F2971NCGK [RENESAS]

75Ω SP2T RF Switch 5MHz to 3000MHz;
F2971NCGK
型号: F2971NCGK
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

75Ω SP2T RF Switch 5MHz to 3000MHz

文件: 总18页 (文件大小:5269K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
75Ω SP2T RF Switch  
F2971  
5MHz to 3000MHz  
Datasheet  
Description  
Features  
The F2971 is a high reliability, low insertion loss, 75Ω absorptive  
SP2T RF switch designed for a multitude of cable systems and RF  
applications. This device covers a broad frequency range from  
5MHz to 3000MHz. In addition to providing low insertion loss, the  
F2971 also delivers excellent linearity and isolation performance  
while providing a 75Ω termination for the unselected port.  
.
.
.
.
.
Low insertion loss: 0.31dB at 1200MHz  
High Isolation: 71dB at 1200MHz (RF1/RF2 to RFC)  
High IIP3: 67dBm at 5MHz  
Operating Temperature: -40°C to +105°C  
4mm x 4mm, 20-pin LQFN package  
The F2971 uses a single positive supply voltage and supports 3.3V  
logic.  
Block Diagram  
Figure 1. Block Diagram  
RFC  
Competitive Advantage  
The F2971 provides broadband RF performance to support the  
CATV market along with high power handling and high isolation.  
75  
.
.
.
.
Low insertion loss  
High isolation  
Excellent linearity  
Extended temperature: -40°C to +105°C  
RF1  
RF2  
75  
75Ω  
Typical Applications  
.
CATV/Broadband applications  
.
.
.
.
.
.
Headend  
Fiber/HFC distribution nodes  
Distribution amplifiers  
Switch matrix  
DTV tuner input select  
DVR/PVR/Set-top box  
C1  
C2  
.
CATV test equipment  
1
Rev O, April 24, 2018  
Pin Assignments  
Figure 2. Pin Assignments for 4mm x 4mm x 0.75mm 20-pin LQFN, NCG20P1 Top View  
VDD GND GND C1 C2  
20 19 18 17 16  
1
2
3
4
5
15  
14  
13  
12  
11  
GND  
GND  
RF1  
GND  
GND  
RF2  
F2971  
GND  
GND  
GND  
GND  
EP  
6
7
8
9 10  
GND GND RFC GND GND  
Pin Descriptions  
Table 1.  
Pin Descriptions  
Number  
Name  
Description  
1, 2, 4, 5, 6,  
7, 9, 10, 11,  
12, 14, 15,  
18, 19  
Internally grounded. Connect pin directly to paddle ground or as close as possible to the pin with thru-hole  
vias.  
GND  
3
RF1  
RFC  
RF2  
C2  
RF1 Port. Matched to 75Ω. If this pin is not 0V DC, then an external coupling capacitor must be used.  
RFC Port. Matched to 75Ω. If this pin is not 0V DC, then an external coupling capacitor must be used.  
RF2 Port. Matched to 75Ω. If this pin is not 0V DC, then an external coupling capacitor must be used.  
Control pin to set switch state. See Table 8.  
8
13  
16  
17  
C1  
Control pin to set switch state. See Table 8.  
Power Supply. Bypass to GND with capacitors shown in the Typical Application Circuit (see Figure 34) as  
close as possible to pin.  
20  
VDD  
