935325828528 [NXP]

RISC Microcontroller;
935325828528
型号: 935325828528
厂家: NXP    NXP
描述:

RISC Microcontroller

微控制器 外围集成电路
文件: 总96页 (文件大小:846K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NXP Semiconductors  
Data Sheet: Technical Data  
Document Number: MPC5606B  
Rev. 5, 11/2017  
MPC5606BK  
144 LQFP  
100 LQFP  
20 mm x 20 mm  
14 mm x 14 mm  
MPC5606BK Microcontroller  
Data Sheet  
176 LQFP  
24 mm x 24 mm  
1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
1.1 Document overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
1.2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
1.3 Device comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
1.4 Block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Package pinouts and signal descriptions . . . . . . . . . . . . . . . . . . 4  
2.1 Package pinouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
2.2 Pin muxing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
3.1 Parameter classification . . . . . . . . . . . . . . . . . . . . . . . . . 25  
3.2 NVUSRO register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
3.3 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . 27  
3.4 Recommended operating conditions . . . . . . . . . . . . . . . 28  
3.5 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 31  
3.6 I/O pad electrical characteristics . . . . . . . . . . . . . . . . . . 33  
3.7 RESET electrical characteristics . . . . . . . . . . . . . . . . . . 45  
3.8 Power management electrical characteristics . . . . . . . . 48  
3.9 Power consumption in different application modes . . . . 53  
3.10 Flash memory electrical characteristics . . . . . . . . . . . . . 54  
3.11 Electromagnetic compatibility (EMC) characteristics . . . 56  
3.12 Fast external crystal oscillator (4 to 16 MHz) electrical  
characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
3.13 Slow external crystal oscillator (32 kHz) electrical  
characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
3.14 FMPLL electrical characteristics. . . . . . . . . . . . . . . . . . . 63  
3.15 Fast internal RC oscillator (16 MHz) electrical  
characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
3.16 Slow internal RC oscillator (128 kHz) electrical  
characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
3.17 ADC electrical characteristics. . . . . . . . . . . . . . . . . . . . . 66  
3.18 On-chip peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
4.1 Package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . 85  
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
1
Introduction  
1.1  
Document overview  
2
3
This document describes the features of the family and  
options available within the family members, and highlights  
important electrical and physical characteristics of the device.  
1.2  
Description  
This family of 32-bit system-on-chip (SoC) microcontrollers  
is the latest achievement in integrated automotive application  
controllers. It belongs to an expanding family of  
automotive-focused products designed to address the next  
wave of body electronics applications within the vehicle.  
The advanced and cost-efficient e200z0 host processor core of  
this automotive controller family complies with the Power  
Architecture technology and only implements the VLE  
®
(variable-length encoding) APU (Auxiliary Processor Unit),  
providing improved code density. It operates at speeds of up  
to 64 MHz and offers high performance processing optimized  
for low power consumption. It capitalizes on the available  
development infrastructure of current Power Architecture  
devices and is supported with software drivers, operating  
systems and configuration code to assist with users  
implementations.  
4
5
6
NXP reserves the right to change the production detail specifications as may be  
required to permit improvements in the design of its products.  
1.3  
Device comparison  
Table 1 summarizes the functions of the blocks present on the MPC5606BK.  
1
Table 1. MPC5606BK family comparison  
Feature  
MPC5605BK  
MPC5606BK  
Package  
CPU  
100 LQFP  
144 LQFP  
176 LQFP  
100 LQFP  
144 LQFP  
176 LQFP  
e200z0h  
Execution speed2  
Code flash memory  
Data flash memory  
SRAM  
Up to 64 MHz  
768 KB  
64 KB  
1 MB  
64 (4 x 16) KB  
80 KB  
MPU  
8-entry  
16 ch  
Yes  
eDMA  
10-bit ADC  
dedicated3  
7 ch  
15 ch  
29 ch  
7 ch  
15 ch  
29 ch  
shared with 12-bit ADC  
19 ch  
Yes  
12-bit ADC  
dedicated4  
5 ch  
shared with 10-bit ADC  
19 ch  
Total timer I/O5  
eMIOS  
37 ch,  
16-bit  
64 ch,  
16-bit  
37 ch,  
16-bit  
64 ch,  
16-bit  
Counter / OPWM / ICOC6  
O(I)PWM / OPWFMB / OPWMCB / ICOC7  
10 ch  
7 ch  
O(I)PWM / ICOC8  
OPWM / ICOC9  
7 ch  
13 ch  
4
14 ch  
33 ch  
4
SCI (LINFlex)  
SPI (DSPI)  
CAN (FlexCAN)  
I2C  
6
5
8
6
6
5
8
6
3
3
6
1
32 KHz oscillator  
GPIO10  
Yes  
77  
121  
149  
77  
121  
149  
Debug  
JTAG  
1
2
3
4
5
6
7
8
Feature set dependent on selected peripheral multiplexing; table shows example.  
Based on 125 °C ambient operating temperature.  
Not shared with 12-bit ADC, but possibly shared with other alternate functions.  
Not shared with 10-bit ADC, but possibly shared with other alternate functions.  
Refer to eMIOS section of device reference manual for information on the channel configuration and functions.  
Each channel supports a range of modes including Modulus counters, PWM generation, Input Capture, Output Compare.  
Each channel supports a range of modes including PWM generation with dead time, Input Capture, Output Compare.  
Each channel supports a range of modes including PWM generation, Input Capture, Output Compare, Period and Pulse width  
measurement.  
9
Each channel supports a range of modes including PWM generation, Input Capture, and Output Compare.  
10 Maximum I/O count based on multiplexing with peripherals.  
MPC5606BK Microcontroller Data Sheet, Rev. 5  
2
NXP Semiconductors  
1.4  
Block diagram  
Figure 1 shows a top-level block diagram of the MPC5606BK.  
SRAM  
80 KB  
Code Flash Data Flash  
1.0 MB 64 KB  
JTAG  
eDMA  
(Master)  
JTAG Port  
Instructions  
SRAM  
Controller  
Flash memory  
controller  
e200z0h  
(Master)  
Data  
NMI  
(Slave)  
(Master)  
SIUL  
Voltage  
Regulator  
(Slave)  
Interrupt  
request with  
wakeup  
functionality  
Interrupt requests  
from peripheral  
(Slave)  
NMI  
blocks  
MPU  
Registers  
INTC  
WKPU  
Clocks  
CMU  
FMPLL  
RTC  
MC_RGM MC_CGM MC_ME MC_PCU  
Peripheral Bridge  
SSCM  
STM  
PIT  
BAM  
SWT  
ECSM  
SIUL  
8 x  
LINFlex  
6 x  
DSPI  
6 x  
FlexCAN  
64 ch  
eMIOS  
29 ch 10-bit  
ADC  
19 ch 10-bit/12-bit  
ADC  
CTU  
I2  
C
Reset Control  
Interrupt  
Request  
External  
Interrupt  
Request  
5 ch 12-bit  
ADC  
IMUX  
GPIO &  
Pad Control  
. . .  
. . .  
. . .  
. . .  
. . .  
I/O  
Legend:  
ADC  
BAM  
Analog-to-Digital Converter  
Boot Assist Module  
LINFlex  
Serial Communication Interface (LIN support)  
MC_CGM Clock Generation Module  
MC_ME  
FlexCAN Controller Area Network  
Mode Entry Module  
CFlash  
CMU  
CTU  
DFlash  
DSPI  
Code flash memory  
Clock Monitor Unit  
Cross Triggering Unit  
Data flash memory  
Deserial Serial Peripheral Interface  
Enhanced Direct Memory Access  
Enhanced Modular Input Output System  
Frequency-Modulated Phase-Locked Loop  
Inter-integrated Circuit Bus  
Internal Multiplexer  
MPU  
NMI  
Memory Protection Unit  
Non-Maskable Interrupt  
MC_PCU Power Control Unit  
MC_RGM Reset Generation Module  
PIT  
RTC  
SIUL  
SRAM  
SSCM  
STM  
SWT  
WKPU  
Periodic Interrupt Timer  
Real-Time Clock  
System Integration Unit Lite  
Static Random-Access Memory  
System Status Configuration Module  
System Timer Module  
eDMA  
eMIOS  
FMPLL  
2
I C  
IMUX  
INTC  
JTAG  
Interrupt Controller  
JTAG controller  
Software Watchdog Timer  
Wakeup Unit  
Figure 1. MPC5606BK block diagram  
MPC5606BK Microcontroller Data Sheet, Rev. 5  
NXP Semiconductors  
3
2
Package pinouts and signal descriptions  
2.1  
Package pinouts  
The available LQFP pinouts are provided in the following figures. For pin signal descriptions, please see Table 2.  
Figure 2 shows the MPC5606BK in the 176 LQFP package.  
PB[3]  
PC[9]  
PC[14]  
PC[15]  
PJ[4]  
VDD_HV  
VSS_HV  
PH[15]  
PH[13]  
PH[14]  
PI[6]  
1
2
3
4
5
6
7
8
PA[11]  
PA[10]  
PA[9]  
PA[8]  
132  
131  
130  
129  
128  
127  
126  
125  
124  
123  
122  
121  
120  
119  
118  
117  
116  
115  
114  
113  
112  
111  
110  
109  
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
PA[7]  
PE[13]  
PF[14]  
PF[15]  
VDD_HV  
VSS_HV  
PG[0]  
PG[1]  
PH[3]  
PH[2]  
PH[1]  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
PI[7]  
PG[5]  
PG[4]  
PG[3]  
PG[2]  
PA[2]  
PE[0]  
PA[1]  
PH[0]  
PG[12]  
PG[13]  
PA[3]  
PI[13]  
PI[12]  
PI[11]  
PI[10]  
PI[9]  
PI[8]  
PB[15]  
PD[15]  
PB[14]  
PD[14]  
PB[13]  
PD[13]  
PB[12]  
PD[12]  
VDD_HV_ADC1  
VSS_HV_ADC1  
PB[11]  
PD[11]  
PD[10]  
PD[9]  
PE[1]  
PE[8]  
PE[9]  
PE[10]  
PA[0]  
PE[11]  
VSS_HV  
VDD_HV  
VSS_HV  
RESET  
VSS_LV  
VDD_LV  
VDD_BV  
PG[9]  
176 LQFP  
Top view  
PG[8]  
PC[11]  
PC[10]  
PG[7]  
PG[6]  
PB[0]  
PB[1]  
PF[9]  
PF[8]  
PF[12]  
PC[6]  
98  
97  
96  
95  
94  
93  
92  
91  
PB[7]  
PB[6]  
PB[5]  
VDD_HV_ADC0  
90  
89  
VSS_HV_ADC0  
Figure 2. 176 LQFP pinout  
MPC5606BK Microcontroller Data Sheet, Rev. 5  
4
NXP Semiconductors  
Figure 3 shows the MPC5606BK in the 144 LQFP package.  
PB[3]  
PC[9]  
PC[14]  
PC[15]  
PG[5]  
PG[4]  
PG[3]  
PG[2]  
PA[2]  
PE[0]  
PA[1]  
PE[1]  
PE[8]  
PE[9]  
PE[10]  
PA[0]  
PE[11]  
VSS_HV  
VDD_HV  
VSS_HV  
RESET  
VSS_LV  
VDD_LV  
VDD_BV  
PG[9]  
1
2
3
4
5
6
7
8
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
98  
97  
96  
95  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
74  
73  
PA[11]  
PA[10]  
PA[9]  
PA[8]  
PA[7]  
PE[13]  
PF[14]  
PF[15]  
VDD_HV  
VSS_HV  
PG[0]  
PG[1]  
PH[3]  
PH[2]  
PH[1]  
PH[0]  
PG[12]  
PG[13]  
PA[3]  
PB[15]  
PD[15]  
PB[14]  
PD[14]  
PB[13]  
PD[13]  
PB[12]  
VDD_HV_ADC1  
VSS_HV_ADC1  
PD[11]  
PD[10]  
PD[9]  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
144 LQFP  
Top view  
PG[8]  
PC[11]  
PC[10]  
PG[7]  
PG[6]  
PB[0]  
PB[1]  
PF[9]  
PF[8]  
PF[12]  
PC[6]  
PB[7]  
PB[6]  
PB[5]  
VDD_HV_ADC0  
VSS_HV_ADC0  
Figure 3. 144 LQFP pinout  
MPC5606BK Microcontroller Data Sheet, Rev. 5  
NXP Semiconductors  
5
Figure 4 shows the MPC5606BK in the 100 LQFP package.  
PB[3]  
PC[9]  
PC[14]  
PC[15]  
PA[2]  
PE[0]  
PA[1]  
PE[1]  
PE[8]  
1
2
3
4
5
6
7
8
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
PA[11]  
PA[10]  
PA[9]  
PA[8]  
PA[7]  
VDD_HV  
VSS_HV  
PA[3]  
PB[15]  
PD[15]  
PB[14]  
PD[14]  
PB[13]  
PD[13]  
9
PE[9]  
PE[10]  
PA[0]  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
100 LQFP  
Top view  
PE[11]  
VSS_HV  
VDD_HV  
VSS_HV  
RESET  
VSS_LV  
VDD_LV  
VDD_BV  
PC[11]  
PC[10]  
PB[0]  
PB[12]  
VDD_HV_ADC1  
VSS_HV_ADC1  
PD[11]  
PD[10]  
PD[9]  
PB[7]  
PB[6]  
PB[5]  
VDD_HV_ADC0  
VSS_HV_ADC0  
PB[1]  
PC[6]  
Figure 4. 100 LQFP pinout  
MPC5606BK Microcontroller Data Sheet, Rev. 5  
6
NXP Semiconductors  
2.2  
Pin muxing  
Table 2 defines the pin list and muxing for this device.  
Each entry of Table 2 shows all the possible configurations for each pin, via the alternate functions. The default function  
assigned to each pin after reset is indicated by AF0.  
Table 2. Functional port pins  
Pin number  
Port  
pin  
PCR  
Alternate  
Function  
register function1  
100  
144  
176  
LQFP LQFP LQFP  
Port A  
PA[0]  
PA[1]  
PA[2]  
PA[3]  
PCR[0]  
PCR[1]  
PCR[2]  
PCR[3]  
AF0  
AF1  
AF2  
AF3  
GPIO[0]  
E0UC[0]  
CLKOUT  
E0UC[13]  
WKUP[19]4  
SIUL  
I/O  
I/O  
O
I/O  
I
M
S
S
J
Tristate  
Tristate  
Tristate  
Tristate  
12  
7
16  
11  
9
24  
19  
eMIOS_0  
MC_CGM  
eMIOS_0  
WKUP  
AF0  
AF1  
AF2  
AF3  
GPIO[1]  
E0UC[1]  
NMI5  
SIUL  
eMIOS_0  
WKUP  
I/O  
I/O  
I
I
WKUP[2]4  
WKUP  
AF0  
AF1  
AF2  
AF3  
GPIO[2]  
E0UC[2]  
SIUL  
eMIOS_0  
ADC_0  
WKUP  
I/O  
I/O  
O
5
17  
MA[2]  
WKUP[3]4  
I
AF0  
AF1  
AF2  
AF3  
GPIO[3]  
E0UC[3]  
LIN5TX  
CS4_1  
EIRQ[0]  
ADC1_S[0]  
SIUL  
eMIOS_0  
LINFlex_5  
DSPI_1  
SIUL  
I/O  
I/O  
O
O
I
68  
90  
114  
ADC_1  
I
PA[4]  
PCR[4]  
AF0  
AF1  
AF2  
AF3  
GPIO[4]  
E0UC[4]  
CS0_1  
LIN5RX  
WKUP[9]4  
SIUL  
eMIOS_0  
DSPI_1  
LINFlex_5  
WKUP  
I/O  
I/O  
I/O  
I
S
Tristate  
29  
43  
51  
I
PA[5]  
PA[6]  
PCR[5]  
PCR[6]  
AF0  
AF1  
AF2  
AF3  
GPIO[5]  
E0UC[5]  
LIN4TX  
SIUL  
eMIOS_0  
LINFlex_4  
I/O  
I/O  
O
M
S
Tristate  
Tristate  
79  
80  
118  
119  
146  
147  
AF0  
AF1  
AF2  
AF3  
GPIO[6]  
E0UC[6]  
CS1_1  
EIRQ[1]  
LIN4RX  
SIUL  
eMIOS_0  
DSPI_1  
SIUL  
I/O  
I/O  
O
I
LINFlex_4  
I
MPC5606BK Microcontroller Data Sheet, Rev. 5  
NXP Semiconductors  
7
Table 2. Functional port pins (continued)  
Function  
Pin number  
144  
Port  
pin  
PCR  
Alternate  
register function1  
100  
176  
LQFP LQFP LQFP  
PA[7]  
PCR[7]  
PCR[8]  
AF0  
AF1  
AF2  
AF3  
GPIO[7]  
E0UC[7]  
LIN3TX  
EIRQ[2]  
ADC1_S[1]  
SIUL  
eMIOS_0  
LINFlex_3  
SIUL  
ADC_1  
I/O  
I/O  
O
I
J
Tristate  
71  
104  
128  
I
PA[8]  
AF0  
AF1  
AF2  
AF3  
GPIO[8]  
E0UC[8]  
E0UC[14]  
EIRQ[3]  
ABS[0]  
LIN3RX  
SIUL  
eMIOS_0  
eMIOS_0  
SIUL  
BAM  
I/O  
I/O  
I/O  
I
S
Input,  
weak  
pull-up  
72  
105  
129  
N/A6  
I
I
LINFlex_3  
PA[9]  
PCR[9]  
AF0  
AF1  
AF2  
AF3  
N/A6  
GPIO[9]  
E0UC[9]  
CS2_1  
FAB  
SIUL  
eMIOS_0  
DSPI_1  
BAM  
I/O  
I/O  
O
S
J
Pull-  
down  
73  
74  
75  
106  
107  
108  
130  
131  
132  
I
PA[10] PCR[10]  
PA[11] PCR[11]  
AF0  
AF1  
AF2  
AF3  
GPIO[10]  
E0UC[10]  
SDA  
LIN2TX  
ADC1_S[2]  
SIUL  
eMIOS_0  
I2C_0  
LINFlex_2  
ADC_1  
I/O  
I/O  
I/O  
O
Tristate  
Tristate  
I
AF0  
AF1  
AF2  
AF3  
GPIO[11]  
E0UC[11]  
SCL  
SIUL  
eMIOS_0  
I2C_0  
SIUL  
I/O  
I/O  
I/O  
I
J
EIRQ[16]  
LIN2RX  
ADC1_S[3]  
LINFlex_2  
ADC_1  
I
I
PA[12] PCR[12]  
AF0  
AF1  
AF2  
AF3  
GPIO[12]  
E0UC[28]  
CS3_1  
EIRQ[17]  
SIN_0  
SIUL  
eMIOS_0  
DSPI_1  
SIUL  
I/O  
I/O  
O
I
S
Tristate  
31  
45  
53  
DSPI_0  
I
PA[13] PCR[13]  
PA[14] PCR[14]  
AF0  
AF1  
AF2  
AF3  
GPIO[13]  
SOUT_0  
E0UC[29]  
SIUL  
DSPI_0  
eMIOS_0  
I/O  
O
I/O  
M
M
Tristate  
Tristate  
30  
28  
44  
42  
52  
50  
AF0  
AF1  
AF2  
AF3  
GPIO[14]  
SCK_0  
CS0_0  
E0UC[0]  
EIRQ[4]  
SIUL  
DSPI_0  
DSPI_0  
eMIOS_0  
SIUL  
I/O  
I/O  
I/O  
I/O  
I
MPC5606BK Microcontroller Data Sheet, Rev. 5  
8
NXP Semiconductors  
Table 2. Functional port pins (continued)  
Function  
Pin number  
144  
Port  
pin  
PCR  
Alternate  
register function1  
100  
176  
LQFP LQFP LQFP  
PA[15] PCR[15]  
AF0  
AF1  
AF2  
AF3  
GPIO[15]  
CS0_0  
SCK_0  
SIUL  
DSPI_0  
DSPI_0  
eMIOS_0  
WKUP  
I/O  
I/O  
I/O  
I/O  
I
M
Tristate  
27  
40  
48  
E0UC[1]  
WKUP[10]4  
Port B  
PB[0] PCR[16]  
PB[1] PCR[17]  
AF0  
AF1  
AF2  
AF3  
GPIO[16]  
CAN0TX  
E0UC[30]  
LIN0TX  
SIUL  
I/O  
O
I/O  
O
M
S
Tristate  
Tristate  
23  
24  
31  
32  
39  
40  
FlexCAN_0  
eMIOS_0  
LINFlex_0  
AF0  
AF1  
AF2  
AF3  
GPIO[17]  
SIUL  
eMIOS_0  
WKUP  
FlexCAN_0  
LINFlex_0  
I/O  
I/O  
I
E0UC[31]  
WKUP[4]4  
CAN0RX  
LIN0RX  
I
I
PB[2] PCR[18]  
PB[3] PCR[19]  
AF0  
AF1  
AF2  
AF3  
GPIO[18]  
LIN0TX  
SDA  
SIUL  
LINFlex_0  
I2C_0  
I/O  
O
I/O  
I/O  
M
S
Tristate 100  
144  
1
176  
1
E0UC[30]  
eMIOS_0  
AF0  
AF1  
AF2  
AF3  
GPIO[19]  
E0UC[31]  
SCL  
SIUL  
eMIOS_0  
I2C_0  
I/O  
I/O  
I/O  
I
Tristate  
Tristate  
1
WKUP[11]4  
LIN0RX  
WKUP  
LINFlex_0  
I
PB[4] PCR[20]  
AF0  
AF1  
AF2  
AF3  
I
I
I
50  
72  
75  
88  
91  
ADC0_P[0]  
ADC1_P[0]  
GPIO[20]  
ADC_0  
ADC_1  
SIUL  
I
I
PB[5] PCR[21]  
AF0  
AF1  
AF2  
AF3  
I
Tristate  
53  
ADC0_P[1]  
ADC1_P[1]  
GPIO[21]  
ADC_0  
ADC_1  
SIUL  
I
I
MPC5606BK Microcontroller Data Sheet, Rev. 5  
NXP Semiconductors  
9
Table 2. Functional port pins (continued)  
Function  
Pin number  
144  
Port  
pin  
PCR  
Alternate  
register function1  
100  
176  
LQFP LQFP LQFP  
PB[6] PCR[22]  
PB[7] PCR[23]  
PB[8] PCR[24]  
AF0  
AF1  
AF2  
AF3  
I
I
I
I
Tristate  
Tristate  
54  
55  
39  
76  
77  
53  
92  
93  
61  
ADC0_P[2]  
ADC1_P[2]  
GPIO[22]  
ADC_0  
ADC_1  
SIUL  
I
I
AF0  
AF1  
AF2  
AF3  
I
ADC0_P[3]  
ADC1_P[3]  
GPIO[23]  
ADC_0  
ADC_1  
SIUL  
I
I
AF0  
AF1  
AF2  
AF3  
GPIO[24]  
SIUL  
I
I
OSC32K_XTAL7 OSC32K  
WKUP[25]  
ADC0_S[0]  
ADC1_S[4]  
WKUP  
ADC_0  
ADC_1  
I
I
PB[9] PCR[25]  
AF0  
AF1  
AF2  
AF3  
GPIO[25]  
SIUL  
I
I
I
38  
52  
60  
OSC32K_EXTAL7 OSC32K  
WKUP[26]  
ADC0_S[1]  
ADC1_S[5]  
WKUP  
ADC_0  
ADC_1  
I
I
PB[10] PCR[26]  
AF0  
AF1  
AF2  
AF3  
GPIO[26]  
SIUL  
I/O  
I
J
Tristate  
40  
54  
62  
WKUP[8]4  
ADC0_S[2]  
ADC1_S[6]  
WKUP  
ADC_0  
ADC_1  
I
I
PB[11] PCR[27]  
PB[12] PCR[28]  
AF0  
AF1  
AF2  
AF3  
GPIO[27]  
E0UC[3]  
CS0_0  
ADC0_S[3]  
SIUL  
eMIOS_0  
DSPI_0  
ADC_0  
I/O  
I/O  
I/O  
I
J
J
Tristate  
Tristate  
97  
AF0  
AF1  
AF2  
AF3  
GPIO[28]  
E0UC[4]  
CS1_0  
ADC0_X[0]  
SIUL  
eMIOS_0  
DSPI_0  
ADC_0  
I/O  
I/O  
O
61  
83  
101  
I
MPC5606BK Microcontroller Data Sheet, Rev. 5  
10  
NXP Semiconductors  
Table 2. Functional port pins (continued)  
Function  
Pin number  
144  
Port  
pin  
PCR  
Alternate  
register function1  
100  
176  
LQFP LQFP LQFP  
PB[13] PCR[29]  
PB[14] PCR[30]  
PB[15] PCR[31]  
AF0  
AF1  
AF2  
AF3  
GPIO[29]  
E0UC[5]  
CS2_0  
ADC0_X[1]  
SIUL  
eMIOS_0  
DSPI_0  
ADC_0  
I/O  
I/O  
O
J
J
J
Tristate  
Tristate  
Tristate  
63  
65  
67  
85  
87  
89  
103  
105  
107  
I
AF0  
AF1  
AF2  
AF3  
GPIO[30]  
E0UC[6]  
CS3_0  
ADC0_X[2]  
SIUL  
eMIOS_0  
DSPI_0  
ADC_0  
I/O  
I/O  
O
I
AF0  
AF1  
AF2  
AF3  
GPIO[31]  
E0UC[7]  
CS4_0  
ADC0_X[3]  
SIUL  
eMIOS_0  
DSPI_0  
ADC_0  
I/O  
I/O  
O
I
Port C  
PC[0]8 PCR[32]  
PC[1]8 PCR[33]  
PC[2] PCR[34]  
AF0  
AF1  
AF2  
AF3  
GPIO[32]  
SIUL  
JTAGC  
I/O  
I
M
Input,  
weak  
pull-up  
87  
82  
78  
126  
121  
117  
154  
149  
145  
TDI  
AF0  
AF1  
AF2  
AF3  
GPIO[33]  
TDO  
SIUL  
JTAGC  
I/O  
O
F9 Tristate  
AF0  
AF1  
AF2  
AF3  
GPIO[34]  
SCK_1  
CAN4TX  
DEBUG[0]  
EIRQ[5]  
SIUL  
DSPI_1  
FlexCAN_4  
SSCM  
I/O  
I/O  
O
O
I
M
S
Tristate  
Tristate  
SIUL  
PC[3] PCR[35]  
AF0  
AF1  
AF2  
AF3  
GPIO[35]  
CS0_1  
MA[0]  
DEBUG[1]  
EIRQ[6]  
CAN1RX  
CAN4RX  
SIUL  
DSPI_1  
ADC_0  
SSCM  
SIUL  
I/O  
I/O  
