HGT1S5N120CNS  
COLLECTOR  
(FLANGE)  
NOTE: When ordering, use the entire part number. Add the suffix 9A  
to obtain the TO-263AB variant in Tape and Reel, i.e.,  
HGT1S5N120CNS9A.  
Symbol  
C
JEDEC TO-263AB  
G
COLLECTOR  
(FLANGE)  
G
E
E
INTERSIL CORPORATION IGBT PRODUCT IS COVERED BY ONE OR MORE OF THE FOLLOWING U.S. PATENTS  
4,364,073  
4,598,461  
4,682,195  
4,803,533  
4,888,627  
4,417,385  
4,605,948  
4,684,413  
4,809,045  
4,890,143  
4,430,792  
4,620,211  
4,694,313  
4,809,047  
4,901,127  
4,443,931  
4,631,564  
4,717,679  
4,810,665  
4,904,609  
4,466,176  
4,639,754  
4,743,952  
4,823,176  
4,933,740  
4,516,143  
4,639,762  
4,783,690  
4,837,606  
4,963,951  
4,532,534  
4,641,162  
4,794,432  
4,860,080  
4,969,027  
4,587,713  
4,644,637  
4,801,986  
4,883,767  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD Handling Procedures.  
1-888-INTERSIL or 321-724-7143 | Copyright © Intersil Corporation 2000  
SABER™ is a trademark of Analogy, Inc.  
1
HGTP5N120CN, HGT1S5N120CNS  
o
Absolute Maximum Ratings T = 25 C, Unless Otherwise Specified  
C
HGTP5N120CN  
HGT1S5N120CNS  
UNITS  
Collector to Emitter Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .BV  
1200  
V
CES  
Collector Current Continuous  
o
At T = 25 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
C
25  
A
A
A
V
V
C25  
o
At T = 110 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
12  
40  
C
C110  
Collector Current Pulsed (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
CM  
GES  
GEM  
Gate to Emitter Voltage Continuous. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V  
±20  
Gate to Emitter Voltage Pulsed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
o
±30  
Switching Safe Operating Area at T = 150 C, Figure 2 . . . . . . . . . . . . . . . . . . . . . . . . SSOA  
J
30A at 1200V  
167  
o
Power Dissipation Total at T = 25 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P  
C
W
D
o
o
Power Dissipation Derating T > 25 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
1.33  
W/ C  
C
Forward Voltage Avalanche Energy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E  
36  
mJ  
AV  
o
Operating and Storage Junction Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . T , T  
J
-55 to 150  
C
STG  
Maximum Lead Temperature for Soldering  
o
Leads at 0.063in (1.6mm) from case for 10s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T  
300  
260  
8
C
L
o
Package Body for 10s, see Tech Brief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .T  
C
pkg  
Short Circuit Withstand Time (Note 2) at V  
Short Circuit Withstand Time (Note 2) at V  
= 15V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .t  
µs  
µs  
GE  
SC  
SC  
= 12V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .t  
15  
GE  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTES:  
1. Pulse width limited by maximum junction temperature.  
o
2. V  
= 840V, T = 125 C, R = 25Ω.  
J G  
CE(PK)  
o
Electrical Specifications  
T = 25 C, Unless Otherwise Specified  
C
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Collector to Emitter Breakdown Voltage  
Emitter to Collector Breakdown Voltage  
Collector to Emitter Leakage Current  
BV  
BV  
I
I
= 250µA, V  
= 0V  
1200  
-
-
-
CES  
ECS  
C
C
GE  
= 10mA, V  
= 0V  
15  
-
250  
-
V
GE  
o
I
V
= BV  
CES  
T
= 25 C  
-
-
-
µA  
µA  
mA  
V
CES  
CE  
C
C
C
C
C
o
T
T
T
T
= 125 C  
100  
-
o
= 150 C  
-
2
o
Collector to Emitter Saturation Voltage  
V
I
V
= 5.5A,  
C
= 25 C  
-
2.1  
2.9  
7.0  
-
2.4  
3.5  
-
CE(SAT)  
= 15V  
GE  
o
= 150 C  
-
V
Gate to Emitter Threshold Voltage  
Gate to Emitter Leakage Current  
Switching SOA  
V
I
= 45µA, V = V  
CE GE  
6.0  
-
V
GE(TH)  
C
I
V
= ±20V  
±250  
-
nA  
A
GES  
GE  
o
SSOA  
T = 150 C, R = 25Ω, V  
= 15V,  
25  
-
J
G
GE  
L = 200µH, V  
= 1200V  
CE(PK)  