Exposed Paddle. Internally connected to GND. Solder this exposed pad to a PCB pad that uses multiple  
ground vias to provide heat transfer out of the device into the PCB ground planes. These multiple ground  
vias are also required to achieve the specified RF performance.  
EP  
2
Rev O, April 24, 2018  
Absolute Maximum Ratings  
Stresses beyond those listed below may cause permanent damage to the device. Functional operation of the device at these or any other  
conditions beyond those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions  
for extended periods may affect device reliability.  
Table 2.  
Absolute Maximum Ratings  
Parameter  
Symbol  
Minimum  
Maximum  
Units  
VDD to GND  
VDD  
-0.3  
4.0  
V
Lower of  
(VDD+0.3, 3.9)  
C1, C2 to GND  
VCTRL  
VRFIN  
-0.3  
-0.3  
V
V
RF1, RF2, RFC to GND  
+0.3  
RF1 or RF2 as an input  
(connected to RFC).  
No RF power applied to unused  
RF1 or RF2 port.  
30  
RFC as an input  
(connected to RF1 or RF2).  
No RF power applied to  
terminated RF1 or RF2 port.  
30  
26  
30  
Maximum Input CW Power [a]  
PMAX-IN  
dBm  
RF1 or RF2 port as an input  
(terminated states).  
Applied to only one port.  
RFC as an input  
(terminated states).  
No RF drive applied to RF1 or  
RF2 ports.  
Maximum Junction Temperature  
Storage Temperature Range  
TJMAX  
TSTOR  
140  
150  
260  
°C  
°C  
°C  
-65  
Lead Temperature (soldering, 10s)  
Electrostatic Discharge HBM  
(JEDEC/ESDA JS-001-2012)  
1500  
(Class 2)  
V
V
Electrostatic Discharge CDM  
(JEDEC 22-C101F)  
1500  
(Class C3)  
a. Levels based on VDD = 2.7V to 3.6V, 5MHz ≤ fRF 3000MHz, TEP = 105°C, ZS = ZL = 75Ω.  
3
Rev O, April 24, 2018  
Recommended Operating Conditions  
Table 3.  
Recommended Operating Conditions  
Parameter  
Symbol  
Condition  
Minimum  
Typical Maximum Units  
Supply Voltage  
VDD  
TEP  
fRF  
2.7  
-40  
5
3.6  
+105  
3000  
27  
V
Operating Temperature Range  
RF Frequency Range  
Exposed Paddle  
°C  
MHz  
TEP = 85°C  
TEP = 105°C  
TEP = 85°C  
TEP = 105°C  
TEP = 85°C  
TEP = 105°C  
TEP = 85°C  
RFC connected to RF1 or  
RF2  
RF Continuous  
Input CW Power  
(Non-Switched) [a]  
27  
PRF  
dBm  
dBm  
24  
RF1 / RF2 Input,  
Terminated State  
21  
21  
RFC Input switching  
between RF1 and RF2  
RF Continuous  
Input Power  
(RF Hot Switching CW) [a]  
21  
PRFSW  
RF1 or RF2 as input,  
switched between RFC  
and Terminated State  
17  
TEP = 105°C  
17  
RF1 Port Impedance  
RF2 Port Impedance  
RFC Port Impedance  
ZRF  
Single-ended  
Single-ended  
Single-ended  
75  
75  
75  
Ω
Ω
Ω
1
ZRF2  
ZRFC  
a. Levels based on VDD = 2.7V to 3.6V, 5MHz fRF 3000MHz, ZS = ZL = 75Ω. See Figure 3 for power handling de-rating vs.  
RF frequency.  
Figure 3. Maximum RF Input Operating Power vs. RF Frequency  
4
Rev O, April 24, 2018  
 