O
O
I
77  
92  
116  
131  
144  
159  
FlexCAN_1  
FlexCAN_4  
I
I
PC[4] PCR[36]  
AF0  
AF1  
AF2  
AF3  
GPIO[36]  
E1UC[31]  
DEBUG[2]  
EIRQ[18]  
SIN_1  
SIUL  
eMIOS_1  
SSCM  
SIUL  
I/O  
I/O  
O
I
M
Tristate  
DSPI_1  
FlexCAN_3  
I
I
CAN3RX  
MPC5606BK Microcontroller Data Sheet, Rev. 5  
NXP Semiconductors  
11  
Table 2. Functional port pins (continued)  
Function  
Pin number  
144  
Port  
pin  
PCR  
Alternate  
register function1  
100  
176  
LQFP LQFP LQFP  
PC[5] PCR[37]  
AF0  
AF1  
AF2  
AF3  
GPIO[37]  
SOUT_1  
CAN3TX  
DEBUG[3]  
EIRQ[7]  
SIUL  
DSPI_1  
FlexCAN_3  
SSCM  
I/O  
O
O
O
I
M
Tristate  
91  
130  
158  
SIUL  
PC[6] PCR[38]  
PC[7] PCR[39]  
AF0  
AF1  
AF2  
AF3  
GPIO[38]  
LIN1TX  
E1UC[28]  
DEBUG[4]  
SIUL  
I/O  
O
I/O  
O
S
S
Tristate  
Tristate  
25  
26  
36  
37  
44  
45  
LINFlex_1  
eMIOS_1  
SSCM  
AF0  
AF1  
AF2  
AF3  
GPIO[39]  
SIUL  
eMIOS_1  
SSCM  
LINFlex_1  
WKUP  
I/O  
I/O  
O
I
E1UC[29]  
DEBUG[5]  
LIN1RX  
WKUP[12]4  
I
PC[8] PCR[40]  
PC[9] PCR[41]  
AF0  
AF1  
AF2  
AF3  
GPIO[40]  
LIN2TX  
E0UC[3]  
DEBUG[6]  
SIUL  
I/O  
O
I/O  
O
S
S
Tristate  
Tristate  
99  
2
143  
2
175  
2
LINFlex_2  
eMIOS_0  
SSCM  
AF0  
AF1  
AF2  
AF3  
GPIO[41]  
E0UC[7]  
DEBUG[7]  
WKUP[13]4  
LIN2RX  
SIUL  
eMIOS_0  
SSCM  
WKUP  
LINFlex_2  
I/O  
I/O  
O
I
I
PC[10] PCR[42]  
PC[11] PCR[43]  
AF0  
AF1  
AF2  
AF3  
GPIO[42]  
CAN1TX  
CAN4TX  
MA[1]  
SIUL  
I/O  
O
O
M
S
Tristate  
Tristate  
22  
21  
28  
27  
36  
35  
FlexCAN_1  
FlexCAN_4  
ADC_0  
O
AF0  
AF1  
AF2  
AF3  
GPIO[43]  
SIUL  
I/O  
O
I
MA[2]  
ADC_0  
WKUP  
FlexCAN_1  
FlexCAN_4  
WKUP[5]4  
CAN1RX  
CAN4RX  
I
I
PC[12] PCR[44]  
PC[13] PCR[45]  
AF0  
AF1  
AF2  
AF3  
GPIO[44]  
E0UC[12]  
SIUL  
eMIOS_0  
SIUL  
I/O  
I/O  
I
M
S
Tristate  
Tristate  
97  
98  
141  
142  
173  
174  
EIRQ[19]  
SIN_2  
DSPI_2  
I
AF0  
AF1  
AF2  
AF3  
GPIO[45]  
E0UC[13]  
SOUT_2  
SIUL  
eMIOS_0  
DSPI_2  
I/O  
I/O  
O
MPC5606BK Microcontroller Data Sheet, Rev. 5  
12  
NXP Semiconductors  
Table 2. Functional port pins (continued)  
Function  
Pin number  
144  
Port  
pin  
PCR  
Alternate  
register function1  
100  
176  
LQFP LQFP LQFP  
PC[14] PCR[46]  
AF0  
AF1  
AF2  
AF3  
GPIO[46]  
E0UC[14]  
SCK_2  
SIUL  
eMIOS_0  
DSPI_2  
I/O  
I/O  
I/O  
I
S
Tristate  
3
3
3
EIRQ[8]  
SIUL  
PC[15] PCR[47]  
AF0  
AF1  
AF2  
AF3  
GPIO[47]  
E0UC[15]  
CS0_2  
SIUL  
eMIOS_0  
DSPI_2  
I/O  
I/O  
I/O  
I
M
Tristate  
4
4
4
EIRQ[20]  
SIUL  
Port D  
PD[0] PCR[48]  
AF0  
AF1  
AF2  
AF3  
GPIO[48]  
SIUL  
I
I
I
I
Tristate  
Tristate  
41  
42  
63  
64  
77  
78  
WKUP[27]  
ADC0_P[4]  
ADC1_P[4]  
WKUP  
ADC_0  
ADC_1  
I
I
PD[1] PCR[49]  
AF0  
AF1  
AF2  
AF3  
GPIO[49]  
SIUL  
I
I
WKUP[28]  
ADC0_P[5]  
ADC1_P[5]  
WKUP  
ADC_0  
ADC_1  
I
I
PD[2] PCR[50]  
PD[3] PCR[51]  
PD[4] PCR[52]  
AF0  
AF1  
AF2  
AF3  
GPIO[50]  
SIUL  
ADC_0  
ADC_1  
I
I
I
I
I
Tristate  
Tristate  
Tristate  
43  
44  
45  
65  
66  
67  
79  
80  
81  
ADC0_P[6]  
ADC1_P[6]  
I
AF0  
AF1  
AF2  
AF3  
GPIO[51]  
SIUL  
ADC_0  
ADC_1  
I
I
ADC0_P[7]  
ADC1_P[7]  
I
AF0  
AF1  
AF2  
AF3  
GPIO[52]  
SIUL  
ADC_0  
ADC_1  
I
I
ADC0_P[8]  
ADC1_P[8]  
I
MPC5606BK Microcontroller Data Sheet, Rev. 5  
NXP Semiconductors  
13  
Table 2. Functional port pins (continued)  
Function  
Pin number  
144  
Port  
pin  
PCR  
Alternate  
register function1  
100  
176  
LQFP LQFP LQFP  
PD[5] PCR[53]  
PD[6] PCR[54]  
PD[7] PCR[55]  
PD[8] PCR[56]  
PD[9] PCR[57]  
PD[10] PCR[58]  
PD[11] PCR[59]  
PD[12] PCR[60]  
AF0  
AF1  
AF2  
AF3  
GPIO[53]  
SIUL  
ADC_0  
ADC_1  
I
I
I
Tristate  
Tristate  
Tristate  
Tristate  
Tristate  
Tristate  
Tristate  
Tristate  
46  
47  
48  
49  
56  
57  
58  
68  
69  
70  
71  
78  
79  
80  
82  
83  
84  
87  
94  
95  
96  
100  
ADC0_P[9]  
ADC1_P[9]  
I
AF0  
AF1  
AF2  
AF3  
GPIO[54]  
SIUL  
ADC_0  
ADC_1  
I
I
I
ADC0_P[10]  
ADC1_P[10]  
I
AF0  
AF1  
AF2  
AF3  
GPIO[55]  
SIUL  
ADC_0  
ADC_1  
I
I
I
ADC0_P[11]  
ADC1_P[11]  
I
AF0  
AF1  
AF2  
AF3  
GPIO[56]  
SIUL  
ADC_0  
ADC_1  
I
I
I
ADC0_P[12]  
ADC1_P[12]  
I
AF0  
AF1  
AF2  
AF3  
GPIO[57]  
SIUL  
ADC_0  
ADC_1  
I
I
I
ADC0_P[13]  
ADC1_P[13]  
I
AF0  
AF1  
AF2  
AF3  
GPIO[58]  
SIUL  
ADC_0  
ADC_1  
I
I
I
ADC0_P[14]  
ADC1_P[14]  
I
AF0  
AF1  
AF2  
AF3  
GPIO[59]  
SIUL  
ADC_0  
ADC_1  
I
I
I
ADC0_P[15]  
ADC1_P[15]  
I
AF0  
AF1  
AF2  
AF3  
GPIO[60]  
CS5_0  
E0UC[24]  
SIUL  
DSPI_0  
eMIOS_0  
I/O  
O
I/O  
I
J
ADC0_S[4]  
ADC_0  
MPC5606BK Microcontroller Data Sheet, Rev. 5  
14  
NXP Semiconductors  
Table 2. Functional port pins (continued)  
Function  
Pin number  
144  
Port  
pin  
PCR  
Alternate  
register function1  
100  
176  
LQFP LQFP LQFP  
PD[13] PCR[61]  
PD[14] PCR[62]  
PD[15] PCR[63]  
AF0  
AF1  
AF2  
AF3  
GPIO[61]  
CS0_1  
E0UC[25]  
SIUL  
DSPI_1  
eMIOS_0  
I/O  
I/O  
I/O  
I
J
J
J
Tristate  
Tristate  
Tristate  
62  
64  
66  
84  
86  
88  
102  
104  
106  
ADC0_S[5]  
ADC_0  
AF0  
AF1  
AF2  
AF3  
GPIO[62]  
CS1_1  
E0UC[26]  
SIUL  
DSPI_1  
eMIOS_0  
I/O  
O
I/O  
I
ADC0_S[6]  
ADC_0  
AF0  
AF1  
AF2  
AF3  
GPIO[63]  
CS2_1  
E0UC[27]  
SIUL  
DSPI_1  
eMIOS_0  
I/O  
O
I/O  
I
ADC0_S[7]  
ADC_0  
Port E  
PE[0] PCR[64]  
AF0  
AF1  
AF2  
AF3  
GPIO[64]  
E0UC[16]  
SIUL  
eMIOS_0  
I/O  
I/O  
I
S
Tristate  
6
10  
18  
WKUP[6]4  
CAN5RX  
WKUP  
FlexCAN_5  
I
PE[1] PCR[65]  
PE[2] PCR[66]  
AF0  
AF1  
AF2  
AF3  
GPIO[65]  
E0UC[17]  
CAN5TX  
SIUL  
eMIOS_0  
FlexCAN_5  
I/O  
I/O  
O
M
M
Tristate  
Tristate  
8
12  
20  
AF0  
AF1  
AF2  
AF3  
GPIO[66]  
E0UC[18]  
SIUL  
eMIOS_0  
SIUL  
I/O  
I/O  
I
89  
128  
156  
EIRQ[21]  
SIN_1  
DSPI_1  
I
PE[3] PCR[67]  
PE[4] PCR[68]  
AF0  
AF1  
AF2  
AF3  
GPIO[67]  
E0UC[19]  
SOUT_1  
SIUL  
eMIOS_0  
DSPI_1  
I/O  
I/O  
O
M
M
Tristate  
Tristate  
90  
93  
129  
132  
157  
160  
AF0  
AF1  
AF2  
AF3  
GPIO[68]  
E0UC[20]  
SCK_1  
SIUL  
eMIOS_0  
DSPI_1  
I/O  
I/O  
I/O  
I
EIRQ[9]  
SIUL  
PE[5] PCR[69]  
AF0  
AF1  
AF2  
AF3  
GPIO[69]  
E0UC[21]  
CS0_1  
SIUL  
eMIOS_0  
DSPI_1  
ADC_0  
I/O  
I/O  
I/O  
O
M
Tristate  
94  
133  
161  
MA[2]  
MPC5606BK Microcontroller Data Sheet, Rev. 5  
NXP Semiconductors  
15  
Table 2. Functional port pins (continued)  
Function  
Pin number  
144  
Port  
pin  
PCR  
Alternate  
register function1  
100  
176  
LQFP LQFP LQFP  
PE[6] PCR[70]  
AF0  
AF1  
AF2  
AF3  
GPIO[70]  
E0UC[22]  
CS3_0  
MA[1]  
EIRQ[22]  
SIUL  
eMIOS_0  
DSPI_0  
ADC_0  
SIUL  
I/O  
I/O  
O
O
I
M
Tristate  
95  
139  
167  
PE[7] PCR[71]  
AF0  
AF1  
AF2  
AF3  
GPIO[71]  
E0UC[23]  
CS2_0  
MA[0]  
EIRQ[23]  
SIUL  
eMIOS_0  
DSPI_0  
ADC_0  
SIUL  
I/O  
I/O  
O
O
I
M
Tristate  
96  
140  
168  
PE[8] PCR[72]  
PE[9] PCR[73]  
AF0  
AF1  
AF2  
AF3  
GPIO[72]  
CAN2TX  
E0UC[22]  
CAN3TX  
SIUL  
I/O  
O
I/O  
O
M
S
Tristate  
Tristate  
9
13  
14  
21  
22  
FlexCAN_2  
eMIOS_0  
FlexCAN_3  
AF0  
AF1  
AF2  
AF3  
GPIO[73]  
SIUL  
eMIOS_0  
WKUP  
FlexCAN_2  
FlexCAN_3  
I/O  
I/O  
I
10  
E0UC[23]  
WKUP[7]4  
CAN2RX  
CAN3RX  
I
I
PE[10] PCR[74]  
PE[11] PCR[75]  
AF0  
AF1  
AF2  
AF3  
GPIO[74]  
LIN3TX  
CS3_1  
E1UC[30]  
EIRQ[10]  
SIUL  
LINFlex_3  
DSPI_1  
eMIOS_1  
SIUL  
I/O  
O
O
I/O  
I
S
S
Tristate  
Tristate  
11  
13  
15  
17  
23  
25  
AF0  
AF1  
AF2  
AF3  
GPIO[75]  
E0UC[24]  
CS4_1  
SIUL  
eMIOS_0  
DSPI_1  
LINFlex_3  
WKUP  
I/O  
I/O  
O
I
LIN3RX  
WKUP[14]4  
I
PE[12] PCR[76]  
AF0  
AF1  
AF2  
AF3  
GPIO[76]  
SIUL  
eMIOS_1  
SIUL  
DSPI_2  
ADC_1  
I/O  
I/O  
I
J
Tristate  
Tristate  
76  
109  
103  
133  
127  
E1UC[19]10  
EIRQ[11]  
SIN_2  
ADC1_S[7]  
I
I
PE[13] PCR[77]  
AF0  
AF1  
AF2  
AF3  
GPIO[77]  
SOUT_2  
E1UC[20]  
SIUL  
DSPI_2  
eMIOS_1  
I/O  
O
I/O  
S
MPC5606BK Microcontroller Data Sheet, Rev. 5  
16  
NXP Semiconductors  
Table 2. Functional port pins (continued)  
Function  
Pin number  
144  
Port  
pin  
PCR  
Alternate  
register function1  
100  
176  
LQFP LQFP LQFP  
PE[14] PCR[78]  
AF0  
AF1  
AF2  
AF3  
GPIO[78]  
SCK_2  
E1UC[21]  
SIUL  
DSPI_2  
eMIOS_1  
I/O  
I/O  
I/O  
I
S
Tristate  
112  
136  
EIRQ[12]  
SIUL  
PE[15] PCR[79]  
AF0  
AF1  
AF2  
AF3  
GPIO[79]  
CS0_2  
E1UC[22]  
SIUL  
DSPI_2  
eMIOS_1  
I/O  
I/O  
I/O  
M
Tristate  
113  
137  
Port F  
PF[0] PCR[80]  
PF[1] PCR[81]  
PF[2] PCR[82]  
PF[3] PCR[83]  
PF[4] PCR[84]  
PF[5] PCR[85]  
PF[6] PCR[86]  
AF0  
AF1  
AF2  
AF3  
GPIO[80]  
E0UC[10]  
CS3_1  
SIUL  
eMIOS_0  
DSPI_1  
I/O  
I/O  
O
I
J
J
J
J
J
J
J
Tristate  
Tristate  
Tristate  
Tristate  
Tristate  
Tristate  
Tristate  
55  
56  
57  
58  
59  
60  
61  
63  
64  
65  
66  
67  
68  
69  
ADC0_S[8]  
ADC_0  
AF0  
AF1  
AF2  
AF3  
GPIO[81]  
E0UC[11]  
CS4_1  
SIUL  
eMIOS_0  
DSPI_1  
I/O  
I/O  
O
I
ADC0_S[9]  
ADC_0  
AF0  
AF1  
AF2  
AF3  
GPIO[82]  
E0UC[12]  
CS0_2  
SIUL  
eMIOS_0  
DSPI_2  
I/O  
I/O  
O
I
ADC0_S[10]  
ADC_0  
AF0  
AF1  
AF2  
AF3  
GPIO[83]  
E0UC[13]  
CS1_2  
SIUL  
eMIOS_0  
DSPI_2  
I/O  
I/O  
O
I
ADC0_S[11]  
ADC_0  
AF0  
AF1  
AF2  
AF3  
GPIO[84]  
E0UC[14]  
CS2_2  
SIUL  
eMIOS_0  
DSPI_2  
I/O  
I/O  
O
I
ADC0_S[12]  
ADC_0  
AF0  
AF1  
AF2  
AF3  
GPIO[85]  
E0UC[22]  
CS3_2  
SIUL  
eMIOS_0  
DSPI_2  
I/O  
I/O  
O
I
ADC0_S[13]  
ADC_0  
AF0  
AF1  
AF2  
AF3  
GPIO[86]  
E0UC[23]  
CS1_1  
SIUL  
eMIOS_0  
DSPI_1  
I/O  
I/O  
O
I
ADC0_S[14]  
ADC_0  
MPC5606BK Microcontroller Data Sheet, Rev. 5  
NXP Semiconductors  
17  
Table 2. Functional port pins (continued)  
Function  
Pin number  
144  
Port  
pin  
PCR  
Alternate  
register function1  
100  
176  
LQFP LQFP LQFP  
PF[7] PCR[87]  
AF0  
AF1  
AF2  
AF3  
GPIO[87]  
CS2_1  
SIUL  
DSPI_1  
I/O  
O
I
J
Tristate  
62  
70  
ADC0_S[15]  
ADC_0  
PF[8] PCR[88]  
PF[9] PCR[89]  
AF0  
AF1  
AF2  
AF3  
GPIO[88]  
CAN3TX  
CS4_0  
SIUL  
FlexCAN_3  
DSPI_0  
I/O  
O
O
M
S
Tristate  
Tristate  
34  
33  
42  
41  
CAN2TX  
FlexCAN_2  
O
AF0  
AF1  
AF2  
AF3  
GPIO[89]  
E1UC[1]  
CS5_0  
SIUL  
eMIOS_1  
DSPI_0  
WKUP  
FlexCAN_2  
FlexCAN_3  
I/O  
I/O  
O
I
WKUP[22]4  
CAN2RX  
CAN3RX  
I
I
PF[10] PCR[90]  
PF[11] PCR[91]  
AF0  
AF1  
AF2  
AF3  
GPIO[90]  
CS1_0  
LIN4TX  
E1UC[2]  
SIUL  
DSPI_0  
LINFlex_4  
eMIOS_1  
I/O  
O
O
M
S
Tristate  
Tristate  
38  
39  
46  
47  
I/O  
AF0  
AF1  
AF2  
AF3  
GPIO[91]  
CS2_0  
SIUL  
DSPI_0  
eMIOS_1  
WKUP  
LINFlex_4  
I/O  
O
I/O  
I
E1UC[3]  
WKUP[15]4  
LIN4RX  
I
PF[12] PCR[92]  
PF[13] PCR[93]  
AF0  
AF1  
AF2  
AF3  
GPIO[92]  
E1UC[25]  
LIN5TX  
SIUL  
eMIOS_1  
LINFlex_5  
I/O  
I/O  
O
M
S
Tristate  
Tristate  
35  
41  
43  
49  
AF0  
AF1  
AF2  
AF3  
GPIO[93]  
E1UC[26]  
SIUL  
eMIOS_1  
I/O  
I/O  
I
WKUP[16]4  
LIN5RX  
WKUP  
LINFlex_5  
I
PF[14] PCR[94]  
AF0  
AF1  
AF2  
AF3  
GPIO[94]  
CAN4TX  
E1UC[27]  
CAN1TX  
SIUL  
I/O  
O
I/O  
O
M
Tristate  
102  
126  
FlexCAN_4  
eMIOS_1  
FlexCAN_1  
MPC5606BK Microcontroller Data Sheet, Rev. 5  
18  
NXP Semiconductors  
Table 2. Functional port pins (continued)  
Function  
Pin number  
144  
Port  
pin  
PCR  
Alternate  
register function1  
100  
176  
LQFP LQFP LQFP  
PF[15] PCR[95]  
AF0  
AF1  
AF2  
AF3  
GPIO[95]  
E1UC[4]  
SIUL  
eMIOS_1  
SIUL  
I/O  
I/O  
I
S
Tristate  
101  
125  
EIRQ[13]  
CAN1RX  
CAN4RX  
FlexCAN_1  
FlexCAN_4  
I
I
Port G  
PG[0] PCR[96]  
PG[1] PCR[97]  
AF0  
AF1  
AF2  
AF3  
GPIO[96]  
CAN5TX  
E1UC[23]  
SIUL  
FlexCAN_5  
eMIOS_1  
I/O  
O
I/O  
M
S
Tristate  
Tristate  
98  
97  
122  
121  
AF0  
AF1  
AF2  
AF3  
GPIO[97]  
E1UC[24]  
EIRQ[14]  
CAN5RX  
SIUL  
eMIOS_1  
SIUL  
FlexCAN_5  
I/O  
I/O  
I
I
PG[2] PCR[98]  
PG[3] PCR[99]  
AF0  
AF1  
AF2  
AF3  
GPIO[98]  
E1UC[11]  
SOUT_3  
SIUL  
eMIOS_1  
DSPI_3  
I/O  
I/O  
O
M
S
Tristate  
Tristate  
8
7
16  
15  
AF0  
AF1  
AF2  
AF3  
GPIO[99]  
E1UC[12]  
CS0_3  
SIUL  
eMIOS_1  
DSPI_3  
I/O  
I/O  
O
I
WKUP[17]4  
WKUP  
PG[4] PCR[100]  
PG[5] PCR[101]  
AF0  
AF1  
AF2  
AF3  
GPIO[100]  
E1UC[13]  
SCK_3  
SIUL  
eMIOS_1  
DSPI_3  
I/O  
I/O  
I/O  
M
S
Tristate  
Tristate  
6
5
14  
13  
AF0  
AF1  
AF2  
AF3  
GPIO[101]  
E1UC[14]  
SIUL  
eMIOS_1  
WKUP  
DSPI_3  
I/O  
I/O  
I
WKUP[18]4  
SIN_3  
I
PG[6] PCR[102]  
AF0  
AF1  
AF2  
AF3  
GPIO[102]  
E1UC[15]  
LIN6TX  
SIUL  
eMIOS_1  
LINFlex_6  
I/O  
I/O  
O
M
Tristate  
30  
38  
MPC5606BK Microcontroller Data Sheet, Rev. 5  
NXP Semiconductors  
19  
Table 2. Functional port pins (continued)  
Function  
Pin number  
144  
Port  
pin  
PCR  
Alternate  
register function1  
100  
176  
LQFP LQFP LQFP  
PG[7] PCR[103]  
AF0  
AF1  
AF2  
AF3  
GPIO[103]  
E1UC[16]  
E1UC[30]  
SIUL  
eMIOS_1  
eMIOS_1  
WKUP  
LINFlex_6  
I/O  
I/O  
I/O  
I
S
Tristate  
29  
37  
WKUP[20]4  
LIN6RX  
I
PG[8] PCR[104]  
PG[9] PCR[105]  
AF0  
AF1  
AF2  
AF3  
GPIO[104]  
E1UC[17]  
LIN7TX  
CS0_2  
EIRQ[15]  
SIUL  
eMIOS_1  
LINFlex_7  
DSPI_2  
SIUL  
I/O  
I/O  
O
I/O  
I
S
S
Tristate  
Tristate  
26  
25  
34  
33  
AF0  
AF1  
AF2  
AF3  
GPIO[105]  
E1UC[18]  
SIUL  
eMIOS_1  
DSPI_2  
WKUP  
LINFlex_7  
I/O  
I/O  
I/O  
I
SCK_2  
WKUP[21]4  
LIN7RX  
I
PG[10] PCR[106]  
AF0  
AF1  
AF2  
AF3  
GPIO[106]  
E0UC[24]  
E1UC[31]  
SIUL  
eMIOS_0  
eMIOS_1  
I/O  
I/O  
I/O  
I
S
Tristate  
114  
138  
SIN_4  
DSPI_4  
PG[11] PCR[107]  
PG[12] PCR[108]  
PG[13] PCR[109]  
PG[14] PCR[110]  
PG[15] PCR[111]  
AF0  
AF1  
AF2  
AF3  
GPIO[107]  
E0UC[25]  
CS0_4  
SIUL  
eMIOS_0  
DSPI_4  
I/O  
I/O  
O
M
M
M
S
Tristate  
Tristate  
Tristate  
Tristate  
Tristate  
115  
92  
139  
116  
115  
134  
135  
AF0  
AF1  
AF2  
AF3  
GPIO[108]  
E0UC[26]  
SOUT_4  
SIUL  
eMIOS_0  
DSPI_4  
I/O  
I/O  
O
AF0  
AF1  
AF2  
AF3  
GPIO[109]  
E0UC[27]  
SCK_4  
SIUL  
eMIOS_0  
DSPI_4  
I/O  
I/O  
I/O  
91  
AF0  
AF1  
AF2  
AF3  
GPIO[110]  
E1UC[0]  
SIUL  
eMIOS_1  
I/O  
I/O  
110  
111  
AF0  
AF1  
AF2  
AF3  
GPIO[111]  
E1UC[1]  
SIUL  
eMIOS_1  
I/O  
I/O  
M
Port H  
MPC5606BK Microcontroller Data Sheet, Rev. 5  
20  
NXP Semiconductors  
Table 2. Functional port pins (continued)  
Function  
Pin number  
144  
Port  
pin  
PCR  
Alternate  
register function1  
100  
176  
LQFP LQFP LQFP  
PH[0] PCR[112]  
AF0  
AF1  
AF2  
AF3  
GPIO[112]  
E1UC[2]  
SIN_1  
SIUL  
eMIOS_1  
DSPI_1  
I/O  
I/O  
I
M
Tristate  
93  
117  
PH[1] PCR[113]  
PH[2] PCR[114]  
PH[3] PCR[115]  
PH[4] PCR[116]  
PH[5] PCR[117]  
PH[6] PCR[118]  
PH[7] PCR[119]  
PH[8] PCR[120]  
PH[9]8 PCR[121]  
PH[10]8 PCR[122]  
AF0  
AF1  
AF2  
AF3  
GPIO[113]  
E1UC[3]  
SOUT_1  
SIUL  
eMIOS_1  
DSPI_1  
I/O  
I/O  
O
M
M
M
M
S
Tristate  
Tristate  
Tristate  
Tristate  
Tristate  
Tristate  
Tristate  
Tristate  
88  
81  
94  
118  
119  
120  
162  
163  
164  
165  
166  
155  
148  
AF0  
AF1  
AF2  
AF3  
GPIO[114]  
E1UC[4]  
SCK_1  
SIUL  
eMIOS_1  
DSPI_1  
I/O  
I/O  
I/O  
95  
AF0  
AF1  
AF2  
AF3  
GPIO[115]  
E1UC[5]  
CS0_1  
SIUL  
eMIOS_1  
DSPI_1  
I/O  
I/O  
I/O  
96  
AF0  
AF1  
AF2  
AF3  
GPIO[116]  
E1UC[6]  
SIUL  
eMIOS_1  
I/O  
I/O  
134  
135  
136  
137  
138  
127  
120  
AF0  
AF1  
AF2  
AF3  
GPIO[117]  
E1UC[7]  
SIUL  
eMIOS_1  
I/O  
I/O  
AF0  
AF1  
AF2  
AF3  
GPIO[118]  
E1UC[8]  
SIUL  
eMIOS_1  
I/O  
I/O  
M
M
M
S
MA[2]  
ADC_0  
O
AF0  
AF1  
AF2  
AF3  
GPIO[119]  
E1UC[9]  
CS3_2  
SIUL  
eMIOS_1  
DSPI_2  
ADC_0  
I/O  
I/O  
O
MA[1]  
O
AF0  
AF1  
AF2  
AF3  
GPIO[120]  
E1UC[10]  
CS2_2  
SIUL  
eMIOS_1  
DSPI_2  
ADC_0  
I/O  
I/O  
O
MA[0]  
O
AF0  
AF1  
AF2  
AF3  
GPIO[121]  
SIUL  
JTAGC  
I/O  
I
Input,  
weak  
pull-up  
TCK  
AF0  
AF1  
AF2  
AF3  
GPIO[122]  
SIUL  
JTAGC  
I/O  
I
M
Input,  
weak  
pull-up  
TMS  
MPC5606BK Microcontroller Data Sheet, Rev. 5  
NXP Semiconductors  
21  
Table 2. Functional port pins (continued)  
Function  
Pin number  
144  
Port  
pin  
PCR  
Alternate  
register function1  
100  
176  
LQFP LQFP LQFP  
PH[11] PCR[123]  
PH[12] PCR[124]  
PH[13] PCR[125]  
PH[14] PCR[126]  
PH[15] PCR[127]  
AF0  
AF1  
AF2  
AF3  
GPIO[123]  
SOUT_3  
CS0_4  
SIUL  
I/O  
O
I/O  
I/O  
M
M
M
M
M
Tristate  
Tristate  
Tristate  
Tristate  
Tristate  
140  
141  
9
DSPI_3  
DSPI_4  
eMIOS_1  
E1UC[5]  
AF0  
AF1  
AF2  
AF3  
GPIO[124]  
SCK_3  
CS1_4  
SIUL  
I/O  
I/O  
I/O  
DSPI_3  
DSPI_4  
eMIOS_1  
E1UC[25]  
AF0  
AF1  
AF2  
AF3  
GPIO[125]  
SOUT_4  
CS0_3  
SIUL  
I/O  
O
I/O  
DSPI_4  
DSPI_3  
eMIOS_1  
E1UC[26]  
AF0  
AF1  
AF2  
AF3  
GPIO[126]  
SCK_4  
CS1_3  
SIUL  
I/O  
I/O  
I/O  
10  
8
DSPI_4  
DSPI_3  
eMIOS_1  
E1UC[27]  
AF0  
AF1  
AF2  
AF3  
GPIO[127]  
SOUT_5  
SIUL  
DSPI_5  
I/O  
O
E1UC[17]  
eMIOS_1  
Port I  
PI[0] PCR[128]  
PI[1] PCR[129]  
AF0  
AF1  
AF2  
AF3  
GPIO[128]  
E0UC[28]  
SIUL  
eMIOS_0  
I/O  
I/O  
S
S
Tristate  
Tristate  
172  
171  
AF0  
AF1  
AF2  
AF3  
GPIO[129]  
E0UC[29]  
SIUL  
eMIOS_0  
WKUP  
I/O  
I/O  
I
WKUP[24]4  
PI[2] PCR[130]  
PI[3] PCR[131]  
AF0  
AF1  
AF2  
AF3  
GPIO[130]  
E0UC[30]  
SIUL  
eMIOS_0  
I/O  
I/O  
S
S
Tristate  
Tristate  
170  
169  
AF0  
AF1  
AF2  
AF3  
GPIO[131]  
E0UC[31]  
SIUL  
eMIOS_0  
WKUP  
I/O  
I/O  
I
WKUP[23]4  
PI[4] PCR[132]  
AF0  
AF1  
AF2  
AF3  
GPIO[132]  
E1UC[28]  
SOUT_4  
SIUL  
eMIOS_1  
DSPI_4  
I/O  
I/O  
O
S
Tristate  
143  
MPC5606BK Microcontroller Data Sheet, Rev. 5  
22  
NXP Semiconductors  
Table 2. Functional port pins (continued)  
Function  
Pin number  
144  
Port  
pin  
PCR  
Alternate  
register function1  
100  
176  
LQFP LQFP LQFP  
PI[5] PCR[133]  
PI[6] PCR[134]  
PI[7] PCR[135]  
PI[8] PCR[136]  
AF0  
AF1  
AF2  
AF3  
GPIO[133]  
E1UC[29]  
SCK_4  
SIUL  
eMIOS_1  
DSPI_4  
I/O  
I/O  
I/O  
S
S
S
J
Tristate  
Tristate  
Tristate  
Tristate  
142  
AF0  
AF1  
AF2  
AF3  
GPIO[134]  
E1UC[30]  
CS0_4  
SIUL  
eMIOS_1  
DSPI_4  
I/O  
I/O  
I/O  
11  
AF0  
AF1  
AF2  
AF3  
GPIO[135]  
E1UC[31]  
CS1_4  
SIUL  
eMIOS_1  
DSPI_4  
I/O  
I/O  
I/O  
12  
AF0  
AF1  
AF2  
AF3  
GPIO[136]  
SIUL  
ADC_0  
I/O  
I
108  
ADC0_S[16]  
PI[9] PCR[137]  
PI[10] PCR[138]  
PI[11] PCR[139]  
AF0  
AF1  
AF2  
AF3  
GPIO[137]  
SIUL  
ADC_0  
I/O  
I
J
J
J
Tristate  
Tristate  
Tristate  
109  
110  
111  
ADC0_S[17]  
AF0  
AF1  
AF2  
AF3  
GPIO[138]  
SIUL  
ADC_0  
I/O  
I
ADC0_S[18]  
AF0  
AF1  
AF2  
AF3  
GPIO[139]  
SIUL  
ADC_0  
DSPI_3  
I/O  
I
ADC0_S[19]  
SIN_3  
I
PI[12] PCR[140]  
PI[13] PCR[141]  
AF0  
AF1  
AF2  
AF3  
GPIO[140]  
CS0_3  
SIUL  
DSPI_3  
