NOIP1SE016KA-GTI [ONSEMI]

CMOS 图像传感器,16.8 MP,全局快门;
NOIP1SE016KA-GTI
型号: NOIP1SE016KA-GTI
厂家: ONSEMI    ONSEMI
描述:

CMOS 图像传感器,16.8 MP,全局快门

传感器 图像传感器
文件: 总87页 (文件大小:682K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NOIP1SN025KA,  
NOIP1SN016KA,  
NOIP1SN012KA,  
NOIP1SN010KA  
PYTHON 25K/16K/12K/10K  
Global Shutter CMOS Image  
Sensors  
www.onsemi.com  
Features  
A Pin-compatible Family with Multiple Resolutions:  
25K = 5120 x 5120 Active Pixels  
16K = 4096 x 4096 Active Pixels  
12K = 4096 x 3072 Active Pixels  
10K = 3840 x 2896 Active Pixels  
4.5 mm x 4.5 mm Low Noise Global Shutter Pixels with  
In-pixel Correlated Double Sampling (CDS)  
APS−H Optical Format (32.6 mm Diagonal) for 25K  
Monochrome (SN), Color (SE) and NIR (FN)  
Random Programmable Region of Interest (ROI) Readout  
Pipelined and Triggered Global Shutter  
On-chip Fixed Pattern Noise (FPN) Correction  
10-bit Analog-to-Digital Converter (ADC)  
32 Low-voltage Differential Signaling (LVDS) High-speed  
Serial Outputs  
Serial Peripheral Interface (SPI)  
High-speed: 80 Frames per Second (fps) at 25 Mpix  
4.6 W Power Dissipation at Full Resolution, x32 LVDS  
Mode  
Figure 1. PYTHON XK Photograph  
Applications  
Machine Vision  
Motion Monitoring  
Intelligent Traffic Systems (ITS)  
Pick and Place Machines  
Inspection  
Operational Range: −40°C to +85°C  
355-pin mPGA Package  
Metrology  
These Devices are Pb−Free and are RoHS Compliant  
Description  
The PYTHON xK family of CMOS image sensors provide high resolution with very high bandwidth (up to 80 frame per  
second readout for 25 megapixel readout) in a pin−compatible family of devices.  
The high sensitivity 4.5 mm pixels support both pipelined and triggered global shutter readout modes. The sensor also  
supports correlated double sampling (CDS) readout in global shutter mode, reducing noise and increasing dynamic range.  
The sensor is programmed using a four−wire serial peripheral interface. Black level can be calibrated automatically, or  
adjusted using a user programmable offset. The sensor also supports readout of up to 32 separate regions of interest (ROI) to  
increase frame rate. Image data is accessed through 32, 16, 8, or 4 LVDS channels, each running at 720 Mbps, and a separate  
synchronization channel is provided to facilitate image reconstruction.  
The PYTHON xK family is packaged in a 355-pin mPGA package and is available in a monochrome, Bayer color, and  
extended near−infrared (NIR) configurations.  
© Semiconductor Components Industries, LLC, 2015  
1
Publication Order Number:  
September, 2015 − Rev. 0  
NOIP1SN025KA/D  
NOIP1SN025KA, NOIP1SN016KA, NOIP1SN012KA, NOIP1SN010KA  
ORDERING INFORMATION  
Part Number  
NOIP1SN025KA-GDI  
NOIP1SE025KA-GDI  
NOIP1FN025KA-GDI  
NOIP1SN016KA-GDI  
NOIP1SE016KA-GDI  
NOIP1FN016KA-GDI  
NOIP1SN012KA-GDI  
NOIP1SE012KA-GDI  
NOIP1FN012KA-GDI  
NOIP1SN010KA-GDI  
NOIP1SE010KA-GDI  
NOIP1FN010KA-GDI  
Family  
Description  
Package  
Product Status  
PYTHON 25K  
25 MegaPixel, LVDS mono micro lens  
25 MegaPixel, LVDS color micro lens  
25 MegaPixel, LVDS mono micro lens, NIR  
16 MegaPixel, LVDS mono micro lens  
16 MegaPixel, LVDS color micro lens  
16 MegaPixel, LVDS mono micro lens, NIR  
12 MegaPixel, LVDS mono micro lens  
12 MegaPixel, LVDS color micro lens  
12 MegaPixel, LVDS mono micro lens, NIR  
10 MegaPixel, LVDS mono micro lens  
10 MegaPixel, LVDS color micro lens  
10 MegaPixel, LVDS mono micro lens, NIR  
PYTHON 16K  
PYTHON 12K  
PYTHON 10K  
355−pin  
mPGA  
Production  
The P1−SN/SE/FN base part is used to reference the mono, color and NIR enhanced versions of the LVDS interface. More  
details on the part number coding can be found at http://www.onsemi.com/pub_link/Collateral/TND310−D.PDF  
Package Mark  
Side 1 near Pin 1: NOIP1xx0RRKA−GDI where xx denotes mono micro lens (SN) or color micro lens (SE) or NIR mono  
micro lens (FN), RR is the resolution of the sensor in MP (25, 16, 12 or 10)  
Side 2: AWLYYWW, where AWL is Production lot traceability, and YYWW is the 4−digit date code  
www.onsemi.com  
2
NOIP1SN025KA, NOIP1SN016KA, NOIP1SN012KA, NOIP1SN010KA  
SPECIFICATIONS  
Key Specifications  
Table 1. GENERAL SPECIFICATIONS  
Table 2. ELECTRO−OPTICAL SPECIFICATIONS  
Parameter  
Pixel Type  
Specification  
Parameter  
Active Pixels  
Specification  
Global shutter pixel architecture  
25K: 5120 (H) x 5120 (V)  
16K: 4096 (H) x 4096 (V)  
12K: 4096 (H) x 3072 (V)  
10K: 3840 (H) x 2896 (V)  
Shutter Type  
Pipelined and triggered global  
shutter  
Optical Format  
25K: APS−H  
16K: APS−H  
12K: 4/3”  
Pixel Size  
4.5 mm x 4.5 mm  
-
-
Conversion Gain  
Temporal Noise  
Responsivity at 550 nm  
0.085 LSB10/e , 130 mV/e  
10K: 4/3”  
-
< 14 e (Non−Zero ROT, 1x gain)  
5.8 V/lux.s  
Frame Rate at Full  
Resolution  
80 frames per second @ 25K  
120 frames per second @ 16K  
160 frames per second @ 12K  
175 frames per second @ 10K  
Parasitic Light  
< 1/5000  
Sensitivity (PLS)  
Master Clock  
Windowing  
360 MHz  
-
Full Well Charge  
> 12000 e  
32 Randomly programmable  
windows. Normal, sub-sampled  
and binned readout modes  
Quantum Efficiency  
(QE) x FF  
50% at 550 nm  
(Note 1)  
ADC Resolution  
LVDS Outputs  
Data Rate  
10-bit  
(Note 2)  
Pixel FPN  
< 0.9 LSB10  
32 data + 1 sync + 1 clock  
32 x 720 Mbps  
4.6 W  
(Note 2)  
PRNU  
< 1%  
MTF  
68% @ 535 nm − X−dir & Y−dir  
68% @ 535 nm − X−dir & Y−dir  
(NIR)  
Power Consumption  
Package Type  
Color  
355 mPGA  
-
PSNL @ 20°C  
(t_int = 30 ms)  
91 LSB10/s, 1100 e /s  
RGB color, mono  
1. The ADC is 11-bit, down-scaled to 10-bit. The PYTHON XK uses  
a larger word-length internally to provide 10-bit on the output.  
-
Dark signal @ 20°C  
3.9 e /s, 0.33 LSB10/s  
Dynamic range  
59 dB  
41 dB  
Signal-to-Noise  
Ratio (SNR max)  
2. Only includes high−frequency component  
www.onsemi.com  
3
 
NOIP1SN025KA, NOIP1SN016KA, NOIP1SN012KA, NOIP1SN010KA  
Table 3. RECOMMENDED OPERATING RATINGS (Note 3)  
Symbol  
Description  
Operating temperature range  
Min  
Max  
Units  
T
J
−40  
+85  
°C  
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond  
the Recommended Operating Ranges limits may affect device reliability.  
Table 4. ABSOLUTE MAXIMUM RATINGS (Note 4)  
Symbol  
Parameter  
ABS rating for 1.0 V supply  
Min  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
0
Max  
1.2  
2.2  
4.3  
4.6  
5.0  
150  
85  
Units  
V
ABS (1.0 V supply)  
ABS (1.8 V supply group)  
ABS (3.3 V supply group)  
ABS (4.2 V supply)  
ABS (4.5 V supply)  
ABS rating for 1.8 V supply group  
ABS rating for 3.3 V supply group  
ABS rating for 4.2 V supply  
V
V
V
ABS rating for 4.5 V supply  
V
T
S
(Notes 4 and 5)  
ABS storage temperature range  
ABS storage humidity range at 85°C  
Human Body Model (HBM): JS−001−2010  
Charged Device Model (CDM): JESD22−C101  
Latch-up: JESD−78  
°C  
%RH  
V
Electrostatic discharge (ESD)  
(Notes 3 and 4)  
2000  
500  
LU  
140  
mA  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
3. Operating ratings are conditions in which operation of the device is intended to be functional.  
4. ON Semiconductor recommends that customers become familiar with, and follow the procedures in JEDEC Standard JESD625−A. Refer  
to Application Note AN52561. Long term exposure toward the maximum storage temperature will accelerate color filter degradation.  
5. Caution needs to be taken to avoid dried stains on the underside of the glass due to condensation. The glass lid glue is permeable and can  
absorb moisture if the sensor is placed in a high % RH environment.  
Table 5. ELECTRICAL SPECIFICATIONS  
Boldface Limits apply for T = T  
to T  
, all other limits T = +30°C (Notes 6, 7, 8 and 9)  
J
MIN  
MAX  
J
Parameter  
Description  
Min  
Typ  
Max  
3.4  
Units  
Power Supply Parameters  
vdda_33  
Idda_33  
vddd_33  
Iddd_33  
vdd_18  
Analog supply - 3.3 V domain. gnda_33 is connected to substrate  
Current consumption from analog supply  
3.2  
3.2  
3.3  
910  
3.3  
90  
V
mA  
V
Digital supply - 3.3 V domain. gndd_33 is connected to substrate  
Current consumption from 3.3 V digital supply  
Digital supply - 1.8 V domain. gndd_18 is connected to substrate  
Current consumption 1.8 V digital supply  
3.4  
mA  
V
1.7  
1.8  
540  
3.3  
115  
4.2  
0
1.9  
Idd_18  
mA  
V
vdd_pix  
Idd_pix  
Pixel array supply  
3.25  
3.35  
Current consumption from pixel supply  
mA  
V
vdd_resfd  
gnd_resfd  
Floating diffusion reset supply  
Floating diffusion reset ground. Not connected to substrate  
V
Note This is a sinking power supply with 200 mA range.  
vdd_trans  
gnd_trans  
Pixel transfer supply  
3.3  
0
V
V
Pixel transfer ground. Not connected to substrate.  
Note This is a sinking power supply with 200 mA range.  
6. All parameters are characterized for DC conditions after thermal equilibrium is established.  
7. This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is recommended  
that normal precautions be taken to avoid application of any voltages higher than the maximum rated voltages to this high−impedance  
circuit.  
8. Minimum and maximum limits are guaranteed through test and design.  
9. Vref_colmux supply should be able to source and sink current  
www.onsemi.com  
4
 
NOIP1SN025KA, NOIP1SN016KA, NOIP1SN012KA, NOIP1SN010KA  
Table 5. ELECTRICAL SPECIFICATIONS  
Boldface Limits apply for T = T  
to T  
, all other limits T = +30°C (Notes 6, 7, 8 and 9)  
J
MIN  
MAX  
J
Parameter  
Description  
Min  
Typ  
4.2  
0
Max  
Units  
vdd_calib  
gnd_calib  
vdd_sel  
Pixel calibration supply  
V
V
V
V
V
V
V
Pixel calibration ground. Not connected to substrate  
Pixel select supply  
4.2  
0
gnd_sel  
Pixel select ground. Not connected to substrate.  
Cascode supply  
0
0
vdd_casc  
vref_colmux  
gnd_colbias  
1.0  
1.0  
0
[9]  
Column multiplexer reference supply  
Column biasing ground. Dedicated ground signal for pixel biasing.  
Connected to substrate  
gnd_colpc  
Column precharge ground. Dedicated ground signal for pixel biasing.  
Not connected to substrate  
0
V
Ptot  
Total power consumption  
4600  
mW  
Popt  
Power consumption at lower pixel rates  
Configurable  
I/O - LVDS (EIA/TIA-644): Conforming to standard/additional specifications and deviations listed  
fserdata  
Data rate on data channels  
720  
360  
Mbps  
MHz  
DDR signaling - 32 data channels, 1 synchronization channel  
fserclock  
Clock rate of output clock  
Clock output for mesochronous signaling  
Vicm  
LVDS input common mode level  
0.3  
45  
1.25  
2.2  
50  
V
Tccsk  
Channel to channel skew (training pattern allows per-channel skew  
correction)  
ps  
LVDS Electrical/Interface  
fin  
Input clock rate  
360  
55  
MHz  
%
tidc  
tj  
Input clock duty cycle  
50  
20  
Input clock jitter  
ps  
fspi  
ratspi  
SPI clock rate  
10  
MHz  
10-bit (32 LVDS channels): ratio: fin/fspi  
10-bit (16 LVDS channels): ratio: fin/fspi  
10-bit (8 LVDS channels): ratio: fin/fspi  
10-bit (4 LVDS channels): ratio: fin/fspi  
30  
60  
120  
240  
6. All parameters are characterized for DC conditions after thermal equilibrium is established.  
7. This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is recommended  
that normal precautions be taken to avoid application of any voltages higher than the maximum rated voltages to this high−impedance  
circuit.  
8. Minimum and maximum limits are guaranteed through test and design.  
9. Vref_colmux supply should be able to source and sink current  
www.onsemi.com  
5
NOIP1SN025KA, NOIP1SN016KA, NOIP1SN012KA, NOIP1SN010KA  
Table 5. ELECTRICAL SPECIFICATIONS  
Boldface Limits apply for T = T  
to T  
, all other limits T = +30°C (Notes 6, 7, 8 and 9)  
J
MIN  
MAX  
J
Parameter  
Description  
Min  
Typ  
Max  
Units  
Sensor Requirements  
FOT  
ROT  
fpix  
Frame overhead time  
Row overhead time  
50  
1
ms  
ms  
Pixel rate (32 channels at 72 Mpix/s)  
2304  
Mpix/s  
Frame Specifications  
Typical  
Non−Zero  
ROT  
Zero ROT  
Max  
Units  
fps  
fps_roi1  
fps_roi2  
fps_roi3  
fps_roi4  
fps_roi5  
fps_roi6  
fps_roi7  
fpix  
Xres x Yres = 5120 x 5120  
47  
80  
Xres x Yres = 4096 x 4096  
Xres x Yres = 4096 x 3072  
Xres x Yres = 3840 x 2896  
Xres x Yres = 3840 x 2160  
Xres x Yres = 2880 x 2896  
Xres x Yres = 2048 x 2048  
Pixel rate (32 channels at 72 Mpix/s)  
65  
120  
fps  
85  
160  
fps  
95  
175  
fps  
125  
105  
170  
235  
fps  
175  
fps  
250  
fps  
2304  
Mpix/s  
6. All parameters are characterized for DC conditions after thermal equilibrium is established.  
7. This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is recommended  
that normal precautions be taken to avoid application of any voltages higher than the maximum rated voltages to this high−impedance  
circuit.  
8. Minimum and maximum limits are guaranteed through test and design.  
9. Vref_colmux supply should be able to source and sink current  
Disclaimer: Image sensor products and specifications are subject to change without notice. Products are warranted to meet  
the production data sheet and acceptance criteria specifications only.  
Color Filter Array  
The PYTHON XK color sensor is processed with a Bayer  
RGB color pattern as shown in Figure 2. Pixel (0,0) has a red  
filter situated to the bottom left. Green1 and green2 have a  
slightly different spectral response due to (optical) cross talk  
Y
from neighboring pixels. Green1 pixels are located on a  
green-red row, green2 pixels are located on a blue-green  
row.  
X
pixel (0;0)  
Figure 2. Color Filter Array for the Pixel Array  
www.onsemi.com  
6
 
