PI6C39912-5 [PERICOM]

PLL Based Clock Driver, 6C Series, 8 True Output(s), 0 Inverted Output(s), PQCC32, PLASTIC, LCC-32;
PI6C39912-5
型号: PI6C39912-5
厂家: PERICOM SEMICONDUCTOR CORPORATION    PERICOM SEMICONDUCTOR CORPORATION
描述:

PLL Based Clock Driver, 6C Series, 8 True Output(s), 0 Inverted Output(s), PQCC32, PLASTIC, LCC-32

驱动 逻辑集成电路
文件: 总12页 (文件大小:504K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ADVANCE INFORMATION  
PI6C39911/PI6C39912  
3.3V High Speed LVTTL or Balanced Output  
Programmable Skew Clock Buffer-SuperClock  
Features  
Description  
• All output pair skew <100ps typical (250 Max.)  
• 3.75 MHz to 133 MHz output operation  
• User-selectable output functions  
— Selectable skew to 18ns  
ThePI6C39911andPI6C39912offerselectablecontroloversystem  
clock functions. These multiple-output clock drivers provide the  
systemintegratorwithfunctionsnecessarytooptimizethetimingof  
high-performance computer systems. Eight individual drivers, ar-  
ranged as four pairs of user-controllable outputs, can each drive  
terminated transmission lines with impedances as low as 50 Ohm  
whiledeliveringminimalandspecifiedoutputskewsandfull-swing  
logiclevels.  
— Inverted and Non-Inverted  
— Operation at ½ and ¼ input frequency  
— Operation at 2X and 4X input frequency  
(input as low as 3.75 MHz)  
Each output can be hardwired to one of nine delay or function  
configurations. Delay increments of 0.7ns to 1.5ns are determined  
by the operating frequency with outputs able to skew up to ±6 time  
units from their nominal “zero” skew position. The completely  
integrated PLL allows external load and transmission line delay  
effects to be canceled. The user can create output-to-output delays  
of up to ±12 time units.  
• Zero input-to-output delay  
• 50% duty-cycle outputs  
• LVTTL outputs drive 50 Ohm terminated lines  
• Operates from a single 3.3V supply  
• Low operating current  
Divide-by-twoanddivide-by-fouroutputfunctionsareprovidedfor  
additional flexibility in designing complex clock systems. When  
combinedwiththeinternalPLL,thesedividefunctionsallowdistri-  
butionofalow-frequencyclockthatcanbemultipliedbytwoorfour  
at the clock destination. This facility minimizes clock distribution  
difficulty while allowing maximum system user-clock speed and  
flexibility.  
• 32-pinPLCCpackage  
• Jitter < 200ps peak-to-peak (< 25ps RMS)  
• AvailableinLVTTL(PI6C39911)orBalanced(PI6C39912)  
• PI6C39911isapin-to-pincompatiblewithCY7B9911V  
LogicBlockDiagram  
PinConfiguration  
Test  
Phase  
Freq.  
DET  
VCO and  
Time Unit  
Generator  
FB  
1Q0  
1Q1  
Filter  
REF  
4
3
2
1
32 31 30  
5
29  
28  
27  
26  
25  
24  
23  
22  
21  
3F1  
4F0  
4F1  
2F0  
GND  
1F1  
1F0  
6
4Q0  
4Q1  
7
4F0  
4F1  
8
V
CCQ  
32-pin PLCC  
Select Inputs  
(three level)  
9
V
V
CCN  
4Q1  
CCN  
Skew  
10  
11  
12  
13  
3Q0  
3Q1  
1Q0  
1Q1  
GND  
GND  
3F0  
3F1  
4Q0  
Select  
GND  
GND  
2Q0  
2Q1  
2F0  
2F1  
14 15 16 17 18 19 20  
Matrix  
1Q0  
1Q1  
1F0  
1F1  
PSXXXX  
05/10/00  
1
ADVANCE INFORMATION  
PI6C39911/PI6C39912  
3.3V High Speed LVTTLor Balanced Output  
Programmable Skew Clock Buffer - SuperClock  
PinDescriptions  
Signal Name  
I/O  
Description  
Reference frequency input. This input supplies the frequency and timing against which all functional variation is measured.  
PLL feedback input (typically connected to one of the eight outputs)  
Three-level frequency range select. see Table 1.  
REF  
I
FB  
I
FS  
I
1F0, 1F1  
2F0, 2F1  
3F0, 3F1  
4F0, 4F1  
TEST  
I
Three-level function select inputs for output pair 1 (1Q0, 1Q1). see Table 2.  
Three-level function select inputs for output pair 2 (2Q0, 2Q1). see Table 2.  