Gate to Emitter Plateau Voltage  
On-State Gate Charge  
V
I
I
= 5.5A, V  
= 5.5A,  
= 0.5 BV  
CE CES  
-
-
-
10.6  
45  
-
V
GEP  
C
C
Q
V
= 15V  
55  
75  
nC  
nC  
G(ON)  
GE  
V
= 0.5 BV  
CES  
CE  
V
= 20V  
60  
GE  
2
HGTP5N120CN, HGT1S5N120CNS  
o
Electrical Specifications  
PARAMETER  
T = 25 C, Unless Otherwise Specified (Continued)  
C
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
22  
MAX  
30  
UNITS  
ns  
o
Current Turn-On Delay Time  
Current Rise Time  
t
IGBT and Diode at T = 25 C  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
d(ON)I  
J
I
= 5.5A  
CE  
t
12  
16  
ns  
rI  
d(OFF)I  
V
= 0.8 BV  
= 15V  
CE  
CES  
V
GE  
Current Turn-Off Delay Time  
Current Fall Time  
t
180  
280  
220  
400  
640  
20  
250  
350  
-
ns  
R
= 25Ω  
G
L = 5mH  
Test Circuit (Figure 18)  
t
ns  
fI  
Turn-On Energy (Note 3)  
Turn-On Energy (Note 3)  
Turn-Off Energy (Note 4)  
Current Turn-On Delay Time  
Current Rise Time  
E
E
E
µJ  
ON1  
ON2  
OFF  
500  
700  
25  
µJ  
µJ  
o
t
IGBT and Diode at T = 150 C  
ns  
d(ON)I  
J
I
= 5.5A  
CE  
t
12  
16  
ns  
rI  
V
= 0.8 BV  
= 15V  
CE  
CES  
V
GE  
Current Turn-Off Delay Time  
Current Fall Time  
t
225  
350  
220  
1
300  
400  
-
ns  
d(OFF)I  
R
= 25Ω  
G
L = 5mH  
Test Circuit (Figure 18)  
t
ns  
fI  
Turn-On Energy (Note 3)  
Turn-On Energy (Note 3)  
Turn-Off Energy (Note 4)  
E
E
E
µJ  
ON1  
ON2  
OFF  
1.2  
1.1  
0.75  
mJ  
mJ  
1
o
Thermal Resistance Junction To Case  
NOTES:  
R
-
C/W  
θJC  
3. Values for two Turn-On loss conditions are shown for the convenience of the circuit designer. E  
is the turn-on loss of the IGBT only. E  
ON2  
ON1  
is the turn-on loss when a typical diode is used in the test circuit and the diode is at the same T as the IGBT. The diode type is specified in  
J
Figure 18.  
4. Turn-Off Energy Loss (E  
) is defined as the integral of the instantaneous power loss starting at the trailing edge of the input pulse and ending  
OFF  
at the point where the collector current equals zero (I = 0A). All devices were tested per JEDEC Standard No. 24-1 Method for Measurement  
CE  
of Power Device Turn-Off Switching Loss. This test method produces the true total Turn-Off Energy Loss.  
Typical Performance Curves Unless Otherwise Specified  
35  
25  
o
= 150 C, R = 25, V = 15V, L = 200µH  
GE  
T
V
= 15V  
J
G
GE  
30  
25  
20  
15  
10  
5
20  
15  
10  
5
0
0
25  
50  
75  
100  
125  
150  
0
200  
400  
600  
800  
1000  
1200  
1400  
o
T
, CASE TEMPERATURE ( C)  
V
CE  
, COLLECTOR TO EMITTER VOLTAGE (V)  
C
FIGURE 1. DC COLLECTOR CURRENT vs CASE  
TEMPERATURE  
FIGURE 2. MINIMUM SWITCHING SAFE OPERATING AREA  
3
HGTP5N120CN, HGT1S5N120CNS  
Typical Performance Curves Unless Otherwise Specified (Continued)  
200  
70  
60  
50  
40  
30  
20  
35  
30  
25  
20  
15  
10  
o
T
= 150 C, R = 25, L = 5mH, V  
= 960V  
T
C
o
V
J
G
CE  
GE  
V
= 840V, R = 25, T = 125 C  
CE  
G
J
o
15V  
75 C  
o
75 C 12V  
100  
50  
o
I
110 C 15V  
SC  
o
110 C 12V  
o
T
= 75 C, V  
= 5V  
C
GE  
IDEAL DIODE  
f
f
= 0.05 / (t  
d(OFF)I  
+ t  
)
MAX1  
d(ON)I  
= (P - P ) / (E  
+ E  
)
OFF  
MAX2  
D
C
ON2  
20  
10  
P
= CONDUCTION DISSIPATION  
C
t
(DUTY FACTOR = 50%)  
o
SC  
R
= 0.75 C/W, SEE NOTES  
ØJC  
1
2
3
5
10  
10  
11  
12  
13  
14  
15  
I
, COLLECTOR TO EMITTER CURRENT (A)  
V
, GATE TO EMITTER VOLTAGE (V)  
CE  
GE  
FIGURE 3. OPERATING FREQUENCY vs COLLECTOR TO  
EMITTER CURRENT  
FIGURE 4. SHORT CIRCUIT WITHSTAND TIME  
80  
70  
60  
50  
40  
30  
20  
10  
0
35  
DUTY CYCLE < 0.5%, V  
250µs PULSE TEST  
= 15V  
GE  
DUTY CYCLE < 0.5%, V  
250µs PULSE TEST  
= 12V  
GE  
30  
25  
20  
15  
10  
5
o
o
T
= -55 C  
T = 150 C  
C
o
C
T
= -55 C  
C
o
T
= 150 C  
C
o
T
= 25 C  
C
o
T
= 25 C  
C
0
0
1
2
3
4
5
6
7
8
9
10  
0
2
4
6
8
10  
V
, COLLECTOR TO EMITTER VOLTAGE (V)  