ADC_0  
I/O  
I/O  
I
J
J
Tristate  
Tristate  
112  
113  
ADC0_S[20]  
AF0  
AF1  
AF2  
AF3  
GPIO[141]  
CS1_3  
SIUL  
DSPI_3  
ADC_0  
I/O  
I/O  
I
ADC0_S[21]  
MPC5606BK Microcontroller Data Sheet, Rev. 5  
NXP Semiconductors  
23  
Table 2. Functional port pins (continued)  
Function  
Pin number  
144  
Port  
pin  
PCR  
Alternate  
register function1  
100  
176  
LQFP LQFP LQFP  
PI[14] PCR[142]  
AF0  
AF1  
AF2  
AF3  
GPIO[142]  
SIUL  
ADC_0  
DSPI_4  
I/O  
I
J
Tristate  
76  
ADC0_S[22]  
SIN_4  
I
PI[15] PCR[143]  
AF0  
AF1  
AF2  
AF3  
GPIO[143]  
CS0_4  
SIUL  
DSPI_4  
ADC_0  
I/O  
I/O  
I
J
Tristate  
75  
ADC0_S[23]  
Port J  
PJ[0] PCR[144]  
PJ[1] PCR[145]  
AF0  
AF1  
AF2  
AF3  
GPIO[144]  
CS1_4  
SIUL  
DSPI_4  
ADC_0  
I/O  
I/O  
I
J
J
Tristate  
Tristate  
74  
73  
ADC0_S[24]  
AF0  
AF1  
AF2  
AF3  
GPIO[145]  
SIUL  
——  
ADC_0  
DSPI_5  
I/O  
I
ADC0_S[25]  
SIN_5  
I
PJ[2] PCR[146]  
PJ[3] PCR[147]  
PJ[4] PCR[148]  
AF0  
AF1  
AF2  
AF3  
GPIO[146]  
CS0_5  
SIUL  
DSPI_5  
ADC_0  
I/O  
I/O  
I
J
J
Tristate  
Tristate  
Tristate  
72  
71  
5
ADC0_S[26]  
AF0  
AF1  
AF2  
AF3  
GPIO[147]  
CS1_5  
SIUL  
DSPI_5  
ADC_0  
I/O  
I/O  
I
ADC0_S[27]  
AF0  
AF1  
AF2  
AF3  
GPIO[148]  
SCK_5  
E1UC[18]  
SIUL  
DSPI_5  
eMIOS_1  
I/O  
I/O  
M
1
Alternate functions are chosen by setting the values of the PCR.PA bitfields inside the SIUL module.  
PCR.PA = 00 AF0; PCR.PA = 01 AF1; PCR.PA = 10 AF2; PCR.PA = 11 AF3. This is intended to  
select the output functions; to use one of the input functions, the PCR.IBE bit must be written to ‘1’, regardless  
of the values selected in the PCR.PA bitfields. For this reason, the value corresponding to an input only function  
is reported as “—”.  
2
3
See Table 3.  
The RESET configuration applies during and after reset.  
MPC5606BK Microcontroller Data Sheet, Rev. 5  
24  
NXP Semiconductors  
4
All WKUP pins also support external interrupt capability. See the WKPU chapter of the MPC5606BK  
Microcontroller Reference Manual for further details.  
5
6
NMI has higher priority than alternate function. When NMI is selected, the PCR.AF field is ignored.  
“Not applicable” because these functions are available only while the device is booting. See the BAM chapter  
of the MPC5606BK Microcontroller Reference Manual for details.  
7
8
Value of PCR.IBE bit must be 0.  
Out of reset all the functional pins except PC[0:1] and PH[9:10] are available to the user as GPIO.  
PC[0:1] are available as JTAG pins (TDI and TDO respectively).  
PH[9:10] are available as JTAG pins (TCK and TMS respectively).  
It is up to the user to configure these pins as GPIO when needed.  
9
PC[1] is a fast/medium pad but is in medium configuration by default. This pad is in Alternate Function 2 mode  
after reset which has TDO functionality. The reset value of PCR.OBE is 1, but this setting has no impact as long  
as this pad stays in AF2 mode. After configuring this pad as GPIO (PCR.PA = 0), output buffer is enabled as  
reset value of PCR.OBE = 1.  
10 Not available in 100LQFP package.  
Table 3. Pad types  
Description  
Type  
F
I
Fast  
Input only with analog feature  
J
Input/output with analog feature  
M
S
Medium  
Slow  
3
Electrical characteristics  
This section contains electrical characteristics of the device as well as temperature and power considerations.  
This product contains devices to protect the inputs against damage due to high static voltages. However, it is advisable to take  
precautions to avoid application of any voltage higher than the specified maximum rated voltages.  
To enhance reliability, unused inputs can be driven to an appropriate logic voltage level (V or V ). This could be done by  
DD  
SS  
the internal pull-up and pull-down, which is provided by the product for most general purpose pins.  
The parameters listed in the following tables represent the characteristics of the device and its demands on the system.  
In the tables where the device logic provides signals with their respective timing characteristics, the symbol “CC” for Controller  
Characteristics is included in the Symbol column.  
In the tables where the external system must provide signals with their respective timing characteristics to the device, the symbol  
“SR” for System Requirement is included in the Symbol column.  
3.1  
Parameter classification  
The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better  
understanding, the classifications listed in Table 4 are used and the parameters are tagged accordingly in the tables where  
appropriate.  
MPC5606BK Microcontroller Data Sheet, Rev. 5  
NXP Semiconductors  
25  
Table 4. Parameter classifications  
Classification tag  
Tag description  
P
C
Those parameters are guaranteed during production testing on each individual device.  
Those parameters are achieved by the design characterization by measuring a statistically  
relevant sample size across process variations.  
T
Those parameters are achieved by design characterization on a small sample size from typical  
devices under typical conditions unless otherwise noted. All values shown in the typical column  
are within this category.  
D
Those parameters are derived mainly from simulations.  
NOTE  
The classification is shown in the column labeled “C” in the parameter tables where  
appropriate.  
3.2  
NVUSRO register  
Portions of the device configuration, such as high voltage supply, oscillator margin, and watchdog enable/disable after reset are  
controlled via bit values in the Non-Volatile User Options Register (NVUSRO) register.  
For a detailed description of the NVUSRO register, please refer to the MPC5606BK Microcontroller Reference Manual.  
3.2.1  
NVUSRO[PAD3V5V] field description  
Table 5 shows how NVUSRO[PAD3V5V] controls the device configuration.  
1
Table 5. PAD3V5V field description  
Value2  
Description  
0
1
High voltage supply is 5.0 V  
High voltage supply is 3.3 V  
1
2
See the MPC5606BK Microcontroller Reference Manual for more information on the NVUSRO register.  
The default manufacturing value is ‘1’. This value can be programmed by the customer in Shadow Flash.  
The DC electrical characteristics are dependent on the PAD3V5V bit value.  
3.2.2  
NVUSRO[OSCILLATOR_MARGIN] field description  
Table 6 shows how NVUSRO[OSCILLATOR_MARGIN] controls the device configuration.  
1
Table 6. OSCILLATOR_MARGIN field description  
Value2  
Description  
Low consumption configuration (4 MHz/8 MHz)  
High margin configuration (4 MHz/16 MHz)  
0
1
1
2
See the MPC5606BK Microcontroller Reference Manual for more information on the NVUSRO register.  
The default manufacturing value is ‘1’. This value can be programmed by the customer in Shadow Flash.  
The fast external crystal oscillator consumption is dependent on the OSCILLATOR_MARGIN bit value.  
MPC5606BK Microcontroller Data Sheet, Rev. 5  
26  
NXP Semiconductors  
3.2.3  
NVUSRO[WATCHDOG_EN] field description  
The watchdog enable/disable configuration after reset is dependent on the WATCHDOG_EN bit value.  
Table 7 shows how NVUSRO[WATCHDOG_EN] controls the device configuration.  
1
Table 7. WATCHDOG_EN field description  
Value2  
Description  
0
1
Disable after reset  
Enable after reset  
1
2
See the MPC5606BK Microcontroller Reference Manual for more information on the NVUSRO register.  
The default manufacturing value is ‘1’. This value can be programmed by the customer in Shadow Flash.  
3.3  
Absolute maximum ratings  
Table 8. Absolute maximum ratings  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Max  
VSS  
VDD  
SR Digital ground on VSS_HV pins  
0
0
V
V
SR Voltage on VDD_HV pins with respect to  
–0.3  
6.0  
ground (VSS  
)
VSS_LV SR Voltage on VSS_LV (low voltage digital supply)  
V
SS – 0.1 VSS + 0.1  
V
V
pins with respect to ground (VSS  
)
VDD_BV SR Voltage on VDD_BV pin (regulator supply) with  
Relative to VDD  
–0.3  
–0.3  
6.0  
respect to ground (VSS  
)
VDD + 0.3  
VSS_ADC SR Voltage on VSS_HV_ADC0, VSS_HV_ADC1  
(ADC reference) pin with respect to ground  
VSS – 0.1 VSS + 0.1  
V
(VSS  
)
VDD_ADC SR Voltage on VDD_HV_ADC0, VDD_HV_ADC1  
Relative to VDD  
–0.3  
6.0  
V
V
(ADC reference) with respect to ground (VSS  
)
VDD 0.3 VDD + 0.3  
VIN  
SR Voltage on any GPIO pin with respect to  
–0.3  
6.0  
VDD + 0.3  
10  
ground (VSS  
)
Relative to VDD  
IINJPAD SR Injected input current on any pin during  
overload condition  
–10  
mA  
IINJSUM SR Absolute sum of all injected input currents  
during overload condition  
–50  
50  
70  
IAVGSEG SR Sum of all the static I/O current within a supply VDD = 5.0 V 10ꢀ,  
segment PAD3V5V = 0  
mA  
°C  
V
DD = 3.3 V 10ꢀ,  
64  
PAD3V5V = 1  
TSTORAGE SR Storage temperature  
–55  
150  
MPC5606BK Microcontroller Data Sheet, Rev. 5  
NXP Semiconductors  
27  
NOTE  
Stresses exceeding the recommended absolute maximum ratings may cause permanent  
damage to the device. This is a stress rating only and functional operation of the device at  
these or any other conditions above those indicated in the operational sections of this  
specification are not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect device reliability. During overload conditions (V > V or  
IN  
DD  
V
< V ), the voltage on pins with respect to ground (V ) must not exceed the  
IN  
SS SS  
recommended values.  
3.4  
Recommended operating conditions  
Table 9. Recommended operating conditions (3.3 V)  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Max  
VSS  
SR Digital ground on VSS_HV pins  
0
0
V
V
1
VDD  
SR Voltage on VDD_HV pins with respect  
3.0  
3.6  
to ground (VSS  
)
2
VSS_LV  
SR Voltage on VSS_LV (low voltage digital  
supply) pins with respect to ground  
VSS 0.1 VSS + 0.1  
V
(VSS  
)
3
VDD_BV  
SR Voltage on VDD_BV pin (regulator  
supply) with respect to ground (VSS  
3.0  
3.6  
V
V
)
Relative to VDD  
VDD 0.1 VDD + 0.1  
VSS 0.1 VSS + 0.1  
VSS_ADC SR Voltage on VSS_HV_ADC0,  
VSS_HV_ADC1 (ADC reference) pin  
with respect to ground (VSS  
)
4
VDD_ADC  
SR Voltage on VDD_HV_ADC0,  
3.05  
VDD 0.1 VDD + 0.1  
3.6  
V
VDD_HV_ADC1 (ADC reference) with  
Relative to VDD  
respect to ground (VSS  
)
VIN  
SR Voltage on any GPIO pin with respect  
VSS 0.1  
VDD + 0.1  
5
V
to ground (VSS  
)
Relative to VDD  
IINJPAD  
IINJSUM  
TVDD  
SR Injected input current on any pin during  
overload condition  
5  
mA  
SR Absolute sum of all injected input  
currents during overload condition  
50  
50  
SR VDD slope to ensure correct power up6  
3.07  
0.25 V/µs V/s  
MPC5606BK Microcontroller Data Sheet, Rev. 5  
28  
NXP Semiconductors  
Table 9. Recommended operating conditions (3.3 V) (continued)  
Value  
Symbol  
Parameter  
Conditions  
fCPU < 64 MHz8  
Unit  
Min  
Max  
TA C-Grade SR Ambient temperature under bias  
40  
85  
°C  
Part  
TJ C-Grade SR Junction temperature under bias  
40  
40  
40  
40  
40  
110  
105  
130  
125  
150  
Part  
TA V-Grade SR Ambient temperature under bias  
fCPU < 64 MHz8  
Part  
TJ V-Grade SR Junction temperature under bias  
Part  
TA M-Grade SR Ambient temperature under bias  
fCPU < 64 MHz8  
Part  
TJ M-Grade SR Junction temperature under bias  
Part  
1
2
3
100 nF capacitance needs to be provided between each VDD/VSS pair.  
330 nF capacitance needs to be provided between each VDD_LV/VSS_LV supply pair.  
470 nF capacitance needs to be provided between VDD_BV and the nearest VSS_LV (higher value may be needed  
depending on external regulator characteristics). Supply ramp slope on VDD_BV should always be faster or equal  
to slope of VDD_HV. Otherwise, device may enter regulator bypass mode if slope on VDD_BV is slower.  
4
5
100 nF capacitance needs to be provided between VDD_ADC/VSS_ADC pair.  
Full electrical specification cannot be guaranteed when voltage drops below 3.0 V. In particular, ADC electrical  
characteristics and I/O DC electrical specification may not be guaranteed. When voltage drops below VLVDHVL, the  
device is reset.  
6
7
8
Guaranteed by device validation  
Minimum value of TVDD must be guaranteed until VDD reaches 2.6 V (maximum value of VPORH).  
This frequency includes the 4ꢀ frequency modulation guard band.  
Table 10. Recommended operating conditions (5.0 V)  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Max  
VSS  
SR Digital ground on VSS_HV pins  
0
0
V
V
1
VDD  
SR Voltage on VDD_HV pins with respect to ground  
Voltage drop2  
4.5  
3.0  
5.5  
5.5  
(VSS  
)
3
VSS_LV  
SR Voltage on VSS_LV (low voltage digital supply) pins  
with respect to ground (VSS  
VSS 0.1 VSS + 0.1  
V
V
)
4
VDD_BV  
SR Voltage on VDD_BV pin (regulator supply) with  
respect to ground (VSS  
Voltage drop2  
Relative to VDD  
4.5  
3.0  
3.0  
5.5  
5.5  
)
VDD + 0.1  
VSS_ADC SR Voltage on VSS_HV_ADC0, VSS_HV_ADC1 (ADC  
reference) pin with respect to ground (VSS  
VSS 0.1 VSS + 0.1  
V
)
MPC5606BK Microcontroller Data Sheet, Rev. 5  
NXP Semiconductors  
29  
Table 10. Recommended operating conditions (5.0 V) (continued)  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Max  
5
VDD_ADC SR Voltage on VDD_HV_ADC0, VDD_HV_ADC1  
4.5  
3.0  
5.5  
5.5  
V
(ADC reference) with respect to ground (VSS  
)
Voltage drop2  
Relative to VDD VDD 0.1 VDD + 0.1  
VIN  
SR Voltage on any GPIO pin with respect to ground  
(VSS  
Relative to VDD  
VSS 0.1  
VDD + 0.1  
5
V
)
IINJPAD  
SR Injected input current on any pin during overload  
condition  
5  
mA  
IINJSUM SR Absolute sum of all injected input currents during  
overload condition  
50  
50  
TVDD  
SR VDD slope to ensure correct power up6  
3.07  
0.25 V/µs V/s  
TA C-Grade SR Ambient temperature under bias  
fCPU < 64 MHz8  
40  
85  
°C  
Part  
TJ C-Grade SR Junction temperature under bias  
40  
40  
40  
40  
40  
110  
105  
130  
125  
150  
Part  
TA V-Grade SR Ambient temperature under bias  
fCPU < 64 MHz8  
Part  
TJ V-Grade SR Junction temperature under bias  
fCPU < 64 MHz8  
Part  
TA M-Grade SR Ambient temperature under bias  
Part  
TJ M-Grade SR Junction temperature under bias  
Part  
1
2
100 nF capacitance needs to be provided between each VDD/VSS pair.  
Full device operation is guaranteed by design when the voltage drops below 4.5 V down to 3.0 V. However, certain  
analog electrical characteristics will not be guaranteed to stay within the stated limits.  
3
4
330 nF capacitance needs to be provided between each VDD_LV/VSS_LV supply pair.  
470 nF capacitance needs to be provided between VDD_BV and the nearest VSS_LV (higher value may be needed  
depending on external regulator characteristics). While the supply voltage ramps up, the slope on VDD_BV should  
be less than 0.9VDD_HV in order to ensure the device does not enter regulator bypass mode.  
5
6
100 nF capacitance needs to be provided between VDD_ADC/VSS_ADC pair.  
Guaranteed by device validation. Please refer to Section 3.5.1, External ballast resistor recommendations for  
minimum VDD slope to be guaranteed to ensure correct power up in case of external resistor usage.  
7
8
Minimum value of TVDD must be guaranteed until VDD reaches 2.6 V (maximum value of VPORH).  
This frequency includes the 4ꢀ frequency modulation guard band.  
NOTE  
RAM data retention is guaranteed with V  
not below 1.08 V.  
DD_LV  
MPC5606BK Microcontroller Data Sheet, Rev. 5  
30  
NXP Semiconductors  
3.5  
Thermal characteristics  
3.5.1  
External ballast resistor recommendations  
External ballast resistor on V  
pin helps in reducing the overall power dissipation inside the device. This resistor is  
DD_BV  
required only when maximum power consumption exceeds the limit imposed by package thermal characteristics.  
As stated in Table 11 LQFP thermal characteristics, considering a thermal resistance of 144 LQFP as 48.3 °C/W, at ambient  
temperature T = 125 °C, the junction temperature T will cross 150 °C if the total power dissipation is greater than  
A
j
(150 – 125)/48.3 = 517 mW. Therefore, the total device current I  
at 125 °C/5.5 V must not exceed 94.1 mA (i.e.,  
DDMAX  
PD/VDD). Assuming an average I (V  
) of 15–20 mA consumption typically during device RUN mode, the LV domain  
DD DD_HV  
consumption I (V  
) is thus limited to I  
– I (V  
), i.e., 80 mA.  
DD DD_BV  
DDMAX  
DD DD_HV  
Therefore, respecting the maximum power allowed as explained in Section 3.5.2, Package thermal characteristics, it is  
recommended to use this resistor only in the 125 °C/5.5 V operating corner as per the following guidelines:  
If I (V  
) < 80 mA, then no resistor is required.  
DD DD_BV  
If 80 mA < I (V  
) < 90 mA, then 4 Ω resistor can be used.  
DD DD_BV  
If I (V  
) > 90 mA, then 8 Ω resistor can be used.  
DD DD_BV  
Using resistance in the range of 4–8 Ω, the gain will be around 10–20% of total consumption on V  
. For example, if 8 Ω  
DD_BV  
resistor is used, then power consumption when I (V  
) is 110 mA is equivalent to power consumption when  
DD DD_BV  
I
(V  
) is 90 mA (approximately) when resistor not used.  
DD DD_BV  
In order to ensure correct power up, the minimum V  
to be guaranteed is 30 ms/V. If the supply ramp is slower than this  
pin gets triggered leading to device reset. Until the supply reaches  
DD_BV  
value, then LVDHV3B monitoring ballast supply V  
DD_BV  
certain threshold, this low voltage monitor generates destructive reset event in the system. This threshold depends on the  
maximum I (V  
) possible across the external resistor.  
DD DD_BV  
3.5.2  
Package thermal characteristics  
1
Table 11. LQFP thermal characteristics  
Value  
Symbol  
C
Parameter  
Conditions2  
Pin count  
Unit  
Min Typ Max  
RθJA CC D Thermal resistance,  
Single-layer board — 1s  
100  
144  
176  
100  
144  
176  
100  
144  
176  
100  
144  
176  
64 °C/W  
64  
junction-to-ambient natural  
convection3  
64  
Four-layer board — 2s2p  
Single-layer board — 1s  
Four-layer board — 2s2p  
49.7  
48.3  
47.3  
36 °C/W  
38  
RθJB CC  
Thermal resistance,  
junction-to-board4  
38  
33.6  
33.4  
33.4  
MPC5606BK Microcontroller Data Sheet, Rev. 5  
NXP Semiconductors  
31  
1
Table 11. LQFP thermal characteristics (continued)  
Value  
Symbol  
C
Parameter  
Conditions2  
Pin count  
Unit  
Min Typ Max  
RθJC CC  
Thermal resistance,  
junction-to-case5  
Single-layer board — 1s  
100  
144  
176  
100  
144  
176  
23 °C/W  
23  
23  
Four-layer board — 2s2p  
19.8  
19.2  
18.8  
1
2
3