Three-level function select inputs for output pair 3 (3Q0, 3Q1). see Table 2.  
Three-level function select inputs for output pair 4 (4Q0, 4Q1). see Table 2.  
Three-level select. See test mode section under the block diagram descriptions  
Output pair 1. see Table 2  
I
I
I
I
1Q0, 1Q1  
2Q0, 2Q1  
3Q0, 3Q1  
4Q0, 4Q1  
VCCN  
O
O
O
O
Output pair 2. see Table 2  
Output pair 3. see Table 2  
Output pair 4. see Table 2  
PWR Power supply for output drivers  
PWR Power supply for internal circuitry  
PWR Ground  
VCCQ  
GND  
(1)  
Table1.FrequencyRangeSelectandt Calculation  
U
1
tU  
=
Approximate  
Freq. (MHz) at  
which tU = 1.0ns  
FNOM (MHz)  
f
NOM × N  
FS(2,3)  
where N=  
Min.  
15  
Max.  
30  
LOW  
MID  
44  
26  
16  
22.7  
38.5  
62.5  
25  
50  
HIGH  
40  
133  
PSXXXX  
05/10/00  
2
ADVANCE INFORMATION  
PI6C39911/PI6C39912  
3.3V High Speed LVTTLor Balanced Output  
Programmable Skew Clock Buffer - SuperClock  
(1)  
Table2.ProgrammableSkewConfigurations  
Notes:  
1. For all three-state inputs, HIGH indicates a connection to V  
Function Selects  
Output Functions  
,
CC  
LOWindicatesaconnectiontoGND,andMIDindicatesanopen  
connection. Internal termination circuitry holds an unconnected  
1F1, 2F1, 1F0, 2F0, 1Q0, 1Q1,  
3Q0, 3Q1 4Q0, 4Q1  
3F1, 4F1  
LOW  
LOW  
LOW  
MID  
3F0, 4F0  
LOW  
MID  
2Q0, 2Q1  
input to V /2.  
CC  
–4tU  
Divide by 2 Divide by 2  
2. The level to be set on FS is determined by the “normal” operating  
frequency(f )oftheV andTimeUnitGenerator(seeLogic  
NOM CO  
–3tU  
–6tU  
–4tU  
–6tU  
–4tU  
Block Diagram). Nominal frequency (f  
) always appears at  
NOM  
1Q0 and the other outputs when they are operated in their  
undivided modes (see Table 2). The frequency appearing at the  
HIGH  
LOW  
MID  
–2tU  
–1tU  
–2tU  
–2tU  
REF and FB inputs will be f  
when the output connected to  
NOM  
FB is undivided. The frequency of the REF and FB inputs will be  
/2 or f /4 when the part is configured for a frequency  
MID  
0tU  
0tU  
0tU  
f
NOM  
NOM  
multiplication by using a divided output as the FB input.  
3. When the FS pin is selected HIGH, the REF input must not  
MID  
HIGH  
LOW  
MID  
+1tU  
+2tU  
+3tU  
+4tU  
+2tU  
+2tU  
+4tU  
+6tU  
Inverted  
HIGH  
HIGH  
HIGH  
+4tU  
transition upon power-up until V has reached 2.8V.  
CC  
+6tU  
HIGH  
Divide by 4  
FB Input  
REF Input  
1Fx  
2Fx  
3Fx  
4Fx  
LM  
LH  
(N/A)  
LL  
–6tU  
–4tU  
–3tU  
–2tU  
–1tU  
0tU  
LM (N/A)  
LH ML  
ML (N/A)  
MM MM  
MH  
HL  
(N/A) +1tU  
MH +2tU  
(N/A) +3tU  
HM  
HH  
HL  
+4tU  
+6tU  
(N/A)  
HM  
(N/A) LL/HH Divided  
(N/A) HH Invert  
(4)  
Figure1.TypicalOutputswithFBConnectedtoaZero-SkewOutput  
Note:  
4. FB connected to an output selected for  
"zero"skew(ie.,xF1=xF0=MID).  
PSXXXX  
05/10/00  
3
ADVANCE INFORMATION  
PI6C39911/PI6C39912  
3.3V High Speed LVTTLor Balanced Output  
Programmable Skew Clock Buffer - SuperClock  
Test Mode  
MaximumRatings  
The TEST input is a three-level input. In normal system operation,  
thispinisconnectedtoground, allowingthePI6C39911tooperate  
as explained briefly above (for testing purposes, any of the three  
levelinputscanhavearemovablejumpertoground,orbetiedLOW  
through a 100 Ohm resistor. This will allow an external tester to  
change the state of these pins.)  
Storage Temperature ...................................... –65°Cto+150°C  
AmbientTemperaturewith  
PowerApplied.................................................–55°Cto+125°C  
Supply Voltage to Ground Potential .................. –0.5Vto+5.0V  
DC Input Voltage ...............................................–0.5Vto+5.0V  
Output Current into Outputs (LOW) ............................... 64mA  