NOIP1SN025KA, NOIP1SN016KA, NOIP1SN012KA, NOIP1SN010KA  
Quantum Efficiency  
60  
50  
40  
30  
20  
10  
0
MONO  
Red  
Green1  
Green2  
Blue  
300  
400  
500  
600  
700  
800  
900  
1000  
1100  
Wavelength [nm]  
Figure 3. Quantum Efficiency Curve for Mono and Color  
60  
50  
40  
30  
20  
10  
0
MONO  
NIR  
300  
400  
500  
600  
700  
800  
900  
1000  
1100  
Wavelength [nm]  
Figure 4. Quantum Efficiency Curve for Standard and NIR Mono  
www.onsemi.com  
7
NOIP1SN025KA, NOIP1SN016KA, NOIP1SN012KA, NOIP1SN010KA  
Ray Angle and Microlens Array Information  
smaller pitch than the array of photodiodes. This  
difference in pitch creates a varying degree of shift  
of a pixel’s microlens with regards to its  
photodiode. A shift in microlens position versus  
photodiode position will cause a tilted angle of  
peak photoresponse, here denoted Chief Ray  
Angle (CRA). Microlenses and photodiodes are  
aligned with 0 shift and CRA in the center of the  
array, while the shift and CRA increases radially  
towards its edges, as illustrated by Figure 7.  
An array of microlenses is placed over the CMOS pixel  
array in order to improve the absolute responsivity of the  
photodiodes. The combined microlens array and pixel array  
has two important properties:  
1. Angular dependency of photoresponse of a pixel  
The photoresponse of a pixel with microlens in  
the center of the array to a fixed optical power  
with varied incidence angle is as plotted in  
Figure 5, where definitions of angles fx and fy  
are as described by Figure 6.  
2. Microlens shift across array and CRA  
The microlens array is fabricated with a slightly  
www.onsemi.com  
8
NOIP1SN025KA, NOIP1SN016KA, NOIP1SN012KA, NOIP1SN010KA  
The purpose of the shifted microlenses is to improve the  
uniformity of photoresponse when camera lenses with a  
finite exit pupil distance are used. In the standard version of  
PYTHONxK, the CRA varies nearly linearly with distance  
from the center as illustrated in Figure 8, with a corner CRA  
of approximately 10.6 degrees (for 5120 x 5120 resolution).  
This edge CRA is matching a lens with exit pupil distance  
of 85 mm.  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
f
X
= 0  
f = 0  
Y
0.2  
0.1  
0
−30  
−20  
−10  
0
10  
20  
30  
Incidence Angle f , f  
X
Y
[degrees deviation from normal]  
Note that the photoresponse peaks near normal incidence for center pixels.  
Figure 5. Center Pixel Photoresponse to a Fixed Optical Power with Incidence Angle Varied Along fX and fY  
Figure 6. Definition of Angles used in Figure 5.  
www.onsemi.com  
9
 
NOIP1SN025KA, NOIP1SN016KA, NOIP1SN012KA, NOIP1SN010KA  
Shift  
Center pixel  
(aligned)  
Edge pixel  
(with shift)  
The center axes of the microlens and the photodiode coincide for the center pixels. For the edge pixels,  
there is a shift between the axis of the microlens and the photodiode causing a peak response incidence  
angle (CRA) that deviates from the normal of the pixel array.  
Figure 7. Principle of Microlens Shift  
12  
10.6  
10  
7.5  
8
6
diagonal  
4
x direction  
2
y direction  
0
0
5
10  
15  
20  
Distance from Center [mm]  
Figure 8. Variation of Peak Responsivity Angle (CRA) as a Function of Distance from the Center of the Array  
www.onsemi.com  
10  
NOIP1SN025KA, NOIP1SN016KA, NOIP1SN012KA, NOIP1SN010KA  
OVERVIEW  
Figure 9 gives an overview of the major functional blocks of the PYTHON sensor.  
Image Core  
Image Core Bias  
Pixel Array  
Column Structure  
64 analog channels  
Analog Front End (AFE)  
64 x 10 bit  
digital channels  
Biasing &  
Bandgap  
External  
Resistor  
Control & Registers  
Data Formatting  
32 x 10 bit  
digital channels  
LVDS Clock  
Receiver  
Serializers & LVDS Interface  
SPI  
Interface  
Reset  
32, 16, 8, 4 Multiplexed LVDS Output Channels  
1 LVDS Channel  
1 LVDS Clock Channel  
Figure 9. Block Diagram  
Image Core  
The image core consists of:  
Pixel array  
Address decoders and row drivers  
Pixel biasing  
The pixel biasing block guarantees that the data on a pixel  
is transferred properly to the column multiplexer when the  
row drivers select a pixel line for readout.  
LVDS Clock Receiver  
The LVDS clock receiver receives an LVDS clock signal  
and distributes the required clocks to the sensor.  
Typical input clock frequency is 360 MHz. The clock  
input needs to be terminated with a 100 W resistor.  
The PYTHON 25MP pixel array contains 5120 (H) x  
5120 (V) readable pixels with a pixel pitch of 4.5 mm.  
The PYTHON 16MP/12MP/10MP image arrays contain  
4224 (H) x 4112 (V) / 4224 (H) x 3088 (V) / 3968 (H) x  
2912 (V) readable pixels, inclusive of 8 pixel rows and 64  
pixel columns at every side to allow for reprocessing or color  
reconstruction. The sensor uses in-pixel CDS architecture,  
which makes it possible to achieve a low noise read out of  
the pixel array in both global shutter shutter mode with CDS.  
The function of the row drivers is to access the image array  
to reset or read the pixel data. The row drivers are controlled  
by the on-chip sequencer and can access the pixel array.  
Column Multiplexer  
The 5120 pixels of one image row are stored in 5120  
column sample-and-hold (S/H) stages. These stages store  
both the reset and integrated signal levels.  
The data stored in the column S/H stages is read out  
through 64 parallel differential outputs operating at a  
frequency of 36 MHz.  
www.onsemi.com  
11  
 
NOIP1SN025KA, NOIP1SN016KA, NOIP1SN012KA, NOIP1SN010KA  
At this stage, the reset signal and integrated signal values  
are transferred into an FPN-corrected differential signal. A  
programmable gain of 1x, 2x, or 4x can be applied to the  
signal at this stage. The column multiplexer also supports a  
subsampled readout mode (read-1-skip-1 for mono and  
read-2-skip-2 for color version). Enabling this mode can  
speed up the frame rate, with a decrease in resolution.  
The data block calculates a CRC once per line for every  
channel. This CRC code can be used for error detection at the  
receiving end.  
Serializer and LVDS Interface  
The serializer and LVDS interface block receives the  
formatted (10-bit) data from the data formatting block. This  
data is serialized and transmitted by the LVDS output driver.  
The maximum output data bit rate is 720 Mbps per  
channel.  
In addition to the 32 LVDS data outputs, two extra LVDS  
outputs are available. One of these outputs carries the output  
clock, which is skew aligned to the output data channels. The  
second LVDS output contains frame format synchronization  
codes to serve system-level image reconstruction.  
Bias Generator  
The bias generator generates all required reference  
voltages and bias currents that the on-chip blocks use. An  
external resistor of 47 kW, connected between the pins  
ibias_master and ibias_out is required for the bias generator  
to operate properly.  
Analog Front End  
The AFE contains 64 channels, each containing a PGA  
and a 10-bit ADC.  
Sequencer  
The sequencer:  
For each of the 64 channels, a pipelined 10-bit ADC is  
used to convert the analog image data into a digital signal,  
which is delivered to the data formatting block. A black  
calibration loop is implemented to ensure that the black level  
is mapped to match the correct ADC input level.  
Controls the image core. Starts and stops integration  
and controls pixel readout.  
Operates the sensor in master or slave mode.  
Applies the window settings. Organizes readouts so that  
only the configured windows are read.  
Data Formatting  
Controls the column multiplexer and analog core.  
Applies gain settings and subsampling modes at the  
correct time, without corrupting image data.  
The data block receives data from two ADCs and  
multiplexes this data to one LVDS block. A cyclic  
redundancy check (CRC) code is calculated on the passing  
data. For each LVDS output channel, one data block is  
instantiated. An extra data block is foreseen to transmit  
synchronization codes such as frame start, line start, frame  
end, and line end indications.  
Starts up the sensor correctly when leaving standby  
mode.  
www.onsemi.com  
12  
FOT  
Readout Fra  
                                                                                                                                                
                                                                                                                                                      
FOT  
                                                                                                                                                                                                     
                                                                                                                                                                                                                          
e
-1  
eadout Fra e N  
FOT  
Integration Ti  
Handling  
                                                                                      
e
Reset  
N
Reset  
N+1  
NOIP1SN025KA, NOIP1SN016KA, NOIP1SN012KA, NOIP1SN010KA  
OPERATING MODES  
Global Shutter Mode  
The PYTHON operates in pipelined or triggered global  
shutter modes. In this mode, light integration takes place on  
all pixels in parallel, although subsequent readout is  
sequential. Figure 10 shows the integration and readout  
sequence for the global shutter mode. All pixels are light  
sensitive at the same period of time. The whole pixel core is  
reset simultaneously and after the integration time all pixel  
values are sampled together on the storage node inside each  
pixel. The pixel core is read out line by line after integration.  
Note that the integration and readout can occur in parallel or  
sequentially. The integration starts at a certain period,  
relative to the frame start.  
Pipelined Global Shutter Mode  
In pipelined global shutter mode, the integration and  
readout are done in parallel. Images are continuously read  
and integration of frame N is ongoing during readout of the  
previous frame N–1. The readout of every frame starts with  
a frame overhead time (FOT), during which the analog value  
on the pixel diode is transferred to the pixel memory  
element. After the FOT, the sensor is read out line by line and  
the readout of each line is preceded by the row overhead time  
(ROT). Figure 11 shows the exposure and readout time line  
in pipelined global shutter mode.  
Figure 10. Global Shutter Operation  
Master Mode  
In this operation mode, the integration time is set through  
the register interface and the sensor integrates and reads out  
the images autonomously. The sensor acquires images  
without any user interaction.  
Slave Mode  
The slave mode adds more manual control to the sensor.  
The integration time registers are ignored in this mode and  
the integration time is instead controlled by an external pin.  
As soon as the control pin is asserted, the pixel array goes out  
of reset and integration starts. The integration continues  
until the user or system deasserts the external pin. Upon a  
falling edge of the trigger input, the image is sampled and the  
readout begins.  
Exposure Time N  
FOT  
Exposure Time N+1  
FOT  
Readout  
Handling  
ROT  
Line Readout  
Figure 11. Pipelined Shutter Operation in Master Mode  
External Trigger  
Integration Time  
Handling  
Reset  
N
Reset  
N+1  
Exposure Time N  
FOT  
FOT  
Exposure T im e N+1  
Readout N  
FOT  
Readout  
Handling  
FOT  
Readout N−1  
FOT  
ROT  
Line Readout  
Figure 12. Pipelined Shutter Operation in Slave Mode  
www.onsemi.com  
13  
 
Exposure Ti  
Register Controlled  
Readout -1  
                                                                                                                                                           
FOT  
FOT  
Exposure Ti  
Readout N  
                                                                                                                                                                                                                                
                                                                                                                                                                                                                                      
e N  
e
+1  
FOT  
FOT  
FOT  
                                                                                                                                                 
Integration Ti  
Handling  
                                                                                       
e
Reset  
N
Reset  
N+1  
NOIP1SN025KA, NOIP1SN016KA, NOIP1SN012KA, NOIP1SN010KA  
Triggered Global Shutter  
Master Mode  
In this mode, manual intervention is required to control  
both the integration time and the start of readout. After the  
integration time, indicated by a user controlled pin, the  
image core is read out. After this sequence, the sensor goes  
to an idle mode until a new user action is detected.  
The three main differences from the pipelined shutter  
master mode are:  
In this mode, a rising edge on the synchronization pin is  
used to trigger the start of integration and readout. The  
integration time is defined by a register setting. The sensor  
autonomously integrates during this predefined time, after  
which the FOT starts and the image array is readout  
sequentially. A falling edge on the synchronization pin does  
not have any impact on the readout or integration and  
subsequent frames are started again for each rising edge.  
Figure 13 shows the relation between the external trigger  
signal and the exposure/readout timing. If a rising edge is  
applied on the external trigger before the exposure time and  
FOT of the previous frame is complete, it is ignored by the  
sensor.  
Upon user action, a single image is read.  
Normally, integration and readout are done  
sequentially. However, the user can control the sensor  
in such a way that two consecutive batches are  
overlapping, that is, having concurrent integration and  
readout.  
Integration and readout is user-controlled through an  
external pin. This mode requires manual intervention  
for every frame.  
Slave Mode  
Integration time control is identical to the pipelined  
shutter slave mode. An external synchronization pin  
controls the start of integration. When it is de−asserted, the  
FOT starts. The analog value on the pixel diode is  
transferred to the pixel memory element and the image  
readout can start. A request for a new frame is started when  
the synchronization pin is asserted again.  
The pixel array is kept in reset state until requested.  
The triggered global mode can also be controlled in a  
master or in a slave mode.  
No effect on falling edge  
External Trigger  
Readout  
Handling  
ROT  
Line Readout  
Figure 13. Triggered Shutter Operation in Master Mode  
www.onsemi.com  
14  
 
NOIP1SN025KA, NOIP1SN016KA, NOIP1SN012KA, NOIP1SN010KA  
Non−Zero and Zero Row Overhead Time (ROT) Modes  
This operation mode can be used for two reasons:  
Reduced total line time.  
Lower power due to reduced clock rate.  
In pipelined global shutter mode, the integration and  
readout are done in parallel. Images are continuously read  
out and integration of frame N is ongoing during readout of  
the previous frame N−1. The readout of every frame starts  
with a Frame Overhead Time (FOT), during which the  
analog value of the pixel diode is transferred to the pixel  
memory element. After the FOT, the sensor is read out line  
by line and the readout of each line is preceded by a Row  
Overhead Time (ROT) as shown in Figure 14.  
In Reduced/Zero ROT operation mode (refer to  
Figure 15), the row blanking and kernel readout occur in  
parallel. This mode is called reduced ROT as a part of the  
ROT is done while the image row is readout. The actual ROT  
can thus be longer, however the perceived ROT will be  
shorter (‘overhead’ spent per line is reduced).  
FOT  
(
)
ROT  
ys  
Readout  
ys  
ROT  
ys+1  
Readout  
ys  
ROT  
ye  
Readout  
ye  
Valid Data  
Figure 14. Integration and Readout Sequence of the Sensor Operating in Pipelined Global Shutter Mode with  
Non−Zero ROT Readout.  
FOT  
(
)
ROT  
ys  
(blanked ou)t  
ROT  
ys+1  
Readout  
ys  
ROT  
ye  
Readout  
ye1  
ROT  
dummy  
Readout  
ye  
Valid Data  
Figure 15. Integration and Readout Sequence of the Sensor operating in Pipelined Global Shutter Mode with  
Zero ROT Readout.  
www.onsemi.com  
15  
 