V
, COLLECTOR TO EMITTER VOLTAGE (V)  
CE  
CE  
FIGURE 5. COLLECTOR TO EMITTER ON-STATE VOLTAGE  
FIGURE 6. COLLECTOR TO EMITTER ON-STATE VOLTAGE  
1750  
3000  
R
= 25, L = 5mH, V  
= 960V  
CE  
G
R
T
= 25, L = 5mH, V  
= 960V  
CE  
G
1500  
1250  
1000  
750  
500  
250  
0
2500  
2000  
1500  
1000  
500  
o
T
= 150 C, V  
= 12V OR 15V  
o
J
GE  
= 150 , V  
= 15V, V = 12V  
GE  
J
GE  
o
T
= 25 C, V = 12V OR 15V  
GE  
J
o
T
= 25 C, V  
= 15V, V  
8
= 12V  
9
J
GE  
7
GE  
0
1
2
3
4
5
6
7
8
9
10  
2
3
4
5
6
10  
I
, COLLECTOR TO EMITTER CURRENT (A)  
I
, COLLECTOR TO EMITTER CURRENT (A)  
CE  
CE  
FIGURE 7. TURN-ON ENERGY LOSS vs COLLECTOR TO  
EMITTER CURRENT  
FIGURE 8. TURN-OFF ENERGY LOSS vs COLLECTOR TO  
EMITTER CURRENT  
4
HGTP5N120CN, HGT1S5N120CNS  
Typical Performance Curves Unless Otherwise Specified (Continued)  
40  
40  
R
= 25, L = 5mH, V = 960V  
CE  
G
R
= 25, L = 5mH, V  
= 960V  
CE  
G
35  
30  
25  
20  
15  
10  
0
35  
30  
25  
20  
15  
o
o
T
= 25 C, T = 150 C, V = 12V  
GE  
J
J
o
= 25 C, T = 150 C, V = 12V  
GE  
o
T
J
J
J
o
o
o
o
T
= 25 C, T = 150 C, V  
GE  
= 15V  
9
T
3
= 25 C, T = 150 C, V  
GE  
= 15V  
7
J
J
J
2
3
4
5
6
7
8
10  
2
4
5
6
8
9
10  
I
, COLLECTOR TO EMITTER CURRENT (A)  
I
, COLLECTOR TO EMITTER CURRENT (A)  
CE  
CE  
FIGURE 9. TURN-ON DELAY TIME vs COLLECTOR TO  
EMITTER CURRENT  
FIGURE 10. TURN-ON RISE TIME vs COLLECTOR TO  
EMITTER CURRENT  
600  
900  
R
= 25, L = 5mH, V  
= 960V  
CE  
R
= 25, L = 5mH, V  
= 960V  
CE  
G
G
800  
700  
600  
500  
400  
300  
200  
100  
500  
400  
300  
200  
100  
0
o
= 150 C, V  
T
= 12V, V = 15V  
GE  
J
GE  
o
T
= 150 C, V = 12V AND 15V  
GE  
J
o
T
= 25 C, V = 12V AND 15V  
J
GE  
o
T
= 25 C, V  
GE  
= 12V, V  
GE  
= 15V  
6
J
1
2
3
4
5
6
7
8
9
10  
1
2
3
4
5
7
8
9
10  
I
, COLLECTOR TO EMITTER CURRENT (A)  
CE  
I
, COLLECTOR TO EMITTER CURRENT (A)  
CE  
FIGURE 11. TURN-OFF DELAY TIME vs COLLECTOR TO  
EMITTER CURRENT  
FIGURE 12. FALL TIME vs COLLECTOR TO EMITTER  
CURRENT  
16  
14  
100  
o
= 25 C  
DUTY CYCLE < 0.5%, V  
250µs PULSE TEST  
= 20V  
T
CE  
C
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= 1200V  
CE  
12  
10  
8
o
= -55 C  
T
C
V
= 800V  
V
= 400V  
CE  
CE  
o
T
= 150 C  
C
6
4
2
o
I
= 1mA, R = 120, T = 25 C  
L C  
G(REF)  
0
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
0
10  
20  
30  
40  
50  
60  
V
, GATE TO EMITTER VOLTAGE (V)  
Q , GATE CHARGE (nC)  
G
GE  
FIGURE 13. TRANSFER CHARACTERISTIC  
FIGURE 14. GATE CHARGE WAVEFORMS  
5
HGTP5N120CN, HGT1S5N120CNS  
Typical Performance Curves Unless Otherwise Specified (Continued)  
2.0  
7
FREQUENCY = 1MHz  
o
DUTY CYCLE < 0.5%, T = 110 C  
C
250µs PULSE TEST  
6
5
4
3
2
1
0
V
= 15V  
GE  
1.5  
C
IES  
V
= 10V  
GE  
1.0  
0.5  
C
OES  
C
RES  
0
0
5
10  
15  
20  
25  
0
0.5  
V
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
V
, COLLECTOR TO EMITTER VOLTAGE (V)  
, COLLECTOR TO EMITTER VOLTAGE (V)  
CE  
CE  
FIGURE 15. CAPACITANCE vs COLLECTOR TO EMITTER  
VOLTAGE  
FIGURE 16. COLLECTOR TO EMITTER ON-STATE VOLTAGE  
0
10  
0.50  
0.20  
0.10  
-1  
10  
0.05  
0.02  
t
1
P
D
0.01  
DUTY FACTOR, D = t / t  
1
2
t
PEAK T = (P X Z  
θJC  
X R ) + T  
θJC C  
SINGLE PULSE  
2
J
D
-2  
10  
-5  
-4  
-3  
-2  
-1  
0
10  
10  
10  
10  
10  
10  
t , RECTANGULAR PULSE DURATION (s)  
1
FIGURE 17. NORMALIZED TRANSIENT THERMAL RESPONSE, JUNCTION TO CASE  
Test Circuit and Waveforms  
RHRD4120  
90%  
OFF  
10%  
ON2  
V
GE  
E
E
L = 5mH  
V
CE  
R
= 25Ω  
G
90%  
10%  
d(OFF)I  
+
I
CE  
t
t
V
= 960V  
rI  
DD  
t
-
fI  
t
d(ON)I  
FIGURE 18. INDUCTIVE SWITCHING TEST CIRCUIT  
FIGURE 19. SWITCHING TEST WAVEFORMS  
6
HGTP5N120CN, HGT1S5N120CNS  
Handling Precautions for IGBTs  
Operating Frequency Information  
Insulated Gate Bipolar Transistors are susceptible to gate-  
