PI6C39912J [ETC]

Eight Distributed-Output Clock Driver ; 八分布式输出时钟驱动器\n
PI6C39912J
型号: PI6C39912J
厂家: ETC    ETC
描述:

Eight Distributed-Output Clock Driver
八分布式输出时钟驱动器\n

时钟驱动器 逻辑集成电路
文件: 总11页 (文件大小:448K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PI6C39911/PI6C39912  
3.3V High Speed LVTTL or Balanced Output  
Programmable Skew Clock Buffer-SuperClock®  
Features  
Description  
• All output pair skew <100ps typical (250 Max.)  
• 12.5 MHz to 135 MHz output operation  
ThePI6C39911andPI6C39912offerselectablecontroloversystem  
clock functions. These multiple-output clock drivers provide the  
system integrator with functions necessary to optimize the timing  
of high-performance computer systems. Eight individual drivers,  
arranged as four pairs of user-controllable outputs, can each drive  
terminated transmission lines with impedances as low as 50 ohms  
whiledeliveringminimalandspecifiedoutputskewsandfull-swing  
logiclevels.  
• 3.125MHzto135MHzinputoperation  
(input as low as 3.125 MHz for 4x operation, or  
6.25 MHz for 2x operation)  
• User-selectable output functions  
— Selectable skew to 18ns  
— Inverted and non-inverted  
Each output can be hardwired to one of nine skews or function  
configurations. Delay increments of 0.7ns to 1.5ns are determined  
by the operating frequency with outputs able to skew up to ±6 time  
units from their nominal “zero” skew position. The completely  
integrated PLL allows external load and transmission line delay  
effects to be canceled. The user can create output-to-output skew  
of up to ±12 time units.  
— Operation at ½ and ¼ input frequency  
— Operation at 2X and 4X input frequency  
• Zero input-to-output delay  
• 50% duty-cycle outputs  
• LVTTLoutputsdrive50-ohmterminatedlines  
• Operates from a single 3.3V supply  
• Low operating current  
Divide-by-two and divide-by-four output functions are provided  
foradditionalflexibilityindesigningcomplexclocksystems.When  
combinedwiththeinternalPLL,thesedividefunctionsallowdistri-  
butionofalow-frequencyclockthatcanbemultipliedbytwoorfour  
attheclockdestination.This feature allows flexibility and simpli-  
fies system timing distribution design for complex high-speed  
systems.  
• 32-pinPLCCpackage  
• Jitter < 200ps peak-to-peak (< 25ps RMS)  
• AvailableinLVTTL(PI6C39911)orBalanced(PI6C39912)  
• PI6C39911isapin-to-pincompatiblewithCY7B9911V  
PinConfiguration  
LogicBlockDiagram  
Test  
Phase  
Freq.  
DET  
VCO and  
Time Unit  
Generator  
FB  
1Q0  
Filter  
1Q1  
REF  
4
3
2
1
32 31 30  
5
29  
28  
27  
26  
25  
24  
23  
22  
21  
3F1  
4F0  
4F1  
2F0  
GND  
1F1  
1F0  
6
4Q0  
4Q1  
7
4F0  
4F1  
8
V
CCQ  
32 Pin  
J
Select Inputs  
(three level)  
9
V
V
CCN  
4Q1  
CCN  
Skew  
10  
11  
12  
13  
3Q0  
3Q1  
1Q0  
1Q1  
GND  
GND  
3F0  
3F1  
4Q0  
Select  
GND  
GND  
2Q0  
2Q1  
2F0  
2F1  
14 15 16 17 18 19 20  
Matrix  
1Q0  
1Q1  
1F0  
1F1  
PS8497C  
04/10/01  
1
PI6C39911/PI6C39912  
3.3V High Speed LVTTLor Balanced Output  
Programmable Skew Clock Buffer - SuperClock  
PinDescriptions  
Signal  
I/O  
Description  
Name  
REF  
I
I
Reference frequency input supplies the frequency and timing against which all functional variation is measured.  
PLL feedback input (typically connected to one of the eight outputs)  
Three-level frequency range select. see Table 1.  
FB  
FS  
I
1F0, 1F1  
2F0, 2F1  
3F0, 3F1  
4F0, 4F1  
TEST  
I
Three-level function select inputs for output pair 1 (1Q0, 1Q1). see Table 2.  