Electrical Characteristics  
Table 4.  
Electrical Characteristics  
See the Typical Application Circuit in Figure 34. VDD = 3.0V, TEP = +25°C, fRF = 1200MHz, driven port = RF1 or RF2, PIN = 0dBm, ZS = ZL = 75Ω.  
PCB board trace and connector losses are de-embedded, unless otherwise noted.  
Parameter  
Logic Input HIGH [a]  
Symbol  
Condition  
2.7V VDD 3.6V  
Minimum  
Typical  
Maximum Units  
[b]  
VIH  
VIL  
VDD  
0.3 x VDD  
500 [c]  
30  
V
V
0.7 x VDD  
-0.3  
Logic Input LOW [a]  
Logic Current  
VDD DC Current [a]  
IIH, IIL  
IDD  
For each control pin  
5
20  
nA  
µA  
Logic inputs at GND or VDD  
5MHz fRF 250MHz  
0.22  
0.26  
0.29  
0.31  
0.47  
0.64  
81  
250MHz < fRF 750MHz  
750MHz < fRF 1000MHz  
1000MHz < fRF 1200MHz [d]  
1200MHz < fRF 2000MHz  
2000MHz < fRF 3000MHz  
5MHz fRF 250MHz  
Insertion Loss  
IL  
dB  
dB  
dB  
dB  
0.51  
76  
68  
67  
66  
60  
250MHz < fRF 750MHz  
750MHz < fRF 1000MHz  
1000MHz < fRF 1200MHz  
1200MHz < fRF 2000MHz  
2000MHz < fRF 3000MHz  
5MHz fRF 250MHz  
73  
72  
Isolation  
(RF1/RF2 to RFC)  
ISORFC  
ISOR12  
RLIL  
71  
65  
57  
77  
69  
66  
64  
56  
84  
250MHz < fRF 750MHz  
750MHz < fRF 1000MHz  
1000MHz < fRF 1200MHz  
1200MHz < fRF 2000MHz  
2000MHz < fRF 3000MHz  
5MHz fRF 250MHz  
74  
71  
Isolation  
(RF1 to RF2 or RF2 to RF1)  
69  
61  
52  
30  
250MHz < fRF 750MHz  
750MHz < fRF 1000MHz  
1000MHz < fRF 1200MHz  
1200MHz < fRF 2000MHz  
2000MHz < fRF 3000MHz  
22  
20  
RF1, RF2, RFC Return Loss  
(Insertion Loss State)  
18  
14  
12  
a. Increased IDD current will result if logic LOW level is above ground and up to VIL max. Similarly, increased IDD current will  
result if the logic HIGH level is below VDD and down to VIH min.  
b. Items in min/max columns that are not bold italics are guaranteed by design characterization.  
c. Items in min/max columns in bold italics are guaranteed by test.  
d. Minimum or maximum specification guaranteed by test at 1200MHz and by design characterization over the full frequency  
range.  
5
Rev O, April 24, 2018  
 