Static Discharge Voltage ............................................... >2001V  
(perMIL-STD-883,Method3015)  
IftheTESTinputisforcedtoitsMIDorHIGHstate,thedevicewill  
operatewithitsinternalphaselockedloopdisconnected, andinput  
levels supplied to REF will directly control all outputs. Relative  
output to output functions are the same as in normal mode.  
Latch-UpCurrent .........................................................>200mA  
In contrast with normal operation (TEST tied LOW). All outputs  
will function based only on the connection of their own function  
selectinputs(xF0andxF1)andthewaveformcharacteristicsofthe  
REFinput.  
OperatingRange  
Range  
Commercial  
Industrial  
Ambient Temperature  
0°C to +70°C  
V
CC  
3.3V ±10%  
3.3V ±10%  
–40°C to +85°C  
Capacitance(10)  
Parameter  
CIN  
Description  
Test Conditions  
Max.  
Units  
Input Capacitance  
TA = 25°C, f = 1MHz, VCC = 3.3V  
10  
pF  
AC Test Loads and Waveforms  
TTL AC Test Load  
TTL Input Test Waveform  
VCC  
1ns  
1ns  
R1  
R2  
3.0V  
2.0V  
Vth=1.5V  
0.8V  
0V  
C
L
R1=100  
R2=100  
C =30pF  
L
(Includes fixture and probe capacitance)  
PSXXXX  
05/10/00  
4
ADVANCE INFORMATION  
PI6C39911/PI6C39912  
3.3V High Speed LVTTLor Balanced Output  
Programmable Skew Clock Buffer - SuperClock  
(5)  
Electrical Characteristics (Over the Operating Range)  
PI6C39911/PI6C39912  
Test Conditions  
Parameter  
Description  
Min. Max. Units  
V
Output HIGH Voltage  
Output LOW Voltage  
V
= Min., I = –18mA  
2.4  
OH  
CC  
OH  
V
V
CC  
= Min., I = 35mA  
0.45  
OL  
OL  
V
Input HIGH Voltage (REF and FB inputs only)  
Input LOW Voltage (REF and FB inputs only)  
2.0  
–0.5  
0.87  
V
CC  
IH  
V
0.8  
IL  
V
(6)  
(6)  
V
IHH  
Three-Level Input HIGH Voltage (Test, FS, xFn)  
Min. V Max.  
V
CC  
CC  
V
CC  
0.47  
0.53  
V
CC  
(6)  
V
IMM  
Three-Level Input MID Voltage (Test, FS, xFn)  
Min. V Max.  
CC  
V
CC  
0.13  
V
ILL  
Three-Level Input LOW Voltage (Test, FS, xFn)  
Min. V Max.  
0.0  
CC  
V
CC  
I
IH  
Input HIGH Leakage Current (REF and FB inputs only) V = Max., V = Max.  
20  
CC  
IN  
I
Input LOW Leakage Current (REF and FB inputs only)  
Input HIGH Current (Test, FS, xFn)  
V
= Max., V = 0.4V  
–20  
–50  
IL  
CC  
IN  
I
V
IN  
= V  
CC  
200  
50  
µA  
IHH  
I
Input MID Current (Test, FS, xFn)  
V
= V /2  
IMM  
IN CC  
I
Input LOW Current (Test, FS, xFn)  
V
GND  
–200  
–200  
95  
ILL  
IN =  
(7)  
I
Short Circuit Current  
V
CC  
= Max., V  
OUT  
= GND (25°C only)  
Com'l  
OS  
mA  
I
Operating Current Used by Internal Circuitry  
CCQ  
V
CCN  
= V  
= Max.,  
CCQ  
All Input Selects Open  
Mil/Ind  
100  
V
= V = Max.,  
= 0mA  
CCN  
CCQ  
(8)  
I
Output Buffer Current per Output Pair  
I
25  
mA  
CCN  
OUT  
All Input Selects Open, f  
MAX  
V
= V  
= 0mA  
= Max.,  
CCN  
CCQ  
(9)  
PD  
Power Dissipation per Output Pair  
I
130  
mW  
OUT  
All Input Selects Open, f  
MAX  
Notes:  
5. See the last page of this specification for Group A subgroup testing information.  
6. These inputs are normally wired to V , GND, or left unconnected (actual threshold voltages vary as a percentage of V ). Internal  
CC  
CC  
termination resistors hold unconnected inputs at V /2. If these inputs are switched, the function and timing of the outputs may glitch  
CC  
and the PLL may require an additional t  
time before all data sheet limits are achieved.  
LOCK  
7. PI6C39911 should be tested one output at a time, output shorted for less than one second, less than 10% duty cycle.  
Roomtemperatureonly.  
8. Total output current per output pair can be approximated by the following expression that includes device current plus load current:  
PI6C39911:I  
Where  