Three-level function select inputs for output pair 2 (2Q0, 2Q1). see Table 2.  
Three-level function select inputs for output pair 3 (3Q0, 3Q1). see Table 2.  
Three-level function select inputs for output pair 4 (4Q0, 4Q1). see Table 2.  
Three-level select. See test mode section under the block diagram descriptions  
Output pair 1. see Table 2  
I
I
I
I
1Q0, 1Q1  
2Q0, 2Q1  
3Q0, 3Q1  
4Q0, 4Q1  
O
O
O
O
Output pair 2. see Table 2  
Output pair 3. see Table 2  
Output pair 4. see Table 2  
V
PWR Power supply for output drivers  
PWR Power supply for internal circuitry  
PWR Ground  
CCN  
V
CCQ  
GND  
(1)  
(1)  
Table2.ProgrammableSkewConfigurations  
Function Selects Output Functions  
Table1.FrequencyRangeSelectandt Calculation  
U
1
t =  
U
Approximate  
Freq. (MHz) at  
which t = 1.0ns  
F
NOM  
(MHz)  
fNOM × N  
(1,2)  
1F1, 2F1,  
1F0, 2F0,  
3F0, 4F0  
1Q0, 1Q1,  
2Q0, 2Q1  
FS  
3Q0, 3Q1 4Q0, 4Q1  
3F1, 4F1  
LOW  
LOW  
LOW  
MID  
where N=  
U
Min.  
12.5  
25  
Max.  
30  
LOW  
MID  
–4t  
Divide by 2 Divide by 2  
U
LOW  
MID  
44  
26  
16  
22.7  
38.5  
62.5  
–3t  
–6t  
–6t  
U
U
U
50  
HIGH  
LOW  
MID  
–2t  
–4t  
–4t  
U
U
U
HIGH  
40  
133  
–1t  
–2t  
–2t  
U
U
U
MID  
0t  
U
0t  
U
0t  
U
MID  
HIGH  
LOW  
MID  
+1t  
+2t  
+2t  
U
U
U
HIGH  
HIGH  
HIGH  
+2t  
+4t  
+4t  
U
U
U
+3t  
+6t  
+6t  
U
U
U
HIGH  
+4t  
Divide by 4 Inverted  
U
Notes:  
1. For all three-state inputs, HIGH indicates a connection to V , LOW indicates a connection to GND, and MID indicates an open  
CC  
connection. Internal termination circuitry holds an unconnected input to V /2.  
CC  
2.TheleveltobesetonFSisdeterminedbythe“normal”operatingfrequency(f )andTimeUnitGenerator(seeLogicBlockDiagram).  
NOM  
Nominal frequency (f  
) always appears at 1Q0 and the other outputs when they are operated in their undivided modes (see Table  
NOM  
2). The frequency appearing at the REF and FB inputs will be f  
when the output connected to FB is undivided. The frequency  
NOM  
oftheREFandFBinputswillbef  
as the FB input.  
/2orf /4whenthepartisconfiguredforafrequencymultiplicationbyusingadividedoutput  
NOM  
NOM  
PS8497C  
04/10/01  
2
PI6C39911/PI6C39912  
3.3V High Speed LVTTLor Balanced Output  
Programmable Skew Clock Buffer - SuperClock  
Test Mode  
MaximumRatings  
TheTESTinputisathree-levelinput. Innormalsystemoperation,  
thispinisconnectedtoground, allowingthe PI6C39911tooperate  
as explained briefly above (for testing purposes, any of the three  
levelinputscanhavearemovablejumpertoground,orbetiedLOW  
through a 100 Ohm resistor. This will allow an external tester to  
change the state of these pins.)  
IftheTESTinputisforcedtoitsMIDorHIGHstate,thedevicewill  
operatewithitsinternalphaselockedloopdisconnected,andinput  
levels supplied to REF will directly control all outputs. Relative  
output to output functions are the same as in normal mode.  
StorageTemperature ..................................... –65°Cto+150°C  
AmbientTemperaturewith  
Power Applied ............................................... –55°Cto+125°C  
Supply Voltage to Ground Potential ................ –0.5Vto+5.0V  
DC Input Voltage .............................................. –0.5Vto+5.0V  
Output Current into Outputs (LOW) .............................. 64mA  
StaticDischargeVoltage ............................................... >2001V  
(perMIL-STD-883,Method3015)  
In contrast with normal operation (TEST tied LOW). All outputs  