 
 
 
Electrical Characteristics  
Table 5.  
Electrical Characteristics  
See the Typical Application Circuit in Figure 34. VDD = 3.0V, TEP = +25°C, fRF = 1200MHz, driven port = RF1 or RF2, PIN = 0dBm, ZS = ZL = 75Ω.  
PCB board trace and connector losses are de-embedded, unless otherwise noted.  
Parameter  
Symbol  
Condition  
5MHz fRF 250MHz  
Minimum  
Typical  
Maximum Units  
28  
24  
22  
21  
17  
13  
31  
32  
250MHz < fRF 750MHz  
750MHz < fRF 1000MHz  
1000MHz < fRF 1200MHz  
1200MHz < fRF 2000MHz  
2000MHz < fRF 3000MHz  
5MHz fRF 250MHz  
RF1, RF2, RFC Return Loss  
(Terminated State)  
RLTERM  
dB  
Input 1dB Compression [c]  
IP1dB  
IIP2  
dBm  
dBm  
250MHz < fRF 2000MHz  
f1 = 5MHz  
f2 = 6MHz  
95  
111  
124  
67  
Input IP2  
PIN = +13dBm/tone  
(f1 + f2 frequency)  
f1 = 185MHz  
f2 = 190MHz  
(Insertion Loss State)  
f1 = 895MHz  
f2 = 900MHz  
f1 = 5MHz  
f2 = 6MHz  
Input IP3  
(Insertion Loss State)  
f1 = 185MHz  
f2 = 190MHz  
IIP3  
PIN = +13dBm/tone  
75  
dBm  
f1 = 1790MHz  
f2 = 1795MHz  
70  
-90  
CTB / CSO  
77 and 110 channels, POUT = 44dBmV  
dBc  
Out any RF port when externally  
terminated into 75Ω  
Non-RF Driven Spurious [d]  
SpurMAX  
-122  
dBm  
50% control to 90% RF  
50% control to 10% RF  
2.6  
1.7  
Switching Time [e]  
TSW  
µs  
Maximum Switching Rate [f]  
SWRATE  
25  
kHz  
Peak transient during switching  
measured with 20ns rise time,  
0V to 3.3V control pulse  
Rise  
Fall  
1.1  
2.0  
Maximum Video Feed-through  
on RF Ports  
VIDFT  
mVpp  
a. Items in min/max columns in bold italics are guaranteed by test.  
b. Items in min/max columns that are not bold italics are guaranteed by design characterization.  
c. The input 1dB compression point is a linearity figure of merit. Refer to the Recommended Operating Conditionssection  
and Figure 3 for the maximum operating power levels.  
d. Spurious due to on-chip negative voltage generator. Spurious fundamental = approximately 2.2MHz.  
e. fRF = 1000MHz.  
f. Minimum time required between switching of states = 1/ (Maximum Switching Rate).  
6
Rev O, April 24, 2018  
Thermal Characteristics  
Table 6.  
Package Thermal Characteristics  
Parameter  
Symbol  
Value  
Units  
Junction to Ambient Thermal Resistance  
θJA  
53  
°C/W  
Junction to Case Thermal Resistance  
(Case is defined as the exposed paddle)  
θJC  
13.8  
°C/W  
Moisture Sensitivity Rating (Per J-STD-020)  
MSL 1  
Typical Operating Conditions (TOCs)  
Unless otherwise noted:  
.
.
.
.
.
.
.
.
VDD = +3.0V  
ZS = ZL = 75Ω  
TEP = 25°C  
fRF = 1200MHz  
Small signal parameters measured with PIN = 0dBm.  
Driven port is RF1 or RF2.  
All temperatures are referenced to the exposed paddle.  
Evaluation Kit traces and connector losses are de-embedded.  
7
Rev O, April 24, 2018  
Typical Performance Characteristics [1]  
Figure 4. Insertion Loss vs. Frequency over  
Temperature and VDD [RF1]  
Figure 5. Insertion Loss vs. Frequency over  
Temperature and VDD [RF2]  
0.0  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
-0.7  
0.0  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
-0.7  
-0.8  
-0.9  
-1.0  
-40 C / 2.7 V  
25 C / 2.7 V  
105 C / 2.7 V  
-40 C / 3.0 V  
25 C / 3.0 V  
105 C / 3.0 V  
-40 C / 3.6 V  
25 C / 3.6 V  
105 C / 3.6 V  
-40 C / 2.7 V  
25 C / 2.7 V  
105 C / 2.7 V  
-40 C / 3.0 V  