NOIP1SN025KA, NOIP1SN016KA, NOIP1SN012KA, NOIP1SN010KA  
SENSOR OPERATION  
Flowchart  
The states above are ordered by power dissipation.  
Figure 16 shows the flow chart diagram of the sensor  
operation. The sensor can be in five different ‘states’. Every  
state is indicated with an oval circle. These states are:  
Power-Off  
Clearly, in ‘power-off’ state the power dissipation will be  
minimal; in ‘running’ state the power dissipation will be  
maximal.  
On the other hand, the lower the power consumption, the  
more actions (and time) are required to put the sensor in  
‘running’ state and grab images.  
This flowchart provides the trade-offs between power  
saving and enabling time of the sensor.  
Next to the ‘states’ a set of ‘user actions’, indicated by  
arrows, are included in the flow chart diagram. These user  
actions make it possible to move from one state to another.  
Standby (1)  
Standby (2)  
Idle  
Running  
Figure 16. Sensor Operation Flowchart  
www.onsemi.com  
16  
 
NOIP1SN025KA, NOIP1SN016KA, NOIP1SN012KA, NOIP1SN010KA  
Sensor States  
output channel multiplexing (32, 16, 8 or 4), by connecting  
pins F24/F25 (muxmode0/1), should be set to the correct  
supply as described in Table 31 and Table 28.  
When the clock frequency is stable, the reset_n signal  
can be de−asserted. After a wait period of 10 ms, the power  
up sequence is finished and the first SPI upload can be  
initiated.  
The sensor can be in five different states:  
Power-off  
In this state, the sensor is inactive. All power supplies are  
down and the power dissipation is zero.  
Standby (1)  
The registers below address 40 can be configured.  
LVDS clock  
reset_n  
Standby (2)  
In this standby state all SPI registers are active, meaning  
that all SPI registers can be accessed for read and write  
operations. All other blocks are disabled.  
vddd_18  
vddd_33  
Note: An Intermediate Standby state is traversed after a  
hard reset. In this state the sensor contains the default  
configurations. Uploads of reserved registers are required to  
traverse to the Standby (2) state  
vdda_33  
vdd_casc  
other supplies  
Idle  
> 10us > 10us > 10us > 10us > 10us  
> 10us  
In the idle state, all sensor clocks are running and all  
blocks are enabled, except the sequencer block. The sensor  
is ready to start grabbing images as soon as the sequencer  
block is enabled.  
Figure 17. Power−up Procedure  
NOTE: vdd_casc should come up prior to vdd_resfd,  
vdd_trans, vdd_calib and vdd_sel.  
Running  
In running state, the sensor is enabled and grabbing  
images. The sensor can be operated in different global  
master/slave modes.  
Enable Clock Management  
The ’Enable Clock Management’ action configures the  
clock management blocks in a pre−defined way. The  
required uploads are listed in Table 6.  
User Actions: Power Up Functional Mode Sequences  
Power-up Sequence  
Table 6. ENABLE CLOCK MANAGEMENT REGISTER  
UPLOAD  
Figure 17 shows the power-up timing of the sensor. Apply  
all power supplies in the order shown in the figure. It is  
important to comply with the described sequence. Any other  
supply ramping sequence may lead to high current peaks  
and, as a consequence, a failure of the sensor power up.  
The clock input should start running when all supplies are  
stabilized. Note that before starting the clock, the LVDS  
Upload # Address  
Data  
Description  
Monochrome  
1
2
2
0x0000  
0x0001  
0x0001  
Color  
34  
Enable Logic Blocks  
www.onsemi.com  
17  
 
NOIP1SN025KA, NOIP1SN016KA, NOIP1SN012KA, NOIP1SN010KA  
Required Register Uploads  
Upload #  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
Address  
395  
396  
397  
398  
399  
400  
401  
402  
403  
404  
405  
406  
407  
408  
409  
410  
411  
412  
413  
414  
415  
416  
417  
418  
419  
420  
421  
422  
423  
424  
425  
426  
427  
428  
429  
430  
431  
432  
433  
434  
435  
436  
Data (Non−Zero ROT)  
0xe061  
0xe265  
0xe061  
0xe041  
0xe001  
0xe406  
0xe005  
0xe20a  
0xe001  
0xe800  
0xe800  
0xec0a  
0xe80a  
0xe800  
0x0030  
0x217b  
0x2071  
0x0071  
0x107f  
In this phase the ’reserved’ register settings are uploaded  
through the SPI register. Different settings are not allowed  
and may cause the sensor to malfunction. The required  
uploads are listed in Table 7.  
Table 7. REQUIRED REGISTER UPLOADS FOR,  
NON−ZERO ROT, PIPELINED GLOBAL SHUTTER  
MASTER MODE  
Upload #  
1
Address  
41  
Data (Non−Zero ROT)  
0x0b5a  
0x1001  
0x018d  
0x88cb  
0x53c7  
0x8567  
0x0488  
0x48ff  
2
42  
3
43  
4
65  
5
66  
6
67  
7
69  
8
70  
9
128  
129  
192  
193*  
194  
197  
204  
211  
215  
216  
219  
220  
224  
225  
227  
237  
238  
384  
385  
386  
387  
388  
389  
390  
391  
392  
393  
394  
0x360a  
0x0001  
0x000c  
0x8600  
0x0224  
0x0103  
0x01e4  
0x0e59  
0x0007  
0x7f00  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
0x107f  
0x107f  
0x1075  
0x0071  
0x0036  
0x21bb  
0x20b1  
0x00b1  
0x10bf  
0x0015  
0x192c  
0x3e07  
0x5ef1  
0x10bf  
0x0000  
0xc0a0  
0x8f88  
0x10bf  
0x10b5  
0x00b1  
0x0030  
0x0030  
0x207b  
0x2071  
0x0071  
0x107f  
0xe800  
0xf801  
0xfb1f  
0xfb15  
0xf911  
0xf901  
0xf105  
0x107f  
0xf30f  
0x107f  
0xf201  
0x1075  
0x0071  
0xe001  
0xe021  
www.onsemi.com  
18  
 
NOIP1SN025KA, NOIP1SN016KA, NOIP1SN012KA, NOIP1SN010KA  
Operating Modes on page 13 for an overview of the possible  
operation modes.  
The ‘Enable Sequencer’ action consists of a set op register  
uploads. The required uploads are listed in Table 9.  
Upload #  
Address  
437  
Data (Non−Zero ROT)  
0x0036  
79  
80  
438  
0x21bb  
81  
439  
0x20b1  
Table 9. ENABLE SEQUENCER REGISTER UPLOADS  
82  
440  
0x00b1  
Upload #  
Address  
Data  
83  
441  
0x10bf  
1
192  
0x000D  
84  
442  
0x10bf  
85  
443  
0x10bf  
User Actions: Functional Mode to Power Down  
Sequences  
86  
444  
0x10b5  
Disable Sequencer  
87  
445  
0x00b1  
During the ‘Disable Sequencer’-action, the frame  
grabbing sequencer is stopped. The sensor will stop  
grabbing images and returns to the idle mode.  
The ‘Disable Sequencer’ action consists of a set op  
register uploads. The required uploads are listed in Table 10.  
88  
446  
0x0030  
Upload #  
12  
Address  
193*  
Data (Zero ROT)  
0x0800  
NOTE: Required Uploads for Zero ROT mode are the same as for  
Non−Zero ROT mode with the exceptions noted.  
Table 10. DISABLE SEQUENCER REGISTER  
UPLOADS  
Soft Power Up  
Upload #  
Address  
Data  
During the soft power-up action, the internal blocks are  
enabled and prepared to start processing the image data  
stream. This action exists of a set of SPI uploads. The soft  
power-up uploads are listed in Table 8.  
1
192  
0x000C  
Soft Power Down  
During the soft power-down action, the internal blocks are  
disabled and the sensor is put in standby state in order to  
reduce the current dissipation. This action exists of a set of  
register uploads. The soft power-down uploads are listed in  
Table 11.  
Table 8. SOFT POWER UP REGISTER UPLOADS  
Upload # Address  
P1−SN/SE  
Data  
Description  
1
2
3
4
32  
64  
40  
48  
0x2005 Enable Analogue Clock  
0x0001 Enable Biasing Block  
0x0003 Enable Column Multiplexer  
Table 11. SOFT POWER DOWN REGISTER UPLOADS  
Upload # Address  
P1−SN/SE  
Data  
Description  
0x0001 Enable Analog Front-End  
(AFE)  
1
2
112  
48  
0x0000 Disable LVDS Transmitters  
5
6
68  
0x0088 Enable LVDS Bias  
0x0000 Disable Analog Front-End  
(AFE)  
112  
0x0007 Enable LVDS Transmitters  
3
4
5
40  
64  
32  
0x0000 Disable Column Multiplexer  
0x0000 Disable Biasing Block  
0x2004 Disable Analogue Clock  
Enable Sequencer  
During the ‘Enable Sequencer’-action, the frame  
grabbing sequencer is enabled. The sensor will start  
grabbing images in the configured operation mode. Refer to  
www.onsemi.com  
19  
 
vꢀdd_ꢀcasc  
                                                             
NOIP1SN025KA, NOIP1SN016KA, NOIP1SN012KA, NOIP1SN010KA  
Disable Clock Management  
Table 13. SHUTTER/OPERATION MODE  
CONFIGURATION REGISTERS  
The ‘Disable Clock Management’-action stops the  
internal clocking in order to further decrease the power  
dissipation. This action exists of a set of register uploads as  
listed in Table 12.  
Default  
Value  
Address  
Description  
192 [4]  
0x0  
Triggered mode selection  
0: Normal mode  
Table 12. DISABLE SEQUENCER REGISTER  
UPLOADS  
1: Triggered mode  
192 [5]  
192 [7]  
192 [8]  
0x0  
0x0  
0x0  
Master/Slave selection  
0: Master mode  
No.  
Address  
Data  
Description  
1
34  
0x0000  
Disable Logic Blocks  
1: Slave mode  
Subsampling mode selection  
0: Subsampling disabled  
1: Subsampling enabled  
Power-down Sequence  
The timing diagram of the advised power-down sequence  
is given in Figure 18. Any other sequence might cause high  
peak currents.  
Binning mode selection  
0: Binning disabled  
1: Binning enabled  
NOTE: vdd_casc should be powered down after  
vdd_resfd, vdd_trans, vdd_calib and vdd_sel.  
Windowing Reconfiguration  
LV ꢀSꢀ clock  
The windowing settings can be configured during  
standby, idle, and running mode.  
r
ꢀset_n  
The required regions of interest (ROI) can be programmed  
in the roi_configuration registers (addresses 256 up to 351).  
Registers roi_active0 and roi_active1 are used to activate the  
desired ROIs.  
vddd_18  
vddd_33  
vdda_33  
Default window configuration (after sensor reset) is one  
window, full frame (window #0).  
other supplies  
Exposure/Gain Reconfiguration  
> 10u s  
> 1 0us  
> 10us  
>
10 us  
> 10us  
> 10us  
The exposure time and gain settings can be configured  
during standby, idle, and running mode. Refer to Signal Gain  
Path on page 32 for more information.  
Figure 18. Power−down Sequence  
www.onsemi.com  
20  
 
NOIP1SN025KA, NOIP1SN016KA, NOIP1SN012KA, NOIP1SN010KA  
Sensor Configuration  
Static Readout Parameters  
This device contains multiple configuration registers.  
Some of these registers can only be configured while the  
sensor is not acquiring images (while register 192[0] = 0),  
while others can be configured while the sensor is acquiring  
images. For the latter category of registers, it is possible to  
distinguish the register set that can cause corrupted images  
(limited number of images containing visible artifacts) from  
the set of registers that are not causing corrupted images.  
These three categories are described here.  
Some registers are only modified when the sensor is not  
acquiring images. Reconfiguration of these registers while  
images are acquired can cause corrupted frames or even  
interrupt the image acquisition. Therefore, it is  
recommended to modify these static configurations while  
the sequencer is disabled (register 192[0] = 0). The registers  
are shown in Table 14. Table 14 should not be reconfigured  
during image acquisition. A specific configuration sequence  
applies for these registers. Refer to the operation flow and  
startup description.  
Table 14. STATIC READOUT PARAMETERS  
Group  
Clock generator  
Addresses  
Description  
32  
40  
Configure according to recommendation  
Image core  
Configure according to recommendation  
Configure according to recommendation  
Configure according to recommendation  
Configure according to recommendation  
AFE  
48  
Bias  
64–71  
112  
192  
LVDS  
Sequencer mode selection  
triggered_mode  
slave_mode  
All reserved registers  
Keep reserved registers to their default state, unless otherwise described in the  
recommendation  
Dynamic Configuration Potentially Causing Image  
Artifacts  
The category of registers as shown in Table 15 consists of  
configurations that do not interrupt the image acquisition  
process, but may lead to one or more corrupted images  
during and after the reconfiguration. A corrupted image is an  
image containing visible artifacts. A typical example of a  
corrupted image is an image which is not uniformly exposed  
The effect is transient in nature and the new configuration  
is applied after the transient effect.  
Table 15. DYNAMIC CONFIGURATION POTENTIALLY CAUSING IMAGE ARTIFACTS  
Group  
Addresses  
Description  
Black level configuration  
128–129  
197[12:8]  
Reconfiguration of these registers may have an impact on the black-level calibration  
algorithm. The effect is a transient number of images with incorrect black level  
compensation.  
Sync codes  
129[13]  
Incorrect sync codes may be generated during the frame in which these registers  
are modified.  
116–126  
Datablock test configurations  
144–150  
Modification of these registers may generate incorrect test patterns during  
a transient frame.  
Dynamic Readout Parameters  
Some reconfiguration may lead to one frame being  
It is possible to reconfigure the sensor while it is acquiring  
images. Frame-related parameters are internally  
resynchronized to frame boundaries, such that the modified  
parameter does not affect a frame that has already started.  
However, there can be restrictions to some registers as  
shown in Table 16.  
blanked. This happens when the modification requires more  
than one frame to settle. The image is blanked out and  
training patterns are transmitted on the data and sync  
channels.  
www.onsemi.com  
21  
 