will function based only on the connection of their own function  
selectinputs(xF0andxF1)andthewaveformcharacteristicsofthe  
REFinput.  
Latch-UpCurrent .........................................................>200mA  
(23)  
MaximumPowerDissipationatT =85°C  
............... 0.80watts  
A
OperatingRange  
Range  
Commercial  
Industrial  
Ambient Temperature  
0°C to +70°C  
V
CC  
3.3V ±10%  
3.3V ±10%  
–40°C to +85°C  
FB Input  
REF Input  
1Fx  
2Fx  
3Fx  
4Fx  
(N/A)  
LM  
LH  
–6tU  
–4tU  
–3tU  
–2tU  
–1tU  
0tU  
LL  
LM (N/A)  
LH ML  
ML (N/A)  
MM MM  
MH  
HL  
(N/A) +1tU  
MH +2tU  
(N/A) +3tU  
HM  
HH  
HL  
+4tU  
+6tU  
(N/A)  
HM  
(N/A) LL/HH Divided  
(N/A) HH Invert  
(3)  
Figure1.TypicalOutputswithFBConnectedtoaZero-SkewOutput  
Note:  
3. FB connected to an output selected for “zero” skew (i.e., xF1 = xF0 = MID)  
PS8497C  
04/10/01  
3
PI6C39911/PI6C39912  
3.3V High Speed LVTTLor Balanced Output  
Programmable Skew Clock Buffer - SuperClock  
Capacitance(6)  
Parameter  
CIN  
Description  
Test Conditions  
Max.  
Units  
Input Capacitance  
TA = 25°C, f = 1MHz, VCC = 3.3V  
10  
pF  
ElectricalCharacteristics(OvertheOperatingRange)  
Parameter  
VOH  
Description  
Output HIGH Voltage  
Test Conditions  
VCC = Min., IOH = –18mA  
VCC = Min., IOL = 35mA  
Min.  
Max.  
Units  
2.4  
VOL  
Output LOW Voltage  
0.45  
VCC  
Input HIGH Voltage  
(REF and FB inputs only)  
VIH  
VIL  
2.0  
–0.5  
Input LOW Voltage  
(REF and FB inputs only)  
0.8  
V
Three-Level Input HIGH Voltage  
(Test, FS, xFn)(4)  
VIHH  
VIMM  
VILL  
IIH  
Min. VCC Max.  
0.87 VCC  
VCC  
Three-Level Input MID Voltage  
(Test, FS, xFn)(4)  
Min. VCC Max.  
0.47 VCC 0.53 VCC  
Three-Level Input LOW Voltage  
(Test, FS, xFn)(4)  
Min. VCC Max.  
0.0  
0.13 VCC  
20  
Input HIGH Leakage Current  
(REF and FB inputs only)  
VCC = Max., VIN = Max.  
VCC = Max., VIN = 0.4V  
Input LOW Leakage Current  
(REF and FB inputs only)  
IIL  
–20  
µA  
IIHH  
IIMM  
IILL  
Input HIGH Current (Test, FS, xFn)  
Input MID Current (Test, FS, xFn)  
Input LOW Current (Test, FS, xFn)  
Short Circuit Current(5)  
VIN = VCC  
200  
50  
VIN = VCC/2  
–50  
VIN = GND  
–200  
IOS  
VCC = Max., VOUT = GND (25°C only)  
–200  
95  
mA  
ICCQ  
Operating Current Used by Internal  
Circuitry  
Com'l  
VCCN = VCCQ = Max.,  
All Input Selects Open  
Mil/Ind  
100  
mA  
mA  
ICCN  
PD  
Output Buffer Current per Output Pair  
Power Dissipation per Output Pair  
VCCN = VCCQ = Max., IOUT = 0mA  
All Input Selects Open, fMAX  
25  
VCCN = VCCQ = Max., IOUT = 0mA  
All Input Selects Open, fMAX  
130  
mW  
Notes:  
4. These inputs are normally wired to V , GND, or left unconnected (actual threshold voltages vary as a percentage of V ).  
CC  
CC  
Internal termination resistors hold unconnected inputs at V /2. If these inputs are switched, the function and timing of the  
CC  
outputs may glitch and the PLL may require an additional t  
time before all data sheet limits are achieved.  
LOCK  
5. PI6C39911 should be tested one output at a time, output shorted for less than one second, less than 10% duty cycle.  
Roomtemperatureonly.  
6. Applies to REF and FB inputs only. Tested initially and after any design or process changes that may affect these parameters.  
7. TestmeasurementlevelsforthePI6C39911areTTLlevels(1.5Vto1.5V).Testconditionsassumesignaltransitiontimesof2nsorless  
and output loading as shown in the AC Test Loads and Waveforms unless otherwise specified.  