Thermal characteristics are targets based on simulation.  
VDD = 3.3 V 10ꢀ / 5.0 V 10ꢀ, TA = 40 to 125 °C.  
Junction-to-ambient thermal resistance determined per JEDEC JESD51-3 and JESD51-6. Thermal test board  
meets JEDEC specification for this package. When Greek letters are not available, the symbols are typed as RthJA  
and RthJMA  
.
4
5
Junction-to-board thermal resistance determined per JEDEC JESD51-8. Thermal test board meets JEDEC  
specification for the specified package. When Greek letters are not available, the symbols are typed as RthJB  
.
Junction-to-case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold plate  
temperature is used for the case temperature. Reported value includes the thermal resistance of the interface  
layer. When Greek letters are not available, the symbols are typed as RthJC  
.
3.5.3  
Power considerations  
The average chip-junction temperature, T , in degrees Celsius, may be calculated using Equation 1:  
J
T = T + (P x R )  
θJA  
Eqn. 1  
J
A
D
Where:  
T is the ambient temperature in °C.  
A
R
is the package junction-to-ambient thermal resistance, in °C/W.  
θJA  
P is the sum of P  
and P (P = P  
+ P ).  
D
INT  
I/O  
D
INT I/O  
P
P
is the product of I and V , expressed in watts. This is the chip internal power.  
DD DD  
INT  
I/O  
represents the power dissipation on input and output pins; user determined.  
Most of the time for the applications, P < P  
and may be neglected. On the other hand, P may be significant, if the device  
I/O  
INT  
I/O  
is configured to continuously drive external modules and/or memories.  
An approximate relationship between P and T (if P is neglected) is given by:  
D
J
I/O  
P = K / (T + 273 °C)  
Eqn. 2  
Eqn. 3  
D
J
Therefore, solving equations 1 and 2:  
Where:  
2
K = P x (T + 273 °C) + R  
x P  
D
D
A
θJA  
MPC5606BK Microcontroller Data Sheet, Rev. 5  
32  
NXP Semiconductors  
K is a constant for the particular part, which may be determined from Equation 3 by measuring P (at equilibrium)  
D
for a known T Using this value of K, the values of P and T may be obtained by solving equations 1 and 2  
A.  
D
J
iteratively for any value of T .  
A
3.6  
I/O pad electrical characteristics  
I/O pad types  
3.6.1  
The device provides four main I/O pad types depending on the associated alternate functions:  
Slow pads — are the most common pads, providing a good compromise between transition time and low  
electromagnetic emission.  
Medium pads — provide transition fast enough for the serial communication channels with controlled current to  
reduce electromagnetic emission.  
Fast pads — provide maximum speed. These are used for improved debugging capability.  
Input only pads — are associated with ADC channels and 32 kHz low power external crystal oscillator providing low  
input leakage.  
Medium and Fast pads can use slow configuration to reduce electromagnetic emission, at the cost of reducing AC performance.  
3.6.2  
I/O input DC characteristics  
Table 12 provides input DC electrical characteristics as described in Figure 5.  
V
IN  
V
DD  
V
IH  
V
HYS  
V
IL  
PDIx = ‘1  
(GPDI register of SIUL)  
PDIx = ‘0’  
Figure 5. I/O input DC electrical characteristics definition  
MPC5606BK Microcontroller Data Sheet, Rev. 5  
NXP Semiconductors  
33  
Table 12. I/O input DC electrical characteristics  
Value  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Typ  
Max  
VIH SR P Input high level CMOS (Schmitt  
Trigger)  
0.65VDD  
VDD + 0.4  
V
VIL SR P Input low level CMOS (Schmitt  
Trigger)  
0.4  
0.35VDD  
VHYS CC C Input hysteresis CMOS (Schmitt  
Trigger)  
0.1VDD  
ILKG CC P Digital input leakage  
No injection  
on adjacent  
pin  
TA = 40 °C  
TA = 25 °C  
TA = 85 °C  
TA = 105 °C  
TA = 125 °C  
2
2
nA  
P
D
D
P
5
300  
500  
1000  
40  
12  
70  
2
WFI SR P Wakeup input filtered pulse  
ns  
ns  
2
WNFI SR P Wakeup input not filtered pulse  
1000  
1
VDD = 3.3 V 10ꢀ / 5.0 V 10ꢀ, TA = 40 to 125 °C, unless otherwise specified  
In the range from 40 to 1000 ns, pulses can be filtered or not filtered, according to operating temperature and  
voltage.  
2
3.6.3  
I/O output DC characteristics  
The following tables provide DC characteristics for bidirectional pads:  
Table 13 provides weak pull figures. Both pull-up and pull-down resistances are supported.  
Table 14 provides output driver characteristics for I/O pads when in SLOW configuration.  
Table 15 provides output driver characteristics for I/O pads when in MEDIUM configuration.  
Table 16 provides output driver characteristics for I/O pads when in FAST configuration.  
Table 13. I/O pull-up/pull-down DC electrical characteristics  
Value  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min Typ Max  
|IWPU| CC P Weak pull-up current  
VIN = VIL, VDD = 5.0 V 10ꢀ PAD3V5V = 0  
10  
150 µA  
250  
absolute value  
C
PAD3V5V = 12 10  
P
VIN = VIL, VDD = 3.3 V 10ꢀ PAD3V5V = 1  
10  
10  
10  
10  
150  
|IWPD| CC P Weak pull-down current  
VIN = VIH, VDD = 5.0 V 10ꢀ PAD3V5V = 0  
PAD3V5V = 1  
150 µA  
250  
absolute value  
C
P
VIN = VIH, VDD = 3.3 V 10ꢀ PAD3V5V = 1  
150  
1
VDD = 3.3 V 10ꢀ / 5.0 V 10ꢀ, TA = 40 to 125 °C, unless otherwise specified.  
The configuration PAD3V5 = 1 when VDD = 5 V is only a transient configuration during power-up. All pads but  
RESET are configured in input or in high impedance state.  
2
MPC5606BK Microcontroller Data Sheet, Rev. 5  
34  
NXP Semiconductors  
Table 14. SLOW configuration output buffer electrical characteristics  
Value  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Typ  
Max  
VOH CC P Output high level  
SLOW configuration  
Push Pull IOH = 2 mA,  
0.8VDD  
V
VDD = 5.0 V 10ꢀ,  
PAD3V5V = 0  
(recommended)  
C
C
I
V
OH = 2 mA,  
DD = 5.0 V 10ꢀ,  
PAD3V5V = 12  
0.8VDD  
I
V
OH = 1 mA,  
VDD 0.8  
DD = 3.3 V 10ꢀ,  
PAD3V5V = 1  
(recommended)  
VOL CC P Output low level  
SLOW configuration  
Push Pull IOL = 2 mA,  
0.1VDD  
V
VDD = 5.0 V 10ꢀ,  
PAD3V5V = 0  
(recommended)  
C
C
IOL = 2 mA,  
0.1VDD  
0.5  
VDD = 5.0 V 10ꢀ,  
PAD3V5V = 12  
IOL = 1 mA,  
VDD = 3.3 V 10ꢀ,  
PAD3V5V = 1  
(recommended)  
1
2
VDD = 3.3 V 10ꢀ / 5.0 V 10ꢀ, TA = 40 to 125 °C, unless otherwise specified  
The configuration PAD3V5 = 1 when VDD = 5 V is only a transient configuration during power-up. All pads but  
RESET are configured in input or in high impedance state.  
Table 15. MEDIUM configuration output buffer electrical characteristics  
Value  
Symbol C  
Parameter  
Conditions1  
Unit  
Min  
Typ Max  
VOH CC C Output high level  
MEDIUM configuration  
Push Pull IOH = 3.8 mA,  
VDD = 5.0 V 10ꢀ, PAD3V5V = 0  
0.8VDD  
V
P
I
OH = 2 mA,  
0.8VDD  
VDD = 5.0 V 10ꢀ, PAD3V5V = 0  
(recommended)  
C
C
I
OH = 1 mA,  
0.8VDD  
VDD = 5.0 V 10ꢀ, PAD3V5V = 12  
IOH = 1 mA,  
VDD 0.8  
VDD = 3.3 V 10ꢀ, PAD3V5V = 1  
(recommended)  
C
IOH = 100 µA,  
VDD = 5.0 V 10ꢀ, PAD3V5V = 0  
0.8VDD  
MPC5606BK Microcontroller Data Sheet, Rev. 5  
NXP Semiconductors  
35  
Table 15. MEDIUM configuration output buffer electrical characteristics (continued)  
Value  
Symbol C  
Parameter  
Conditions1  
Unit  
Min  
Typ Max  
VOL CC C Output low level  
MEDIUM configuration  
Push Pull IOL = 3.8 mA,  
VDD = 5.0 V 10ꢀ, PAD3V5V = 0  
0.2VDD  
V
P
I
V
OL = 2 mA,  
DD = 5.0 V 10ꢀ, PAD3V5V = 0  
0.1VDD  
(recommended)  
C
C
IOL = 1 mA,  
V
0.1VDD  
0.5  
DD = 5.0 V 10ꢀ, PAD3V5V = 12  
IOL = 1 mA,  
VDD = 3.3 V 10ꢀ, PAD3V5V = 1  
(recommended)  
C
I
OL = 100 µA,  
0.1VDD  
VDD = 5.0 V 10ꢀ, PAD3V5V = 0  
1
2
VDD = 3.3 V 10ꢀ / 5.0 V 10ꢀ, TA = 40 to 125 °C, unless otherwise specified  
The configuration PAD3V5 = 1 when VDD = 5 V is only a transient configuration during power-up. All pads but  
RESET are configured in input or in high impedance state.  
Table 16. FAST configuration output buffer electrical characteristics  
Value  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Typ  
Max  
VOH CC P Output high level Push Pull IOH = 14 mA,  
FAST configuration VDD = 5.0 V 10ꢀ,  
0.8VDD  
V
PAD3V5V = 0  
(recommended)  
C
C
I
OH = 7 mA,  
0.8VDD  
VDD = 5.0 V 10ꢀ,  
PAD3V5V = 12  
I
OH = 11 mA,  
VDD 0.8  
VDD = 3.3 V 10ꢀ,  
PAD3V5V = 1  
(recommended)  
VOL CC P Output low level  
FAST configuration  
Push Pull IOL = 14 mA,  
0.1VDD  
V
VDD = 5.0 V 10ꢀ,  
PAD3V5V = 0  
(recommended)  
C
C
I
V
OL = 7 mA,  
DD = 5.0 V 10ꢀ,  
0.1VDD  
0.5  
PAD3V5V = 12  
IOL = 11 mA,  
VDD = 3.3 V 10ꢀ,  
PAD3V5V = 1  
(recommended)  
1
VDD = 3.3 V 10ꢀ / 5.0 V 10ꢀ, TA = 40 to 125 °C, unless otherwise specified  
MPC5606BK Microcontroller Data Sheet, Rev. 5  
36  
NXP Semiconductors  
2
The configuration PAD3V5 = 1 when VDD = 5 V is only a transient configuration during power-up. All pads but  
RESET are configured in input or in high impedance state.  
3.6.4  
Output pin transition times  
Table 17. Output pin transition times  
Value  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min Typ Max  
Ttr CC D Output transition time output pin2 CL = 25 pF  
SLOW configuration  
VDD = 5.0 V 10ꢀ,  
PAD3V5V = 0  
50  
100  
125  
50  
100  
125  
10  
20  
40  
12  
25  
40  
4
ns  
T
D
D
T
CL = 50 pF  
CL = 100 pF  
CL = 25 pF  
CL = 50 pF  
CL = 100 pF  
VDD = 3.3 V 10ꢀ,  
PAD3V5V = 1  
D
Ttr CC D Output transition time output pin2 CL = 25 pF  
MEDIUM configuration  
VDD = 5.0 V 10ꢀ,  
PAD3V5V = 0  
SIUL.PCRx.SRC = 1  
ns  
T
D
D
T
CL = 50 pF  
CL = 100 pF  
CL = 25 pF  
CL = 50 pF  
CL = 100 pF  
VDD = 3.3 V 10ꢀ,  
PAD3V5V = 1  
SIUL.PCRx.SRC = 1  
D
Ttr CC D Output transition time output pin2 CL = 25 pF  
VDD = 5.0 V 10ꢀ,  
PAD3V5V = 0  
ns  
FAST configuration  
CL = 50 pF  
6
CL = 100 pF  
CL = 25 pF  
CL = 50 pF  
CL = 100 pF  
12  
4
VDD = 3.3 V 10ꢀ,  
PAD3V5V = 1  
7
12  
1
2
VDD = 3.3 V 10ꢀ / 5.0 V 10ꢀ, TA = 40 to 125 °C, unless otherwise specified  
CL includes device and package capacitances (CPKG < 5 pF).  
3.6.5  
I/O pad current specification  
The I/O pads are distributed across the I/O supply segment. Each I/O supply segment is associated to a V /V supply pair as  
DD SS  
described in Table 18.  
Table 19 provides I/O consumption figures.  
In order to ensure device reliability, the average current of the I/O on a single segment should remain below the I  
maximum value.  
AVGSEG  
MPC5606BK Microcontroller Data Sheet, Rev. 5  
NXP Semiconductors  
37  
Table 18. I/O supply segments  
Supply segment  
Package  
1
2
3
4
5
6
7
8
176 LQFP  
144 LQFP  
100 LQFP  
pin7 –  
pin27  
pin28 –  
pin57  
pin59 –  
pin85  
pin86 –  
pin123  
pin124 –  
pin150  
pin151 –  
pin6  
pin20 –  
pin49  
pin51 –  
pin99  
pin100 –  
pin122  
pin 123 –  
pin19  
pin16 –  
pin35  
pin37 –  
pin69  
pin70 –  
pin83  
pin84 –  
pin15  
Table 19. I/O consumption  
Conditions1  
Value  
Min Typ Max  
Symbol  
C
Parameter  
Unit  
,2  
ISWTSLW CC D Dynamic I/O current for  
SLOW configuration  
CL = 25 pF  
CL = 25 pF  
CL = 25 pF  
VDD = 5.0 V 10ꢀ,  
PAD3V5V = 0  
20 mA  
VDD = 3.3 V 10ꢀ,  
16  
PAD3V5V = 1  
2
ISWTMED CC D Dynamic I/O current for  
VDD = 5.0 V 10ꢀ,  
PAD3V5V = 0  
29 mA  
17  
MEDIUM configuration  
VDD = 3.3 V 10ꢀ,  
PAD3V5V = 1  
2
ISWTFST CC D Dynamic I/O current for  
VDD = 5.0 V 10ꢀ,  
PAD3V5V = 0  
110 mA  
50  
FAST configuration  
VDD = 3.3 V 10ꢀ,  
PAD3V5V = 1  
IRMSSLW CC D Root medium square I/O CL = 25 pF, 2 MHz  
VDD = 5.0 V 10ꢀ,  
PAD3V5V = 0  
2.3 mA  
3.2  
current for SLOW  
CL = 25 pF, 4 MHz  
configuration  
CL = 100 pF, 2 MHz  
6.6  
CL = 25 pF, 2 MHz  
VDD = 3.3 V 10ꢀ,  
PAD3V5V = 1  
1.6  
CL = 25 pF, 4 MHz  
2.3  
CL = 100 pF, 2 MHz  
4.7  
IRMSMED CC D Root medium square I/O CL = 25 pF, 13 MHz  
VDD = 5.0 V 10ꢀ,  
PAD3V5V = 0  
6.6 mA  
13.4  
18.3  
5
current for MEDIUM  
CL = 25 pF, 40 MHz  
configuration  
CL = 100 pF, 13 MHz  
CL = 25 pF, 13 MHz  
CL = 25 pF, 40 MHz  
CL = 100 pF, 13 MHz  
VDD = 3.3 V 10ꢀ,  
PAD3V5V = 1  
8.5  
11  
MPC5606BK Microcontroller Data Sheet, Rev. 5  
38  
NXP Semiconductors  
Table 19. I/O consumption (continued)  
Conditions1  
Value  
Symbol  
C
Parameter  
Unit  
Min Typ Max  
IRMSFST CC D Root medium square I/O CL = 25 pF, 40 MHz  
VDD = 5.0 V 10ꢀ,  
PAD3V5V = 0  
22 mA  
current for FAST  
CL = 25 pF, 64 MHz  
configuration  
33  
CL = 100 pF, 40 MHz  
CL = 25 pF, 40 MHz  
CL = 25 pF, 64 MHz  
CL = 100 pF, 40 MHz  
56  
VDD = 3.3 V 10ꢀ,  
PAD3V5V = 1  
14  
20  
35  
IAVGSEG SR D Sum of all the static I/O  
current within a supply  
segment  
V
DD = 5.0 V 10ꢀ, PAD3V5V = 0  
DD = 3.3 V 10ꢀ, PAD3V5V = 1  
70 mA  
65  
V
1
2
VDD = 3.3 V 10ꢀ / 5.0 V 10ꢀ, TA = 40 to125 °C, unless otherwise specified  
Stated maximum values represent peak consumption that lasts only a few ns during I/O transition.  
Table 20 provides the weight of concurrent switching I/Os.  
In order to ensure device functionality, the sum of the weight of concurrent switching I/Os on a single segment should remain  
below the 100%.  
1
Table 20. I/O weight  
176 LQFP  
144/100 LQFP  
Supply segment  
Pad  
Weight 5 V  
Weight 3.3 V  
Weight 5 V  
Weight 3.3 V  
176 LQFP 144 LQFP 100 LQFP  
SRC2 = 0 SRC = 1 SRC = 0 SRC = 1 SRC = 0 SRC = 1 SRC = 0 SRC = 1  
6
4
4
PB[3]  
PC[9]  
PC[14]  
PC[15]  
PJ[4]  
5ꢀ  
4ꢀ  
4ꢀ  
3ꢀ  
3ꢀ  
6ꢀ  
5ꢀ  
4ꢀ  
4ꢀ  
3ꢀ  
13ꢀ  
13ꢀ  
13ꢀ  
12ꢀ  
15ꢀ  
15ꢀ  
15ꢀ  
15ꢀ  
4ꢀ  
4ꢀ  
4ꢀ  
3ꢀ  
18ꢀ  
16ꢀ  
MPC5606BK Microcontroller Data Sheet, Rev. 5  
NXP Semiconductors  
39  
1
Table 20. I/O weight (continued)  
176 LQFP  
144/100 LQFP  
Supply segment  
Pad  
Weight 5 V  
Weight 3.3 V  
Weight 5 V  
Weight 3.3 V  
176 LQFP 144 LQFP 100 LQFP  
SRC2 = 0 SRC = 1 SRC = 0 SRC = 1 SRC = 0 SRC = 1 SRC = 0 SRC = 1  
1
4
4
PH[15]  
PH[13]  
PH[14]  
PI[6]  
2ꢀ  
3ꢀ  
3ꢀ  
4ꢀ  
4ꢀ  
4ꢀ  
4ꢀ  
4ꢀ  
4ꢀ  
4ꢀ  
4ꢀ  
4ꢀ  
4ꢀ  
4ꢀ  
4ꢀ  
4ꢀ  
4ꢀ  
4ꢀ  
3ꢀ  
4ꢀ  
4ꢀ  
3ꢀ  
3ꢀ  
4ꢀ  
4ꢀ  
4ꢀ  
5ꢀ  
5ꢀ  
5ꢀ  
5ꢀ  
5ꢀ  
5ꢀ  
5ꢀ  
5ꢀ  
5ꢀ  
5ꢀ  
5ꢀ  
5ꢀ  
5ꢀ  
3ꢀ  
4ꢀ  
4ꢀ  
PI[7]  
PG[5]  
PG[4]  
PG[3]  
PG[2]  
PA[2]  
10ꢀ  
9ꢀ  
9ꢀ  
9ꢀ  
8ꢀ  
8ꢀ  
8ꢀ  
7ꢀ  
7ꢀ  
6ꢀ  
6ꢀ  
6ꢀ  
5ꢀ  
12ꢀ  
11ꢀ  
11ꢀ  
10ꢀ  
10ꢀ  
9ꢀ  
9ꢀ  
9ꢀ  
8ꢀ  
8ꢀ  
7ꢀ  
7ꢀ  
6ꢀ  
6ꢀ  
5ꢀ  
13ꢀ  
12ꢀ  
6ꢀ  
5ꢀ  
12ꢀ  
11ꢀ  
PE[0]  
PA[1]  
PE[1]  
PE[8]  
PE[9]  
PE[10]  
PA[0]  
6ꢀ  
6ꢀ  
6ꢀ  
6ꢀ  
10ꢀ  
10ꢀ  
9ꢀ  
9ꢀ  
6ꢀ  
5ꢀ  
8ꢀ  
7ꢀ  
PE[11]  
MPC5606BK Microcontroller Data Sheet, Rev. 5  
40  
NXP Semiconductors  
1
Table 20. I/O weight (continued)  
176 LQFP  
144/100 LQFP  
Supply segment  
Pad  
Weight 5 V  
Weight 3.3 V  
Weight 5 V  
Weight 3.3 V  
176 LQFP 144 LQFP 100 LQFP  
SRC2 = 0 SRC = 1 SRC = 0 SRC = 1 SRC = 0 SRC = 1 SRC = 0 SRC = 1  
2
1
1
PG[9]  
PG[8]  
PC[11]  
PC[10]  
PG[7]  
PG[6]  
PB[0]  
9ꢀ  
9ꢀ  
10ꢀ  
11ꢀ  
11ꢀ  
11ꢀ  
11ꢀ  
11ꢀ  
12ꢀ  
12ꢀ  
12ꢀ  
12ꢀ  
12ꢀ  
12ꢀ  
12ꢀ  
11ꢀ  
11ꢀ  
10ꢀ  
10ꢀ  
9ꢀ  
9ꢀ  
9ꢀ  
10ꢀ  
11ꢀ  
11ꢀ  
11ꢀ  
11ꢀ  
11ꢀ  
12ꢀ  
12ꢀ  
12ꢀ  
12ꢀ  
12ꢀ  
12ꢀ  
12ꢀ  
11ꢀ  
11ꢀ  
10ꢀ  
10ꢀ  
9ꢀ  
9ꢀ  
9ꢀ  
9ꢀ  
13ꢀ  
12ꢀ  
9ꢀ  
13ꢀ  
12ꢀ  
1
9ꢀ  
9ꢀ  
10ꢀ  
10ꢀ  
10ꢀ  
10ꢀ  
10ꢀ  
10ꢀ  
10ꢀ  
10ꢀ  
10ꢀ  
9ꢀ  
14ꢀ  
14ꢀ  
12ꢀ  
12ꢀ  
10ꢀ  
10ꢀ  
10ꢀ  
10ꢀ  
10ꢀ  
10ꢀ  
10ꢀ  
10ꢀ  
10ꢀ  
9ꢀ  
14ꢀ  
14ꢀ  
12ꢀ  
12ꢀ  
PB[1]  
1
PF[9]  
PF[8]  
14ꢀ  
15ꢀ  
13ꢀ  
13ꢀ  
14ꢀ  
15ꢀ  
13ꢀ  
13ꢀ  
PF[12]  
PC[6]  
PC[7]  
PF[10]  
PF[11]  
PA[15]  
PF[13]  
PA[14]  
PA[4]  
1
14ꢀ  
12ꢀ  
14ꢀ  
12ꢀ  
8ꢀ  
12ꢀ  
10ꢀ  
8ꢀ  
12ꢀ  
10ꢀ  
1
8ꢀ  
8ꢀ  
8ꢀ  
11ꢀ  
10ꢀ  
8ꢀ  
11ꢀ  
10ꢀ  
7ꢀ  
9ꢀ  
7ꢀ  
9ꢀ  
PA[13]  
PA[12]  
7ꢀ  
10ꢀ  
8ꢀ  
9ꢀ  
7ꢀ  
10ꢀ  
8ꢀ  
9ꢀ  
7ꢀ  
8ꢀ  
7ꢀ  
8ꢀ  
MPC5606BK Microcontroller Data Sheet, Rev. 5  
NXP Semiconductors  
41  
1
Table 20. I/O weight (continued)  
176 LQFP  
144/100 LQFP  
Supply segment  
Pad  
Weight 5 V  
Weight 3.3 V  
Weight 5 V  
Weight 3.3 V  
176 LQFP 144 LQFP 100 LQFP  
SRC2 = 0 SRC = 1 SRC = 0 SRC = 1 SRC = 0 SRC = 1 SRC = 0 SRC = 1  
3
2
2
PB[9]  
PB[8]  
PB[10]  
PF[0]  
PF[1]  
PF[2]  
PF[3]  
PF[4]  
PF[5]  
PF[6]  
PF[7]  
PJ[3]  
PJ[2]  
PJ[1]  
PJ[0]  
PI[15]  
PI[14]  
PD[0]  
PD[1]  
PD[2]  
PD[3]  
PD[4]  
PD[5]  
PD[6]  
PD[7]  
1ꢀ  
1ꢀ  
5ꢀ  
5ꢀ  
5ꢀ  
6ꢀ  
6ꢀ  
6ꢀ  
6ꢀ  
6ꢀ  
6ꢀ  
6ꢀ  
6ꢀ  
6ꢀ  
6ꢀ  
6ꢀ  
6ꢀ  
1ꢀ  
1ꢀ  
1ꢀ  
1ꢀ  
1ꢀ  
1ꢀ  
1ꢀ  
1ꢀ  
1ꢀ  
1ꢀ  
6ꢀ  
6ꢀ  
6ꢀ  
7ꢀ  
7ꢀ  
7ꢀ  
7ꢀ  
7ꢀ  
7ꢀ  
7ꢀ  
7ꢀ  
7ꢀ  
7ꢀ  
7ꢀ  
7ꢀ  
1ꢀ  
1ꢀ  
1ꢀ  
1ꢀ  
1ꢀ  
1ꢀ  
1ꢀ  
1ꢀ  
1ꢀ  
1ꢀ  
6ꢀ  
6ꢀ  
7ꢀ  
7ꢀ  
8ꢀ  
8ꢀ  
9ꢀ  
9ꢀ  
9ꢀ  
1ꢀ  
1ꢀ  
7ꢀ  
8ꢀ  
8ꢀ  
9ꢀ  
9ꢀ  
10ꢀ  
10ꢀ  
11ꢀ  
11ꢀ  
2
2
1ꢀ  
1ꢀ  
1ꢀ  
1ꢀ  
1ꢀ  
1ꢀ  
1ꢀ  
1ꢀ  
1ꢀ  
1ꢀ  
1ꢀ  
1ꢀ  
1ꢀ  
1ꢀ  
2ꢀ  
2ꢀ  
MPC5606BK Microcontroller Data Sheet, Rev. 5  
42  
NXP Semiconductors  
1
Table 20. I/O weight (continued)  
176 LQFP  
144/100 LQFP  
Supply segment  
Pad  
Weight 5 V  
Weight 3.3 V  
Weight 5 V  
Weight 3.3 V  
176 LQFP 144 LQFP 100 LQFP  
SRC2 = 0 SRC = 1 SRC = 0 SRC = 1 SRC = 0 SRC = 1 SRC = 0 SRC = 1  
4
2
2
PD[8]  
PB[4]  
1ꢀ  
1ꢀ  
1ꢀ  
1ꢀ  
1ꢀ  
1ꢀ  
1ꢀ  
1ꢀ  
1ꢀ  
1ꢀ  
1ꢀ  
1ꢀ  
2ꢀ  
2ꢀ  
2ꢀ  
2ꢀ  
2ꢀ  
2ꢀ  
2ꢀ  
2ꢀ  
PB[5]  
1ꢀ  
1ꢀ  
PB[6]  
1ꢀ  
1ꢀ  
PB[7]  
1ꢀ  
1ꢀ  
PD[9]  
PD[10]  
PD[11]  
PB[11]  
PD[12]  
PB[12]  
PD[13]  
PB[13]  
PD[14]  
PB[14]  
PD[15]  
PB[15]  
PI[8]  
1ꢀ  
1ꢀ  
1ꢀ  
1ꢀ  
1ꢀ  
1ꢀ  
4
2
2
1ꢀ  
1ꢀ  
11ꢀ  
11ꢀ  
11ꢀ  
11ꢀ  
11ꢀ  
11ꢀ  
11ꢀ  
11ꢀ  
10ꢀ  
10ꢀ  
10ꢀ  
10ꢀ  
10ꢀ  
10ꢀ  
9ꢀ  
13ꢀ  
13ꢀ  
13ꢀ  
13ꢀ  
13ꢀ  
13ꢀ  
13ꢀ  
13ꢀ  
12ꢀ  
12ꢀ  
12ꢀ  
12ꢀ  
12ꢀ  
11ꢀ  
11ꢀ  
11ꢀ  
10ꢀ  
7ꢀ  
15ꢀ  
14ꢀ  
14ꢀ  
14ꢀ  
14ꢀ  
13ꢀ  
13ꢀ  
17ꢀ  
17ꢀ  
17ꢀ  
17ꢀ  
16ꢀ  
16ꢀ  
15ꢀ  
2
2
PI[9]  
PI[10]  
PI[11]  
PI[12]  
PI[13]  
PA[3]  
11ꢀ  
10ꢀ  
10ꢀ  
6ꢀ  
6ꢀ  
5ꢀ  
5ꢀ  
4ꢀ  
4ꢀ  
13ꢀ  
12ꢀ  
12ꢀ  
7ꢀ  
7ꢀ  
6ꢀ  
6ꢀ  
5ꢀ  
4ꢀ  
PG[13]  
PG[12]  
PH[0]  
PH[1]  
PH[2]  
PH[3]  
PG[1]  
PG[0]  
9ꢀ  
13ꢀ  
13ꢀ  
8ꢀ  
8ꢀ  
7ꢀ  
7ꢀ  
11ꢀ  
11ꢀ  
7ꢀ  
7ꢀ  
6ꢀ  
6ꢀ  
14ꢀ  
14ꢀ  
9ꢀ  
8ꢀ  
7ꢀ  
7ꢀ  
13ꢀ  
12ꢀ  
8ꢀ  
7ꢀ  
7ꢀ  
6ꢀ  
9ꢀ  
6ꢀ  
6ꢀ  
7ꢀ  
5ꢀ  
6ꢀ  
5ꢀ  
5ꢀ  
4ꢀ  
5ꢀ  
4ꢀ  
5ꢀ  
4ꢀ  
5ꢀ  
5ꢀ  
5ꢀ  
MPC5606BK Microcontroller Data Sheet, Rev. 5  
NXP Semiconductors  
43  
1
Table 20. I/O weight (continued)  
176 LQFP  
144/100 LQFP  
Supply segment  
Pad  
Weight 5 V  
Weight 3.3 V  
Weight 5 V  
Weight 3.3 V  
176 LQFP 144 LQFP 100 LQFP  
SRC2 = 0 SRC = 1 SRC = 0 SRC = 1 SRC = 0 SRC = 1 SRC = 0 SRC = 1  
5
3
3
PF[15]  
PF[14]  
PE[13]  
PA[7]  
4ꢀ  
4ꢀ  
4ꢀ  
5ꢀ  
5ꢀ  
6ꢀ  
6ꢀ  
8ꢀ  
8ꢀ  
8ꢀ  
8ꢀ  
8ꢀ  
8ꢀ  
8ꢀ  
7ꢀ  
7ꢀ  
7ꢀ  
7ꢀ  
7ꢀ  
6ꢀ  
6ꢀ  
6ꢀ  
5ꢀ  
5ꢀ  
5ꢀ  
6ꢀ  
4ꢀ  
5ꢀ  
5ꢀ  
6ꢀ  
6ꢀ  
7ꢀ  
8ꢀ  
9ꢀ  
9ꢀ  
9ꢀ  
9ꢀ  
9ꢀ  
9ꢀ  
9ꢀ  
9ꢀ  
9ꢀ  
8ꢀ  
8ꢀ  
8ꢀ  
8ꢀ  
7ꢀ  
7ꢀ  
6ꢀ  
6ꢀ  
5ꢀ  
5ꢀ  
4ꢀ  
4ꢀ  
4ꢀ  
5ꢀ  
5ꢀ  
6ꢀ  
6ꢀ  
8ꢀ  
8ꢀ  
8ꢀ  
8ꢀ  
8ꢀ  
8ꢀ  
8ꢀ  
7ꢀ  
6ꢀ  
4ꢀ  
5ꢀ  
5ꢀ  
6ꢀ  
6ꢀ  
7ꢀ  
8ꢀ  
9ꢀ  
9ꢀ  
9ꢀ  
9ꢀ  
9ꢀ  
9ꢀ  
9ꢀ  