NOIP1SN025KA, NOIP1SN016KA, NOIP1SN012KA, NOIP1SN010KA  
Table 16. DYNAMIC READOUT PARAMETERS  
Group  
Addresses  
Description  
Subsampling/binning  
192[7]  
192[8]  
Subsampling or binning is synchronized to a new frame start.  
ROI configuration  
195-196  
256–351  
An ROI switch is only detected when a new window is selected as the active window  
(reconfiguration of registers 195, 196, or both). Reconfiguration of the ROI dimension of  
the active window does not lead to a frame blank and can cause a corrupted image.  
Exposure reconfiguration  
Gain reconfiguration  
199-201  
204  
Exposure reconfiguration does not cause artifact. However, a latency of one frame is  
observed unless reg_seq_exposure_sync_mode is set to ‘1’ in triggered global mode  
(master).  
Gains are synchronized at the start of a new frame. Optionally, one frame latency can be  
incorporated to align the gain updates to the exposure updates  
(refer to register 204[13] gain_lat_comp).  
Freezing Active Configurations  
Figure 19 shows a reconfiguration that does not use the  
Though the readout parameters are synchronized to frame  
boundaries, an update of multiple registers can still lead to  
a transient effect in the subsequent images, as some  
configurations require multiple register uploads. For  
example, to reconfigure the exposure time in master global  
mode, both the fr_length and exposure registers need to be  
updated. Internally, the sensor synchronizes these  
configurations to frame boundaries, but it is still possible  
that the reconfiguration of multiple registers spans over two  
or even more frames. To avoid inconsistent combinations,  
freeze the active settings while altering the SPI registers by  
disabling synchronization for the corresponding  
functionality before reconfiguration. When all registers are  
uploaded, re-enable the synchronization. The sensor’s  
sequencer then updates its active set of registers and uses  
them for the coming frames. The freezing of the active set  
of registers can be programmed in the sync_configuration  
registers, which can be found at the SPI address 206.  
sync_configuration option. As depicted, new SPI  
configurations are synchronized to frame boundaries.  
When sync_configuration = ‘1’, configurations are  
synchronized to the frame boundaries (The registers  
exposure, fr_length, and mult_timer are not used in this  
mode)  
Figure 20 shows the usage of the sync_configuration  
settings. Before uploading  
a set of registers, the  
corresponding sync_configuration is deasserted. After the  
upload is completed, the sync_configuration is asserted  
again and the sensor resynchronizes its set of registers to the  
coming frame boundaries. As seen in the figure, this ensures  
that the uploads performed at the end of frame N+2 and the  
start of frame N+3 become active in the same frame (frame  
N+4).  
Frame NꢁꢁꢁFrame N+1ꢁꢁꢂFrame N+2ꢁꢁꢂꢀFrame N+3  
Frame N+4  
Time Line  
SPI Registers  
Active Registers  
Figure 19. Frame Synchronization of Configurations (no freezing)  
Frame NꢁꢁꢁFrame N+1ꢁꢁꢂFrame N+2ꢁꢁꢂꢀFrame N+3ꢁꢁꢂꢀFrame N+4  
Time Line  
sync_configuration  
SPI Registers  
This configuration is not taken into  
account as sync_register is inactive.  
Active Registers  
Figure 20. Reconfiguration Using Sync_configuration  
NOTE: SPI updates are not taken into account while sync_configuration is inactive. The active configuration is frozen  
for the sensor. Table 17 lists the several sync_configuration possibilities along with the respective registers being  
frozen.  
www.onsemi.com  
22  
 
NOIP1SN025KA, NOIP1SN016KA, NOIP1SN012KA, NOIP1SN010KA  
Table 17. ALTERNATE SYNC CONFIGURATIONS  
Group  
Affected Registers  
Description  
sync_black_lines  
black_lines  
Update of black line configuration is not synchronized at start of frame when ‘0’. The  
sensor continues with its previous configurations.  
sync_exposure  
mult_timer  
fr_length  
exposure  
Update of exposure configurations is not synchronized at start of frame when ‘0’. The  
sensor continues with its previous configurations.  
sync_gain  
sync_roi  
mux_gainsw  
afe_gain  
Update of gain configurations is not synchronized at start of frame when ‘0’. The  
sensor continues with its previous configurations.  
roi_active0[15:0]  
roi_active1[15:0]  
subsampling  
binning  
Update of active ROI configurations is not synchronized at start of frame when ‘0’. The  
sensor continues with its previous configurations.  
Note: The window configurations themselves are not frozen. Re-configuration of  
active windows is not gated by this setting.  
Window Configuration  
Black Calibration  
The sensor automatically calibrates the black level for  
each frame. Therefore, the device generates a configurable  
Global Shutter Mode  
Up to 32 windows can be defined in global shutter mode  
(pipelined or triggered). The windows are defined by  
registers 256 to 351. Each window can be activated or  
deactivated separately using registers 195 and 196. It is  
possible to reconfigure the inactive windows while  
acquiring images. Switching between predefined windows  
is achieved by activation of the respective windows. This  
way a minimum number of registers need to be uploaded  
when it is necessary to switch between two or more sets of  
windows. As an example of this, scanning the scene at  
higher frame rates using multiple windows and switching to  
full frame capture when the object is tracked. Switching  
between the two modes only requires an upload of one (if the  
total number of windows is smaller than 17) or two (if more  
than 16 windows are defined) registers.  
number of electrical black lines at the start of each frame.  
The desired black level in the resulting output interface can  
be configured and is not necessarily targeted to ‘0’.  
Configuring the target to a higher level yields some  
information on the left side of the black level distribution,  
while the other end of the distribution tail is clipped to ‘0’  
when setting the black level target to ‘0’.  
The black level is calibrated for the 64 columns contained  
in one kernel. This implies 64 black level offsets are  
generated and applied to the corresponding columns.  
Configurable parameters for the black-level algorithm are  
listed in Table 18.  
www.onsemi.com  
23  
NOIP1SN025KA, NOIP1SN016KA, NOIP1SN012KA, NOIP1SN010KA  
Table 18. CONFIGURABLE PARAMETERS FOR BLACK LEVEL ALGORITHM  
Group  
Addresses  
Description  
Black Line Generation  
197[7:0]  
black_lines  
This register configures the number of black lines that are generated at the start of a  
frame. At least one black line must be generated. The maximum number is 255.  
Note: When the automatic black-level calibration algorithm is enabled, make sure that this  
register is configured properly to produce sufficient black pixels for the black-level filtering.  
The number of black pixels generated per line is dependent on the operation mode and  
window configurations:  
Each black line contains 80 kernels.  
197[12:8]  
gate_first_line  
A number of black lines are blanked out when a value different from 0 is configured.  
These blanked out lines are not used for black calibration. It is recommended to enable  
this functionality, because the first line can have a different behavior caused by boundary  
effects. When enabling, the number of black lines must be set to at least two in order to  
have valid black samples for the calibration algorithm.  
Black Value Filtering  
129[0]  
auto_blackcal_enable Internal black-level calibration functionality is enabled when set to ‘1’. Required black level  
offset compensation is calculated on the black samples and applied to all image pixels.  
When set to ‘0’, the automatic black-level calibration functionality is disabled. It is possible  
to apply an offset compensation to the image pixels, which is defined by the registers  
129[10:1].  
Note: Black sample pixels are not compensated; the raw data is sent out to provide ex-  
ternal statistics and, optionally, calibrations.  
129[9:1]  
blackcal_offset  
Black calibration offset that is added or subtracted to each regular pixel value when au-  
to_blackcal_enable is set to ‘0’. The sign of the offset is determined by register 129[10]  
(blackcal_offset_dec).  
Note: All channels use the same offset compensation when automatic black calibration is  
disabled.  
The calculated black calibration factors are frozen when this register is set to 0x1FF  
(all−‘1’) in auto calibration mode. Any value different from 0x1FF re−enables the black  
calibration algorithm. This freezing option can be used to prevent eventual frame to frame  
jitter on the black level as the correction factors are recalculated every frame. It is recom-  
mended to enable the black calibration regularly to compensate for temperature changes.  
129[10]  
blackcal_offset_dec  
black_samples  
Sign of blackcal_offset. If set to ‘0’, the black calibration offset is added to each pixel. If set  
to ‘1’, the black calibration offset is subtracted from each pixel.  
This register is not used when auto_blackcal_enable is set to ‘1’.  
128[10:8]  
The black samples are low-pass filtered before being used for black level calculation. The  
more samples are taken into account, the more accurate the calibration, but more samples  
require more black lines, which in turn affects the frame rate.  
black_samples  
The effective number of samples taken into account for filtering is 2  
.
Note: An error is reported by the device if more samples than available are requested  
(refer to registers 136 to 139).  
Black Level Filtering Monitoring  
136  
137  
138  
139  
blackcal_error0  
An error is reported by the device if there are requests for more samples than are available  
(each bit corresponding to one data path). The black level is not compensated correctly if  
one of the channels indicates an error. There are three possible methods to overcome this  
situation and to perform a correct offset compensation:  
blackcal_error1  
blackcal_error2  
blackcal_error3  
Increase the number of black lines such that enough samples are generated at the  
cost of increasing frame time (refer to register 197).  
Relax the black calibration filtering at the cost of less accurate black level determina-  
tion (refer to register 128).  
Disable automatic black level calibration and provide the offset via SPI register upload.  
Note that the black level can drift in function of the temperature. It is thus recommended  
to perform the offset calibration periodically to avoid this drift.  
NOTE: The maximum number of samples taken into account for black level statistics is half the number of kernels.  
www.onsemi.com  
24  
                                                                                                                                                                                                                                       
                                                                                                                                                                                                                                
NOIP1SN025KA, NOIP1SN016KA, NOIP1SN012KA, NOIP1SN010KA  
Serial Peripheral Interface  
significant bit first. The sck clock is passed  
through to the sensor as indicated in Figure 21.  
The sensor samples this data on a rising edge of  
the sck clock (mosi needs to be driven by the  
system on the falling edge of the sck clock)  
5. The tenth bit sent by the master indicates the type  
of transfer: high for a write command, low for a  
read command.  
The sensor configuration registers are accessed through  
an SPI. The SPI consists of four wires:  
sck: Serial Clock  
ss_n: Active Low Slave Select  
mosi: Master Out, Slave In, or Serial Data In  
miso: Master In, Slave Out, or Serial Data Out  
The SPI is synchronous to the clock provided by the  
master (sck) and asynchronous to the sensor’s system clock.  
When the master wants to write or read a sensor’s register,  
it selects the chip by pulling down the Slave Select line  
(ss_n). When selected, data is sent serially and synchronous  
to the SPI clock (sck).  
Figure 21 shows the communication protocol for read and  
write accesses of the SPI registers. The PYTHON XK sensor  
uses 9-bit addresses and 16-bit data words  
Data driven by the system is colored blue in Figure 21,  
while data driven by the sensor is colored yellow. The data  
in grey indicates high-Z periods on the miso interface. Red  
markers indicate sampling points for the sensor (mosi  
sampling); green markers indicate sampling points for the  
system (miso sampling during read operations).  
The access sequence is:  
6. Data transmission:  
- For write commands, the master continues  
sending the 16-bit data, most significant bit first.  
- For read commands, the sensor returns the  
requested address on the miso pin, most significant  
bit first. The miso pin must be sampled by the  
system on the falling edge of sck (assuming  
nominal system clock frequency and maximum  
10 MHz SPI frequency).  
7. When data transmission is complete, the system  
deselects the sensor one clock period after the last  
bit transmission by pulling ss_n high.  
Note the maximum frequency for the SPI interface needs  
to scale with the LVDS input clock frequency as described  
in Table 5.  
Consecutive SPI commands can be issued by leaving at  
least two SPI clock periods between two register uploads.  
Deselect the chip between the SPI uploads by pulling the  
ss_n pin high.  
3. Select the sensor for read or write by pulling down  
the ss_n line.  
4. One SPI clock cycle (100 ns) after selecting the  
sensor, the 9-bit address is transferred, most  
SP I − W R ITE  
ss_n  
sck  
t_sc ks s  
t_sssck  
ts ck  
ts_mos i  
th_mosi  
A8  
A7  
..  
..  
..  
A1  
A0  
`1'  
D
5
D14  
..  
..  
..  
..  
D1  
D0  
mosi  
miso  
SPI − REA D  
ss_n  
sck  
t_sc ks s  
t_sssck  
ts ck  
ts_mosi  
th_mosi  
A8  
A7  
..  
..  
..  
A1  
A0  
`0'  
mosi  
miso  
ts_mi so  
th_mi so  
D
5
D14  
..  
..  
..  
..  
D1  
D0  
Figure 21. SPI Read and Write Timing Diagram  
www.onsemi.com  
25  
 