25 C / 3.0 V  
105 C / 3.0 V  
-40 C / 3.6 V  
25 C / 3.6 V  
105 C / 3.6 V  
-0.8  
-0.9  
-1.0  
0
500  
1000  
1500  
2000  
2500  
3000  
0
500  
1000  
1500  
2000  
2500  
3000  
Frequency (MHz)  
Frequency (MHz)  
Figure 6. Isolation vs. Frequency over Temp.  
and VDD [RF1 to RF2, RF1 Selected]  
Figure 7. Isolation vs. Frequency over Temp.  
and VDD [RF2 to RF1, RF2 Selected]  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-100  
-40 C / 2.7 V  
25 C / 2.7 V  
105 C / 2.7 V  
-40 C / 3.0 V  
25 C / 3.0 V  
105 C / 3.0 V  
-40 C / 3.6 V  
25 C / 3.6 V  
105 C / 3.6 V  
-40 C / 2.7 V  
25 C / 2.7 V  
105 C / 2.7 V  
-40 C / 3.0 V  
25 C / 3.0 V  
105 C / 3.0 V  
-40 C / 3.6 V  
25 C / 3.6 V  
105 C / 3.6 V  
-110  
-120  
-110  
-120  
0
500  
1000  
1500  
2000  
2500  
3000  
0
500  
1000  
1500  
2000  
2500  
3000  
Frequency (MHz)  
Frequency (MHz)  
Figure 8. Isolation vs. Frequency over Temp.  
and VDD [RF2 to RFC, RF1 Selected]  
Figure 9. Isolation vs. Frequency over Temp.  
and VDD [RF1 to RFC, RF2 Selected]  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-100  
-40 C / 2.7 V  
25 C / 2.7 V  
105 C / 2.7 V  
-40 C / 3.0 V  
25 C / 3.0 V  
105 C / 3.0 V  
-40 C / 3.6 V  
25 C / 3.6 V  
105 C / 3.6 V  
-40 C / 2.7 V  
25 C / 2.7 V  
105 C / 2.7 V  
-40 C / 3.0 V  
25 C / 3.0 V  
105 C / 3.0 V  
-40 C / 3.6 V  
25 C / 3.6 V  
105 C / 3.6 V  
-110  
-120  
-110  
-120  
0
500  
1000  
1500  
2000  
2500  
3000  
0
500  
1000  
1500  
2000  
2500  
3000  
Frequency (MHz)  
Frequency (MHz)  
8
Rev O, April 24, 2018  
Typical Performance Characteristics [2]  
Figure 10. Isolation vs. Frequency over Temp.  
and VDD [RF1 to RFC, All Off]  
Figure 11. Isolation vs. Frequency over Temp.  
and VDD [RF2 to RFC, All Off]  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-100  
-40 C / 2.7 V  
25 C / 2.7 V  
105 C / 2.7 V  
-40 C / 3.0 V  
25 C / 3.0 V  
105 C / 3.0 V  
-40 C / 3.6 V  
25 C / 3.6 V  
105 C / 3.6 V  
-40 C / 2.7 V  
25 C / 2.7 V  
105 C / 2.7 V  
-40 C / 3.0 V  
25 C / 3.0 V  
105 C / 3.0 V  
-40 C / 3.6 V  
25 C / 3.6 V  
105 C / 3.6 V  
-110  
-120  
-110  
-120  
0
500  
1000  
1500  
2000  
2500  
3000  
0
500  
1000  
1500  
2000  
2500  
3000  
Frequency (MHz)  
Frequency (MHz)  
Figure 12. Isolation vs. Frequency over Temp.  
and VDD [RF1 to RF2, All Off]  
Figure 13. RFC Return Loss vs. Frequency over  
Temperature and VDD [All Off]  
-40  
0
-40 C / 2.7 V  
25 C / 2.7 V  
105 C / 2.7 V  
-40 C / 3.0 V  
25 C / 3.0 V  
105 C / 3.0 V  
-40 C / 3.6 V  
25 C / 3.6 V  
105 C / 3.6 V  
-50  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-40 C / 2.7 V  
25 C / 2.7 V  
105 C / 2.7 V  
-40 C / 3.0 V  
25 C / 3.0 V  
105 C / 3.0 V  
-40 C / 3.6 V  
25 C / 3.6 V  
105 C / 3.6 V  
-110  
-120  
0
500  
1000  
1500  
2000  
2500  
3000  
0
500  
1000  
1500  
2000  
2500  
3000  
Frequency (MHz)  
Frequency (MHz)  
Figure 14. RF1 Return Loss vs. Frequency over  
Temperature and VDD [All Off]  
Figure 15. RF2 Return Loss vs. Frequency over  
Temperature and VDD [All Off]  
0
0
-40 C / 2.7 V  
25 C / 2.7 V  
105 C / 2.7 V  
-40 C / 3.0 V  
25 C / 3.0 V  
105 C / 3.0 V  
-40 C / 3.6 V  
25 C / 3.6 V  
105 C / 3.6 V  
-40 C / 2.7 V  
25 C / 2.7 V  
105 C / 2.7 V  
-40 C / 3.0 V  
25 C / 3.0 V  
105 C / 3.0 V  
-40 C / 3.6 V  
25 C / 3.6 V  
105 C / 3.6 V  