9ꢀ  
5ꢀ  
PA[8]  
PA[9]  
PA[10]  
PA[11]  
PE[12]  
PG[14]  
PG[15]  
PE[14]  
PE[15]  
PG[10]  
PG[11]  
PH[11]  
PH[12]  
PI[5]  
3
11ꢀ  
10ꢀ  
11ꢀ  
10ꢀ  
11ꢀ  
10ꢀ  
11ꢀ  
10ꢀ  
11ꢀ  
10ꢀ  
10ꢀ  
9ꢀ  
9ꢀ  
9ꢀ  
11ꢀ  
9ꢀ  
3
PI[4]  
PC[3]  
PC[2]  
PA[5]  
6ꢀ  
6ꢀ  
6ꢀ  
5ꢀ  
5ꢀ  
5ꢀ  
8ꢀ  
7ꢀ  
7ꢀ  
6ꢀ  
6ꢀ  
5ꢀ  
8ꢀ  
8ꢀ  
7ꢀ  
7ꢀ  
8ꢀ  
8ꢀ  
7ꢀ  
7ꢀ  
PA[6]  
PH[10]  
PC[1]  
7ꢀ  
19ꢀ  
6ꢀ  
13ꢀ  
7ꢀ  
19ꢀ  
6ꢀ  
13ꢀ  
MPC5606BK Microcontroller Data Sheet, Rev. 5  
44  
NXP Semiconductors  
1
Table 20. I/O weight (continued)  
176 LQFP  
144/100 LQFP  
Supply segment  
Pad  
Weight 5 V  
Weight 3.3 V  
Weight 5 V  
Weight 3.3 V  
176 LQFP 144 LQFP 100 LQFP  
SRC2 = 0 SRC = 1 SRC = 0 SRC = 1 SRC = 0 SRC = 1 SRC = 0 SRC = 1  
6
4
4
PC[0]  
PH[9]  
PE[2]  
PE[3]  
PC[5]  
PC[4]  
PE[4]  
PE[5]  
PH[4]  
PH[5]  
PH[6]  
PH[7]  
PH[8]  
PE[6]  
PE[7]  
PI[3]  
6ꢀ  
7ꢀ  
7ꢀ  
7ꢀ  
7ꢀ  
8ꢀ  
8ꢀ  
8ꢀ  
8ꢀ  
8ꢀ  
8ꢀ  
9ꢀ  
9ꢀ  
9ꢀ  
9ꢀ  
9ꢀ  
9ꢀ  
9ꢀ  
9ꢀ  
8ꢀ  
8ꢀ  
8ꢀ  
8ꢀ  
9ꢀ  
7ꢀ  
8ꢀ  
8ꢀ  
7ꢀ  
7ꢀ  
10ꢀ  
8ꢀ  
9ꢀ  
8ꢀ  
10ꢀ  
10ꢀ  
11ꢀ  
11ꢀ  
11ꢀ  
11ꢀ  
12ꢀ  
8ꢀ  
9ꢀ  
9ꢀ  
9ꢀ  
10ꢀ  
10ꢀ  
10ꢀ  
10ꢀ  
8ꢀ  
11ꢀ  
12ꢀ  
12ꢀ  
13ꢀ  
13ꢀ  
14ꢀ  
14ꢀ  
9ꢀ  
10ꢀ  
10ꢀ  
11ꢀ  
11ꢀ  
12ꢀ  
12ꢀ  
12ꢀ  
9ꢀ  
8ꢀ  
10ꢀ  
10ꢀ  
10ꢀ  
11ꢀ  
11ꢀ  
12ꢀ  
12ꢀ  
12ꢀ  
13ꢀ  
13ꢀ  
13ꢀ  
14ꢀ  
9ꢀ  
8ꢀ  
9ꢀ  
9ꢀ  
9ꢀ  
9ꢀ  
10ꢀ  
10ꢀ  
10ꢀ  
10ꢀ  
10ꢀ  
10ꢀ  
10ꢀ  
10ꢀ  
10ꢀ  
10ꢀ  
10ꢀ  
10ꢀ  
10ꢀ  
10ꢀ  
10ꢀ  
9ꢀ  
9ꢀ  
4
10ꢀ  
10ꢀ  
10ꢀ  
11ꢀ  
11ꢀ  
11ꢀ  
11ꢀ  
12ꢀ  
12ꢀ  
12ꢀ  
12ꢀ  
12ꢀ  
11ꢀ  
11ꢀ  
11ꢀ  
11ꢀ  
11ꢀ  
15ꢀ  
15ꢀ  
16ꢀ  
16ꢀ  
16ꢀ  
13ꢀ  
13ꢀ  
14ꢀ  
14ꢀ  
14ꢀ  
4
4
PI[2]  
PI[1]  
PI[0]  
PC[12]  
PC[13]  
PC[8]  
PB[2]  
12ꢀ  
11ꢀ  
12ꢀ  
13ꢀ  
13ꢀ  
13ꢀ  
18ꢀ  
15ꢀ  
15ꢀ  
15ꢀ  
15ꢀ  
16ꢀ  
11ꢀ  
10ꢀ  
18ꢀ  
16ꢀ  
1
2
VDD = 3.3 V 10ꢀ / 5.0 V 10ꢀ, TA = 40 to 125 °C, unless otherwise specified  
SRC is the Slew Rate Control bit in SIU_PCRx  
3.7  
RESET electrical characteristics  
The device implements a dedicated bidirectional RESET pin.  
MPC5606BK Microcontroller Data Sheet, Rev. 5  
NXP Semiconductors  
45  
V
DD  
V
DDMIN  
RESET  
V
IH  
V
IL  
device reset forced by RESET  
device start-up phase  
Figure 6. Start-up reset requirements  
VRESET  
hw_rst  
‘1’  
V
DD  
V
IH  
V
IL  
‘0’  
filtered by  
lowpass filter  
unknown reset  
state  
filtered by  
hysteresis  
filtered by  
lowpass filter  
device under hardware reset  
W
W
FRST  
FRST  
W
NFRST  
Figure 7. Noise filtering on reset signal  
Table 21. Reset electrical characteristics  
Value  
Typ  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Max  
VDD + 0.4  
VIH  
SR P Input High Level CMOS  
(Schmitt Trigger)  
0.65VDD  
V
MPC5606BK Microcontroller Data Sheet, Rev. 5  
46  
NXP Semiconductors  
Table 21. Reset electrical characteristics (continued)  
Value  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Typ  
Max  
VIL  
SR P Input low Level CMOS  
(Schmitt Trigger)  
0.4  
0.35VDD  
V
V
V
VHYS CC C Input hysteresis CMOS  
(Schmitt Trigger)  
0.1VDD  
VOL  
CC P Output low level  
Push Pull, IOL = 2 mA,  
VDD = 5.0 V 10ꢀ, PAD3V5V = 0  
(recommended)  
0.1VDD  
Push Pull, IOL = 1 mA,  
0.1VDD  
0.5  
VDD = 5.0 V 10ꢀ, PAD3V5V = 12  
Push Pull, IOL = 1 mA,  
VDD = 3.3 V 10ꢀ, PAD3V5V = 1  
(recommended)  
Ttr  
CC D Output transition time output CL = 25 pF,  
pin3 MEDIUM configuration  
VDD = 5.0 V 10ꢀ, PAD3V5V = 0  
10  
20  
40  
12  
25  
40  
ns  
CL = 50 pF,  
VDD = 5.0 V 10ꢀ, PAD3V5V = 0  
CL = 100 pF,  
VDD = 5.0 V 10ꢀ, PAD3V5V = 0  
CL = 25 pF,  
VDD = 3.3 V 10ꢀ, PAD3V5V = 1  
CL = 50 pF,  
VDD = 3.3 V 10ꢀ, PAD3V5V = 1  
CL = 100 pF,  
VDD = 3.3 V 10ꢀ, PAD3V5V = 1  
WFRST SR P RESET input filtered pulse  
1000  
10  
40  
ns  
ns  
µA  
WNFRST SR P RESET input not filtered pulse  
|IWPU  
|
CC P Weak pull-up current absolute VDD = 3.3 V 10ꢀ, PAD3V5V = 1  
150  
150  
250  
value  
VDD = 5.0 V 10ꢀ, PAD3V5V = 0  
10  
V
DD = 5.0 V 10ꢀ, PAD3V5V = 14  
10  
1
2
VDD = 3.3 V 10ꢀ / 5.0 V 10ꢀ, TA = 40 to 125 °C, unless otherwise specified  
This is a transient configuration during power-up, up to the end of reset PHASE2 (refer to the MC_RGM chapter of  
the MPC5606BK Microcontroller Reference Manual).  
3
4
CL includes device and package capacitance (CPKG < 5 pF).  
The configuration PAD3V5 = 1 when VDD = 5 V is only transient configuration during power-up. All pads but RESET  
are configured in input or in high impedance state.  
MPC5606BK Microcontroller Data Sheet, Rev. 5  
NXP Semiconductors  
47  
3.8  
Power management electrical characteristics  
Voltage regulator electrical characteristics  
3.8.1  
The device implements an internal voltage regulator to generate the low voltage core supply V  
from the high voltage  
DD_LV  
ballast supply V  
. The regulator itself is supplied by the common I/O supply V . The following supplies are involved:  
DD_BV  
DD  
HV: High voltage external power supply for voltage regulator module. This must be provided externally through V  
power pin.  
DD  
BV: High voltage external power supply for internal ballast module. This must be provided externally through V  
DD_BV  
power pin. Voltage values should be aligned with V  
.
DD  
LV: Low voltage internal power supply for core, FMPLL and Flash digital logic. This is generated by the internal  
voltage regulator but provided outside to connect stability capacitor. It is further split into four main domains to ensure  
noise isolation between critical LV modules within the device:  
LV_COR: Low voltage supply for the core. It is also used to provide supply for FMPLL through double bonding.  
LV_CFLA: Low voltage supply for code Flash module. It is supplied with dedicated ballast and shorted to  
LV_COR through double bonding.  
LV_DFLA: Low voltage supply for data Flash module. It is supplied with dedicated ballast and shorted to  
LV_COR through double bonding.  
LV_PLL: Low voltage supply for FMPLL. It is shorted to LV_COR through double bonding.  
C
(LV_COR/LV_CFLA)  
REG2  
GND  
V
DD  
V
V
DD_LV  
SS_LV  
V
DD_BV  
DD_LVn  
SS_LVn  
V
REF  
V
DD_BV  
V
DD_LV  
DEVICE  
V
Voltage Regulator  
I
V
SS_LV  
GND  
V
V
V
V
V
DD  
SS_LV  
DD_LV  
SS  
DEVICE  
GND  
(LV_COR/LV_PLL)  
GND  
C
(supply/IO decoupling)  
C
DEC2  
REG3  
Figure 8. Voltage regulator capacitance connection  
The internal voltage regulator requires external capacitance (C ) to be connected to the device in order to provide a stable  
REGn  
low voltage digital supply to the device. Capacitances should be placed on the board as near as possible to the associated pins.  
Care should also be taken to limit the serial inductance of the board to less than 5 nH.  
MPC5606BK Microcontroller Data Sheet, Rev. 5  
48  
NXP Semiconductors  
Each decoupling capacitor must be placed between each of the three V  
/V  
supply pairs to ensure stable voltage (see  
DD_LV SS_LV  
Section 3.4, Recommended operating conditions).  
The internal voltage regulator requires controlled slew rate of V /V  
as described in Figure 9.  
DD DD_BV  
VDD_HV  
V
(MAX)  
DD_HV  
V
(MIN)  
DD_HV  
POWER UP  
FUNCTIONAL RANGE  
POWER DOWN  
Figure 9. V and V  
maximum slope  
DD_BV  
DD  
When STANDBY mode is used, further constraints apply to the V /V  
in order to guarantee correct regulator  
DD DD_BV  
functionality during STANDBY exit. This is described in Figure 10.  
STANDBY regulator constraints should normally be guaranteed by implementing equivalent of C  
capacitance on  
STDBY  
application board (capacitance and ESR typical values), but would actually depend on the exact characteristics of the  
application’s external regulator.  
MPC5606BK Microcontroller Data Sheet, Rev. 5  
NXP Semiconductors  
49  
VDD_HV  
VDD_HV  
V
(MAX)  
DD_HV  
d
dt  
VDD(STDBY)  
ΔVDD(STDBY)  
ΔVDD(STDBY)  
V
(MIN)  
DD_HV  
d
dt  
VDD(STDBY)  
VDD_LV  
VDD_LV(NOMINAL)  
0V  
Figure 10. V and V  
supply constraints during STANDBY mode exit  
DD_BV  
DD  
Table 22. Voltage regulator electrical characteristics  
Value  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Typ  
Max  
CREGn  
RREG  
SR — Internal voltage regulator external  
capacitance  
200  
500  
nF  
Ω
SR — Stability capacitor equivalent serial  
resistance  
0.2  
CDEC1  
SR — Decoupling capacitance2 ballast  
VDD_BV/VSS_LV pair:  
VDD_BV = 4.5 V to  
5.5 V  
1003  
4704  
nF  
V
DD_BV/VSS_LV pair:  
400  
10  
VDD_BV = 3 V to 3.6 V  
CDEC2  
VMREG  
SR — Decoupling capacitance regulator  
supply  
VDD/VSS pair  
100  
nF  
V
CC P Main regulator output voltage  
Before exiting from  
reset  
1.32  
After trimming  
1.15  
1.28  
1.32  
150  
IMREG  
SR — Main regulator current provided to  
VDD_LV domain  
mA  
MPC5606BK Microcontroller Data Sheet, Rev. 5  
50  
NXP Semiconductors  
Table 22. Voltage regulator electrical characteristics (continued)  
Value  
Typ  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Max  
IMREGINT  
CC D Main regulator module current  
consumption  
IMREG = 200 mA  
IMREG = 0 mA  
2
1
mA  
VLPREG  
ILPREG  
CC P Low power regulator output voltage After trimming  
1.15  
1.23  
1.32  
15  
V
SR — Low power regulator current provided  
to VDD_LV domain  
mA  
ILPREGINT  
CC D Low power regulator module current ILPREG = 15 mA;  
5
600  
µA  
consumption  
TA = 55 °C  
ILPREG = 0 mA;  
TA = 55 °C  
VULPREG  
IULPREG  
CC P Ultra low power regulator output  
voltage  
After trimming  
1.15  
1.23  
2
1.32  
5
V
SR — Ultra low power regulator current  
provided to VDD_LV domain  
mA  
µA  
IULPREGINT  
CC D Ultra low power regulator module  
current consumption  
IULPREG = 5 mA;  
TA = 55 °C  
100  
IULPREG = 0 mA;  
TA = 55 °C  
IDD_BV  
CC D Inrush average current on VDD_BV  
during power-up5  
3006  
250  
mA  
SR — Maximum slope on VDD  
mV/µs  
d
VDD  
dt  
SR — Maximum instant variation on VDD  
during STANDBY exit  
30  
15  
mV  
ΔVDD(STDBY ))  
SR — Maximum slope on VDD during  
STANDBY exit  
mV/µs  
d
VDD(STDBY)  
dt  
1
2
VDD = 3.3 V 10ꢀ / 5.0 V 10ꢀ, TA = 40 to 125 °C, unless otherwise specified  
This capacitance value is driven by the constraints of the external voltage regulator supplying the VDD_BV voltage. A typical  
value is in the range of 470 nF.  
3
4
This value is acceptable to guarantee operation from 4.5 V to 5.5 V  
External regulator and capacitance circuitry must be capable of providing IDD_BV while maintaining supply VDD_BV in operating  
range.  
5
6
Inrush current is seen only for short time during power-up and on standby exit (max 20 µs, depending on external capacitances  
to be load).  
The duration of the inrush current depends on the capacitance placed on LV pins. BV decoupling capacitors must be sized  
accordingly. Refer to IMREG value for minimum amount of current to be provided in cc.  
3.8.2  
Voltage monitor electrical characteristics  
The device implements a Power-on Reset module to ensure correct power-up initialization, as well as four low voltage detectors  
to monitor the V and the V  
voltage while device is supplied:  
DD  
DD_LV  
MPC5606BK Microcontroller Data Sheet, Rev. 5  
NXP Semiconductors  
51  
POR monitors V during the power-up phase to ensure device is maintained in a safe reset state  
DD  
LVDHV3 monitors V to ensure device reset below minimum functional supply  
DD  
LVDHV3B monitors VDD_BV to ensure device reset below minimum functional supply  
LVDHV5 monitors V when application uses device in the 5.0 V ± 10% range  
DD  
LVDLVCOR monitors power domain No. 1  
LVDLVBKP monitors power domain No. 0  
NOTE  
When enabled, power domain No. 2 is monitored through LVDLVBKP.  
V
DD  
V
V
LVDHVxH  
LVDHVxL  
RESET  
Figure 11. Low voltage monitor vs. reset  
Table 23. Low voltage monitor electrical characteristics  
Value  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min Typ Max  
VPORUP  
VPORH  
SR D Supply for functional POR module  
CC P Power-on reset threshold  
TA = 25 °C,  
after trimming  
1.0  
1.5  
5.5  
2.6  
V
VLVDHV3H CC T LVDHV3 low voltage detector high threshold  
VLVDHV3L CC P LVDHV3 low voltage detector low threshold  
2.95  
2.9  
2.6  
VLVDHV3BH CC T LVDHV3B low voltage detector high threshold  
VLVDHV3BL CC P LVDHV3BL low voltage detector low threshold  
VLVDHV5H CC T LVDHV5 low voltage detector high threshold  
2.95  
2.9  
2.6  
4.5  
VLVDHV5L  
CC P LVDHV5 low voltage detector low threshold  
3.8  
1.08  
1.08  
4.4  
VLVDLVCORL CC P LVDLVCOR low voltage detector low threshold  
VLVDLVBKPL CC P LVDLVBKP low voltage detector low threshold  
1.14  
1
VDD = 3.3 V 10ꢀ / 5.0 V 10ꢀ, TA = 40 to 125 °C, unless otherwise specified  
MPC5606BK Microcontroller Data Sheet, Rev. 5  
52  
NXP Semiconductors  
3.9  
Power consumption in different application modes  
Table 24 provides DC electrical characteristics for significant application modes. These values are indicative values; actual  
consumption depends on the application.  
1
Table 24. Electrical characteristics in different application modes  
Value  
Symbol  
C
Parameter  
Conditions2  
Unit  
Min Typ Max  
3
IDDMAX CC C RUN mode maximum average  
current  
81 1304 mA  
5
IDDRUN CC T RUN mode typical average  
fCPU = 8 MHz  
fCPU = 16 MHz  
CPU = 32 MHz  
12  
27  
40  
54  
67  
10  
15  
mA  
current6  
T
C
f
P
fCPU = 48 MHz  
fCPU = 64 MHz  
95  
P
120  
IDDHALT CC C HALT mode current7  
Slow internal RC  
oscillator (128 kHz)  
running  
TA = 25 °C  
15 mA  
28  
P
TA = 125 °C  
IDDSTOP CC P STOP mode current8  
Slow internal RC  
oscillator (128 kHz)  
running  
TA = 25 °C  
TA = 55 °C  
TA = 85 °C  
TA = 105 °C  
TA = 125 °C  
TA = 25 °C  
TA = 55 °C  
TA = 85 °C  
TA = 105 °C  
TA = 125 °C  
TA = 25 °C  
TA = 55 °C  
TA = 85 °C  
TA = 105 °C  
TA = 125 °C  
130 500 µA  
D
180  
1
5
D
mA  
µA  
D
3
9
P
5
14  
80  
IDDSTDBY2 CC P STANDBY2 mode current9  
Slow internal RC  
oscillator (128 kHz)  
running  
17  
30  
110  
C
C
C
280 950  
460 1700  
C
IDDSTDBY1 CC C STANDBY1 mode current10  
Slow internal RC  
oscillator (128 kHz)  
running  
12  
24  
48  
50  
µA  
C
C
C
C
150 500  
260  
1
Except for IDDMAX, all consumptions in this table apply to VDD_BV only and do not include VDD_HV  
.
2
3
VDD = 3.3 V 10ꢀ / 5.0 V 10ꢀ, TA = 40 to 125 °C, unless otherwise specified  
Running consumption is given on voltage regulator supply (VDDREG). IDDMAX is composed of three components:  
IDDMAX = IDD(VDD_BV) + IDD(VDD_HV) + IDD(VDD_HV_ADC). It does not include a fourth component linked to I/Os  
toggling which is highly dependent on the application. The given value is thought to be a worst case value  
(64 MHz at 125 °C) with all peripherals running, and code fetched from code flash while modify operation on-going  
on data flash. Note that this value can be significantly reduced by the application: switch off unused peripherals  
(default), reduce peripheral frequency through internal prescaler, fetch from RAM most used functions, use low  
power mode when possible.  
MPC5606BK Microcontroller Data Sheet, Rev. 5  
NXP Semiconductors  
53  
4
5
6
Higher current may be sunk by device during power-up and standby exit. Please refer to inrush current in Table 22.  
RUN current measured with typical application with accesses on both Flash and RAM.  
Only for the “P” classification: Data and Code Flash in Normal Power. Code fetched from RAM: Serial IPs CAN and  
LIN in loop back mode, DSPI as Master, PLL as system clock (4 x Multiplier) peripherals on (eMIOS/CTU/ADC) and  
running at max frequency, periodic SW/WDG timer reset enabled.  
7
Data Flash Power Down. Code Flash in Low Power. SIRC 128 kHz and FIRC 16 MHz on. 10 MHz XTAL clock.  
FlexCAN: instances: 0, 1, 2 ON (clocked but not reception or transmission), instances: 4, 5, 6 clocks gated. LINFlex:  
instances: 0, 1, 2 ON (clocked but not reception or transmission), instance: 3 to 9 clocks gated. eMIOS: instance:  
0 ON (16 channels on PA[0]–PA[11] and PC[12]–PC[15]) with PWM 20 kHz, instance: 1 clock gated. DSPI:  
instance: 0 (clocked but no communication), instance: 1 to 5 clocks gated. RTC/API ON. PIT ON. STM ON. ADC1  
OFF. ADC0 ON but no conversion except two analog watchdogs.  
8
9
Only for the “P” classification: No clock, FIRC 16 MHz off, SIRC 128 kHz on, PLL off, HPvreg off,  
ULPVreg/LPVreg on. All possible peripherals off and clock gated. Flash in power down mode.  
Only for the “P” classification: ULPreg on, HP/LPVreg off, 32 KB RAM on, device configured for minimum  
consumption, all possible modules switched off.  
10 ULPreg on, HP/LPVreg off, 8 KB RAM on, device configured for minimum consumption, all possible modules  
switched off.  
3.10 Flash memory electrical characteristics  
3.10.1 Program/erase characteristics  
Table 25 shows the program and erase characteristics.  
Table 25. Program and erase specifications  
Value  
Symbol  
C
Parameter  
Conditions  
Unit  
µs  
Initial  
max2  
Min Typ1  
Max3  
Tdwprogram CC C Double word (64 bits) program time4  
Code Flash  
Data Flash  
Code Flash  
Data Flash  
Code Flash  
Data Flash  
Code Flash  
18  
22  
50  
500  
T16Kpperase  
T32Kpperase  
T32Kpperase  
T128Kpperase  
T128Kpperase  
16 KB block preprogram and erase time  
32 KB block preprogram and erase time  
200 500  
300  
5000  
5000  
ms  
ms  
300 600  
400  
32 KB block preprogram and erase time for  
sector B0F4  
600 1200 10000 ms  
128 KB block preprogram and erase time  
Code Flash  
Data Flash  
600 1300 7500  
800  
ms  
128 KB block preprogram and erase time for Code Flash  
sector B0F5  
1200 2600 15000 ms  
Teslat  
D Erase Suspend Latency  
30  
30  
µs  
TESRT  
C Erase Suspend Request Rate  
Code Flash 20  
Data Flash 10  
ms  
MPC5606BK Microcontroller Data Sheet, Rev. 5  
54  
NXP Semiconductors  
1
Typical program and erase times assume nominal supply values and operation at 25 °C. All times are subject to  
change pending device characterization.  
2
3
Initial factory condition: < 100 program/erase cycles, 25 °C, typical supply voltage.  
The maximum program and erase times occur after the specified number of program/erase cycles. These maximum  
values are characterized but not guaranteed.  
4
Actual hardware programming times. This does not include software overhead.  
Table 26. Flash module life  
Value  
Symbol  
C
Parameter  
Conditions  
Unit  
Min  
Typ  
Max  
P/E  
CC C Number of program/erase  
cycles per block for 16 KB  
blocks over the operating  
temperature range (TJ)  
100000  
cycles  
P/E  
P/E  
CC C Number of program/erase  
cycles per block for 32 KB  