=[(4+0.11F)+[[((835–3F)/Z)+(.0022FC)]N]x1.1  
CCN  
F = frequency in MHz  
C = capacitive load in pF  
Z = line impedance in ohms  
N = number of loaded outputs; 0, 1, or 2  
FC = F < C  
9. Total power dissipation per output pair can be approximated by the following expression that includes device power dissipation plus  
powerdissipationduetotheloadcircuit:PD=[(22+0.61F)+[[(1550+2.7F)/Z)+(.0125FC)]N]x1.1 Seenote8forvariabledefinition.  
10. Applies to REF and FB inputs only. Tested initially and after any design or process changes that may affect these parameters.  
PSXXXX  
05/10/00  
5
ADVANCE INFORMATION  
PI6C39911/PI6C39912  
3.3V High Speed LVTTLor Balanced Output  
Programmable Skew Clock Buffer - SuperClock  
(2,11)  
Switching Characteristics PI6C3991 (Over the Operating Range)  
PI6C39911-2  
PI6C39912-2  
PI6C39911-5  
PI6C39912-5  
PI6C39911  
PI6C39912  
Parameter  
Description  
Units  
Min.  
15  
Typ.  
Max. Min.  
Typ. Max. Min.  
Typ.  
Max.  
30  
(1,2)  
FS = LOW  
30  
50  
15  
25  
30  
50  
15  
25  
Operating  
Clock Frequency  
in MHz  
(23)  
(1,2)  
f
FS = MID  
25  
50  
MHz  
ns  
NOM  
(1,2)  
FS = HIGH  
40  
133  
40  
133  
40  
133  
t
REF Pulse Width HIGH  
REF Pulse Width LOW  
Programmable Skew Unit  
5.0  
5.0  
5.0  
5.0  
5.0  
5.0  
RPWH  
t
RPWL  
t
U
See Table 1  
0.1  
See Table 1  
See Table 1  
(13,14)  
t
Zero Output Matched-Pair Skew (XQ0, XQ1)  
0.25  
0.25  
0.5  
0.1  
0.25  
0.6  
0.25  
0.5  
0.1  
0.3  
0.6  
1.0  
0.7  
1.2  
0.25  
0.75  
1.0  
SKEWPR  
(13,15)  
t
Zero Output Skew (All Outputs)  
0.20  
0.4  
SKEW0  
(13,17)  
t
Output Skew (Rise-Rise, Fall-Fall, Same Class Outputs)  
0.7  
SKEW1  
(13,17)  
t
Output Skew (Rise-Fall, Nominal-Inverted, Divided-Divided)  
0.6  
0.8  
0.5  
1.0  
1.5  
SKEW2  
(13,17)  
t
Output Skew (Rise-Rise, Fall-Fall, Different Class Outputs)  
0.4  
0.5  
0.5  
0.7  
1.2  
SKEW3  
(13,17)  
t
Output Skew (Rise-Fall, Nominal-Divided, Divided-Inverted)  
0.5  
0.8  
0.5  
1.0  
1.7  
SKEW4  
(12,18)  
t
Device-to-Device Skew  
1.0  
1.25  
+0.5  
+1.0  
2.5  
1.65  
+0.7  
+1.2  
3.0  
ns  
DEV  
t
PD  
Propagation Delay, REF Rise to FB Rise  
–0.3  
–0.7  
0.0  
0.0  
–0.3  
–0.7  
2.5  
–0.5  
–1.0  
0.0  
0.0  
–0.7  
–1.2  
0.0  
0.0  
(19)  
t
Output Duty Cycle Variation  
ODCV  
(20)  
t
Output HIGH Time Deviation from 50%  
PWH  
(20)  
t
Output LOW Time Deviation from 50%  
3.0  
3.0  
3.5  
PWL  
(20,21)  
t
Output Rise Time  
0.15  
0.15  
1.0  
1.0  
1.5  
0.15  
0.15  
1.0  
1.0  
1.5  
0.15  
0.15  
1.0  
1.0  
1.5  
ORISE  
(20,21)  
t
Output Fall Time  
1.5  
1.5  
1.5  
OFALL  
(22)  
t
PLL Lock Time  
0.5  
0.5  
0.5  
ms  
ps  
LOCK  
(12)  
RMS  
25  
25  
25  
Cycle-to-cycle  
Output Jitter  
t
JR  
(12)  
Peak-to-peak  
200  
200  
200  
Notes:  
11. Test measurement levels for the PI6C39911 are TTL levels (1.5V to 1.5V). Test conditions assume signal transition times of 2ns or less and output  
loading as shown in the AC Test Loads and Waveforms unless otherwise specified.  
12. Guaranteed by statistical correlation. Tested initially and after any design or process changes that may affect these parameters.  
13. SKEW is defined as the time between the earliest and the latest output transition among all outputs for which the same tU delay has been selected  
when all are loaded with 30pF and terminated with 50 Ohm to VCC/2.  
14. tSKEWPR is defined as the skew between a pair of outputs (XQ0 and XQ1) when all eight outputs are selected for 0tU.  
15. tSKEW0 is defined as the skew between outputs when they are selected for 0tU. Other outputs are divided or inverted but not shifted.  
16. CL = 0pF. For CL = 30pF, tSKEW0 = 0.35ns.  