-10  
-20  
-30  
-40  
-50  
-10  
-20  
-30  
-40  
-50  
0
500  
1000  
1500  
2000  
2500  
3000  
0
500  
1000  
1500  
2000  
2500  
3000  
Frequency (MHz)  
Frequency (MHz)  
9
Rev O, April 24, 2018  
Typical Performance Characteristics [3]  
Figure 16. RF1 Return Loss vs. Frequency over  
Temperature and VDD [RF1 Selected]  
Figure 17. RF2 Return Loss vs. Frequency over  
Temperature and VDD [RF2 Selected]  
0
0
-40 C / 2.7 V  
25 C / 2.7 V  
105 C / 2.7 V  
-40 C / 3.0 V  
25 C / 3.0 V  
105 C / 3.0 V  
-40 C / 3.6 V  
25 C / 3.6 V  
105 C / 3.6 V  
-40 C / 2.7 V  
25 C / 2.7 V  
105 C / 2.7 V  
-40 C / 3.0 V  
25 C / 3.0 V  
105 C / 3.0 V  
-40 C / 3.6 V  
25 C / 3.6 V  
105 C / 3.6 V  
-10  
-20  
-30  
-40  
-50  
-10  
-20  
-30  
-40  
-50  
0
500  
1000  
1500  
2000  
2500  
3000  
0
500  
1000  
1500  
2000  
2500  
3000  
Frequency (MHz)  
Frequency (MHz)  
Figure 18. RF1 Return Loss vs. Frequency over  
Temperature and VDD [RF2 Selected]  
Figure 19. RF2 Return Loss vs. Frequency over  
Temperature and VDD [RF1 Selected]  
0
0
-40 C / 2.7 V  
25 C / 2.7 V  
105 C / 2.7 V  
-40 C / 3.0 V  
25 C / 3.0 V  
105 C / 3.0 V  
-40 C / 3.6 V  
25 C / 3.6 V  
105 C / 3.6 V  
-40 C / 2.7 V  
25 C / 2.7 V  
105 C / 2.7 V  
-40 C / 3.0 V  
25 C / 3.0 V  
105 C / 3.0 V  
-40 C / 3.6 V  
25 C / 3.6 V  
105 C / 3.6 V  
-10  
-20  
-30  
-40  
-50  
-10  
-20  
-30  
-40  
-50  
0
500  
1000  
1500  
2000  
2500  
3000  
0
500  
1000  
1500  
2000  
2500  
3000  
Frequency (MHz)  
Frequency (MHz)  
Figure 20. RFC Return Loss vs. Frequency over  
Temperature and VDD [RF1 Selected]  
Figure 21. RFC Return Loss vs. Frequency over  
Temperature and VDD [RF2 Selected]  
0
0
-40 C / 2.7 V  
25 C / 2.7 V  
105 C / 2.7 V  
-40 C / 3.0 V  
25 C / 3.0 V  
105 C / 3.0 V  
-40 C / 3.6 V  
25 C / 3.6 V  
105 C / 3.6 V  
-40 C / 2.7 V  
25 C / 2.7 V  
105 C / 2.7 V  
-40 C / 3.0 V  
25 C / 3.0 V  
105 C / 3.0 V  
-40 C / 3.6 V  
25 C / 3.6 V  
105 C / 3.6 V  
-10  
-20  
-30  
-40  
-50  
-10  
-20  
-30  
-40  
-50  
0
500  
1000  
1500  
2000  
2500  
3000  
0
500  
1000  
1500  
2000  
2500  
3000  
Frequency (MHz)  
Frequency (MHz)  
10  
Rev O, April 24, 2018  
Typical Performance Characteristics [4]  
Figure 22. Evaluation Board Through-Line Loss  
vs. Frequency over Temperature  
Figure 23. Evaluation Board Through-Line  
Return Loss vs. Freq. over Temp.  
0.0  
0
-10  
-20  
-30  
-40  
-50  
-40 C  
-40 C  
25 C  
25 C  
105 C  
-0.1  
105 C  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
-0.7  
0
500  
1000  
1500  
2000  
2500  
3000  
0
500  
1000  
1500  
2000  
2500  
3000  
Frequency (MHz)  
Frequency (MHz)  
Figure 24. Switching Time Insertion Loss to  
Isolation  
Figure 25. Switching Time Isolation to  
Insertion Loss  
Figure 26. IDD vs. Control Voltage; VDD = 2.7V  
Figure 27. IDD vs. Control Voltage; VDD = 2.7V  
(C1 set to GND and VDD)  
(C1 set to 0.6V and 2.1V)  
0.14  
0.14  
C1=GND -40C  
C1=GND 25C  
C1=GND 105C  
C1=VDD -40C  
C1=0.6V -40C  
C1=0.6V 25C  
C1=0.6V 105C  
C1=2.1V -40C  
C1=2.1V 25C  
C1=2.1V 105C  
C1=VDD 25C  
C1=VDD 105C  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0.00  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0.00  
0
0.5  
1
1.5  
2
2.5  
3
0
0.5  
1
1.5  
2
2.5  
3
C2 Voltage (V)  
C2 Voltage (V)  
11  