insulation damage by the electrostatic discharge of energy  
through the devices. When handling these devices, care  
should be exercised to assure that the static charge built in  
the handler’s body capacitance is not discharged through  
the device. With proper handling and application procedures,  
however, IGBTs are currently being extensively used in  
production by numerous equipment manufacturers in  
military, industrial and consumer applications, with virtually  
no damage problems due to electrostatic discharge. IGBTs  
can be handled safely if the following basic precautions are  
taken:  
Operating frequency information for a typical device  
(Figure 3) is presented as a guide for estimating device  
performance for a specific application. Other typical  
frequency vs collector current (I ) plots are possible using  
CE  
the information shown for a typical unit in Figures 5, 6, 7, 8, 9  
and 11. The operating frequency plot (Figure 3) of a typical  
device shows f  
or f  
; whichever is smaller at each  
MAX1  
MAX2  
point. The information is based on measurements of a  
typical device and is bounded by the maximum rated  
junction temperature.  
f
is defined by f  
MAX1  
= 0.05/(t ).  
+ t  
MAX1  
d(OFF)I d(ON)I  
Deadtime (the denominator) has been arbitrarily held to 10%  
of the on-state time for a 50% duty factor. Other definitions  
1. Prior to assembly into a circuit, all leads should be kept  
shorted together either by the use of metal shorting  
springs or by the insertion into conductive material such  
as “ECCOSORBD™ LD26” or equivalent.  
are possible. t  
and t  
are defined in Figure 19.  
d(OFF)I  
d(ON)I  
Device turn-off delay can establish an additional frequency  
limiting condition for an application other than T . t  
JM d(OFF)I  
2. When devices are removed by hand from their carriers,  
the hand being used should be grounded by any suitable  
means - for example, with a metallic wristband.  
is important when controlling output ripple under a lightly  
loaded condition.  
f
is defined by f  
MAX2  
= (P - P )/(E  
OFF  
+ E ). The  
ON2  
MAX2  
D
C
3. Tips of soldering irons should be grounded.  
allowable dissipation (P ) is defined by P = (T - T )/R  
.
D
D
JM θJC  
C
4. Devices should never be inserted into or removed from  
circuits with power on.  
The sum of device switching and conduction losses must  
not exceed P . A 50% duty factor was used (Figure 3) and  
D
5. Gate Voltage Rating - Never exceed the gate-voltage  
the conduction losses (P ) are approximated by  
C
rating of V  
. Exceeding the rated V can result in  
GEM  
GE  
P
= (V  
x I )/2.  
CE  
C
CE  
permanent damage to the oxide layer in the gate region.  
E
and E  
are defined in the switching waveforms  
OFF  
6. Gate Termination - The gates of these devices are  
essentially capacitors. Circuits that leave the gate open-  
circuited or floating should be avoided. These conditions  
can result in turn-on of the device due to voltage buildup  
on the input capacitor due to leakage currents or pickup.  
ON2  
shown in Figure 19. E  
instantaneous power loss (I  
is the integral of the  
ON2  
x V ) during turn-on and  
CE  
CE  
is the integral of the instantaneous power loss  
E
OFF  
(I  
x V ) during turn-off. All tail losses are included in the  
CE  
CE  
7. Gate Protection - These devices do not have an internal  
monolithic Zener diode from gate to emitter. If gate  
protection is required an external Zener is recommended.  
calculation for E  
; i.e., the collector current equals zero  
OFF  
(I  
= 0).  
CE  
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.  
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time with-  
out notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see web site www.intersil.com  
ECCOSORBD™ is a trademark of Emerson and Cumming, Inc.  
7