8. Guaranteed by statistical correlation.  
PS8497C  
04/10/01  
4
PI6C39911/PI6C39912  
3.3V High Speed LVTTLor Balanced Output  
Programmable Skew Clock Buffer - SuperClock  
(2,7)  
SwitchingCharacteristics(Over the Operating Range)  
PI6C39911-2  
PI6C39912-2  
PI6C39911-5  
PI6C39912-5  
PI6C39911  
PI6C39912  
Parameter  
Description  
FS = LOW(1,2)  
Units  
Min. Typ. Max. Min. Typ. Max. Min. Typ. Max.  
12.5  
25  
30  
50  
12.5  
25  
30  
50  
12.5  
25  
30  
Operating  
fNOM  
Clock Frequency FS = MID(1,2)  
50 MHz  
135  
(1,2)  
FS = HIGH(1,2,19)  
40  
135  
40  
135  
40  
in MHz  
tRPWH  
tRPWL  
tU  
REF Pulse Width HIGH  
REF Pulse Width LOW  
Programmable Skew Unit  
3.0  
3.0  
3.0  
3.0  
3.0  
3.0  
ns  
See Table 1  
0.1 0.25  
0.20 0.25  
See Table 1  
0.1  
See Table 1  
0.1 0.25  
0.3 0.75  
Zero Output Matched  
tSKEWPR  
tSKEW0  
tSKEW1  
0.25  
0.5  
-Pair Skew (XQ0, XQ1)(9,10)  
Zero Output Skew (All Outputs)(9,11)  
0.25  
Output Skew (Rise-Rise, Fall-Fall,  
Same Class Outputs)(9,13)  
0.4  
0.6  
0.4  
0.5  
0.5  
0.8  
0.5  
0.6  
0.7  
0.6  
1.0  
0.7  
1.2  
1.0  
1.5  
1.2  
Output Skew (Rise-Fall, Nominal-Inverted,  
Divided-Divided)(9,13)  
tSKEW2  
tSKEW3  
tSKEW4  
0.5  
0.5  
0.5  
1.0  
0.7  
Output Skew (Rise-Rise, Fall-Fall,  
Different Class Outputs)(9,13)  
ns  
Output Skew (Rise-Fall, Nominal-Divided,  
Divided-Inverted)(9,13)  
0.8  
1.0  
1.0  
1.7  
tDEV  
tPD  
Device-to-Device Skew (8,14)  
Propagation Delay, REF Rise to FB Rise  
Output Duty Cycle Variation (15)  
Output HIGH Time Deviation from 50%(16)  
Output LOW Time Deviation from 50%(16)  
Output Rise Time(16,17)  
1.25  
1.65  
–0.3  
–0.7  
0.0 +0.3 –0.5  
0.0  
0.0  
+0.5 –0.7 0.0 +0.7  
+1.0 –1.2 0.0 +1.2  
tODCV  
tPWH  
tPWL  
0.0 +0.7 –1.0  
2.5  
3.0  
2.5  
3.0  
3.5  
1.5  
1.5  
0.5  
25  
3.0  
tORISE  
tOFALL  
tLOCK  
0.15  
0.15  
1.0  
1.0  
1.5  
1.5  
0.5  
25  
0.15  
0.15  
1.0  
1.0  
1.5 0.15 1.0  
Output Fall Time(16,17)  
PLL Lock Time(18)  
1.5 0.15 1.0  
0.5  
25  
ms  
ps  
RMS(8)  
Cycle-to-cycle  
Output Jitter  
tJR  
Peak-to-peak(8)  
200  
200  
200  
Notes:  
9. SKEW is defined as the time between the earliest and the latest output transition among all outputs for which the same t delay has been  
U
selected when all are loaded with 30pF and terminated with 50 ohms to V /2.  
CC  
10. t  
11. t  
is defined as the skew between a pair of outputs (XQ0 and XQ1) when all eight outputs are selected for 0t .  
SKEWPR  
SKEW0  
U
is defined as the skew between outputs when they are selected for 0t . Other outputs are divided or inverted but not shifted.  
U
12. C = 0pF. For C = 30pF, t = 0.35ns.  
L
L
SKEW0  
13. Therearethreeclassesofoutputs:Nominal(multipleoft delay),Inverted(4Q0and4Q1onlywith4F0=4F1=HIGH),andDivided(3Qx  
U
and4QxonlyinDivide-by-2orDivide-by-4mode).  
14. t  
15. t  
is the output-to-output skew between any two devices operating under the same conditions (V ambienttemperature, airflow, etc.)  
DEV  
CC  
isthedeviationoftheoutputfroma50%dutycycle.Outputpulsewidthvariationsareincludedint  
andt  
specifications.  
ODCV  
SKEW2  
SKEW4  
16. Specifiedwithoutputsloadedwith30pFforthePI6C39911andPI6C39912devices.Devicesareterminatedthrough50OhmtoV /2.t  
CC  
PWH  
is measured at 2.0V. t  
is measured at 0.8V.  
PWL  
17. t  
18. t  
and t  
measured between 0.8V and 2.0V.  
ORISE  
LOCK  
OFALL  
is the time that is required before synchronization is achieved. This specification is valid only after V is stable and within normal  