Rev O, April 24, 2018  
Typical Performance Characteristics [5]  
Figure 28. IDD vs. Control Voltage; VDD = 3.0V  
(C1 set to GND and VDD)  
Figure 29. IDD vs. Control Voltage; VDD = 3.0V  
(C1 set to 0.9V and 2.1V)  
0.14  
0.14  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0.00  
C1=0.9V -40C  
C1=0.9V 25C  
C1=0.9V 105C  
C1=2.1V -40C  
C1=2.1V 25C  
C1=2.1V 105C  
C1=GND -40C  
C1=GND 25C  
C1=GND 105C  
C1=VDD -40C  
C1=VDD 25C  
C1=VDD 105C  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0.00  
0
0.5  
1
1.5  
2
2.5  
3
0
0.5  
1
1.5  
2
2.5  
3
C2 Voltage (V)  
C2 Voltage (V)  
Figure 30. IDD vs. Control Voltage; VDD = 3.6V  
(C1 set to GND and VDD)  
Figure 31. IDD vs. Control Voltage; VDD = 3.6V  
(C1 set to 0.9V and 2.7V)  
0.14  
0.14  
C1=0.9V -40C  
C1=0.9V 25C  
C1=0.9V 105C  
C1=2.7V -40C  
C1=2.7V 25C  
C1=2.7V 105C  
C1=GND -40C  
C1=GND 25C  
C1=GND 105C  
C1=VDD -40C  
C1=VDD 25C  
C1=VDD 105C  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0.00  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0.00  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
C2 Voltage (V)  
C2 Voltage (V)  
12  
Rev O, April 24, 2018  
Evaluation Kit Picture  
Figure 32. Top View  
Figure 33. Bottom View  
13  
Rev O, April 24, 2018  
Evaluation Kit / Applications Circuit  
Figure 34. Electrical Schematic  
Table 7.  
Bill of Material (BOM)  
Part Reference  
C1 C6  
QTY  
Description  
Manufacturer Part #  
Manufacturer  
0
1
3
5
1
1
1
Not Installed  
C7  
R1 R3  
J1 J5  
J8  
1000pF ±5%, 50V, C0G Ceramic Capacitor (0603)  
10±1%, 1/10W, Resistor (0402)  
Connector Type F  
GRM1885C1H102J  
ERJ-2RKF1000X  
222181  
Murata  
Panasonic  
Amphenol RF  
3M  
Conn Header Vert 8x2 Pos Gold  
SP2T Switch 4mm x 4mm LQFN  
Printed Circuit Board  
961216-6404-AR  
F2971NCGK  
U1  
IDT  
F297X EVKIT REV 01  
IDT  
14  
Rev O, April 24, 2018  
Control Mode  
Table 8.  
Switch Control Truth Table  
C1  
C2  
RFC RF1  
OFF  
RFC RF2  
OFF  
75Ω Terminated Ports  
LOW  
LOW  
HIGH  
HIGH  
LOW  
HIGH  
LOW  
HIGH  
RFC, RF1, RF2  
OFF  
ON  
N/A  
ON  
OFF  
N/A  
RF1  
RF2  
N/A  
Application Information  
Default Start-up  
Control pins do not include internal pull-down resistors to logic LOW or pull-up resistors to logic HIGH.  
Power Supplies  
A common Vcc power supply should be used for all pins requiring DC power. All supply pins should be bypassed with external capacitors to  
minimize noise and fast transients. Supply noise can degrade the noise figure, and fast transients can trigger ESD clamps and cause them to  
fail. Supply voltage change or transients should have a slew rate smaller than 1V / 20µs. In addition, all control pins should remain at 0V (±0.3V)  
while the supply voltage ramps or while it returns to zero.  
Control Pin Interface  
If control signal integrity is a concern and clean signals cannot be guaranteed due to overshoot, undershoot, ringing, etc., the following circuit  
at the input of each control pin is recommended. This applies to control pins 16 and 17 as shown below.  
Figure 35. Control Pin Interface Schematic  
5kΩ  
C1  
2pF  
VDD GND GND  
20 19 18 17 16  
5kΩ  
1
2
3
4
5
15  
14  
13  
12  
11  
GND  
GND  
RF1  
GND  
GND  
RF2  
C2  
2pF  
F2971  
GND  
GND  
GND  
GND  
EP  
6
7
8
9 10  
GND GND RFC GND GND  
15  
Rev O, April 24, 2018  
 