17. There are three classes of outputs: Nominal (multiple of tU delay), Inverted (4Q0 and 4Q1 only with 4F0 = 4F1 = HIGH), and Divided (3Qx and  
4Qx only in Divide-by-2 or Divide-by-4 mode).  
18. tDEV is the output-to-output skew between any two devices operating under the same conditions (VCC ambient temperature, air flow, etc.)  
19. tODCV is the deviation of the output from a 50% duty cycle. Output pulse width variations are included in tSKEW2 and tSKEW4 specifications.  
20. Specified with outputs loaded with 30pF for the PI6C39911 and PI6C39912 devices. Devices are terminated through 50 Ohm to VCC/2. tPWH is  
measured at 2.0V. tPWL is measured at 0.8V.  
21. tORISE and tOFALL measured between 0.8V and 2.0V.  
22. tLOCK is the time that is required before synchronization is achieved. This specification is valid only after VCC is stable and within normal operating  
limits. This parameter is measured from the application of a new signal or frequency at REF or FB until tPD is within specified limits.  
23. For frequencies higher than 110MHz outputs should not have higher than 20pF loads, in order to meet package thermal requirement.  
PSXXXX  
05/10/00  
6
ADVANCE INFORMATION  
PI6C39911/PI6C39912  
3.3V High Speed LVTTLor Balanced Output  
Programmable Skew Clock Buffer - SuperClock  
ACTimingDiagrams  
t
t
REF  
RPWL  
t
RPWH  
REF  
t
PD  
t
t
ODCV  
ODCV  
FB  
Q
t
JR  
t
SKEWPR  
t
SKEWPR  
t
SKEW0, 1  
t
SKEW0, 1  
Other Q  
t
t
SKEW2  
SKEW2  
Inverted Q  
t
t
SKEW3,4  
t
t
SKEW3,4  
SKEW3,4  
SKEW2,4  
REF Divided by 2  
t
SKEW1,3,4  
REF Divided by 4  
PSXXXX  
05/10/00  
7
ADVANCE INFORMATION  
PI6C39911/PI6C39912  
3.3V High Speed LVTTLor Balanced Output  
Programmable Skew Clock Buffer - SuperClock  
OperationalModeDescriptions  
REF  
FB  
LOAD  
System Clock  
REF  
FS  
L1  
Z
Z
0
0
4F0  
4F1  
3F0  
3F1  
2F0  
2F1  
1F0  
1F1  
TEST  
4Q0  
4Q1  
3Q0  
3Q1  
2Q0  
2Q1  
1Q0  
1Q1  
LOAD  
LOAD  
LOAD  
L2  
L3  
L4  
Z
Z
0
0
LENGTH: L1 = L2 = L3 = L4  
Figure2.Zero-Skewand/orZero-DelayClockDriver  
Figure2showstheSUPERCLOCKconfiguredasazero-skewclock  
buffer.InthismodethePI6C39911canbeusedasthebasisforalow-  
skew clock distribution tree. When all of the function select inputs  
(xF0, xF1) are left open, the outputs are aligned and may each drive  
aterminatedtransmissionlinetoanindependentload.TheFBinput  
can be tied to any output in this configuration and the operating  
frequency range is selected with the FS pin. The low-skew specifi-  
cation,coupledwiththeabilitytodriveterminatedtransmissionlines  
(withimpedancesaslowas50Ohm),allowsefficientprintedcircuit  
board design.  
REF  
FB  
LOAD  
LOAD  
System Clock  
REF  
FS  
L1  
L2  
Z
Z
0
0
4F0  
4F1  
3F0  
3F1  
2F0  
2F1  
1F0  
1F1  
TEST  
4Q0  
4Q1  
3Q0  
3Q1  
2Q0  
2Q1  
1Q0  
1Q1  
L3  
L4  
LOAD  
LOAD  
Z
Z
0
0
LENGTH: L1 = L2, L3 < L2 by 6", L4 > L2 by 6"  
Figure3.ProgrammableSkewClockDriver  
PSXXXX  
05/10/00  
8
ADVANCE INFORMATION  
PI6C39911/PI6C39912  
3.3V High Speed LVTTLor Balanced Output  
Programmable Skew Clock Buffer - SuperClock  
Figure 3 shows a configuration to equalize skew between metal Figure4showsanexampleoftheinvertfunctionoftheSuperClock.  
tracesofdifferentlengths. Inadditiontolowskewbetweenoutputs, In this example the 4Q0 output used as the FB input is programmed  
the SuperClock can be programmed to stagger the timing of its forinvert(4F0=4F1=HIGH)whiletheotherthreepairsofoutputs  
outputs. The four groups of output pairs can each be programmed areprogrammedforzeroskew.When4F0and4F1aretiedHIGH,4Q0  
to different output timing. Skew timing can be adjusted over a wide and 4Q1 become inverted zero phase outputs. The PLL aligns the  