blocks over the operating  
temperature range (TJ)  
10000  
1000  
100000  
100000  
cycles  
cycles  
CC C Number of program/erase  
cycles per block for 128 KB  
blocks over the operating  
temperature range (TJ)  
Retention CC C Minimum data retention at 85 Blocks with  
20  
10  
years  
years  
°C average ambient  
0–1,000 P/E cycles  
temperature1  
Blocks with  
1,001–10,000 P/E  
cycles  
Blocks with  
5
years  
10,001–100,000 P/E  
cycles  
1
Ambient temperature averaged over duration of application, not to exceed recommended product operating  
temperature range.  
ECC circuitry provides correction of single bit faults and is used to improve further automotive reliability results. Some units  
will experience single bit corrections throughout the life of the product with no impact to product reliability.  
Table 27. Flash read access timing  
Symbol  
fREAD  
C
Parameter  
Conditions1  
Max  
Unit  
CC P Maximum frequency for Flash reading  
2 wait states  
1 wait state  
0 wait states  
64  
40  
20  
MHz  
C
C
1
VDD = 3.3 V 10ꢀ / 5.0 V 10ꢀ, TA = 40 to 125 °C, unless otherwise specified.  
3.10.2 Flash power supply DC characteristics  
Table 28 shows the power supply DC characteristics on external supply.  
MPC5606BK Microcontroller Data Sheet, Rev. 5  
NXP Semiconductors  
55  
Table 28. Flash power supply DC electrical characteristics  
Conditions1  
Value  
Symbol  
Parameter  
Unit  
Min Typ Max  
ICFREAD CC Sum of the current consumption on Flash module read  
VDDHV and VDDBV on read access  
fCPU = 64 MHz2  
Code Flash  
Data Flash  
Code Flash  
Data Flash  
33 mA  
33  
IDFREAD  
ICFMOD CC Sum of the current consumption on Program  
52 mA  
33  
VDDHV and VDDBV on matrix  
modification (program/erase)  
/Erase on-going while  
IDFMOD  
reading Flash registers  
f
CPU = 64 MHz2  
ICFLPW CC Sum of the current consumption on  
Code Flash  
Data Flash  
1.1 mA  
900 µA  
VDDHV and VDDBV during Flash low  
power mode  
IDFLPW  
ICFPWD CC Sum of the current consumption on  
Code Flash  
Data Flash  
150 µA  
150  
VDDHV and VDDBV during Flash power  
IDFPWD  
down mode  
1
2
VDD = 3.3 V 10ꢀ / 5.0 V 10ꢀ, TA = –40 to 125 °C, unless otherwise specified.  
fCPU 64 MHz can be achieved at up to 125 °C.  
3.10.3 Start-up/Switch-off timings  
Table 29. Start-up time/Switch-off time  
Value  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min Typ Max  
TFLARSTEXIT  
TFLALPEXIT  
TFLAPDEXIT  
CC T Delay for Flash module to exit reset mode  
125 µs  
0.5  
CC T Delay for Flash module to exit low-power mode  
CC T Delay for Flash module to exit power-down  
mode  
30  
TFLALPENTRY CC T Delay for Flash module to enter low-power  
mode  
0.5  
1.5  
TFLAPDENTRY CC T  
Delay for Flash module to enter power-down  
mode  
1
VDD = 3.3 V 10ꢀ / 5.0 V 10ꢀ, TA = 40 to 125 °C, unless otherwise specified.  
3.11 Electromagnetic compatibility (EMC) characteristics  
Susceptibility tests are performed on a sample basis during product characterization.  
3.11.1 Designing hardened software to avoid noise problems  
EMC characterization and optimization are performed at component level with a typical application environment and simplified  
MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in  
particular.  
MPC5606BK Microcontroller Data Sheet, Rev. 5  
56  
NXP Semiconductors  
Therefore it is recommended that the user apply EMC software optimization and prequalification tests in relation with the EMC  
level requested for the application.  
Software recommendations The software flowchart must include the management of runaway conditions such as:  
— Corrupted program counter  
— Unexpected reset  
— Critical data corruption (control registers...)  
Prequalification trials Most of the common failures (unexpected reset and program counter corruption) can be  
reproduced by manually forcing a low state on the reset pin or the oscillator pins for 1 second.  
To complete these trials, ESD stress can be applied directly on the device. When unexpected behavior is detected, the  
software can be hardened to prevent unrecoverable errors occurring.  
3.11.2 Electromagnetic interference (EMI)  
The product is monitored in terms of emission based on a typical application. This emission test conforms to the IEC61967-1  
standard, which specifies the general conditions for EMI measurements.  
1,2  
Table 30. EMI radiated emission measurement  
Value  
Symbol  
C
Parameter  
Conditions  
Unit  
Min Typ Max  
SR — Scan range  
0.150  
1000 MHz  
fCPU  
SR — Operating frequency  
64  
1.28  
MHz  
V
VDD_LV SR — LV operating voltages  
SEMI CC T Peak level  
VDD = 5 V, TA = 25 °C, No PLL frequency  
18 dBµV  
LQFP144 package  
Test conforming to IEC  
61967-2,  
modulation  
2ꢀ PLL frequency  
modulation  
14 dBµV  
fOSC = 8 MHz/fCPU  
64 MHz  
=
1
2
EMI testing and I/O port waveforms per IEC 61967-1, -2, -4  
For information on conducted emission and susceptibility measurement (norm IEC 61967-4), please contact your  
local marketing representative.  
3.11.3 Absolute maximum ratings (electrical sensitivity)  
Based on two different tests (ESD and LU) using specific measurement methods, the product is stressed in order to determine  
its performance in terms of electrical sensitivity.  
3.11.3.1 Electrostatic discharge (ESD)  
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according  
to each pin combination. The sample size depends on the number of supply pins in the device (3 parts×(n + 1) supply pin). This  
test conforms to the AEC-Q100-002/-003/-011 standard.  
MPC5606BK Microcontroller Data Sheet, Rev. 5  
NXP Semiconductors  
57  
1,2  
Table 31. ESD absolute maximum ratings  
Symbol  
Ratings  
Conditions  
TA = 25 °C  
Class  
Max value3  
Unit  
VESD(HBM) Electrostatic discharge voltage  
(Human Body Model)  
H1C  
2000  
V
conforming to AEC-Q100-002  
VESD(MM) Electrostatic discharge voltage  
(Machine Model)  
TA = 25 °C  
conforming to AEC-Q100-003  
M2  
200  
VESD(CDM) Electrostatic discharge voltage  
(Charged Device Model)  
TA = 25 °C  
conforming to AEC-Q100-011  
C3A  
500  
750 (corners)  
1
2
All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated  
Circuits.  
A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device  
specification requirements. Complete DC parametric and functional testing shall be performed per applicable  
device specification at room temperature followed by hot temperature, unless specified otherwise in the device  
specification.  
3
Data based on characterization results, not tested in production  
3.11.3.2 Static latch-up (LU)  
Two complementary static tests are required on six parts to assess the latch-up performance:  
A supply overvoltage is applied to each power supply pin.  
A current injection is applied to each input, output and configurable I/O pin.  
These tests are compliant with the EIA/JESD 78 IC latch-up standard.  
Table 32. Latch-up results  
Symbol  
Parameter  
Static latch-up class  
Conditions  
Class  
LU  
TA = 125 °C  
II level A  
conforming to JESD 78  
3.12 Fast external crystal oscillator (4 to 16 MHz) electrical  
characteristics  
The device provides an oscillator/resonator driver. Figure 12 describes a simple model of the internal oscillator driver and  
provides an example of a connection for an oscillator or a resonator.  
Table 33 provides the parameter description of 4 MHz to 16 MHz crystals used for the design simulations.  
MPC5606BK Microcontroller Data Sheet, Rev. 5  
58  
NXP Semiconductors  
EXTAL  
C1  
C2  
EXTAL  
XTAL  
DEVICE  
V
DD  
I
R
EXTAL  
XTAL  
DEVICE  
XTAL  
DEVICE  
Figure 12. Crystal oscillator and resonator connection scheme  
NOTE  
XTAL/EXTAL must not be directly used to drive external circuits.  
Table 33. Crystal description  
Shunt  
capacitance  
between  
xtalout  
Crystal  
equivalent  
series  
resistance  
ESR Ω  
Crystal  
motional  
capacitance  
(Cm) fF  
Crystal  
motional  
inductance  
(Lm) mH  
Load on  
xtalin/xtalout  
C1 = C2  
Nominal  
frequency  
(MHz)  
NDK crystal  
reference  
(pF)1  
and xtalin  
C02 (pF)  
4
NX8045GB  
NX5032GA  
300  
300  
150  
120  
120  
2.68  
2.46  
2.93  
3.11  
3.90  
591.0  
160.7  
86.6  
21  
17  
15  
15  
10  
2.93  
3.01  
2.91  
2.93  
3.00  
8
10  
12  
16  
56.5  
25.3  
1
2
The values specified for C1 and C2 are the same as used in simulations. It should be ensured that the testing  
includes all the parasitics (from the board, probe, crystal, etc.) as the AC / transient behavior depends upon them.  
The value of C0 specified here includes 2 pF additional capacitance for parasitics (to be seen with bond-pads,  
package, etc.).  
MPC5606BK Microcontroller Data Sheet, Rev. 5  
NXP Semiconductors  
59  
S_MTRANS bit (ME_GS register)  
1
0
V
XTAL  
1/f  
MXOSC  
V
MXOSC  
90ꢀ  
10ꢀ  
V
MXOSCOP  
T
valid internal clock  
MXOSCSU  
Figure 13. Fast external crystal oscillator (4 to 16 MHz) electrical characteristics  
Table 34. Fast external crystal oscillator (4 to 16 MHz) electrical characteristics  
Value  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Typ  
Max  
fFXOSC  
SR — Fast external crystal  
oscillator frequency  
4.0  
16.0  
MHz  
gmFXOSC CC C Fast external crystal  
oscillator  
VDD = 3.3 V 10ꢀ,  
PAD3V5V = 1  
OSCILLATOR_MARGIN = 0  
2.2  
2.0  
2.7  
2.5  
8.2  
7.4  
9.7  
9.2  
mA/V  
transconductance  
CC P  
CC C  
CC C  
VDD = 5.0 V 10ꢀ,  
PAD3V5V = 0  
OSCILLATOR_MARGIN = 0  
VDD = 3.3 V 10ꢀ,  
PAD3V5V = 1  
OSCILLATOR_MARGIN = 1  
VDD = 5.0 V 10ꢀ,  
PAD3V5V = 0  
OSCILLATOR_MARGIN = 1  
VFXOSC  
CC T Oscillation amplitude at  
EXTAL  
fOSC = 4 MHz,  
OSCILLATOR_MARGIN = 0  
1.3  
1.3  
V
f
OSC = 16 MHz,  
OSCILLATOR_MARGIN = 1  
VFXOSCOP CC P Oscillation operating point  
0.95  
2
V
2
IFXOSC  
CC T Fast external crystal  
oscillator consumption  
3
mA  
MPC5606BK Microcontroller Data Sheet, Rev. 5  
60  
NXP Semiconductors  
Table 34. Fast external crystal oscillator (4 to 16 MHz) electrical characteristics (continued)  
Value  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Typ  
Max  
TFXOSCSU CC T Fast external crystal  
oscillator start-up time  
fOSC = 4 MHz,  
OSCILLATOR_MARGIN = 0  
6
ms  
f
OSC = 16 MHz,  
1.8  
OSCILLATOR_MARGIN = 1  
VIH  
VIL  
SR P Input high level CMOS  
(Schmitt Trigger)  
Oscillator bypass mode  
0.65VDD  
0.4  
VDD + 0.4  
0.35VDD  
V
V
SR P Input low level CMOS  
(Schmitt Trigger)  
Oscillator bypass mode  
1
2
VDD = 3.3 V 10ꢀ / 5.0 V 10ꢀ, TA = 40 to 125 °C, unless otherwise specified  
Stated values take into account only analog module consumption but not the digital contributor (clock tree and  
enabled peripherals).  
3.13 Slow external crystal oscillator (32 kHz) electrical characteristics  
The device provides a low power oscillator/resonator driver.  
OSC32K_EXTAL  
OSC32K_EXTAL  
C1  
C2  
R
P
OSC32K_XTAL  
OSC32K_XTAL  
DEVICE  
DEVICE  
Figure 14. Crystal oscillator and resonator connection scheme  
NOTE  
OSC32K_XTAL/OSC32K_EXTAL must not be directly used to drive external circuits.  
MPC5606BK Microcontroller Data Sheet, Rev. 5  
NXP Semiconductors  
61  
l
C0  
Crystal  
Rm  
Lm  
Cm  
C1  
C2  
C1  
C2  
Figure 15. Equivalent circuit of a quartz crystal  
1
Table 35. Crystal motional characteristics  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Typ  
Max  
Lm  
Motional inductance  
Motional capacitance  
18  
11.796  
28  
KH  
fF  
Cm  
2
C1/C2 Load capacitance at OSC32K_XTAL and  
OSC32K_EXTAL with respect to ground2  
pF  
AC coupled at C0 = 2.85 pF4  
AC coupled at C0 = 4.9 pF4  
AC coupled at C0 = 7.0 pF4  
AC coupled at C0 = 9.0 pF4  
65  
50  
35  
30  
kΩ  
3
Rm  
Motional resistance  
1
2
The crystal used is Epson Toyocom MC306.  
This is the recommended range of load capacitance at OSC32K_XTAL and OSC32K_EXTAL with respect to  
ground. It includes all the parasitics due to board traces, crystal and package.  
3
4
Maximum ESR (Rm) of the crystal is 50 kΩ  
C0 Includes a parasitic capacitance of 2.0 pF between OSC32K_XTAL and OSC32K_EXTAL pins.  
MPC5606BK Microcontroller Data Sheet, Rev. 5  
62  
NXP Semiconductors  
OSCON bit (OSC_CTL register)  
1
0
V
OSC32K_XTAL  
1/f  
LPXOSC32K  
V
LPXOSC32K  
90ꢀ  
10ꢀ  
T
valid internal clock  
LPXOSC32KSU  
Figure 16. Slow external crystal oscillator (32 kHz) electrical characteristics  
Table 36. Slow external crystal oscillator (32 kHz) electrical characteristics  
Value  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Typ  
Max  
fSXOSC  
SR — Slow external crystal oscillator  
frequency  
32  
32.768  
40  
kHz  
VSXOSC  
CC T Oscillation amplitude  
2.1  
2.5  
V
ISXOSCBIAS CC T Oscillation bias current  
µA  
µA  
ISXOSC  
CC T Slow external crystal oscillator  
consumption  
8
TSXOSCSU CC T Slow external crystal oscillator  
start-up time  
22  
s
1
2
VDD = 3.3 V 10ꢀ / 5.0 V 10ꢀ, TA = 40 to 125 °C, unless otherwise specified  
Start-up time has been measured with EPSON TOYOCOM MC306 crystal. Variation may be seen with other crystal.  
3.14 FMPLL electrical characteristics  
The device provides a frequency modulated phase locked loop (FMPLL) module to generate a fast system clock from the  
FXOSC or FIRC sources.  
Table 37. FMPLL electrical characteristics  
Value  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Typ  
Max  
fPLLIN SR — FMPLL reference clock2  
4
64  
60  
MHz  
ΔPLLIN SR — FMPLL reference clock duty  
40  
cycle2  
MPC5606BK Microcontroller Data Sheet, Rev. 5  
NXP Semiconductors  
63  
Table 37. FMPLL electrical characteristics (continued)  
Value  
Typ  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Max  
fPLLOUT CC P FMPLL output clock frequency  
16  
64  
MHz  
3
fVCO  
CC P VCO frequency without  
frequency modulation  
256  
512 MHz  
P VCO frequency with frequency  
modulation  
245.76  
532.48  
fCPU SR — System clock frequency  
fFREE CC P Free-running frequency  
tLOCK CC P FMPLL lock time  
40  
644 MHz  
150 MHz  
20  
Stable oscillator (fPLLIN = 16 MHz)  
fsys maximum  
100  
4
µs  
ΔtSTJIT CC — FMPLL short term jitter5  
ΔtLTJIT CC — FMPLL long term jitter  
–4  
fPLLCLK at 64 MHz, 4000 cycles  
TA = 25 °C  
10  
4
ns  
IPLL  
CC C FMPLL consumption  
mA  
1
2
VDD = 3.3 V 10ꢀ / 5.0 V 10ꢀ, TA = 40 to 125 °C, unless otherwise specified  
PLLIN clock retrieved directly from FXOSC clock. Input characteristics are granted when oscillator is used in  
functional mode. When bypass mode is used, oscillator input clock should verify fPLLIN and ΔPLLIN  
Frequency modulation is considered 4ꢀ.  
.
3
4
5
fCPU 64 MHz can be achieved only at up to 105 °C.  
Short term jitter is measured on the clock rising edge at cycle n and n + 4.  
3.15 Fast internal RC oscillator (16 MHz) electrical characteristics  
The device provides a 16 MHz main internal RC oscillator. This is used as the default clock at the power-up of the device.  
Table 38. Fast internal RC oscillator (16 MHz) electrical characteristics  
Value  
Symbol  
fFIRC  
2,  
C
Parameter  
Conditions1  
Unit  
Min  
Typ  
Max  
CC P Fast internal RC oscillator high TA = 25 °C, trimmed  
frequency  
12  
16  
20  
MHz  
SR —  
IFIRCRUN  
CC T Fast internal RC oscillator high TA = 25 °C, trimmed  
200  
µA  
µA  
µA  
frequency current in running  
mode  
IFIRCPWD CC D Fast internal RC oscillator high TA = 25 °C  
frequency current in power  
10  
down mode  
IFIRCSTOP CC T Fast internal RC oscillator high TA = 25 °C sysclk = off  
frequency and system clock  
500  
600  
700  
900  
1250  
sysclk = 2 MHz  
current in stop mode  
sysclk = 4 MHz  
sysclk = 8 MHz  
sysclk = 16 MHz  
MPC5606BK Microcontroller Data Sheet, Rev. 5  
64  
NXP Semiconductors  
Table 38. Fast internal RC oscillator (16 MHz) electrical characteristics (continued)  
Value  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Typ  
Max  
TFIRCSU CC C Fast internal RC oscillator  
start-up time  
VDD = 5.0 V 10ꢀ  
1.1  
2.0  
µs  
ΔFIRCPRE CC C Fast internal RC oscillator  
precision after software  
TA = 25 °C  
TA = 25 °C  
1  
1
5
trimming of fFIRC  
ΔFIRCTRIM CC C Fast internal RC oscillator  
1.6  
trimming step  
ΔFIRCVAR CC C Fast internal RC oscillator  
variation over temperature and  
supply with respect to fFIRC at  
TA = 25 °C in high-frequency  
configuration  
5  
1
2
VDD = 3.3 V 10ꢀ / 5.0 V 10ꢀ, TA = 40 to 125 °C, unless otherwise specified  
This does not include consumption linked to clock tree toggling and peripherals consumption when RC oscillator is  
ON.  
3.16 Slow internal RC oscillator (128 kHz) electrical characteristics  
The device provides a 128 kHz low power internal RC oscillator. This can be used as the reference clock for the RTC module.  
Table 39. Slow internal RC oscillator (128 kHz) electrical characteristics  
Value  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min Typ Max  
fSIRC  
CC P Slow internal RC oscillator low  
TA = 25 °C, trimmed  
100  
128  
150  
5
kHz  
frequency  
SR —  
2,  
ISIRC  
CC C Slow internal RC oscillator low  
frequency current  
TA = 25 °C, trimmed  
µA  
µs  
TSIRCSU CC P Slow internal RC oscillator start-up TA = 25 °C, VDD = 5.0 V 10ꢀ  
time  
2  
8
12  
2
ΔSIRCPRE CC C Slow internal RC oscillator precision TA = 25 °C  
2.7  
after software trimming of fSIRC  
ΔSIRCTRIM CC C Slow internal RC oscillator trimming  
10  
step  
ΔSIRCVAR CC C Slow internal RC oscillator variation High frequency configuration  
in temperature and supply with  
10  
respect to fSIRC at TA = 55 °C in high  
frequency configuration  
1
2
VDD = 3.3 V 10ꢀ / 5.0 V 10ꢀ, TA = 40 to 125 °C, unless otherwise specified  
This does not include consumption linked to clock tree toggling and peripherals consumption when RC oscillator is  
ON.  
MPC5606BK Microcontroller Data Sheet, Rev. 5  
NXP Semiconductors  
65  
3.17 ADC electrical characteristics  
3.17.1 Introduction  
The device provides two Successive Approximation Register (SAR) analog-to-digital converters (10-bit and 12-bit).  
Offset Error OSE  
Gain Error GE  
1023  
1022  
1021  
1020  
1019  
1 LSB ideal = V  
/ 1024  
DD_ADC  
1018  
(2)  
code out  
7
(1)  
6
5
(1) Example of an actual transfer curve  
(2) The ideal transfer curve  
(5)  
(3) Differential non-linearity error (DNL)  
(4) Integral non-linearity error (INL)  
(5) Center of a step of the actual transfer curve  
4
3
(4)  
(3)  
2
1
1 LSB (ideal)  
0
1
2
3
4
5
6
7
1017 1018 1019 1020 1021 1022 1023  
(LSB  
V
)
ideal  
in(A)  
Offset Error OSE  