NOIP1SN025KA, NOIP1SN016KA, NOIP1SN012KA, NOIP1SN010KA  
Table 19. SPI TIMING REQUIREMENTS  
Group  
tsck  
Addresses  
Description  
Units  
ns  
(*)  
sck clock period  
100  
tsssck  
tsckss  
ts_mosi  
th_mosi  
ts_miso  
th_miso  
tspi  
ss_n low to sck rising edge  
sck falling edge to ss_n high  
Required setup time for mosi  
Required hold time for mosi  
Setup time for miso  
tsck  
tsck  
ns  
ns  
20  
ns  
20  
ns  
tsck/2-10  
tsck/2-20  
2 x tsck  
ns  
Hold time for miso  
ns  
Minimal time between two consecutive SPI accesses (not shown in figure)  
ns  
*Value indicated is for nominal operation. The maximum SPI clock frequency depends on the sensor configuration (operation mode, input clock).  
tsck is defined as 1/f . See text for more information on SPI clock frequency restrictions.  
SPI  
www.onsemi.com  
26  
NOIP1SN025KA, NOIP1SN016KA, NOIP1SN012KA, NOIP1SN010KA  
IMAGE SENSOR TIMING AND READOUT  
Global Shutter Mode  
exposure time. The length of the exposure time is defined by  
the registers exposure and mult_timer.  
Pipelined Global Mode (Master)  
The sensor timing in master global shutter mode is  
controlled by the user by means of configuration registers.  
One can distinguish three parameters for the frame timing in  
global shutter mode:  
Image Array Reset Length  
Integration Time  
Frame Length  
NOTES:  
The start of the exposure time is synchronized to the  
start of a new line (during ROT) if the exposure period  
starts during a frame readout. Therefore, the effective  
time during which the image core is in a reset state is  
extended to the start of a new line.  
Make sure that the sum of the reset time and exposure  
time exceeds the time required to read out all lines. If  
this is not the case, the exposure time is extended until  
all (active) lines are read out.  
The relation between these parameters is:  
Frame Length = Reset Length + Integration Time  
The FOT time needs to be added to the frame length  
parameter to determine the total frame Time  
Total Frame Time = FOT Time + Frame Length  
Frame Length and Integration Time as Parameters  
When fr_mode is configured to 0x1, one configures the  
frame time and exposure. The reset_length is determined by  
the sequencer. This configuration mode is depicted in  
Figure 2.  
Frame and integration time configuration can be controlled  
in two ways:  
1. fr_mode = 0x0  
The reset length and integration time is configured  
by the user. The sensor shall calculate the frame  
length as the sum of both parameters.  
The frame length is configured in register fr_length, while  
the integration time is configured in register exposure. The  
mult_timer register defines granularity of both settings.  
Note that the FOT needs to be added to the configured  
fr_length to calculate the total frame time.  
2. fr_mode = 0x1  
The frame length and integration time is  
configured by the user. The reset time during  
which the pixels are reset, is calculated by the  
sensor as being the difference between the frame  
length and the desired integration time.  
Triggered Global Shutter (Master)  
In master triggered global mode, the start of integration  
time is controlled by a rising edge on the trigger pin. The  
exposure or integration time is defined by the registers  
exposure and mult_timer, similar to the master pipelined  
global mode. The fr_length configuration is not used. This  
operation is graphically shown in Figure 24.  
The configuration registers are exposure[15:0] and  
fr_length[15:0]. The latter configuration register is either  
used as Reset Length configuration (fr_mode = 0x0) or as  
Frame Length (fr_mode = 0x1). The granularity of both  
registers is defined by the mult_timer[15:0] register and is  
expressed in number of 72 MHz cycles (13.889 ns nominal).  
NOTES:  
The falling edge on the trigger pin does not have any  
impact. However, the trigger must be asserted for at  
least 100 ns.  
The start of the exposure time is synchronized to the  
start of a new line (during ROT) if the exposure period  
starts during a frame readout. Therefore, the effective  
time during which the image core is in reset state is  
extended to the start of a new line.  
Reset Length and Integration Time as Parameters  
The reset time for the pixel array is controlled by the  
registers fr_length[15:0] and exposure[15:0]. The  
mult_timer configuration defines the granularity of the  
registers fr_length and exposure and is to be read as the  
number of 72 MHz cycles (13.889 ns nominal).  
The exposure control for pipelined global master mode is  
depicted in Figure 22.  
The trigger pin needs to be kept low during the FOT.  
The monitor pins can be used as a feedback to the  
FPGA/controller (eg. use monitor0, indicating the very  
first line when monitor_select = 0x5 − a new trigger can  
be initiated after a rising edge on monitor0).  
The pixel values are transferred to the storage node during  
the FOT, after which all photo diodes are reset. The reset  
state remains active for a certain time, defined by the  
fr_length and mult_timer registers, as shown in the figure.  
Meanwhile, the image array is read out line by line. After  
this reset period, the global photodiode reset condition is  
abandoned. This indicates the start of the integration or  
If the exposure timer expires before the end of readout, the  
exposure time is extended until the end of the last active line.  
www.onsemi.com  
27  
NOIP1SN025KA, NOIP1SN016KA, NOIP1SN012KA, NOIP1SN010KA  
Frame N  
Frame N+1  
Exposure State  
Readout  
FOT  
FOT  
Reset  
Integrating  
FOT  
FOT  
Reset  
Integrating  
FOT  
FOT  
Image Array Global Reset  
fr_length  
exposure  
= ROT  
= Readout  
Figure 22. Integration Control for Pipelined Global Shutter Mode (Master, fr_mode = 0x0)  
Frame N  
Frame N+1  
Exposure State  
Readout  
FOT  
FOT  
Reset  
Integrating  
FOT  
FOT  
Reset  
Integrating  
FOT  
FOT  
Image Array Global Reset  
exposure x mult_timer  
fr_length x mult_timer  
= ROT  
= Readout  
Figure 23. Integration Control for Pipelined Global Shutter Mode (Master, fr_mode = 0x1)  
Frame N  
Frame N+1  
Exposure State  
trigger0  
FOT  
FOT  
Reset  
Integrating  
FOT  
FOT  
Reset  
Integrating  
FOT  
FOT  
(No effect on falling edge )  
Readout  
Image Array Global Reset  
exposure x mult_timer  
= ROT  
= Readout  
Figure 24. Exposure Time Control in Triggered Global Mode (Master)  
Triggered Global Shutter (Slave)  
starts during a frame readout. Therefore, the effective  
time during which the image core is in a reset state is  
extended to the start of a new line.  
Exposure or integration time is fully controlled by means  
of the trigger pin in slave mode. The registers fr_length,  
exposure, and mult_timer are ignored by the sensor.  
A rising edge on the trigger pin indicates the start of the  
exposure time, while a falling edge initiates the transfer and  
readout of the image array. In other words, the high time of  
the trigger pin indicates the integration time, the period of  
the trigger pin indicates the frame time.  
If the trigger is deasserted before the end of readout, the  
exposure time is extended until the end of the last  
active line. Consequently the FOT and start of frame  
readout is postponed accordingly.  
The trigger pin needs to be kept low during the FOT.  
The monitor pins can be used as a feedback to the  
FPGA/controller (eg. use monitor0, indicating the very  
first line when monitor_select = 0x5 − a new trigger can  
be initiated after a rising edge on monitor0).  
The use of the trigger during slave mode is shown in  
Figure 25.  
NOTES:  
The start of the exposure time is synchronized to the  
start of a new line (during ROT) if the exposure period  
www.onsemi.com  
28  
NOIP1SN025KA, NOIP1SN016KA, NOIP1SN012KA, NOIP1SN010KA  
Frame N  
Frame N+1  
Exposure State  
trigger  
FOT  
FOT  
Reset  
Integrating  
FOT  
FOT  
Reset  
Integrating  
FOT  
FOT  
Readout  
Image Array Global Reset  
= ROT  
= Readout  
Figure 25. Exposure Time Control in Global−Slave Mode  
www.onsemi.com  
29  
NOIP1SN025KA, NOIP1SN016KA, NOIP1SN012KA, NOIP1SN010KA  
ADDITIONAL FEATURES  
Multiple Window Readout  
y1_end  
y0_end  
y1_start  
The PYTHON sensor supports multiple window readout,  
which means that only the user−selected Regions Of Interest  
(ROI) are read out. This allows limiting data output for every  
frame, which in turn allows increasing the frame rate. In  
global shutter mode, up to 32 ROIs can be configured.  
ROI 1  
ROI 0  
Window Configuration  
Figure 26 shows the four parameters defining a region of  
interest (ROI).  
y0_start  
y-end  
x0_start  
x0_end  
x1_start  
x1_end  
ROI 0  
Figure 27. Overlapping Multiple Window  
Configuration  
y-start  
The sequencer analyses each line that need to be read out  
for multiple windows.  
Restrictions  
The following restrictions for each line are assumed for  
the user configuration:  
x-startꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢂx-end  
Windows are ordered from left to right, based on their  
Figure 26. Region of Interest Configuration  
x−start address:  
x_start_roi(i) vx_start_roi(j) AND  
x_end_roi(i) vx_end_roi(j)  
Where j > i  
x−start[6:0]  
x−start defines the x−starting point of the desired window.  
The sensor reads out 64 pixels in one single clock cycle. As  
a consequence, the granularity for configuring the x−start  
position is also 64 pixels. The value configured in the x−start  
register is multiplied by 64 to find the corresponding column  
in the pixel array.  
Processing Multiple Windows  
The sequencer control block houses two sets of counters  
to construct the image frame. As previously described, the  
y−counter indicates the line that needs to be read out and is  
incremented at the end of each line. For the start of the frame,  
it is initialized to the y−start address of the first window and  
it runs until the y−end address of the last window to be read  
out. The last window is configured by the configuration  
registers and it is not necessarily window #31.  
The x−counter starts counting from the x−start address of  
the window with the lowest ID which is active on the  
addressed line. Only windows for which the current  
y−address is enclosed are taken into account for scanning.  
Other windows are skipped.  
x−end[6:0]  
This register defines the window end point on the x−axis.  
Similar to x−start, the granularity for this configuration is  
one kernel. x−end needs to be larger than x−start.  
y−start[9:0]  
The starting line of the readout window. The granularity  
of this setting is one line, except with color sensors where it  
needs to be an even number.  
y−end[9:0]  
The end line of the readout window. y−end must be  
configured larger than y−start. This setting has the same  
granularity as the y−start configuration.  
Up to thirty−two windows can be defined, possibly  
(partially) overlapping, as illustrated in Figure 27.  
Figure 28 illustrates  
configuration with five windows. The current position of the  
a
practical example of  
a
www.onsemi.com  
30  
 
NOIP1SN025KA, NOIP1SN016KA, NOIP1SN012KA, NOIP1SN010KA  
Subsampling and Binning  
read pointer (ys) is indicated by a red line crossing the image  
array. For this position of the read pointer, three windows  
need to be read out. The initial start position for the x−kernel  
pointer is the x−start configuration of ROI1. Kernels are  
scanned up to the ROI3 x−end position. From there, the  
x−pointer jumps to the next window, which is ROI4 in this  
illustration. When reaching ROI4’s x−end position, the read  
pointer is incremented to the next line and xs is reinitialized  
to the starting position of ROI1.  
Pixel binning and subsampling methods are used as a way  
of decimating the image. The number of pixel samples is  
reduced by a factor of four, while the optical area is  
maintained.  
Pixel Binning  
Pixel binning is a technique in which different pixels  
belonging to a rectangular bin are averaged in the analog  
domain. Two-by-two pixel binning is implemented in the  
PYTHON XK sensor. This implies that two adjacent pixels  
are averaged both in column and row. Binning is  
configurable using a register setting. Pixel binning is not  
supported on PYTHON XK color option.  
Notes:  
The starting point for the readout pointer at the start of  
a frame is the y−start position of the first active  
window.  
The read pointer is not necessarily incremented by one,  
but depending on the configuration, it can jump in  
y−direction. In Figure 28, this is the case when reaching  
the end of ROI0 where the read pointer jumps to the  
y−start position of ROI1  
Notes:  
1. Binning can be activated for the x and y direction  
independently by means of the binning_mode  
register. Refer to the registermap for more  
information.  
The x−pointer starting position is equal to the x−start  
configuration of the first active window on the current  
line addressed. This window is not necessarily window  
#0.  
The x−pointer is not necessarily incremented by one  
each cycle. At the end of a window it can jump to the  
start of the next window.  
2. Binning in the y−direction is not supported in  
conjunction with Zero ROT mode.  
Subsampling  
Subsampling is obtained by adapting the readout  
sequence. In subsampling mode, both lines and pixels are  
read in a read-N-skip-N mode. This reduces the number of  
lines in a frame and the number of pixels in a line. Overall  
frame time is reduced by a factor 4.  
Each window can be activated separately. There is no  
restriction on which window and how many of the 8  
windows are active.  
Subsampling can be configured for the x and y direction  
independently by means of the subsampling_mode register.  
The monochrome sensor is read out in  
read-one-skip-one pattern for both the rows and the  
columns, while the color version supports  
a
a
read-two-skip-two subsampling scheme. This mode is  
selectable through register configuration. Figure 29 shows  
which pixels are read and which ones are skipped for  
monochrome and color sensors respectively. Readout  
direction is indicated as an x and y arrow.  
ROI 2  
ROI 4  
ROI 3  
ys  
ROI 1  
ROI 0  
Figure 28. Scanning the Image Array with Five  
Windows  
www.onsemi.com  
31  
 
NOIP1SN025KA, NOIP1SN016KA, NOIP1SN012KA, NOIP1SN010KA  
Figure 29. Subsampling Scheme for PYTHON XK  
Signal Gain Path  
Table 20 and Table 21 show the available registers (fields)  
to program the desired exposure time and gain settings.  
Table 21. GAIN CONFIGURATION REGISTERS  
Unity  
Gain  
Config-  
Address uration  
Table 20. EXPOSURE TIME CONFIGURATION  
REGISTERS  
Description  
204 [4:0]  
0x04  
0x04:  
0x18:  
0x08:  
0x10:  
1x  
Default  
1.26x  
1.87x  
3.17x  
Value  
Address  
Description  
201  
0x0000 Exposure time: granularity defined by  
’Mult Timer’ (register 199).  
204 [13]  
Postpone gain update by one frame  
when ‘1’ to compensate for exposure  
time updates latency.  
199  
200  
0x0001 Mult Timer  
Defines granularity of exposure and  
reset length.  
205[11:0]  
0x080  
Digital Gain, 5.7 unsigned representation  
(5 bits before decimal point, 7 bits after  
fractional part). Maximum gain is 31.992  
unit = 1/72 MHz for normal ROT mode  
0x0000 Reset length or Frame Length  
Granularity defined by ’Mult Timer’  
(register 199)  
www.onsemi.com  
32  
 