CC  
operatinglimits.ThisparameterismeasuredfromtheapplicationofanewsignalorfrequencyatREForFBuntilt iswithinspecifiedlimits.  
PD  
19. For frequencies higher than 110MHz output load should be less than 15pF to meet package thermal requirement.  
PS8497C  
04/10/01  
5
PI6C39911/PI6C39912  
3.3V High Speed LVTTLor Balanced Output  
Programmable Skew Clock Buffer - SuperClock  
AC Test Loads and Waveforms  
TTL AC Test Load  
TTL Input Test Waveform  
V
CC  
1ns  
1ns  
R1  
3.0V  
2.0V  
Vth =1.5V  
0.8V  
C
L
R2  
0V  
R1=100  
R2=100  
C =30pF (Includes fixture and probe capacitance)  
L
ACTimingDiagrams  
t
t
REF  
RPWL  
t
RPWH  
REF  
t
PD  
t
t
ODCV  
ODCV  
FB  
Q
t
JR  
t
SKEWPR  
t
SKEWPR  
t
SKEW0, 1  
t
SKEW0, 1  
Other Q  
t
t
SKEW2  
SKEW2  
Inverted Q  
t
t
SKEW3,4  
t
SKEW3,4  
SKEW3,4  
REF Divided by 2  
t
SKEW1,3,4  
t
SKEW2,4  
REF Divided by 4  
PS8497C  
04/10/01  
6
PI6C39911/PI6C39912  
3.3V High Speed LVTTLor Balanced Output  
Programmable Skew Clock Buffer - SuperClock  
OperationalModeDescriptions  
REF  
FB  
LOAD  
System Clock  
REF  
FS  
L1  
Z
Z
0
0
4F0  
4F1  
3F0  
3F1  
2F0  
2F1  
1F0  
1F1  
TEST  
4Q0  
4Q1  
3Q0  
3Q1  
2Q0  
2Q1  
1Q0  
1Q1  
LOAD  
LOAD  
LOAD  
L2  
L3  
L4  
Z
Z
0
0
LENGTH: L1 = L2 = L3 = L4  
Figure2.Zero-Skewand/orZero-DelayClockDriver  
Figure2showstheSUPERCLOCKconfiguredasazero-skewclock  
buffer.InthismodethePI6C39911canbeusedasthebasisforalow-  
skew clock distribution tree. When all of the function select inputs  
(xF0, xF1) are left open, the outputs are aligned and may each drive  
aterminatedtransmissionlinetoanindependentload.TheFBinput  
can be tied to any output in this configuration and the operating  
frequency range is selected with the FS pin. The low-skew specifi-  
cation,coupledwiththeabilitytodriveterminatedtransmissionlines  
(withimpedancesaslowas50Ohm),allowsefficientprintedcircuit  
board design.  
REF  
FB  
LOAD  
LOAD  
System Clock  
REF  
FS  
L1  
L2  
Z
Z
0
0
4F0  
4F1  
3F0  
3F1  
2F0  
2F1  
1F0  
1F1  
TEST  
4Q0  
4Q1  
3Q0  
3Q1  
2Q0  
2Q1  
1Q0  
1Q1  
L3  
L4  
LOAD  
LOAD  
Z
Z
0
0
LENGTH: L1 = L2, L3 < L2 by 6", L4 > L2 by 6"  
Figure3.ProgrammableSkewClockDriver  
PS8497C  
04/10/01  
7
PI6C39911/PI6C39912  
3.3V High Speed LVTTLor Balanced Output  
Programmable Skew Clock Buffer - SuperClock  
Figure 3 shows a configuration to equalize skew between metal Figure4showsanexampleoftheinvertfunctionoftheSuperClock.  
tracesofdifferentlengths. Inadditiontolowskewbetweenoutputs, In this example the 4Q0 output used as the FB input is programmed  
the SuperClock can be programmed to stagger the timing of its forinvert(4F0=4F1=HIGH)whiletheotherthreepairsofoutputs  
outputs. The four groups of output pairs can each be programmed areprogrammedforzeroskew.When4F0and4F1aretiedHIGH,4Q0  
to different output timing. Skew timing can be adjusted over a wide and 4Q1 become inverted zero phase outputs. The PLL aligns the  
range in small increments with the appropriate strapping of the rising edge of the FB input with the rising edge of the REF. This  
functionselectpins. Inthisconfigurationthe4Q0outputisfedback causesthe1Q,2Q,and3Qoutputstobecomethe“inverted”outputs  
to FB and configured for zero skew.  
with respect to the REF input. By selecting which output is connect  
to FB, it is possible to have 2 inverted and 6 non-inverted outputs  
or 6 inverted and 2 non-inverted outputs. The correct configuration  