range in small increments with the appropriate strapping of the rising edge of the FB input with the rising edge of the REF. This  
functionselectpins. Inthisconfigurationthe4Q0outputisfedback causesthe1Q,2Q,and3Qoutputstobecomethe“inverted”outputs  
to FB and configured for zero skew.  
with respect to the REF input. By selecting which output is connect  
to FB, it is possible to have 2 inverted and 6 non-inverted outputs  
or6invertedand2non-invertedoutputs.Thecorrectconfigura-tion  
would be determined by the need for more (or fewer) inverted  
outputs. 1Q, 2Q, and 3Q outputs can also be skewed to compensate  
for varying trace delays independent of inver-sion on 4Q.  
The other three pairs of outputs are programmed to yield different  
skewsrelativetothefeedback. Byadvancingtheclocksignalonthe  
longertracesorretardingtheclocksignalonshortertraces,allloads  
can receive the clock pulse at the same time.  
In this illustration the FB input is connected to an output with 0ns  
skew(xF1,xF0=MID)selected.TheinternalPLLsynchronizesthe  
FB and REF inputs and aligns their rising edges to insure that all  
outputs have precise phase alignment.  
REF  
Clock skews can be advanced by ±6 time units (t ) when using an  
U
output selected for zero skew as the feedback. A wider range of  
delaysispossibleiftheoutputconnectedtoFBisalsoskewed.Since  
FB  
20 MHz  
REF  
“ZeroSkew”,+t ,and–t aredefinedrelativetooutputgroups,and  
U
U
sincethePLLalignstherisingedgesofREFandFB, itispossibleto  
createwideroutputskewsbyproperselectionofthexFninputs. For  
FS  
4F0  
4F1  
3F0  
3F1  
2F0  
2F1  
1F0  
1F1  
TEST  
4Q0  
4Q1  
3Q0  
3Q1  
2Q0  
2Q1  
1Q0  
1Q1  
40 MHz  
20 MHz  
examplea+10t betweenREFand3Qxcanbeachievedbyconnect-  
U
ing 1Q0 to FB and setting 1F0 = 1F1 = GND, 3F0 = MID, and 3F1 =  
High.(SinceFBalignsat–4t and3Qxskewsto+6t ,atotalof+10  
U
U
t skew is realized). Many other configurations can be realized by  
U
80 MHz  
skewing both the output used as the FB input and skewing the other  
outputs.  
REF  
Figure5.FrequencyMultiplierwithSkewConnections  
FB  
REF  
FS  
Figure5illustratestheSuperClockconfiguredasaclockmultiplier.  
The 3Q0 output is programmed to divide by four and is fed back to  
FB. This causes the PLL to increase its frequency until the 3Q0 and  
3Q1outputsarelockedat20MHzwhilethe1Qxand2Qxoutputsrun  
at 80 MHz. The 4Q0 and 4Q1 outputs are programmed to divide by  
two,whichresultsina40MHzwaveformattheseoutputs.Notethat  
the 20 and 40 MHz clocks fall simultaneously and are out of phase  
on their rising edge. This will allow the designer to use the rising  
edges of the ½ frequency and ¼ frequency outputs without concern  
forrising-edgeskew.The2Q0,2Q1,1Q0,and1Q1outputsrunat80  
MHz and are skewed by programming their select inputs accord-  
ingly.NotethattheFSpiniswiredfor80MHzoperationbecausethat  
is the frequency of the fastest output.  
4F0  
4F1  
3F0  
3F1  
2F0  
2F1  
1F0  
1F1  
TEST  
4Q0  
4Q1  
3Q0  
3Q1  
2Q0  
2Q1  
1Q0  
1Q1  
Figure4.InvertedOutputConnections  
PSXXXX  
05/10/00  
9
ADVANCE INFORMATION  
PI6C39911/PI6C39912  
3.3V High Speed LVTTLor Balanced Output  
Programmable Skew Clock Buffer - SuperClock  
Figure 7 shows some of the functions that are selectable on the 3Qx  
and 4Qx outputs. These include inverted outputs and outputs that  
offerdivide-by-2anddivide-by-4timing.Aninvertedoutputallows  
the system designer to clock different sub-systems on opposite  
edges, without suffering from the pulse asymmetry typical of non-  
ideal loading. This function allows the two subsystems to each be  
clocked 180 degrees out of phase, but still to be aligned within the  
skew spec.  
REF  
FB  
20 MHz  
REF  
FS  
10 MHz  
4F0  
4F1  
3F0  
3F1  
2F0  
2F1  
1F0  
1F1  
TEST  