NOIP1SN025KA, NOIP1SN016KA, NOIP1SN012KA, NOIP1SN010KA  
Mode Changes and Frame Blanking  
summarized in the following table for the sensor’s image  
related modes.  
Dynamically reconfiguring the sensor may lead to  
corrupted or non-uniformilly exposed frames. For some  
reconfigurations, the sensor automatically blanks out the  
image data during one frame. Frame blanking is  
NOTE: Major mode switching (i.e. switching between  
master, triggered or slave mode) must be  
performed while the sequencer is disabled  
(reg_seq_enable = 0x0).  
Table 22. DYNAMIC SENSOR RECONFIGURATION AND FRAME BLANKING  
Corrupted  
Frame  
Blanked Out  
Frame  
Configuration  
Notes  
Shutter Mode and Operation  
triggered_mode  
Do not reconfigure while the sensor is acquiring images. Disable image acquisition by setting  
reg_seq_enable = 0x0.  
slave_mode  
Do not reconfigure while the sensor is acquiring images. Disable image acquisition by setting  
reg_seq_enable = 0x0.  
subsampling  
Enabling: No  
Configurable  
Configurable with blank_subsampling_ss register.  
Disabling: Yes  
binning  
No  
No  
Configurable  
Configurable with blank_subsampling_ss register  
Frame Timing  
black_lines  
Exposure Control  
mult_timer  
fr_length  
No  
No  
No  
No  
No  
No  
No  
Latency is 1 frame  
Latency is 1 frame  
Latency is 1 frame  
exposure  
Gain  
mux_gainsw  
afe_gain  
No  
No  
No  
No  
No  
No  
Latency configurable by means of gain_lat_comp register  
Latency configurable by means of gain_lat_comp register.  
Latency configurable by means of gain_lat_comp register.  
db_gain  
Window/ROI  
roi_active  
See Note  
See Note  
No  
No  
Windows containing lines previously not read out may lead to corrupted  
frames.  
roi*_configuration*  
Reconfiguring the windows by means of roi*_configuration* may lead to  
corrupted frames when configured close to frame boundaries.  
It is recommended to (re)configure an inactive window and switch the  
roi_active register.  
See Notes on roi_active.  
Black Calibration  
black_samples  
No  
No  
No  
If configured within range of configured black lines  
auto_blackal_enable  
See Note  
Manual correction factors become instantly active when  
auto_blackcal_enable is deasserted during operation.  
blackcal_offset  
CRC Calculation  
crc_seed  
Sync Channel  
bl_0  
See Note  
No  
No  
No  
Manual blackcal_offset updates are instantly active.  
Impacts the transmitted CRC  
No  
No  
No  
No  
No  
No  
No  
No  
Impacts the Sync channel information, not the Data channels.  
Impacts the Sync channel information, not the Data channels.  
Impacts the Sync channel information, not the Data channels.  
Impacts the Sync channel information, not the Data channels.  
img_0  
crc_0  
tr_0  
www.onsemi.com  
33  
NOIP1SN025KA, NOIP1SN016KA, NOIP1SN012KA, NOIP1SN010KA  
Sensor Status  
Monitor Pins  
The currently used exposure and gain parameters are  
The sensor features three logic monitor output pins. These  
pins can provide internal state and synchronization  
information to the outside system. These status pins can be  
used during system setup or for system frame  
synchronization.  
The pins are named monitor0, monitor1, and monitor2.  
The information provided on these pins is configured with  
the register monitor_select (register 192[13:11]).  
reported by the sensor in registers 240 to 248. These status  
registers are updated at the start of the frame in which these  
parameters become active.  
Temperature Diode  
The temperature diode allows the monitoring of the sensor  
die temperature during operation. The diode can be  
connected through the pins td_anode and td_cathode.  
The die temperature (Tdie), as a function of the measured  
forward threshold voltage of the diode, with a known bias  
current (Vdiode at bias 40 mA), is determined according to  
the following formula:  
NOTE: Monitor indications are generated in the  
sequencer. These signals lead the image and  
synchronization data on the LVDS channels.  
T
= (0.77–Vdiode at bias 40 mA)/0.00158°C  
die  
Temperature Sensor  
The PYTHON has an on−chip temperature sensor which  
returns a digital code (Tsensor) of the silicon junction  
temperature. The Tsensor output is a 8−bit digital count  
between 0 and 255, proportional to the temperature of the  
silicon substrate. This reading can be translated directly to  
a temperature reading in °C by calibrating the 8−bit readout  
at 0°C and 85°C to achieve an output accuracy of 2°C. The  
Tsensor output can also be calibrated using a single  
temperature point (example: room temperature or the  
ambient temperature of the application), to achieve an  
output accuracy of 5°C.  
Note that any process variation will result in an offset in  
the bit count and that offset will remain within 5°C over the  
temperature range of 0°C and 85°C. Tsensor output digital  
code can be read out through the SPI interface.  
Output of the temperature sensor to the SPI:  
tempd_reg_temp<7:0>: This is the 8−bit N count readout  
proportional to temperature.  
Input from the SPI:  
The reg_tempd_enable is a global enable and this enables  
or disables the temperature sensor when logic high or logic  
low respectively. The temperature sensor is reset or disabled  
when the input reg_tempd_enable is set to a digital low state.  
Calibration using one temperature point  
The temperature sensor resolution is fixed for a given type  
of package for the operating range of 0°C to +85°C and  
hence devices can be calibrated at any ambient temperature  
of the application, with the device configured in the mode of  
operation.  
Interpreting the actual temperature for the digital code  
readout:  
The formula used is  
T = R (Nread − Ncalib) + Tcalib  
J
T = junction die temperature  
J
R = resolution in degrees/LSB (typical 0.75 deg/LSB)  
Nread = Tsensor output (LSB count between 0 and 255)  
Tcalib = Tsensor calibration temperature  
Ncalib = Tsensor output reading at Tcalib  
www.onsemi.com  
34  
NOIP1SN025KA, NOIP1SN016KA, NOIP1SN012KA, NOIP1SN010KA  
Table 23. MONITOR SELECT  
Monitor Select  
Monitor Output  
Description  
0x0  
monitor0: ‘0’  
monitor1: ‘0’  
monitor2: ‘0’  
No information is provided on the output pins. All outputs are  
driven to logic ‘0’  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
monitor0: Integration time indication  
monitor1: ROT indication  
High during integration  
High when ROT is active, low outside ROT  
High during dummy lines, low during all other lines  
High during integration  
monitor2: Dummy line indication  
monitor0: Integration time indication  
monitor1: N/A  
N/A  
monitor2: N/A  
N/A  
monitor0: Start of X-readout  
monitor1: Black line indication  
monitor2: Dummy line indication  
monitor0: Frame start  
Pulse indicating the start of X-readout  
High during black lines, low during all other lines  
High during dummy lines, low during all other lines  
Pulse indicating the start of a new frame  
Pulse indicating the start of ROT  
monitor1: Start of ROT  
monitor2: Start of X-readout  
monitor0: First line indication  
monitor1: Start of ROT indication  
monitor2: ROT inactive  
Pulse indicating the start of X-readout  
High during the first line of each frame, low for all others  
Pulse indicating the start of ROT  
Low when ROT is active, high outside ROT  
High when ROT is active, low outside ROT  
Pulse indicating the start of X-readout  
Low during X-readout, high outside X-readout  
Pulse indicating the start of X-readout for black lines  
Pulse indicating the start of X-readout for image lines  
Pulse indicating the start of X-readout for dummy lines  
monitor0: ROT indication  
monitor1: Start of X-readout  
monitor2: X-readout inactive  
monitor0: Start of X-readout for black lines  
monitor1: Start of X-readout for image lines  
monitor2: Start of X-readout for dummy lines  
www.onsemi.com  
35  
NOIP1SN025KA, NOIP1SN016KA, NOIP1SN012KA, NOIP1SN010KA  
DATA OUTPUT FORMAT  
LVDS Output Channels  
deserializer. Word alignment is done by looking for well  
known training patterns.  
All major FPGA vendors provide bit and word alignment  
methods for their FPGAs. Refer to the FPGA vendor’s  
application for more information on the use of these  
functionalities.  
When the host succeeds in a lock for bit and word  
alignment procedures, the system enables the sensor for  
image acquisition. Specific frame alignment patterns are  
transmitted for image frame synchronization purposes.  
The image data output occurs through 32 LVDS data  
channels, operating at 720 Mbps. A synchronization LVDS  
channel and an LVDS output clock signal synchronizes the  
data.  
The 32 data channels are used to output the image data  
only. The sync channel transmits information about data sent  
over these data channels (includes codes indicating black  
pixels, normal pixels, and CRC).  
To perform word synchronization on the output data  
stream, a predefined training pattern is sent after startup of  
the sensor and during idle times (during FOT, ROT, and in  
between frames and lines). This data is used to perform word  
alignment on the receiving side.  
The words on data and sync channels have a 10-bit length.  
The words are serialized most significant bit first. The  
output data rate is 720 Mbps.  
Frame Format  
The frame format is explained by example of the readout  
of two (overlapping) windows, as shown in Figure 30 (a).  
The readout of a frame occurs on a line-by-line basis. In  
this representation, the read pointer goes from left to right,  
bottom to top.  
Figure 30 indicates that, after the FOT is complete, a  
number of lines which only include information of ‘ROI 0’  
are sent out, starting at position y0_start. When the line at  
position y1_start is reached, a number of lines containing  
data of ‘ROI 0’ and ‘ROI 1’ are sent out, until the line  
position of y0_end is reached. From there on, only data of  
‘ROI 1’ appears on the data output channels until line  
position y1_end is reached.  
Serial Link Interface Operation  
This sensor’s serial link interface is based on a  
mesochronous clocking system. This means that all data and  
control links operate at the same frequency, but their phase  
may be different due to skew. The host provides an LVDS  
clock as input to the sensor. To compensate for possible large  
on-chip delays, the sensor retransmits this clock with the  
same delay as that seen by the data (32 data channels) and  
control path (one sync channel). The receiver end (generally  
an FPGA-based system) performs per-interface skew  
compensation.  
The data on high-speed serial links can drift due to various  
reasons such as skew, jitter, PCB trace delays, process,  
voltage, and temperature variations. The receiver performs  
per-LVDS interface skew compensation using bit and word  
alignment techniques.  
To support per-interface skew compensation, the sensor  
provides a training mode that allows the system to perform  
bit and word alignment on all interfaces.  
During idle moments (when the sensor is not capturing  
images or during frame and line overhead), the image sensor  
transmits training patterns. These patterns are configurable  
by means of a register upload and should be chosen such that  
these can easily be detected by reducing the risk of  
mimicking in the regular data stream.  
NOTE: Only frame start and frame end sync words are  
indicated in (b). CRC codes are also omitted  
from Figure 30.  
During readout of image data over the data channels, the  
sync channel sends out frame synchronization codes, which  
provide information related to the image data being sent  
over the 32 data output channels.  
Each line of a window starts with a line start (LS)  
indication and ends with a line end (LE) indication. The line  
start of the first line is replaced by a frame start; the line end  
of the last line is replaced with a frame end indication. Each  
such frame synchronization code is followed by a window  
ID (range 0 to 31).  
The data channels contain valid pixel data during  
FS/FE/LS/LE and window ID synchronization codes.  
NOTE: For overlapping windows, the line  
synchronization codes of the overlapping  
windows with lower IDs are not sent out. As  
shown in the illustration, no LE is transmitted  
for the overlapping part of window 0.  
Bit Alignment  
Bit alignment procedures position the sampling edge of  
the clock at the center of the data eye window by adding  
delay to the data path (using delay taps).  
Black lines are read out at the start of a frame. These lines  
are enclosed by LS and LE indications (no frame start/end).  
The window ID for the black lines must be ignored.  
Word Alignment  
Word alignment procedures ensure that the reconstructed  
parallel data bits are in correct order at the output of the  
www.onsemi.com  
36  
NOIP1SN025KA, NOIP1SN016KA, NOIP1SN012KA, NOIP1SN010KA  
y1_end  
ROI 1  
y0_end  
y1_start  
ROI 0  
y0_start  
x0_start  
x0_end  
x1_start  
x1_end  
(a)  
Integration Time  
Handling  
Reset  
N
Reset  
N+1  
FOT  
FOT  
FOT  
FOT  
Exposure Time N  
Exposure Time N+1  
Readout Frame N-1  
Readout Frame N  
Readout  
Handling  
B
L
ROI  
1
B
L
ROI  
1
FOT  
ROI 0  
ROI 0  
FS0  
FS1  
FE1  
FS0  
FS1  
FE1  
(b)  
Figure 30. Frame Sync Codes  
Figure 31 and Figure 32 show the details of the readout of  
a number of lines for single window readout, at the  
beginning of the frame.  
Figure 33 shows the details of the readout of a number of  
lines for two overlapping windows.  
Sequencer  
FOT  
ROT  
black  
ROT  
ROT  
line Ys+1  
ROT  
line Ye  
line Ys  
Internal State  
data channels  
sync channel  
Training  
TR  
Training  
data channels  
sync channel  
LS  
0
BL  
BL  
BL  
BL  
BL  
BL  
LE  
0
CRC  
TR  
timeslot  
0
timeslot  
1
timeslot  
77  
timeslot  
78  
timeslot  
79  
CRC  
timeslot  
Figure 31. Timeline Showing Readout of Black Line for Global Shutter  
www.onsemi.com  
37  
 
NOIP1SN025KA, NOIP1SN016KA, NOIP1SN012KA, NOIP1SN010KA  
Sequencer  
Internal State  
FOT  
ROT  
black  
ROT  
ROT  
line Ys+1  
ROT  
line Ye  
line Ys  
data channels  
sync channel  
Training  
Training  
TR  
data channels  
sync channel  
TR  
FS  
ID  
IMG IMG  
IMG  
IMG  
IMG IMG  
LE  
ID  
CRC  
timeslot  
Xstart  
timeslot  
Xstart + 1  
timeslot  
Xend - 2  
timeslot  
Xend - 1  
timeslot  
Xend  
CRC  
timeslot  
Figure 32. Timeline for Single Window Readout  
NOTE: In the figure, the second image line is shown in more detail. The LS code is replaced by FS for the first line and  
the LE code is replaced by FE for the last line in the window.  
Sequencer  
Internal State  
FOT  
ROT  
black  
ROT  
line Ys  
ROT  
line Ys+1  
ROT  
line Ye  
data channels  
sync channel  
Training  
TR  
Training  
TR  
data channels  
sync channel  
LS  
IMG IMG  
LS  
IDN IMG  
LE  
IDN  
CRC  
IDM  
IMG  
IMG  
timeslot  
XstartM  
timeslot  
XstartM +1  
timeslot  
XstartN  
timeslot  
XstartN -1  
timeslot  
XendN  
CRC  
timeslot  
Figure 33. Timeline Showing Readout of Two Overlapping Windows  
www.onsemi.com  
38  
NOIP1SN025KA, NOIP1SN016KA, NOIP1SN012KA, NOIP1SN010KA  
Frame Synchronization  
same time, the sync channel transmits the frame  
synchronization codes of the window with highest index  
only.  
Table 24 shows the structure of the frame synchronization  
code. Note that the table shows the default data word  
(configurable). If more than one window is active at the  
Table 24. FRAME SYNCHRONIZATION CODE DETAILS  
Sync Word Bit  
Position  
Register  
Address  
Default Value  
Description  
9:7  
9:7  
9:7  
9:7  
6:0  
N/A  
N/A  
0x5  
0x6  
Frame start (FS) indication  
Frame end (FE) indication  
Line start (LS) indication  
Line end (LE) indication  
N/A  
0x1  
N/A  
0x2  
117[6:0]  
0x2A  
These bits indicate that the received sync word is a frame synchronization code. The value is  
programmable by a register setting  
Window Identification  
Data Classification Codes  
Frame synchronization codes are always followed by a  
4−bit window identification (bits 3:0). This is an integer  
number, ranging from 0 to 15, indicating the active window.  
If more than one window is active for the current cycle, the  
highest window ID is transmitted.  
For the remaining cycles, the sync channel indicates the  
type of data sent through the data links: black pixel data  
(BL), image data (IMG), or training pattern (TR). These  
codes are programmable by a register setting. The default  
values are listed in Table 25.  
Table 25. SYNCHRONIZATION CHANNEL DEFAULT IDENTIFICATION CODE VALUES  
Sync Word Bit  
Position  
Register  
Address  
Default Value  
Description  
9:0  
118 [9:0]  
0x015  
Black pixel data (BL). This data is not part of the image. The black pixel data is used  
internally to correct channel offsets.  
9:0  
9:0  
9:0  
119 [9:0]  
125 [9:0]  
126 [9:0]  
0x035  
0x059  
0x3A6  
Valid pixel data (IMG). The data on the data output channels is valid pixel data (part of the image).  
CRC value. The data on the data output channels is the CRC code of the finished image data line.  
Training pattern (TR). The sync channel sends out the training pattern which can be  
programmed by a register setting.  
www.onsemi.com  
39  
 
NOIP1SN025KA, NOIP1SN016KA, NOIP1SN012KA, NOIP1SN010KA  
Training Patterns on Data Channels  
During idle periods, the data channels transmit training  
patterns, indicated on the sync channel by a TR code. These  
training patterns are configurable independent of the  
training code on the sync channel as shown in Table 26.  
Table 26. TRAINING CODE ON SYNC CHANNEL  
Sync Word Bit  
Position  
Register  
Address  
Default  
Value  
Description  
[9:0]  
116 [9:0]  
0x3A6  
Data channel training pattern. The data output channels send out the training pattern, which can be  
programmed by a register setting. The default value of the training pattern is 0x3A6, which is identical  
to the training pattern indication code on the sync channel.  
Cyclic Redundancy Code  
Black Reference  
At the end of each line, a CRC code is calculated to allow  
error detection at the receiving end. Each data channel  
transmits a CRC code to protect the data words sent during  
the previous cycles. Idle and training patterns are not  
included in the calculation.  
The sensor reads out one or more black lines at the start of  
every new frame. The number of black lines to be generated  
is programmable and is at a minimum, equal to 1. The length  
of the black lines depends on the operation mode. For global  
shutter mode, the sensor always reads out the entire line,  
independent of window configurations.  
The black references are used to perform black calibration  
and offset compensation in the data channels. The raw black  
pixel data is transmitted over the usual LVDS channels,  
while the regular image data is compensated (can be  
bypassed).  
The sync channel is not protected. A special character  
(CRC indication) is transmitted whenever the data channels  
send their respective CRC code.  
10  
9
6
3
2
The polynomial is x +x +x +x +x +x+1. The CRC  
encoder is seeded at the start of a new line and updated for  
every (valid) data word received. The CRC seed is  
configurable usign the crc_seed register. When ‘0’, the CRC  
is seeded by all-‘0’; when ‘1’ it is seeded with all-‘1’.  
On the output interface, black lines can be seen as a  
separate window, without frame start and ends (only line  
start and ends). The window ID is to be ignored and data is  
indicated by a BL code.  
NOTE: Note The CRC is calculated for every line. This  
implies that the CRC code can protect lines from  
multiple windows.  
www.onsemi.com  
40  
 