相关型号:

HGTP5N120CND

25A, 1200V, NPT Series N-Channel IGBT with Anti-Parallel Hyperfast Diode
INTERSIL

HGTP5N120CNS

TRANSISTOR | IGBT | N-CHAN | 1.2KV V(BR)CES | 25A I(C) | TO-263AB
ETC

HGTP5N120CNS9A

TRANSISTOR | IGBT | N-CHAN | 1.2KV V(BR)CES | 25A I(C) | TO-263AB
ETC

HGTP6N120B3D

1200V, N-CHANNEL IGBT, TO-220AB
RENESAS

HGTP7N60A4

600V, SMPS Series N-Channel IGBT
FAIRCHILD

HGTP7N60A4

600V, SMPS Series N-Channel IGBT
INTERSIL

HGTP7N60A4

34A, 600V, N-CHANNEL IGBT, TO-220AB, TO-220AB, 3 PIN
ROCHESTER

HGTP7N60A4

IGBT,600V,SMPS
ONSEMI

HGTP7N60A4-F102

IGBT,600V,SMPS
ONSEMI

HGTP7N60A4D

600V, SMPS Series N-Channel IGBT with Anti-Parallel Hyperfast Diode
FAIRCHILD

HGTP7N60A4D

600V, SMPS Series N-Channel IGBT with Anti-Parallel Hyperfast Diode
INTERSIL

HGTP7N60A4_NL

34A, 600V, N-CHANNEL IGBT, TO-220AB, TO-220AB, 3 PIN
ROCHESTER