4Q0  
4Q1  
3Q0  
3Q1  
2Q0  
2Q1  
1Q0  
1Q1  
The divided outputs offer a zero-delay divider for portions of the  
system that need the clock to be divided by either two or four, and  
still remain within a narrow skew of the “1X” clock. Without this  
feature, an external divider would need to be add-ed, and the  
propagation delay of the divider would add to the skew between the  
different clock signals.  
5 MHz  
20 MHz  
These divided outputs, coupled with the Phase Locked Loop, allow  
the SuperClock to multiply the clock rate at the REF input by either  
two or four. This mode will enable the designer to distribute a low-  
frequency clock between various portions of the system, and then  
locallymultiplytheclockratetoamoresuitablefrequency,whilestill  
maintaining the low-skew characteristics of the clock driver. The  
SuperClock can perform all of the functions described above at the  
sametime.Itcanmultiplybytwoandfourordividebytwo(andfour)  
at the same time that it is shifting its outputs over a wide range or  
maintaining zero skew between selected outputs.  
Figure6.FrequencyDividerConnections  
Figure6demonstratestheSuperClock inaclockdividerapplication.  
2Q0isfedbacktotheFBinputandprogrammedforzeroskew. 3Qx  
isprogrammedtodividebyfour.4Qxisprogrammedtodividebytwo.  
Note that the falling edges of the 4Qx and 3Qx outputs are aligned.  
This allows use of the rising edges of the ½ frequency and ¼  
frequencywithoutconcernforskewmismatch.The1Qxoutputsare  
programmed to zero skew and are aligned with the 2Qx outputs. In  
thisexample, theFSinputisgroundedtoconfigurethedeviceinthe  
15 to 30 MHz range since the highest frequency output is running  
at20MHz.  
REF  
FB  
LOAD  
27.5 MHz  
REF  
Distribution  
Z0  
Clock  
FS  
110 MHz  
Inverted  
4F0  
4F1  
3F0  
3F1  
2F0  
2F1  
1F0  
1F1  
TEST  
4Q0  
4Q1  
3Q0  
3Q1  
2Q0  
2Q1  
1Q0  
1Q1  
LOAD  
Z0  
27.5 MHz  
LOAD  
110 MHz  
Zero Skew  
Z0  
110 MHz Skewed  
LOAD  
–2.273ns (–4t )  
Z0  
U
Figure7.Multi-FunctionClockDriver  
PSXXXX  
05/10/00  
10  
ADVANCE INFORMATION  
PI6C39911/PI6C39912  
3.3V High Speed LVTTLor Balanced Output  
Programmable Skew Clock Buffer - SuperClock  
REF  
LOAD  
FB  
System  
Clock  
Z0  
REF  
FS  
L1  
L2  
4F0  
4F1  
3F0  
3F1  
2F0  
2F1  
1F0  
1F1  
TEST  
4Q0  
4Q1  
3Q0  
3Q1  
2Q0  
2Q1  
1Q0  
1Q1  
LOAD  
Z0  
L3  
LOAD  
Z0  
L4  
FB  
Z0  
REF  
FS  
4F0  
4F1  
3F0  
3F1  
2F0  
2F1  
1F0  
1F1  
TEST  
4Q0  
4Q1  
3Q0  
3Q1  
2Q0  
2Q1  
1Q0  
1Q1  
LOAD  
LOAD  
Figure8.Board-to-BoardClockDistribution  
Figure8showsthePI6C39911connectedinseriestoconstructazero delay clock tree. Cascaded clock buffers will accumulate low-fre-  
skew clock distribution tree between boards. Delays of the down quencyjitterbecauseofthenon-idealfilteringcharacteristicsofthe  
streamclockbufferscanbeprogrammedtocompensateforthewire PLLfilter.Itisrecommendedthatnotmorethantwoclockbuffersbe  
length (i.e., select negative skew equal to the wire delay) necessary connected in series.  
to connect them to the master clock source, approximating a zero-  
PSXXXX  
05/10/00  
11  
ADVANCE INFORMATION  
PI6C39911/PI6C39912  
3.3V High Speed LVTTLor Balanced Output  
Programmable Skew Clock Buffer - SuperClock  
Package Diagram - 32-Pin PLCC (J)  
OrderingInformation  
Accuracy (ps) Ordering Code Package Name  
Package Type  
Operating Range  
250  
500  
700  
250  
500  
700  
PI6C39911-2  
PI6C39911-5  
PI6C39911  
32-Pin Plastic  
Leaded Chip Carrier  
J32  
Commercial  
PI6C39912-2  
PI6C39912-5  
PI6C39912  
PericomSemiconductorCorporation  
2380 Bering Drive • San Jose, CA 95131 • 1-800-435-2336 • Fax (408) 435-1100 • http://www.pericom.com  
PSXXXX  
05/10/00  
12  