NOIP1SN025KA, NOIP1SN016KA, NOIP1SN012KA, NOIP1SN010KA  
Example Using Multiple Windowing  
Figure 34 shows an example of the synchronization codes sent when reading out multiple windows.  
LS+0+IMGx(x_size0-4)+FE+0+CRC  
LS+0+IMGx(x_size0-4)+LE+0+CRC  
ROI0  
where  
FS+0+IMGx(x_size0-4)+LE+0+CRC  
LS+DC+BLx156+LE+DC+CRC  
x_size0 = x_end0 - x_start0 ꢀ+ ꢀ1  
DC = “Don't Care"  
LꢀS+0ꢀ+IMGx(x_ꢀsizeꢀ0ꢀ-4ꢀ)+FE+0ꢀ+CꢀRC  
LꢀS+0ꢀ+IMGx(x_ꢀsizeꢀ0ꢀ-4ꢀ)+LꢀE+0ꢀ+CꢀRC  
LꢀS+0ꢀ+IMGx(x_ꢀsizeꢀ0ꢀ-4ꢀ)+LꢀE+0ꢀ+LꢀS+1ꢀ+IMꢀGx(x_ꢀsizeꢀ1-4ꢀ)+FE+1ꢀ+CꢀRC  
ROI1  
LꢀS+0ꢀ+IMGx(x_ꢀsizeꢀ0ꢀ-4ꢀ)+LꢀE+0ꢀ+LꢀS+1ꢀ+IMꢀGx(x_ꢀsizeꢀ1-4ꢀ)+LꢀE+1+CꢀRC  
LꢀS+0ꢀ+IMGx(x_ꢀsizeꢀ0ꢀ-4ꢀ)+LꢀE+0ꢀ+FS+1ꢀ+IMꢀGx(x_ꢀsizeꢀ1ꢀ-4ꢀ)+LE+1ꢀ+CꢀRC  
ROI0  
LꢀS+0ꢀ+IMGx(x_ꢀsizeꢀ0ꢀ-4ꢀ)+LꢀE+0ꢀ+CꢀRC  
where  
FS+0ꢀ+IMGx(x_ꢀsizeꢀ0ꢀ-4ꢀ)+LꢀE+0ꢀ+CꢀRC  
x_size0 = x_end0 - x_start0 ꢀ+ ꢀ1  
x_size1 = x_end1 - x_start1 ꢀ+ ꢀ1  
DC = “Don't Care"  
LS+DC+BLx156+LE+DC+CRC  
LꢀS+0+IMGx(x_sizeꢀ0-4ꢀ)+FE+0+CꢀRC  
LꢀS+0+IMGx(x_sizeꢀ0-4ꢀ)+LE+0+CꢀRC  
LꢀS+0+IMGx(x_sizeꢀ0-4ꢀ)+LE+0+LS+1ꢀ+IMGx(x_ꢀsize1)+FE+ ꢀ+CꢀRC  
ROI1  
LꢀS+0+IMGx(x_sizeꢀ0-4ꢀ)+LE+0+LS+1ꢀ+IMGx(x_ꢀsize1-4)+LE+1+CꢀRC  
LꢀS+0+IMGx(x_sizeꢀ0-4ꢀ)+LE+0+FS+1ꢀ+IMGx(x_ꢀsize1ꢀ-4)+LE+1ꢀ+CꢀRC  
ROI0  
LꢀS+0+IMGx(x_sizeꢀ0-4ꢀ)+LE+0+CꢀRC  
where  
FS+0+IMGx(x_sizeꢀ0-4ꢀ)+LE+0+CꢀRC  
x_size0 = x_end0 - x_start0 ꢀ+ ꢀ1  
x_size1 = x_end1 - x_start1 ꢀ+ ꢀ1  
DC = “Don't Care"  
LꢀS+DꢀCꢀ+BLx156ꢀ+ ꢀE+  
ꢀ ꢀ+CRC  
LS+1+IMGx(x_size1-4)+FE+1+ ꢀRC  
LS+1+IMGx(x_size1-4)+LE+1+ ꢀRC  
LS+0+IMGx(x_size0-overlap1_0-2)+LS+1+IMGx(x_size1-4)+LE+1+CꢀRC  
ROI1  
LS+0+IMGx(x_size0-overlap1_0-2)+LS+1+IMGx(x_size1-4)+LE+1+CꢀRC  
ROI0  
LS+0+IMGx(x_size0-overlap1_0-2)+FS+1+IMGx(x_size1ꢀ-4)+LE+1+C  
LS+0+IMGx(x_size0-4)+LE+0+ ꢀRC  
                                                                                                                                                                                                                                                                                                                         
RC  
FS+0+IMGx(x_size0-4)+LE+0+CꢀRC  
where  
x_size0 = x_end0 - x_start0 ꢀ+ ꢀ1  
x_size1 = x_end1 - x_start1 ꢀ+ ꢀ1  
overlap1_0 = x_end0 - ꢀx_start1 +1  
DC = “Don't Care"  
LS+DC+BLx156+LE+DC+CRC  
Figure 34. Synchronization Codes for Multiple Windows (applicable for Global Shutter only)  
www.onsemi.com  
41  
 
NOIP1SN025KA, NOIP1SN016KA, NOIP1SN012KA, NOIP1SN010KA  
LVDS Output Multiplexing  
8
Ch0, Ch1, Ch2, Ch3  
Ch0  
4
The PYTHON sensor contains  
a
function for  
Ch4, Ch5, Ch6, Ch7  
Ch4  
down−multiplexing the output channels. Using this  
function, one may for instance use the PYTHON XK with  
16, 8 or 4 datachannels instead of 32 data channels.  
Enabling the down−multiplexing is done through the  
muxmode[1:0] pins. Connecting these pins to ground  
disables all down−multiplexing. Configuring higher values  
sets a higher degree of down−multiplexing. The channels  
that are used per degree of multiplexing are shown in Table  
27. The unused data channels are powered down and will not  
send any data.  
Ch8, Ch9, Ch10, Ch11  
Ch12, Ch13, Ch14, Ch15  
Ch16, Ch17, Ch18, Ch19  
Ch20, Ch21, Ch22, Ch23  
Ch24, Ch25, Ch26, Ch27  
Ch28, Ch29, Ch30, Ch31  
Ch8  
Ch12  
Ch16  
Ch20  
Ch24  
Ch28  
Ch0  
4
Ch0, Ch1, Ch2, Ch3,  
Ch4, Ch5, Ch6, Ch7  
8
Note the maximum frequency for the SPI interface needs  
to scale with the amount of LVDS channels as described in  
Table 5.  
Ch8, Ch9, Ch10, Ch11,  
Ch12, Ch13, Ch14, Ch15  
Ch8  
Ch16, Ch17, Ch18, Ch19, Ch16  
Ch20, Ch21, Ch22, Ch23  
Table 27. LVDS CHANNEL MULTIPLEXING  
No. of  
Ch24, Ch25, Ch26, Ch27, Ch24  
Ch28, Ch29, Ch30, Ch31  
No. of  
LVDS  
outputs  
Repetition  
of Sync  
Codes  
Output  
Channel  
Table 28 shows how to select the desired output multiplex  
mode and describes the required register upload needed to  
guarantee the correct functionality of the sensor.  
Channels Multiplexed  
32  
16  
No multiplexing  
Ch0 to  
Ch31  
1
Ch0, Ch1  
Ch0  
2
Table 28. OUTPUT MULTIPLEX MODE SELECTION  
Number of  
Ch2, Ch3  
Ch2  
Required Upload  
Output  
Ch4, Ch5  
Ch4  
muxmode1 muxmode0  
LVDS  
Ch6, Ch7  
Ch6  
Address  
211  
Data  
(Pin F24)  
(Pin F25)  
Channels  
Ch8, Ch9  
Ch8  
0
0
32  
16  
8
0x0E5B  
0x0E4B  
0x0E3B  
0x0E2B  
Ch10, Ch11  
Ch12, Ch13  
Ch14, Ch15  
Ch16, Ch17  
Ch18, Ch19  
Ch20, Ch21  
Ch22, Ch23  
Ch24, Ch25  
Ch26, Ch27  
Ch28, Ch29  
Ch30, Ch31  
Ch10  
Ch12  
Ch14  
Ch16  
Ch18  
Ch20  
Ch22  
Ch24  
Ch26  
Ch28  
Ch30  
0
3.3 V  
0
211  
3.3 V  
3.3 V  
211  
3.3 V  
4
211  
www.onsemi.com  
42  
 
NOIP1SN025KA, NOIP1SN016KA, NOIP1SN012KA, NOIP1SN010KA  
Data Order  
Figure 35 indicates how the kernels are organized. The  
To read out the image data through the output channels,  
the pixel array is organized in kernels. The kernel size is 64  
pixels in x-direction by one pixel in y-direction.  
data order of this image data on the data output channels  
depends on the subsampling mode.  
kernel  
(79,5119)  
pixel array  
ROI  
kernel  
(x_start,y_start)  
kernel  
(0,0)  
0
1
2
3
61 62 63  
Figure 35. Kernel Organization in Pixel Array  
Figure 36 shows how a kernel is read out over the 32  
P1−SE/SN/FN: Subsampling Disabled  
output channels. For even positioned kernels, the kernels are  
read out ascending, and for odd positioned kernels the data  
order is reversed (descending).  
32 LVDS Output Channels  
The image data is read out in kernels of 64 pixels in  
x-direction by one pixel in y-direction. One data channel  
output delivers two pixel values of one kernel sequentially.  
kernel N−2  
kernel N−1  
kernel N  
kernel N+1  
0
1
2
3
4
59 60 61 62 63  
pixel # (even kernel)  
pixel # (odd kernel)  
63 62 61 60 59  
4
3
2
1
0
MSB  
LSB MSB  
LSB  
Note: The bit order is always MSB first  
10−bit  
10−bit  
Figure 36. 32 LVDS Data Output Order when Subsampling is Disabled  
16 LVDS Output Channels  
the kernels are read out ascending but in pair of even and odd  
pixels, while for odd positioned kernles the data order is  
reversed (descending) but in pair of even and odd pixels.  
Figure 37 shows how a kernel is read out over the 16  
output channels. Each pair of adjacent channels is  
multiplexed into one channel. For even positioned kernels,  
www.onsemi.com  
43  
 
NOIP1SN025KA, NOIP1SN016KA, NOIP1SN012KA, NOIP1SN010KA  
kernel N−2  
kernel N−1  
kernel N  
kernel N+1  
pixel # (even kernel)  
0
2
1
3
4
6
5
7
56 58 57 59 60 62 61 63  
pixel # (odd kernel) 63 61 62 60 59 57 58 56  
7
5
6
4
3
1
2
0
nd  
Every 2  
channel  
MSB  
LSB MSB  
LSB  
Note: The bit order is always MSB first,  
regardless the kernel number  
10−bit  
10−bit  
Figure 37. Data Output Order for 16 LVDS Outputs when Subsampling is Disabled  
8 LVDS Output Channels  
the kernels are read out ascending but in sets of 4 even and  
4 odd pixels, while for odd positioned kernles the data order  
is reversed (descending) but in sets of 4 odd and 4 even  
pixels.  
Figure 38 shows how a kernel is read out over the 8 output  
channels. Each bunch of four adjacent channels is  
multiplexed into one channel. For even positioned kernels,  
kernel N−2  
kernel N−1  
kernel N  
kernel N+1  
pixel #  
(even kernel)  
0
2
4
6
1
3
5
7
8
10 12 14 9 11 13 15  
48 50 52 54 49 51 53 55 56 58 60 62 57 59 61 63  
15 13 11 14 12 10 8  
63 61 59 57 62 60 58 56 55 53 51 49 54 52 50 48  
9
7
5
3
1
6
4
2
0
pixel #  
(odd kernel)  
th  
Every 4  
channel  
Note: The bit order is always MSB first,  
regardless the kernel number  
MSB  
10−bit  
LSB MSB  
10−bit  
LSB  
Figure 38. Data Output Order for 8 LVDS Outputs when Subsampling is Disabled  
4 LVDS Output Channels  
the kernels are read out ascending but in sets of 8 even and  
8 odd pixels, while for odd positioned kernles the data order  
is reversed (descending) but in sets of 8 odd and 8 even  
pixels.  
Figure 39 shows how a kernel is read out over the 4 output  
channels. Each bunch of eight adjacent channels is  
multiplexed into one channel. For even positioned kernels,  
www.onsemi.com  
44  
 
NOIP1SN025KA, NOIP1SN016KA, NOIP1SN012KA, NOIP1SN010KA  
kernel N−2 kernel N−1  
kernel N  
kernel N+1  
pixel #  
0
2
4
6
8
10 12 14 1  
3
5
7
9
11 13 15  
48 50 52 54 56 58 60 62 49 51 53 55 57 59 61 63  
15 13 11 14 12 10 8  
(even kernel)  
pixel #  
(odd kernel)  
63 61 59 57 55 53 51 49 62 60 58 56 54 52 50 48  
9
7
5
3
1
6
4
2
0
th  
Every 8  
channel  
Note: The bit order is always MSB first,  
regardless the kernel number  
MSB  
LSB MSB  
LSB  
10−bit  
10−bit  
Figure 39. Data Output Order for 4 LVDS Outputs when Subsampling is Disabled  
32 LVDS Output Channels  
Figure 40 shows the data order for 32 LVDS output  
channels.  
Note that there is no difference in data order for even/odd  
kernel numbers, as opposed to the ‘no−subsampling’  
readout described in section 0.  
Subsampling on Monochrome Sensors  
During subsampling, every other pixel is read out and the  
lines are read in a read-1-skip-1 manner. To read out the  
image data with subsampling enabled, two neighboring  
kernels are combined to a single kernel of 128 pixels in the  
x-direction and one pixel in the y-direction.  
Note that there is no difference in data order for even and  
odd kernel numbers. This is opposed to the  
‘no-subsampling’ readout described earlier.  
kernel N−2  
kernel N−1  
pixel #  
kernel N  
kernel N+1  
0
126  
2
124  
4
68 60 66 62 64  
Figure 40. Data Output Order for 32 LVDS Output Channels in Subsampling Mode on a Monochrome Sensor  
www.onsemi.com  
45  
 