would be determined by the need for more (or fewer) inverted  
outputs. 1Q, 2Q, and 3Q outputs can also be skewed to compensate  
for varying trace delays independent of inver-sion on 4Q.  
The other three pairs of outputs are programmed to yield different  
skewsrelativetothefeedback. Byadvancingtheclocksignalonthe  
longertracesorretardingtheclocksignalonshortertraces,allloads  
can receive the clock pulse at the same time.  
In this illustration the FB input is connected to an output with 0ns  
skew(xF1,xF0=MID)selected.TheinternalPLLsynchronizesthe  
FB and REF inputs and aligns their rising edges to insure that all  
outputs have precise phase alignment.  
REF  
Clock skews can be advanced by ±6 time units (t ) when using an  
U
output selected for zero skew as the feedback. A wider range of  
delaysispossibleiftheoutputconnectedtoFBisalsoskewed.Since  
FB  
20 MHz  
REF  
“ZeroSkew”,+t ,and–t aredefinedrelativetooutputgroups,and  
U
U
sincethePLLalignstherisingedgesofREFandFB, itispossibleto  
createwideroutputskewsbyproperselectionofthexFninputs. For  
FS  
4F0  
4F1  
3F0  
3F1  
2F0  
2F1  
1F0  
1F1  
TEST  
4Q0  
4Q1  
3Q0  
3Q1  
2Q0  
2Q1  
1Q0  
1Q1  
40 MHz  
20 MHz  
examplea+10t betweenREFand3Qxcanbeachievedbyconnect-  
U
ing 1Q0 to FB and setting 1F0 = 1F1 = GND, 3F0 = MID, and 3F1 =  
High.(SinceFBalignsat–4t and3Qxskewsto+6t ,atotalof+10  
U
U
t skew is realized). Many other configurations can be realized by  
U
80 MHz  
skewing both the output used as the FB input and skewing the other  
outputs.  
REF  
Figure5.FrequencyMultiplierwithSkewConnections  
FB  
REF  
FS  
Figure5illustratestheSuperClockconfiguredasaclockmultiplier.  
The 3Q0 output is programmed to divide by four and is fed back to  
FB. This causes the PLL to increase its frequency until the 3Q0 and  
3Q1outputsarelockedat20MHzwhilethe1Qxand2Qxoutputsrun  
at 80 MHz. The 4Q0 and 4Q1 outputs are programmed to divide by  
two,whichresultsina40MHzwaveformattheseoutputs.Notethat  
the 20 and 40 MHz clocks fall simultaneously and are out of phase  
on their rising edge. This will allow the designer to use the rising  
edges of the ½ frequency and ¼ frequency outputs without concern  
forrising-edgeskew.The2Q0,2Q1,1Q0,and1Q1outputsrunat80  
MHz and are skewed by programming their select inputs accord-  
ingly.NotethattheFSpiniswiredfor80MHzoperationbecausethat  
is the frequency of the fastest output.  
4F0  
4F1  
3F0  
3F1  
2F0  
2F1  
1F0  
1F1  
TEST  
4Q0  
4Q1  
3Q0  
3Q1  
2Q0  
2Q1  
1Q0  
1Q1  
Figure4.InvertedOutputConnections  
PS8497C  
04/10/01  
8
PI6C39911/PI6C39912  
3.3V High Speed LVTTLor Balanced Output  
Programmable Skew Clock Buffer - SuperClock  
Figure 7 shows some of the functions that are selectable on the 3Qx  
and 4Qx outputs. These include inverted outputs and outputs that  
offerdivide-by-2anddivide-by-4timing.Aninvertedoutputallows  
the system designer to clock different sub-systems on opposite  
edges, without suffering from the pulse asymmetry typical of non-  
ideal loading. This function allows the two subsystems to each be  
clocked 180 degrees out of phase, but still to be aligned within the  
skew spec.  
The divided outputs offer a zero-delay divider for portions of the  
system that need the clock to be divided by either two or four, and  
still remain within a narrow skew of the “1X” clock. Without this  
feature, an external divider would need to be add-ed, and the  