Evaluation Kit (EVKit) Operation  
External Supply Setup  
Set up a VCC power supply in the voltage range of 2.7V to 3.6V with the power supply output disabled.  
Logic Control Setup  
External logic control is applied to J8 CTL1 (pins 5 and 7) and CTL2 (pins 9 and 11). See Table 8 for the logic truth table.  
Turn On Procedure  
Setup the supplies and EVKIT as noted in the External Supply Setupand Logic Control Setupsections above.  
Enable the VCC supply.  
Set the desired logic setting to achieve the desired configuration (see Table 8). Note that external control logic should not be applied without  
VCC being present.  
Turn Off Procedure  
Set the logic control to 0V.  
Disable the VCC supply.  
Package Drawings  
The package outline drawings are appended at the end of this document and are accessible from the link below. The package information is  
the most current data available and is subject to change without notice or revision of this document.  
www.idt.com/document/psc/20-qfn-package-outline-drawing-40-x-40-x-075-mm-body-05mm-pitch-epad-206-x-206-mm-ncg20p1  
Marking Diagram  
Line 1 and 2 are the part number.  
Line 3 - “ZE” is for the die version.  
Line 3 - “YWW” is the last digit of the year plus the work week.  
Line 3 - “PBG” denotes the production process.  
IDTF29  
71NCGK  
ZEYWWPBG  
16  
Rev O, April 24, 2018  
Ordering Information  
Orderable Part Number  
Package  
MSL Rating Shipping Packaging Operating Temperature  
F2971NCGK  
F2971NCGK8  
F2971EVBI  
4mm x 4mm x 0.75mm 20-LQFN  
(NCG20P1)  
MSL1  
Tray  
-40°C to +105°C  
4mm x 4mm x 0.75mm 20-LQFN  
(NCG20P1)  
MSL1  
Reel  
-40°C to +105°C  
Evaluation Board  
Revision History  
Revision  
Revision Date  
Description of Change  
O
2018-April-24  
Initial release.  
IMPORTANT NOTICE AND DISCLAIMER  
RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (“RENESAS”) PROVIDES TECHNICAL  
SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING  
REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND  
OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,  
INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A  
PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible  
for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3)  
ensuring your application meets applicable standards, and any other safety, security, or other requirements. These  
resources are subject to change without notice. Renesas grants you permission to use these resources only for  
development of an application that uses Renesas products. Other reproduction or use of these resources is strictly  
prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property.  
Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims,  
damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject  
to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources  
expands or otherwise alters any applicable warranties or warranty disclaimers for these products.  
(Rev.1.0 Mar 2020)  
Corporate Headquarters  
Contact Information  
TOYOSU FORESIA, 3-2-24 Toyosu,  
Koto-ku, Tokyo 135-0061, Japan  
www.renesas.com  
For further information on a product, technology, the most  
up-to-date version of a document, or your nearest sales  
office, please visit:  
www.renesas.com/contact/  
Trademarks  
Renesas and the Renesas logo are trademarks of Renesas  
Electronics Corporation. All trademarks and registered  
trademarks are the property of their respective owners.  
© 2020 Renesas Electronics Corporation. All rights reserved.  

相关型号:

F2971NCGK8

75Ω SP2T RF Switch 5MHz to 3000MHz
RENESAS

F2972

High Linearity Broadband SP2T 5MHz to 10GHz
IDT

F2972EVBI-50OHM

High Linearity Broadband SP2T 5MHz to 10GHz
IDT

F2972EVBI-75OHM

High Linearity Broadband SP2T 5MHz to 10GHz
IDT

F2972NEGK

High Linearity Broadband SP2T 5MHz to 10GHz
IDT

F2972NEGK8

High Linearity Broadband SP2T 5MHz to 10GHz
IDT

F2976

High Linearity Broadband SP2T 5MHz to 10GHz
IDT

F2976EVBI-50OHM

High Linearity Broadband SP2T 5MHz to 10GHz
IDT

F2976EVBI-75OHM

High Linearity Broadband SP2T 5MHz to 10GHz
IDT

F2976NEGK

High Linearity Broadband SP2T 5MHz to 10GHz
IDT

F2976NEGK8

High Linearity Broadband SP2T 5MHz to 10GHz
IDT

F2977

High Linearity Broadband SP2T 30MHz to 6GHz
IDT