Figure 17. ADC_0 characteristic and error definitions  
3.17.2 Input impedance and ADC accuracy  
In the following analysis, the input circuit corresponding to the precise channels is considered.  
To preserve the accuracy of the A/D converter, it is necessary that analog input pins have low AC impedance. Placing a capacitor  
with good high frequency characteristics at the input pin of the device can be effective: the capacitor should be as large as  
MPC5606BK Microcontroller Data Sheet, Rev. 5  
66  
NXP Semiconductors  
possible, ideally infinite. This capacitor contributes to attenuating the noise present on the input pin; furthermore, it sources  
charge during the sampling phase, when the analog signal source is a high-impedance source.  
A real filter can typically be obtained by using a series resistance with a capacitor on the input pin (simple RC filter). The RC  
filtering may be limited according to the value of source impedance of the transducer or circuit supplying the analog signal to  
be measured. The filter at the input pins must be designed taking into account the dynamic characteristics of the input signal  
(bandwidth) and the equivalent input impedance of the ADC itself.  
In fact a current sink contributor is represented by the charge sharing effects with the sampling capacitance: C being  
S
substantially a switched capacitance, with a frequency equal to the conversion rate of the ADC, it can be seen as a resistive path  
to ground. For instance, assuming a conversion rate of 1 MHz, with C equal to 3 pF, a resistance of 330 kΩ is obtained (R  
S
EQ  
= 1 / (fc × C ), where fc represents the conversion rate at the considered channel). To minimize the error induced by the voltage  
S
partitioning between this resistance (sampled voltage on C ) and the sum of R + R + R + R + R , the external circuit  
S
S
F
L
SW  
AD  
must be designed to respect the Equation 4:  
Eqn. 4  
R + R + R + R  
+ R  
S
F
L
SW  
AD  
1
2
V -------------------------------------------------------------------------- < -- LSB  
A
R
EQ  
Equation 4 generates a constraint for external network design, in particular on resistive path. Internal switch resistances (R  
SW  
and R ) can be neglected with respect to external resistances.  
AD  
EXTERNAL CIRCUIT  
INTERNAL CIRCUIT SCHEME  
V
DD  
Channel  
Sampling  
Selection  
Source  
Filter  
Current Limiter  
R
R
R
R
R
AD  
S
F
L
SW1  
V
C
C
C
C
S
A
F
P1  
P2  
R
Source Impedance  
Filter Resistance  
Filter Capacitance  
Current Limiter Resistance  
Channel Selection Switch Impedance  
Sampling Switch Impedance  
S
F
F
L
R
C
R
R
R
C
C
SW1  
AD  
P
Pin Capacitance (two contributions, C and C  
Sampling Capacitance  
)
P1  
P2  
S
Figure 18. Input equivalent circuit (precise channels)  
MPC5606BK Microcontroller Data Sheet, Rev. 5  
NXP Semiconductors  
67  
EXTERNAL CIRCUIT  
Filter  
INTERNAL CIRCUIT SCHEME  
V
DD  
Channel  
Selection  
Extended  
Switch  
Sampling  
Source  
R
Current Limiter  
R
R
R
F
R
L
R
AD  
SW2  
S
SW1  
C
S
C
V
C
F
C
C
P2  
A
P1  
P3  
R
R
C
R
R
R
C
C
Source Impedance  
Filter Resistance  
Filter Capacitance  
Current Limiter Resistance  
Channel Selection Switch Impedance (two contributions R  
Sampling Switch Impedance  
S
F
F
L
and R  
)
SW2  
SW  
AD  
P
SW1  
Pin Capacitance (three contributions, C , C and C )  
Sampling Capacitance  
P1  
P2  
P3  
S
Figure 19. Input equivalent circuit (extended channels)  
A second aspect involving the capacitance network shall be considered. Assuming the three capacitances C , C and C are  
F
P1  
P2  
initially charged at the source voltage V (refer to the equivalent circuit reported in Figure 18): A charge sharing phenomenon  
A
is installed when the sampling phase is started (A/D switch close).  
Voltage Transient on CS  
V
CS  
V
A
ΔV < 0.5 LSB  
V
A2  
1
2
τ1 < (RSW + RAD) CS << TS  
V
A1  
τ
2 = RL (CS + CP1 + CP2)  
T
t
S
Figure 20. Transient behavior during sampling phase  
In particular two different transient periods can be distinguished:  
1. A first and quick charge transfer from the internal capacitance C and C to the sampling capacitance C occurs (C  
S
P1  
P2  
S
is supposed initially completely discharged): considering a worst case (since the time constant in reality would be  
faster) in which C is reported in parallel to C (call C = C + C ), the two capacitances C and C are in series,  
P2  
P1  
P
P1  
P2  
P
S
and the time constant is  
MPC5606BK Microcontroller Data Sheet, Rev. 5  
68  
NXP Semiconductors  
Eqn. 5  
C C  
P
S
τ
= (R  
+ R  
) • --------------------  
AD  
1
SW  
C + C  
P
S
Equation 5 can again be simplified considering only C as an additional worst condition. In reality, the transient is  
S
faster, but the A/D converter circuitry has been designed to be robust also in the very worst case: the sampling time T  
is always much longer than the internal time constant:  
S
Eqn. 6  
τ < (R  
+ R  
) C « T  
AD S S  
1
SW  
The charge of C and C is redistributed also on C , determining a new value of the voltage V on the capacitance  
P1  
P2  
S
A1  
according to Equation 7:  
Eqn. 7  
V
(C + C + C ) = V (C + C  
)
P2  
A1  
S
P1  
P2  
A
P1  
2. A second charge transfer involves also C (that is typically bigger than the on-chip capacitance) through the resistance  
F
R : again considering the worst case in which C and C were in parallel to C (since the time constant in reality  
L
P2  
S
P1  
would be faster), the time constant is:  
Eqn. 8  
τ < R (C + C + C )  
P1 P2  
2
L
S
In this case, the time constant depends on the external circuit: in particular imposing that the transient is completed  
well before the end of sampling time T , a constraints on R sizing is obtained:  
S
L
Eqn. 9  
10 τ = 10 R (C + C + C ) < T  
P1 P2 S  
2
L
S
Of course, R shall be sized also according to the current limitation constraints, in combination with R (source  
L
S
impedance) and R (filter resistance). Being C definitively bigger than C , C and C , then the final voltage V  
F
F
P1 P2  
S
A2  
(at the end of the charge transfer transient) will be much higher than V . Equation 10 must be respected (charge  
A1  
balance assuming now C already charged at V ):  
S
A1  
Eqn. 10  
V
(C + C + C + C ) = V C + V (C + C + C )  
P1 P2 A1 P1 P2  
A2  
S
F
A
F
S
The two transients above are not influenced by the voltage source that, due to the presence of the R C filter, is not able to  
F
F
provide the extra charge to compensate the voltage drop on C with respect to the ideal source V ; the time constant R C of  
S
A
F F  
the filter is very high with respect to the sampling time (T ). The filter is typically designed to act as antialiasing.  
S
MPC5606BK Microcontroller Data Sheet, Rev. 5  
NXP Semiconductors  
69  
Analog source bandwidth (VA)  
Noise  
T
C < 2 RFCF (Conversion rate vs. filter pole)  
fF = f0 (Anti-aliasing filtering condition)  
2 f0 < fC (Nyquist)  
f0  
f
Anti-aliasing filter (fF = RC filter pole)  
Sampled signal spectrum (fC = Conversion rate)  
fF  
f0  
fC  
f
f
Figure 21. Spectral representation of input signal  
Calling f the bandwidth of the source signal (and as a consequence the cut-off frequency of the antialiasing filter, f ), according  
0
F
to the Nyquist theorem the conversion rate f must be at least 2f ; it means that the constant time of the filter is greater than or  
C
0
at least equal to twice the conversion period (T ). Again the conversion period T is longer than the sampling time T , which  
C
C
S
is just a portion of it, even when fixed channel continuous conversion mode is selected (fastest conversion rate at a specific  
channel): in conclusion it is evident that the time constant of the filter R C is definitively much higher than the sampling time  
F
F
T , so the charge level on C cannot be modified by the analog signal source during the time in which the sampling switch is  
S
S
closed.  
The considerations above lead to impose new constraints on the external circuit, to reduce the accuracy error due to the voltage  
drop on C ; from the two charge balance equations above, it is simple to derive Equation 11 between the ideal and real sampled  
S
voltage on C :  
S
Eqn. 11  
V
C
+ C + C  
P2  
----------- = -------------------------------------------------------  
A2  
P1  
F
V
C
+ C + C + C  
A
P1  
P2 S  
F
From this formula, in the worst case (when V is maximum, that is for instance 5 V), assuming to accept a maximum error of  
A
half a count, a constraint is evident on C value:  
F
ADC_0 (10-bit)  
> 2048 C  
Eqn. 12  
Eqn. 13  
C
F
S
ADC_1 (12-bit)  
> 8192 C  
C
F
S
MPC5606BK Microcontroller Data Sheet, Rev. 5  
70  
NXP Semiconductors  
3.17.3 ADC electrical characteristics  
Table 40. ADC input leakage current  
Value  
Typ  
Symbol C  
Parameter  
Conditions  
Unit  
Min  
Max  
ILKG CC C Input leakage current TA = 40 °C No current injection on adjacent pin  
1
1
nA  
C
D
C
P
TA = 25 °C  
TA = 85°C  
3
100  
200  
400  
TA = 105 °C  
TA = 125 °C  
8
45  
Table 41. ADC_0 conversion characteristics (10-bit ADC_0)  
Value  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Typ  
Max  
VSS_ADC0 SR — Voltage on VSS_HV_ADC0  
0.1  
0.1  
V
(ADC_0 reference) pin with  
2
respect to ground (VSS  
)
VDD_ADC0 SR — Voltage on VDD_HV_ADC pin  
(ADC reference) with respect  
VDD 0.1  
VDD + 0.1  
V
to ground (VSS  
)
VAINx  
SR — Analog input voltage3  
VSS_ADC0  
0.1  
VDD_ADC0  
+ 0.1  
V
IADC0pwd SR — ADC_0 consumption in power  
down mode  
50  
µA  
mA  
IADC0run SR — ADC_0 consumption in  
running mode  
5
fADC0 SR — ADC_0 analog frequency  
6
32 + 4ꢀ MHz  
Δ
ADC0_SYS SR — ADC_0 digital clock duty cycle ADCLKSEL = 14  
45  
55  
(ipg_clk)  
tADC0_PU SR — ADC_0 power up delay  
tADC0_S CC T Sample time5  
1.5  
µs  
µs  
fADC = 32 MHz,  
0.5  
ADC0_conf_sample_input = 17  
fADC = 6 MHz,  
INPSAMP = 255  
0.625  
42  
3
tADC0_C CC P Conversion time6  
fADC = 32 MHz,  
ADC_conf_comp = 2  
µs  
pF  
CS  
CC D ADC_0 input sampling  
capacitance  
CP1  
CP2  
CP3  
CC D ADC_0 input pin capacitance 1  
CC D ADC_0 input pin capacitance 2  
CC D ADC_0 input pin capacitance 3  
3
1
1
pF  
pF  
pF  
MPC5606BK Microcontroller Data Sheet, Rev. 5  
NXP Semiconductors  
71  
Table 41. ADC_0 conversion characteristics (10-bit ADC_0) (continued)  
Value  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Typ  
Max  
RSW1 CC D Internal resistance of analog  
source  
3
kΩ  
kΩ  
kΩ  
mA  
RSW2 CC D Internal resistance of analog  
source  
5  
5  
2
2
5
5
RAD  
CC D Internal resistance of analog  
source  
IINJ  
SR — Input current Injection  
Current injection VDD =  
on one ADC_0 3.3 V 10ꢀ  
input, different  
VDD  
5.0 V 10ꢀ  
=
from the  
converted one  
| INL | CC T Absolute value for integral  
nonlinearity  
No overload  
No overload  
0.5  
0.5  
1.5  
1.0  
LSB  
LSB  
| DNL | CC T Absolute differential  
nonlinearity  
| OFS | CC T Absolute offset error  
| GNE | CC T Absolute gain error  
TUEP CC P Total unadjusted error7 for  
2  
3  
0.5  
0.6  
0.6  
2
LSB  
LSB  
LSB  
Without current injection  
With current injection  
precise channels, input only  
T
3
pins  
TUEX CC T Total unadjusted error7 for  
Without current injection  
With current injection  
3  
4  
1
3
4
LSB  
extended channel  
T
1
2
3
VDD = 3.3 V 10ꢀ / 5.0 V 10ꢀ, TA = 40 to 125 °C, unless otherwise specified.  
Analog and digital VSS must be common (to be tied together externally).  
VAINx may exceed VSS_ADC0 and VDD_ADC0 limits, remaining on absolute maximum ratings, but the results of the  
conversion will be clamped respectively to 0x000 or 0x3FF.  
4
5
Duty cycle is ensured by using system clock without prescaling. When ADCLKSEL = 0, the duty cycle is ensured  
by internal divider by 2.  
During the sample time the input capacitance CS can be charged/discharged by the external source. The internal  
resistance of the analog source must allow the capacitance to reach its final voltage level within tADC0_S. After the  
end of the sample time tADC0_S, changes of the analog input voltage have no effect on the conversion result. Values  
for the sample clock tADC0_S depend on programming.  
6
7
This parameter does not include the sample time tADC0_S, but only the time for determining the digital result and the  
time to load the result’s register with the conversion result.  
Total Unadjusted Error: The maximum error that occurs without adjusting Offset and Gain errors. This error is a  
combination of Offset, Gain and Integral Linearity errors.  
MPC5606BK Microcontroller Data Sheet, Rev. 5  
72  
NXP Semiconductors  
Offset Error OSE  
Gain Error GE  
4095  
4094  
4093  
4092  
4091  
1 LSB ideal = AVDD / 4096  
4090  
(2)  
code out  
7
(1)  
6
5
(1) Example of an actual transfer curve  
(2) The ideal transfer curve  
(5)  
(3) Differential non-linearity error (DNL)  
(4) Integral non-linearity error (INL)  
(5) Center of a step of the actual transfer curve  
4
3
(4)  
(3)  
2
1
1 LSB (ideal)  
0
1
2
3
4
5
6
7
4090 4091 4092 4093 4094 4095  
V
(LSB  
)
in(A)  
ideal  
Offset Error OSE  
Figure 22. ADC_1 characteristic and error definitions  
Table 42. ADC_1 conversion characteristics (12-bit ADC_1)  
Value  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Typ  
Max  
VSS_ADC1 SR — Voltage on VSS_HV_ADC1  
–0.1  
0.1  
V
(ADC_1 reference) pin with  
2
respect to ground (VSS  
)
VDD_ADC1 SR — VoltageonVDD_HV_ADC1pin  
(ADC_1 reference) with  
VDD – 0.1  
VDD + 0.1  
V
respect to ground (VSS  
)
MPC5606BK Microcontroller Data Sheet, Rev. 5  
NXP Semiconductors  
73  
Table 42. ADC_1 conversion characteristics (12-bit ADC_1) (continued)  
Value  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Typ  
Max  
VAINx  
SR — Analog input voltage3  
VSS_ADC1  
– 0.1  
VDD_ADC1  
+ 0.1  
V
IADC1pwd SR — ADC_1 consumption in power  
down mode  
50  
µA  
mA  
IADC1run SR — ADC_1consumptioninrunning  
mode  
6
fADC1  
SR — ADC_1 analog frequency  
VDD = 3.3 V  
VDD = 5 V  
3.33  
3.33  
20 + 4ꢀ MHz  
32 + 4ꢀ  
tADC1_PU SR — ADC_1 power up delay  
1.5  
µs  
ns  
tADC1_S CC T Sample time4  
VDD = 3.3 V  
f
ADC1 = 20 MHz,  
ADC1_conf_sample_input = 12  
600  
Sample time4  
VDD = 5.0 V  
f
ADC1= 32 MHz,  
500  
76.2  
76.2  
ADC1_conf_sample_input = 17  
Sample time4  
VDD = 3.3 V  
fADC1= 3.33 MHz,  
ADC1_conf_sample_input = 255  
µs  
Sample time4  
VDD = 5.0 V  
f
ADC1= 3.33 MHz,  
ADC1_conf_sample_input = 255  
tADC1_C CC P Conversion time5  
VDD = 3.3 V  
f
ADC1 = 20MHz,  
2.4  
1.5  
µs  
µs  
µs  
µs  
ADC1_conf_comp = 0  
Conversion time5  
VDD = 5.0 V  
fADC 1 = 32 MHz,  
ADC1_conf_comp = 0  
Conversion time5  
VDD = 3.3 V  
f
ADC 1 = 13.33 MHz,  
3.6  
3.6  
ADC1_conf_comp = 0  
Conversion time5  
VDD = 5.0 V  
f
ADC1 = 13.33 MHz,  
ADC1_conf_comp = 0  
ΔADC1_SYS SR — ADC_1 digital clock duty cycle ADCLKSEL = 16  
45  
55  
5
CS  
CC D ADC_1 input sampling  
capacitance  
pF  
CP1  
CP2  
CC D ADC_1 input pin capacitance 1  
CC D ADC_1 input pin capacitance 2  
CC D ADC_1 input pin capacitance 3  
3
1
pF  
pF  
pF  
kΩ  
CP3  
1.5  
1
RSW1  
CC D Internal resistance of analog  
source  
RSW2  
RAD  
CC D Internal resistance of analog  
source  
2
kΩ  
kΩ  
CC D Internal resistance of analog  
source  
0.3  
MPC5606BK Microcontroller Data Sheet, Rev. 5  
74  
NXP Semiconductors  
Table 42. ADC_1 conversion characteristics (12-bit ADC_1) (continued)  
Value  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Typ  
Max  
IINJ  
SR — Input current Injection  
Current  
VDD = 3.3 V 10ꢀ  
VDD = 5.0 V 10ꢀ  
–5  
–5  
5
5
mA  
injection on  
one ADC_1  
input, different  
from the  
converted one  
INLP  
INLX  
CC T Absolute Integral  
No overload  
No overload  
1
3
5
LSB  
LSB  
non-linearity-Precise channels  
CC T Absolute Integral  
1.5  
non-linearity-Extended  
channels  
DNL  
CC T Absolute Differential  
non-linearity  
No overload  
0.5  
1
LSB  
OFS  
GNE  
CC T Absolute Offset error  
CC T Absolute Gain error  
–6  
–8  
2
2
6
LSB  
LSB  
LSB  
TUEP7 CC P Total Unadjusted Error for  
Without current injection  
With current injection  
precise channels, input only  
T
8
pins  
TUEX7 CC T Total Unadjusted Error for  
Without current injection  
With current injection  
–10  
–12  
10  
12  
LSB  
extended channel  
T
1
2
3
VDD = 3.3 V 10ꢀ / 5.0 V 10ꢀ, TA = –40 to 125 °C, unless otherwise specified  
Analog and digital VSS must be common (to be tied together externally).  
VAINx may exceed VSS_ADC1 and VDD_ADC1 limits, remaining on absolute maximum ratings, but the results of the  
conversion will be clamped respectively to 0x000 or 0xFFF.  
4
During the sample time the input capacitance CS can be charged/discharged by the external source. The internal  
resistance of the analog source must allow the capacitance to reach its final voltage level within tADC1_S. After the end  
of the sample time tADC1_S, changes of the analog input voltage have no effect on the conversion result. Values for the  
sample clock tADC1_S depend on programming.  
5
6
7
This parameter does not include the sample time tADC1_S, but only the time for determining the digital result and the  
time to load the result’s register with the conversion result.  
Duty cycle is ensured by using system clock without prescaling. When ADCLKSEL = 0, the duty cycle is ensured by  
internal divider by 2.  
Total Unadjusted Error: The maximum error that occurs without adjusting Offset and Gain errors. This error is a  
combination of Offset, Gain and Integral Linearity errors.  
MPC5606BK Microcontroller Data Sheet, Rev. 5  
NXP Semiconductors  
75  
3.18 On-chip peripherals  
3.18.1 Current consumption  
1
Table 43. On-chip peripherals current consumption  
Value  
Symbol  
C
Parameter  
Conditions  
Unit  
Typ  
IDD_BV(CAN)  
CC T CAN  
(FlexCAN)  
Bit rate = Total (static + dynamic)  
8 * fperiph + 85  
µA  
500 KB/s  
consumption:  
supply current  
on VDD_BV  
• FlexCAN in loop-back  
mode  
• XTAL at 8 MHz used as  
CAN engine clock  
source  
Bit rate =  
125 KB/s  
8 * fperiph + 27  
• Message sending  
period is 580 µs  
IDD_BV(eMIOS) CC T eMIOS supply Static consumption:  
29 * fperiph  
current on  
VDD_BV  
• eMIOS channel OFF  
• Global prescaler enabled  
Dynamic consumption:  
3
• It does not change varying the  
frequency (0.003 mA)  
IDD_BV(SCI)  
CC T SCI (LINFlex) Total (static + dynamic) consumption:  
supply current • LIN mode  
5 * fperiph + 31  
on VDD_BV  
• Baud rate: 20 KB/s  