propagation delay of the divider would add to the skew between the  
different clock signals.  
These divided outputs, coupled with the Phase Locked Loop, allow  
the SuperClock to multiply the clock rate at the REF input by either  
two or four. This mode will enable the designer to distribute a low-  
frequency clock between various portions of the system, and then  
locallymultiplytheclockratetoamoresuitablefrequency,whilestill  
maintaining the low-skew characteristics of the clock driver. The  
SuperClock can perform all of the functions described above at the  
sametime.Itcanmultiplybytwoandfourordividebytwo(andfour)  
at the same time that it is shifting its outputs over a wide range or  
maintaining zero skew between selected outputs.  
REF  
FB  
20 MHz  
REF  
FS  
10 MHz  
4F0  
4F1  
3F0  
3F1  
2F0  
2F1  
1F0  
1F1  
TEST  
4Q0  
4Q1  
3Q0  
3Q1  
2Q0  
2Q1  
1Q0  
1Q1  
5 MHz  
20 MHz  
Figure6.FrequencyDividerConnections  
Figure6demonstratestheSuperClock inaclockdividerapplication.  
2Q0isfedbacktotheFBinputandprogrammedforzeroskew. 3Qx  
isprogrammedtodividebyfour.4Qxisprogrammedtodividebytwo.  
Note that the falling edges of the 4Qx and 3Qx outputs are aligned.  
This allows use of the rising edges of the ½ frequency and ¼  
frequencywithoutconcernforskewmismatch.The1Qxoutputsare  
programmed to zero skew and are aligned with the 2Qx outputs. In  
thisexample, theFSinputisgroundedtoconfigurethedeviceinthe  
15 to 30 MHz range since the highest frequency output is running  
at20MHz.  
REF  
FB  
LOAD  
27.5 MHz  
REF  
Distribution  
Z0  
Clock  
FS  
110 MHz  
Inverted  
4F0  
4F1  
3F0  
3F1  
2F0  
2F1  
1F0  
1F1  
TEST  
4Q0  
4Q1  
3Q0  
3Q1  
2Q0  
2Q1  
1Q0  
1Q1  
LOAD  
Z0  
27.5 MHz  
LOAD  
110 MHz  
Zero Skew  
Z0  
110 MHz Skewed  
LOAD  
–2.273ns (–4t )  
Z0  
U
Figure7.Multi-FunctionClockDriver  
PS8497C  
04/10/01  
9
PI6C39911/PI6C39912  
3.3V High Speed LVTTLor Balanced Output  
Programmable Skew Clock Buffer - SuperClock  
REF  
LOAD  
FB  
System  
Clock  
Z0  
REF  
FS  
L1  
L2  
4F0  
4F1  
3F0  
3F1  
2F0  
2F1  
1F0  
1F1  
TEST  
4Q0  
4Q1  
3Q0  
3Q1  
2Q0  
2Q1  
1Q0  
1Q1  
LOAD  
Z0  
L3  
LOAD  
Z0  
L4  
FB  
Z0  
REF  
FS  
4F0  
4F1  
3F0  
3F1  
2F0  
2F1  
1F0  
1F1  
TEST  
4Q0  
4Q1  
3Q0  
3Q1  
2Q0  
2Q1  
1Q0  
1Q1  
LOAD  
LOAD  
Figure8.Board-to-BoardClockDistribution  
Figure8showsthePI6C39911connectedinseriestoconstructazero delay clock tree. Cascaded clock buffers will accumulate low-fre-  
skew clock distribution tree between boards. Delays of the down quencyjitterbecauseofthenon-idealfilteringcharacteristicsofthe  
streamclockbufferscanbeprogrammedtocompensateforthewire PLLfilter.Itisrecommendedthatnotmorethantwoclockbuffersbe  
length (i.e., select negative skew equal to the wire delay) necessary connected in series.  
to connect them to the master clock source, approximating a zero-  
PS8497C  
04/10/01  
10  
PI6C39911/PI6C39912  
3.3V High Speed LVTTLor Balanced Output  
Programmable Skew Clock Buffer - SuperClock  
Package Diagram - 32-Pin PLCC (J)  
OrderingInformation  
Accuracy (ps)  
Ordering Code  
PI6C39911-2J  
PI6C39911-5J  
PI6C39911J  
Package Name  
Package Type  
Operating Range  
250  
500  
700  
250  
500  
700  
32-Pin Plastic Leaded  
Chip Carrier  
J32  
Commercial  
PI6C39912-2J  
PI6C39912-5J  
PI6C39912J  
PericomSemiconductorCorporation  
2380 Bering Drive • San Jose, CA 95131 • 1-800-435-2336 • Fax (408) 435-1100 • http://www.pericom.com  
PS8497C  
04/10/01  
11  