相关型号:

PI6C39912-5J

Eight Distributed-Output Clock Driver
ETC

PI6C39912-5JX

PLL Based Clock Driver, 6C Series, 8 True Output(s), 0 Inverted Output(s), PQCC32, PLASTIC, LCC-32
PERICOM

PI6C39912J

Eight Distributed-Output Clock Driver
ETC

PI6C3991A

Clock IC | 750ps Accuracy. 3.3V. LVTTL. 3.75 to 80 MHz
ETC

PI6C3991A-2

Clock IC | 250ps Accuracy. 3.3V. LVTTL. 3.75 to 80 MHz
ETC

PI6C3991A-5

Clock IC | 500ps Accuracy. 3.3V. LVTTL. 3.75 to 80 MHz
ETC

PI6C3991A-5I

Clock IC | 500ps Accuracy. 3.3V. LVTTL. 3.75 to 80 MHz. Industrial Temp. Operation
ETC

PI6C3991A-5IJ

PLL Based Clock Driver, 6C Series, 8 True Output(s), 0 Inverted Output(s), CMOS, PQCC32, PLASTIC, LCC-32
PERICOM

PI6C3991A-5J

PLL Based Clock Driver, 6C Series, 8 True Output(s), 0 Inverted Output(s), CMOS, PQCC32, PLASTIC, LCC-32
PERICOM

PI6C3991A-I

Clock IC | 750ps Accuracy. 3.3V. LVTTL. 3.75 to 80 MHz. Industrial Temp. Operation
ETC

PI6C3991A-IJ

PLL Based Clock Driver, 6C Series, 8 True Output(s), 0 Inverted Output(s), CMOS, PQCC32, PLASTIC, LCC-32
PERICOM

PI6C3991AJ

暂无描述
PERICOM