IDD_BV(SPI)  
CC T SPI (DSPI)  
Ballast static consumption (only  
1
supply current clocked)  
on VDD_BV  
Ballast dynamic consumption  
(continuous communication):  
• Baud rate: 2 Mb/s  
16 * fperiph  
Transmission every 8 µs  
• Frame: 16 bits  
IDD_BV  
CC T ADC_0/ADC_1 VDD = 5.5 V Ballast static consumption  
41 * fperiph  
46 * fperiph  
µA  
supply current  
on VDD_BV  
(no conversion)  
(ADC_0/ADC_1)  
V
DD = 5.5 V Ballast dynamic  
consumption (continuous  
conversion)  
IDD_HV_ADC0 CC T ADC_0 supply VDD = 5.5 V Analog static consumption  
200  
3
current on  
(no conversion)  
VDD_HV_ADC0  
VDD = 5.5 V Analog dynamic  
mA  
consumption (continuous  
conversion)  
MPC5606BK Microcontroller Data Sheet, Rev. 5  
76  
NXP Semiconductors  
1
Table 43. On-chip peripherals current consumption (continued)  
Value  
Symbol  
C
Parameter  
Conditions  
Unit  
Typ  
IDD_HV_ADC1 CC T ADC_1 supply VDD = 5.5 V Analog static consumption  
300 * fperiph  
µA  
current on  
(no conversion)  
VDD_HV_ADC1  
VDD = 5.5 V Analog dynamic  
4
mA  
consumption (continuous  
conversion)  
IDD_HV(FLASH) CC T CFlash +  
VDD = 5.5 V  
12  
mA  
mA  
DFlash supply  
current on  
VDD_HV  
IDD_BV(PLL)  
CC T PLL supply  
current on  
VDD = 5.5 V  
2.5  
VDD_BV  
1
Operating conditions: TA = 25 °C, fperiph = 8 MHz to 64 MHz  
MPC5606BK Microcontroller Data Sheet, Rev. 5  
NXP Semiconductors  
77  
3.18.2 DSPI characteristics  
1
Table 44. DSPI characteristics  
DSPI0/DSPI1/DSPI5/DSPI6  
DSPI2/DSPI4  
No.  
Symbol  
C
Parameter  
Unit  
Min  
Typ  
Max  
Min  
Typ  
Max  
1
tSCK  
SR D SCK cycle time  
Master mode  
(MTFE = 0)  
125  
3332  
ns  
D
D
D
Slave mode  
(MTFE = 0)  
125  
83  
333  
145  
145  
Master mode  
(MTFE = 1)  
Slave mode  
(MTFE = 1)  
83  
2
fDSPI  
SR D DSPI digital controller frequency  
fCPU  
fCPU  
MHz  
ns  
3
tCSCext SR D CS to SCK delay  
Slave mode  
Slave mode  
Master mode  
Slave mode  
Slave mode  
32  
32  
4
3
tASCext SR D After SCK delay  
1/fDSPI + 5  
1/fDSPI + 5  
ns  
4
tSDC  
CC D SCK duty cycle  
SR  
SR D Slave access time  
tSCK/2  
tSCK/2  
tSCK/2  
tSCK/2  
ns  
D
5
6
7
8
9
tA  
1/fDSPI + 70  
1/fDSPI + 130 ns  
tDI  
SR D Slave SOUT disable time Slave mode  
7
32  
52  
7
50  
160  
ns  
tPCSC CC D PCSx to PCSS time  
tPASC CC D PCSS to PCSx time  
135  
135  
43  
5
135  
135  
145  
5
tSUI  
SR D Data setup time for  
inputs  
Master mode  
Slave mode  
ns  
ns  
ns  
ns  
10  
11  
12  
tHI  
SR D Data hold time for inputs Master mode  
Slave mode  
0
0
26  
26  
7
tSUO  
CC D Data valid after SCK  
edge  
Master mode  
Slave mode  
Master mode  
Slave mode  
7
tHO  
CC D Data hold time for  
outputs  
0
0
8
13  
1
2
Operating conditions: Cout = 10 to 50 pF, SlewIN = 3.5 to 15 ns.  
For DSPI4, if SOUT is mapped to a SLOW pad while SCK is mapped to a MEDIUM pad (or vice versa), the minimum cycle time for SCK  
should be calculated based on the rise and fall times of the SLOW pad. For MTFE=1, SOUT must not be mapped to a SLOW pad while SCK  
is mapped to a MEDIUM pad.  
3
4
The tCSC delay value is configurable through a register. When configuring tCSC (using PCSSCK and CSSCK fields in DSPI_CTARx registers),  
delay between internal CS and internal SCK must be higher than ΔtCSC to ensure positive tCSCext  
.
The tASC delay value is configurable through a register. When configuring tASC (using PASC and ASC fields in DSPI_CTARx registers), delay  
between internal CS and internal SCK must be higher than ΔtASC to ensure positive tASCext  
For DSPIx_CTARn[PCSSCK] = 11.  
.
5
6
7
This delay value corresponds to SMPL_PT = 00b which is bit field 9 and 8 of DSPI_MCR register.  
SCK and SOUT are configured as MEDIUM pad.  
2
3
PCSx  
1
4
SCK Output  
(CPOL = 0)  
4
SCK Output  
(CPOL = 1)  
10  
9
Last Data  
SIN  
First Data  
Data  
Data  
12  
11  
First Data  
Last Data  
SOUT  
Note: Numbers shown reference Table 44.  
Figure 23. DSPI classic SPI timing — master, CPHA = 0  
PCSx  
SCK Output  
(CPOL = 0)  
10  
SCK Output  
(CPOL = 1)  
9
Data  
Data  
First Data  
Last Data  
SIN  
12  
11  
SOUT  
Last Data  
First Data  
Note: Numbers shown reference Table 44.  
Figure 24. DSPI classic SPI timing — master, CPHA = 1  
3
2
SS  
1
4
SCK Input  
(CPOL = 0)  
4
SCK Input  
(CPOL = 1)  
5
First Data  
11  
12  
Data  
6
Last Data  
SOUT  
SIN  
9
10  
Data  
Last Data  
First Data  
Note: Numbers shown reference Table 44.  
Figure 25. DSPI classic SPI timing — slave, CPHA = 0  
MPC5606BK Microcontroller Data Sheet, Rev. 5  
80  
NXP Semiconductors  
SS  
SCK Input  
(CPOL = 0)  
SCK Input  
(CPOL = 1)  
11  
5
6
12  
Last Data  
Data  
Data  
SOUT  
SIN  
First Data  
10  
9
Last Data  
First Data  
Note: Numbers shown reference Table 44.  
Figure 26. DSPI classic SPI timing — slave, CPHA = 1  
3
PCSx  
4
1
2
SCK Output  
(CPOL = 0)  
4
SCK Output  
(CPOL = 1)  
9
10  
SIN  
First Data  
Last Data  
Last Data  
Data  
12  
11  
SOUT  
First Data  
Data  
Note: Numbers shown reference Table 44.  
Figure 27. DSPI modified transfer format timing — master, CPHA = 0  
MPC5606BK Microcontroller Data Sheet, Rev. 5  
NXP Semiconductors  
81  
PCSx  
SCK Output  
(CPOL = 0)  
SCK Output  
(CPOL = 1)  
10  
9
SIN  
Last Data  
First Data  
Data  
12  
Data  
11  
First Data  
Last Data  
SOUT  
Note: Numbers shown reference Table 44.  
Figure 28. DSPI modified transfer format timing — master, CPHA = 1  
3
2
SS  
1
SCK Input  
(CPOL = 0)  
4
4
SCK Input  
(CPOL = 1)  
12  
11  
6
5
First Data  
9
Data  
Data  
Last Data  
10  
SOUT  
SIN  
Last Data  
First Data  
Note: Numbers shown reference Table 44.  
Figure 29. DSPI modified transfer format timing — slave, CPHA = 0  
MPC5606BK Microcontroller Data Sheet, Rev. 5  
82  
NXP Semiconductors  
SS  
SCK Input  
(CPOL = 0)  
SCK Input  
(CPOL = 1)  
11  
5
6
12  
Last Data  
First Data  
10  
Data  
Data  
SOUT  
SIN  
9
First Data  
Last Data  
Note: Numbers shown reference Table 44.  
Figure 30. DSPI modified transfer format timing — slave, CPHA = 1  
8
7
PCSS  
PCSx  
Note: Numbers shown reference Table 44.  
Figure 31. DSPI PCS strobe (PCSS) timing  
3.18.3 JTAG characteristics  
Table 45. JTAG characteristics  
Value  
Typ  
No.  
Symbol  
C
Parameter  
Unit  
Min  
Max  
1
2
3
tJCYC  
tTDIS  
tTDIH  
CC D TCK cycle time  
CC D TDI setup time  
CC D TDI hold time  
64  
15  
5
ns  
ns  
ns  
MPC5606BK Microcontroller Data Sheet, Rev. 5  
NXP Semiconductors  
83  
Table 45. JTAG characteristics (continued)  
Value  
Typ  
No.  
Symbol  
C
Parameter  
Min  
Unit  
Max  
4
5
6
7
tTMSS  
tTMSH  
tTDOV  
tTDOI  
CC D TMS setup time  
15  
5
33  
ns  
ns  
ns  
ns  
CC D TMS hold time  
CC D TCK low to TDO valid  
CC D TCK low to TDO invalid  
6
TCK  
2/4  
3/5  
INPUT DATA VALID  
DATA INPUTS  
6
DATA OUTPUTS  
DATA OUTPUTS  
OUTPUT DATA VALID  
7
Note: Numbers shown reference Table 45.  
Figure 32. Timing diagram — JTAG boundary scan  
MPC5606BK Microcontroller Data Sheet, Rev. 5  
84  
NXP Semiconductors  
4
Package characteristics  
Package mechanical data  
176 LQFP  
4.1  
4.1.1  
Figure 33. 176 LQFP package mechanical drawing (Part 1 of 3)  
MPC5606BK Microcontroller Data Sheet, Rev. 5  
NXP Semiconductors  
85  
Figure 34. 176 LQFP package mechanical drawing (Part 2 of 3)  
MPC5606BK Microcontroller Data Sheet, Rev. 5  
86  
NXP Semiconductors  
Figure 35. 176 LQFP package mechanical drawing (Part 3 of 3)  
MPC5606BK Microcontroller Data Sheet, Rev. 5  
NXP Semiconductors  
87  
4.1.2  
144 LQFP  
Figure 36. 144 LQFP package mechanical drawing (Part 1 of 2)  
MPC5606BK Microcontroller Data Sheet, Rev. 5  
88  
NXP Semiconductors  
Figure 37. 144 LQFP package mechanical drawing (Part 2 of 2)  
MPC5606BK Microcontroller Data Sheet, Rev. 5  
NXP Semiconductors  
89  
4.1.3  
100 LQFP  
Figure 38. 100 LQFP package mechanical drawing (Part 1 of 3)  
MPC5606BK Microcontroller Data Sheet, Rev. 5  
90  
NXP Semiconductors  
Figure 39. 100 LQFP package mechanical drawing (Part 2 of 3)  
MPC5606BK Microcontroller Data Sheet, Rev. 5  
NXP Semiconductors  
91  
Figure 40. 100 LQFP package mechanical drawing (Part 3 of 3)  
MPC5606BK Microcontroller Data Sheet, Rev. 5  
92  
NXP Semiconductors  
5
Ordering information  
Example code:  
M
PC  
56  
0
6
B
K0A  
M
LL  
6
R
Qualification status  
Power Architecture Core  
Automotive platform  
Core version  
Flash memory size (core dependent)  
Product  
Fab and mask Indicator  
Temperature spec.  
Package code  
Frequency  
R = Tape & Reel (blank if Tray)  
Qualification status  
Flash memory size (for z0 core)  
5 = 768 KB  
6 = 1024 KB  
Temperature spec.  
C = –40 to 85 °C  
V = –40 to 105 °C  
M = –40 to 125 °C  
M = General market qualified  
S = Automotive qualified  
P = Engineering samples  
Product  
B = Body  
Automotive Platform  
56 = Power Architecture in 90nm  
Package code  
LL = 100 LQFP  
LQ = 144 LQFP  
LU = 176 LQFP  
Fab and mask Indicator  
K = TSMC Fab  
Core version  
0 = e200z0  
0 = Version of the maskset  
A = Mask set indicator (Blank = 1st  
production maskset, A = 2nd,  
B = 3rd, etc)  
Frequency  
4 = Up to 48 MHz  
6 = Up to 64 MHz  
Note: Not all options are available on all devices.  
Figure 41. Commercial product code structure  
MPC5606BK Microcontroller Data Sheet, Rev. 5  
NXP Semiconductors  
93  
6
Revision history  
Table 46. Revision history  
Description of changes  
Revision  
Date  
1
2
22 Apr 2011 Initial release.  
15 May 2013 Changed device number to MPC5606BK.  
In Table 2 (Functional port pins), updated PA[11] AF2, PD[13] AF2, and PH[11] AF3 I/O  
direction to “I/O”.  
In Table 3 (Pad types), corrected “Fast” in the “S” row to “Slow.”  
In Table 5 (PAD3V5V field description), updated footnote 2.  
In Table 6 (OSCILLATOR_MARGIN field description), updated footnote 2.  
Inserted Section 3.2.3, NVUSRO[WATCHDOG_EN] field description.  
In Table 8 (Absolute maximum ratings), Table 9 (Recommended operating conditions (3.3 V)),  
and Table 10 (Recommended operating conditions (5.0 V)), corrected the parameter  
description for VDD_ADC to “Voltage on VDD_HV_ADC0, VDD_HV_ADC1 (ADC reference)  
with respect to ground (VSS)”  
In Section 3.6.1, I/O pad types bullet item, removed Nexus reference.  
In Table 12 (I/O input DC electrical characteristics), added specifications for 85 °C.  
In Table 13 (I/O pull-up/pull-down DC electrical characteristics), Table 14 (SLOW configuration  
output buffer electrical characteristics), Table 15 (MEDIUM configuration output buffer  
electrical characteristics), and Table 16 (FAST configuration output buffer electrical  
characteristics), changed sentence in footnote 2 to “All pads but RESET are configured in  
input or in high impedance state.”  
In Table 15 (MEDIUM configuration output buffer electrical characteristics), for VOL, changed  
IOH to IOL  
.
Updated Table 20 (I/O weight).  
In Table 21 (Reset electrical characteristics) changed sentence in footnote 4 to “All pads but  
RESET are configured in input or in high impedance state.”  
in Table 22 (Voltage regulator electrical characteristics), corrected the maximum value for  
IDD_BV in Table 22 (Voltage regulator electrical characteristics) to 300 mA.  
In Table 23 (Low voltage monitor electrical characteristics), changed VPORUP classification tag  
from “P” (Production testing guaranteed) to “D” (Design simulation). Changed VLVDHV3BH  
classification tag from “P” (Production testing guaranteed) to “T” (Design characterization).  
In Table 23 (Low voltage monitor electrical characteristics), changed VLVDHV3L, VLVDHV3BL  
minimums from 2.7 V to 2.6 V.  
MPC5606BK Microcontroller Data Sheet, Rev. 5  
94  
NXP Semiconductors  
Table 46. Revision history (continued)  
Description of changes  
Revision  
Date  
2
15 May 2013 In Table 24 (Electrical characteristics in different application modes),  
— Changed IDDMAX Typ to 81 mA and IDDMAX Typ to 130 mA.  
(cont.)  
— Changed IDDRUN Typ for fCPU = 32 MHz to 40 mA.  
— Changed IDDRUN Typ for fCPU = 48 MHz to 54 mA. Added IDDRUN Max of 96 mA.  
— Changed IDDRUN Typ for fCPU = 64 MHz to 67 mA. Added IDDRUN Max of 120 mA.  
— Changed IDDHALT at TA = 25 °C Typ to 10 mA and IDDHALT Max to 15 mA.  
— Changed IDDHALT at TA = 125 °C Typ to 15 mA and IDDHALT Max to 28 mA.  
— Changed IDDSTOP TA temperature from –40 °C to 25 °C.  
— Changed IDDSTOP at TA = 25 °C Typ to 130 µA and IDDSTOP Max to 500 µA.  
— Changed IDDSTOP at TA = 55 °C Typ to 180 µA.  
— Changed IDDSTOP at TA = 85 °C Typ to 1 mA and IDDSTOP Max to 5 mA.  
— Changed IDDSTOP at TA = 105 °C Typ to 3 mA and IDDSTOP Max to 9 mA.  
— Changed IDDSTOP at TA = 125 °C Typ to 5 mA and IDDSTOP Max to 14 mA.  
— Changed IDDSTDBY2 at TA = 25 °C Typ to 17 µA and Max to 80 µA.  
— Changed IDDSTDBY2 at TA = 55 °C Typ to 30 µA.  
— Changed IDDSTDBY2 at TA = 85 °C Typ to 100 µA.  
— Changed IDDSTDBY2 at TA = 105 °C Typ to 280 µA and Max to 950 µA.  
— Changed IDDSTDBY2 at TA = 125 °C Typ to 460 µA and Max to 1700 µA.  
— Changed the parameter classification for IDDSTANDBY2 (TA = 125 °C)  
— Changed IDDSTDBY1 at TA = 25 °C Typ to 12 µA and Max to 50 µA.  
— Changed IDDSTDBY1 at TA = 55 °C Typ to 24 µA.  
— Changed IDDSTDBY1 at TA = 85 °C Typ to 48 µA.  
— Changed IDDSTDBY1 at TA = 105 °C Typ to 150 µA and Max to 500 µA.  
— Changed IDDSTDBY1 at TA = 125 °C Typ to 260 µA.  
— Changed the third sentence of Footnote 3 to begin with “The given value is thought to be  
a worst case value (64 MHz at 125 °C) with all peripherals running.”  
— Removed footnotes 8 and 9 regarding IDDHALT and IDDSTOP  
.
— Corrected “C” characteristics to reflect testing status.  
In Section 3.10, Flash memory electrical characteristics, removed the "FLASH_BIU settings  
vs. frequency of operation" table.  
In Table 28 (Flash power supply DC electrical characteristics), corrected Footnote 2 to specify  
125 °C.  
In Section 3.14, FMPLL electrical characteristics, changed the text “the main oscillator driver”  
to “the FXOSC or FIRC sources.”  
In Table 40 (ADC input leakage current), added specifications for 85 °C.  
In Table 44 (DSPI characteristics), added tSCK specifications for MTFE=1.  
In Table 44 (DSPI characteristics), updated specifications 7 and 8 to 13 ns, all DSPIs.  
in ADC section, corrected Equation 11.  
In Figure 41 (Commercial product code structure), added “Note: Not all options are available  
on all devices.”  
Removed Section 6, Abbreviations.  
3
4
5
11 Sep 2013 Updated the temperature in table note 2 in Table 1 (MPC5606BK family comparison) from 105  
oC to 125 oC.  
25 Nov2015 Updated the Max value current for IADC0run from 40 mA to 5 mA in Table 41 (ADC_0 conversion  
characteristics (10-bit ADC_0)).  
7 Nov 2017 In Table 9 (Recommended operating conditions (3.3 V)) added Min value for TVDD.  
In Table 10 (Recommended operating conditions (5.0 V)) added Min value for TVDD.  
In Table 44 (DSPI characteristics) changed the for DSPI 2 and 4, in MTFE=1 mode from 125  
to 145.  
MPC5606BK Microcontroller Data Sheet, Rev. 5  
NXP Semiconductors  
95  
Information in this document is provided solely to enable system and  
software implementers to use NXP products. There are no express or  
implied copyright licenses granted hereunder to design or fabricate any  
integrated circuits based on the information in this document. NXP  
reserves the right to make changes without further notice to any prod-  
ucts herein.  
How to Reach Us:  
Home Page:  
nxp.com  
Web Support:  
nxp.com/support  
NXP makes no warranty, representation, or guarantee regarding the  
suitability of its products for any particular purpose, nor does NXP  
assume any liability arising out of the application or use of any product  
or circuit, and specifically disclaims any and all liability, including  
without limitation consequential or incidental damages. “Typical”  
parameters that may be provided in NXP data sheets and/or  
specifications can and do vary in different applications, and actual  
performance may vary over time. All operating parameters, including  
“typicals,” must bevalidated for each customer application by customer's  
technical experts. NXP does not convey any license under its patent  
rights nor the rights of others. NXP sells products pursuant to standard  
terms and conditions of sale, which can befound at the following  
address: nxp.com/SalesTermsandConditions.  
NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A  
SMARTER WORLD, COOLFLUX, EMBRACE, GREENCHIP, HITAG,  
I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE CLASSIC,  
MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS,  
MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROAD-  
LINK, SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCH-  
MOS, UCODE, Freescale, the Freescale logo, AltiVec, C.5, CodeTEST,  
CodeWarrior, ColdFire, ColdFire+, C.Ware, the Energy Efficient Solu-  
tions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC,  
Processor Expert, QorIQ, QorIQ Qonverge, Ready Play, SafeAssure, the  
SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit,  
BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC  
Engine, SMARTMOS, Tower, TurboLink, and UMEMS are trademarks  
of NXP B.V. All other product or service names are the property of their  
respective owners. Arm, AMBA, Arm Powered, Artisan, Cortex, Jazelle,  
Keil, SecurCore, Thumb, TrustZone, and ÏVision are registered trade-  
marks of Arm Limited (or its subsidiaries) in the EU and/or elsewhere.  
Arm7, Arm9, Arm11, big.LITTLE, CoreLink, CoreSight, DesignStart,  
Mali, Mbed, NEON, POP, Sensinode, Socrates, ULINK and Versatile are  
trademarks of Arm Limited (or its subsidiaries) in the EU and/or else-  
where. All rights reserved. Oracle and Java are registered trademarks of  
Oracle and/or its affiliates. The Power Architecture and Power.org word  
marks and the Power and Power.org logos and related marks are trade-  
marks and service marks licensed by Power.org.  
MPC5606B  
Rev. 5  
11/2017  

相关型号:

935325833557

Microprocessor
NXP

935325838574

Microprocessor
NXP

935325849518

RISC Microcontroller
NXP

935325849557

RISC Microcontroller
NXP

935325862557

RISC Microcontroller
NXP

935325864557

RISC Microcontroller
NXP

935325866557

RISC Microprocessor
NXP

935325879557

Microprocessor
NXP

935325881557

RISC Microprocessor
NXP

935325883557

Microprocessor
NXP

935325886557

Microprocessor
NXP

935325887557

RISC Microprocessor
NXP