相关型号:

PI6C3991A

Clock IC | 750ps Accuracy. 3.3V. LVTTL. 3.75 to 80 MHz
ETC

PI6C3991A-2

Clock IC | 250ps Accuracy. 3.3V. LVTTL. 3.75 to 80 MHz
ETC

PI6C3991A-5

Clock IC | 500ps Accuracy. 3.3V. LVTTL. 3.75 to 80 MHz
ETC

PI6C3991A-5I

Clock IC | 500ps Accuracy. 3.3V. LVTTL. 3.75 to 80 MHz. Industrial Temp. Operation
ETC

PI6C3991A-5IJ

PLL Based Clock Driver, 6C Series, 8 True Output(s), 0 Inverted Output(s), CMOS, PQCC32, PLASTIC, LCC-32
PERICOM

PI6C3991A-5J

PLL Based Clock Driver, 6C Series, 8 True Output(s), 0 Inverted Output(s), CMOS, PQCC32, PLASTIC, LCC-32
PERICOM

PI6C3991A-I

Clock IC | 750ps Accuracy. 3.3V. LVTTL. 3.75 to 80 MHz. Industrial Temp. Operation
ETC

PI6C3991A-IJ

PLL Based Clock Driver, 6C Series, 8 True Output(s), 0 Inverted Output(s), CMOS, PQCC32, PLASTIC, LCC-32
PERICOM

PI6C3991AJ

暂无描述
PERICOM

PI6C3991I

Clock IC | 750ps Accuracy. 3.3V. LVTTL. 3.75 to 80 MHz. Industrial Temp. Operation
ETC

PI6C3991J

3.3V High-Speed, Low-Voltage Programmable Skew Clock Buffer SuperClock
PERICOM

PI6C3991JE

暂无描述
PERICOM