NOIP1SN025KA, NOIP1SN016KA, NOIP1SN012KA, NOIP1SN010KA  
16 LVDS Output Channels  
Figure 41 shows the data order for 16 LVDS output  
channels.  
Note that there is no difference in data order for even/odd  
kernel numbers, as opposed to the ‘no−subsampling’  
readout described in section 0.  
kernel N−2  
pixel #  
kernel N−1  
kernel N  
kernel N+1  
0
2
126 124  
4
6
122 120  
56 58 70 68 60 62 66 64  
Every 2nd  
channel  
Figure 41. Data Output Order for 16 LVDS Output Channels in Subsampling Mode on a Monochrome Sensor  
8 LVDS Output Channels  
Figure 42 shows the data order for 8 LVDS output  
channels.  
Note that there is no difference in data order for even/odd  
kernel numbers, as opposed to the ‘no−subsampling’  
readout described in section 0.  
kernel N−2  
kernel N−1  
kernel N  
kernel N+1  
0
2
4
6
126 124 122 120  
8
10 12 14 118 116 114 112  
48 50 52 54 78 76 74 72 56 58 60 62 70 68 66 64  
pixel #  
th  
Every 4  
channel  
Figure 42. Data Output Order for 8 LVDS Output Channels in Subsampling Mode on a Monochrome Sensor  
4 LVDS Output Channels  
Figure 43 shows the data order for 4 LVDS output  
channels.  
Note that there is no difference in data order for even/odd  
kernel numbers, as opposed to the ‘no−subsampling’  
readout described in section 0.  
kernel N−2  
kernel N−1  
kernel N  
kernel N+1  
0
2
4
6
8
10 12 14 126 124 122 120 118 116 114 112  
48 50 52 54 56 58 60 62 78 76 74 72 70 68 66 64  
th  
Every 8  
channel  
Figure 43. Data Output Order for 4 LVDS Output Channels in Subsampling Mode on a Monochrome Sensor  
the y-direction. Only the pixels 0, 1, 4, 5, 8, 9, 12, 13 to 124,  
Binning Mode  
and 125 are read out. There is no difference in data order for  
even/odd kernel numbers, as opposed to the  
‘no-subsampling’ readout described in section.  
The output order in binning mode is identical to the  
subsampled mode.  
Subsampling on Color Sensor  
32 LVDS Output Channels  
Figure 44 shows the data order for 32 LVDS output  
channels.  
To read out the image data with subsampling enabled on  
a color sensor, two neighboring kernels are combined to a  
single kernel of 128 pixels in the x-direction and 1 pixel in  
www.onsemi.com  
46  
 
NOIP1SN025KA, NOIP1SN016KA, NOIP1SN012KA, NOIP1SN010KA  
kernel N−2  
kernel N−1  
kernel N  
kernel N+1  
0
1
125 124  
4
5
121 120  
56 57  
69 68  
60 66  
65 64  
pixel #  
Figure 44. Data Output Order for 32 LVDS Output Channels in Subsampling Mode on a Color Sensor  
16 LVDS Output Channels  
Figure 45 shows the data order for 16 LVDS output  
channels.  
Note that there is no difference in data order for even/odd  
kernel numbers, as opposed to the ‘no−subsampling’  
readout described in section 0.  
kernel N−2  
kernel N−1  
kernel N  
kernel N+1  
0
125  
1
124  
4
121  
5
120  
56  
69 57  
68 60  
65  
61 64  
pixel #  
Every 2nd  
channel  
Figure 45. Data Output Order for 16 LVDS Output Channels in Subsampling Mode on a Color Sensor  
8 LVDS Output Channels  
Figure 46 shows the data order for 8 LVDS output  
channels.  
Note that there is no difference in data order for even/odd  
kernel numbers, as opposed to the ‘no−subsampling’  
readout described in section 0.  
kernel N−2  
kernel N−1  
kernel N  
kernel N+1  
0
125  
4
121  
1
124  
5
120  
8
117 12 113  
9
116 13 112  
48 77 52 73 49 76 53 72 56 69 60 65 57 68 61 64  
pixel #  
th  
Every 4  
channel  
Figure 46. Data Output Order for 8 LVDS Output Channels in Subsampling Mode on a Color Sensor  
4 LVDS Output Channels  
Figure 47 shows the data order for 4 LVDS output  
channels.  
Note that there is no difference in data order for even/odd  
kernel numbers, as opposed to the ‘no−subsampling’  
readout described in section 0.  
www.onsemi.com  
47  
 
NOIP1SN025KA, NOIP1SN016KA, NOIP1SN012KA, NOIP1SN010KA  
kernel N−2  
kernel N−1  
kernel N  
kernel N+1  
0
125  
4
121  
8
117 12 113  
1
124  
5
120  
9
116 13 112  
48 77 52 73 56 69 60 65 49 76 53 72 57 68 61 64  
th  
Every 8  
channel  
Figure 47. Data Output Order for 4 LVDS Output Channels in Subsampling Mode on a Color Sensor  
Frame Rate  
where t  
represents the equivalent ROT time for a  
ROT  
Frame rate for subsampling and binning mode is  
compared to the normal mode. Assume the y-resolution is  
the programmed number of lines to read out.  
normal readout of the same frame. Analogous readout  
represents the equivalent readout time for normal readout.  
Test Pattern Generation  
Normal Readout  
The frame time in normal readout mode is shown by the  
following formula:  
The data block provides several test pattern generation  
capabilities. Figure 48 shows the functional diagram for the  
data channels. It is possible to inject synthesized test patterns  
at various points. Refer to the Register Map on page 50 for  
the test mode configuration registers (registers 144 to 150).  
The test pattern modes are summarized in Table 29. Note  
that these modes only exist for the data channel. The sync  
and clock channels do not provide this functionality.  
For each test mode, the user can select whether the  
generated data is framed. When the register  
frame_testpattern is asserted, the test data simply replaces  
the ADC data. This means that the test data is only sent  
between frame/line start and frame/line end indications.  
Outside these windows, regular training patterns are sent, as  
during normal operation. CRC is calculated and inserted as  
for normal data for the fixed and incrementing test pattern  
generation.  
Frame Time = t  
+ (y-resolution) x (t  
+ t  
)
FOT  
ROT  
readout  
The frame rate is equal to 1/FrameTime. Nominal frame  
rate for full frame readout is 80 fps in Zero−ROT mode.  
Subsampling Mode  
The frame time for subsampled readout is shown by the  
following formula:  
Frame Time = t  
+ (y-resolution / 2) x (t  
+ t  
/ 2),  
FOT  
ROT readout  
where t  
represents the equivalent ROT time for a  
ROT  
normal readout of the same frame. Analogous readout  
represents the equivalent readout time for normal readout.  
Binning Mode  
The frame time for subsampled readout is given by the  
following formula:  
Frame Time = t  
/ 2),  
+ (y-resolution / 2) x (t x 2+ t  
ROT readout  
FOT  
Table 29. TEST MODE SUMMARY  
Register Configuration  
prbs_en  
testpattern_en  
testpattern  
Description  
0
0
0
1
X
0
Normal operation mode  
Fixed pattern generation.  
Pattern is defined by testpattern register  
0
1
1
1
Incrementing pattern generation.  
Initial value is determined by testpattern.  
X
X
PRBS data generation. The testpattern register determines the seed for the  
PRBS generator.  
When frame_testpattern is deasserted, the output is constantly replaced by the generated test data. No training patterns are  
generated.  
www.onsemi.com  
48  
 
NOIP1SN025KA, NOIP1SN016KA, NOIP1SN012KA, NOIP1SN010KA  
Blackꢀ Levꢀel  
adc_db_data_0  
Caꢀlibꢀration  
CRC  
Calculation  
Blackꢀ Levꢀel  
adc_db_data_1  
Caꢀlibꢀration  
`0ꢀ'  
`1'  
`0'  
`0ꢀ'  
`
`
ꢀ'  
ꢀ'  
`1ꢀ'  
`
`
ꢀ'  
ꢀ'  
`1ꢀ'  
Test Pattern  
Generation  
tesꢀtpattern_er  
prbsꢀ_en  
PRBS  
Generator  
training pattern  
(testpattern_en and not frame_testpattern)  
i ꢀseꢀrt CRC  
bypass  
Figure 48. Functional Block Diagrams for the Data Channels  
NOTE: In the figure, register configurations are  
indicated in red.  
The sync channel continues to send regular frame timing  
information when the sequencer is enabled (independently  
of the test pattern configurations).  
The synthesized test patterns are injected directly into the  
data channels. Therefore, no data demultiplexing is required  
at the receiving end (as opposed to regular image data  
capture).  
Pseudo Random Bit Sequence Generation  
In this test mode, the output channels are sourced with  
pseudo random bit sequence (PRBS) pattern. The PRBS  
seed can be configured for each data channel using the  
testpattern register. For the other test pattern generation  
mode, the datastream is not interrupted when  
frame_testpattern is deasserted.  
NOTES:  
The CRC generator is not functional in this mode, and  
no real CRC can be calculated. Instead, the CRC slot is  
used to send one more PRBS word.  
Fixed Pattern  
A configured word can be continuously repeated on the  
output. This word is configurable for each data channel  
separately (testpattern). The testpattern is inserted when  
testpattern_en is asserted.  
A PRBS generator does not generate random data when  
the seed is all zero. Therefore, it is advisable to  
configure the testpattern registers to a value different  
from ‘0’. Using different seeds for each channel results  
in different sequences for each data channel.  
Incrementing Test Pattern  
In each cycle, the test pattern word is incremented by one,  
when inc_testpattern is asserted. After reaching the  
maximum value, the incrementer is reset to its start value  
(testpattern). When the testdata is framed, the incrementer  
is also reset to the testpattern value at each line start.  
To enable this mode, enable the digital testpattern mode  
(assert testpattern_en) and assert inc_testpattern.  
www.onsemi.com  
49  
NOIP1SN025KA, NOIP1SN016KA, NOIP1SN012KA, NOIP1SN010KA  
REGISTER MAP  
Each functional entity has a dedicated address space,  
starting at a block offset. The register address is obtained by  
adding the address offset to the block offset. This address  
must be used to perform SPI uploads and is shown in the  
Address column of the register map table.  
The table below represents the register map for the  
NOIP1xx025KA part. Deviating default values for the  
NOIP1xx16KA, NOIP1xx12KA and NOIP1xx10KA are  
mentioned between brackets (“[]”).  
Table 30. REGISTER MAP  
Block  
Offset  
Address  
Offset  
Bit  
Field  
Default  
(Hex)  
Category  
Address  
Register Name  
Default  
Description  
Type  
Status  
Status  
Chip ID  
0
0
1
0
1
chip_id  
0x50FA  
0x50FA  
0x0000  
0x0  
20730  
Chip ID  
[15:0]  
id  
20730  
Chip ID  
reserved  
reserved  
resolution  
0
0
0
Reserved  
Reserved  
[3:0]  
[9:8]  
0x0  
P25K: 0, P16K: 1,  
P12K: 2, P10K: 3  
[11:10]  
reserved  
0x0  
0
0
Reserved  
2
2
chip_configuration  
0x0000  
Chip General  
Configuration  
RW  
[0]  
color  
0x0  
0
Color/Monochrome  
Configuration  
’0’: Monochrome  
’1’: Color  
[1]  
reserved  
reserved  
0x0  
0x0  
0
0
Reserved  
Reserved  
[15:2]  
Reset Gen-  
erator  
8
0
8
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
0x0099  
0x9  
153  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
RW  
[3:0]  
[7:4]  
9
0x9  
9
1
2
9
0x0009  
0x9  
9
RW  
RW  
[3:0]  
9
2457  
9
10  
0x0999  
0x9  
[3:0]  
[7:4]  
0x9  
9
[11:8]  
0x9  
9
16  
0
1
16  
17  
0x0004  
0x0  
4
0
RW  
RW  
[0]  
[1]  
[2]  
0x0  
0
0x1  
1
0x2113  
0x13  
0x1  
8467  
19  
1
[7:0]  
[12:8]  
[14:13]  
0x1  
1
20  
24  
0
0
20  
24  
0x0000  
0x0  
0
0
0
0
RW  
[0]  
[9:8]  
[10]  
0x0  
0x0  
0x0000  
0x0  
0
0
Status  
[0]  
www.onsemi.com  
50  
 
NOIP1SN025KA, NOIP1SN016KA, NOIP1SN012KA, NOIP1SN010KA  
Table 30. REGISTER MAP  
Block  
Offset  
Address  
Offset  
Bit  
Field  
Default  
(Hex)  
Category  
Address  
Register Name  
reserved  
Default  
8832  
128  
2
Description  
Reserved  
Type  
2
3
26  
0x2280  
0x80  
RW  
[7:0]  
[10:8]  
[14:12]  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
0x2  
0x2  
2
27  
32  
0x3D2D  
0x2D  
0x3D  
15661  
45  
RW  
RW  
[7:0]  
[15:8]  
61  
Clock Gen-  
erator  
32  
0
config0  
0x0004  
0x0  
4
0
Clock Generator Config-  
uration  
[0]  
enable_analog  
Enable analogue clocks  
’0’: disabled,  
’1’: enabled  
[1]  
[2]  
reserved  
reserved  
reserved  
mux  
0x0  
0x1  
0x0  
0x0  
0x0  
0x0  
0
1
0
0
0
0
Reserved  
Reserved  
Reserved  
Multiplex Mode  
Reserved  
Reserved  
[3]  
[5:4]  
[11:8]  
[14:12]  
reserved  
reserved  
General  
Logic  
34  
0
34  
config0  
enable  
0x0000  
0x0  
0
0
Clock Generator Config-  
uration  
RW  
[0]  
Logic General Enable  
Configuration  
’0’: Disable  
’1’: Enable  
38  
40  
0
1
38  
39  
reserved  
reserved  
reserved  
reserved  
0x0000  
0x0000  
0x0000  
0x0000  
0
0
0
0
Reserved  
Reserved  
Reserved  
Reserved  
RW  
RW  
[15:0]  
[15:0]  
Image  
Core  
0
40  
image_core_config0  
imc_pwd_n  
0x0000  
0x0  
0
0
Image Core  
Configuration  
RW  
[0]  
[1]  
[2]  
Image Core Power  
Down  
’0’: powered down,  
’1’: powered up  
mux_pwd_n  
0x0  
0x0  
0
0
Column Multiplexer  
Power Down  
’0’: powered down,  
’1’: powered up  
colbias_enable  
Bias Enable  
’0’: disabled  
’1’: enabled  
1
41  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
0x0B5A  
0xA  
2906  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
RW  
[3:0]  
[7:4]  
[10:8]  
[12:11]  
[13]  
10  
5
0x5  
0x3  
3
0x1  
1
0x0  
0
[14]  
0x0  
0
[15]  
0x0  
0
2
42  
0x0001  
1
RW  
www.onsemi.com  
51  
NOIP1SN025KA, NOIP1SN016KA, NOIP1SN012KA, NOIP1SN010KA  
Table 30. REGISTER MAP  
Block  
Offset  
Address  
Offset  
Bit  
Field  
Default  
(Hex)  
Category  
Address  
Register Name  
reserved  
Default  
Description  
Reserved  
Type  
[0]  
[1]  
0x1  
0x0  
1
0
0
0
0
0
0
0
0
0
0
0
0
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
[6:4]  
[10:8]  
[15:12]  
0x0  
0x0  
0x0  
3
43  
0x0000  
0x0  
RW  
[0]  
[1]  
0x0  
[2]  
0x0  
[3]  
0x0  
[6:4]  
[7]  
0x0  
0x0  
[15:8]  
0x0  
AFE  
Bias  
48  
64  
0
48  
power_down  
pwd_n  
0x0000  
0x0  
0
0
AFE Configuration  
RW  
[0]  
Power down for AFE’s  
’0’: powered down,  
’1’: powered up  
0
1
64  
65  
power_down  
pwd_n  
0x0000  
0x0  
0
0
Bias Power Down Con-  
figuration  
RW  
RW  
[0]  
[0]  
Power down bandgap  
’0’: powered down,  
’1’: powered up  
configuration  
extres  
0x888B  
0x1  
34955  
1
Bias Configuration  
External Resistor  
Selection  
’0’: internal resistor,  
’1’: external resistor  
[3:1]  
[7:4]  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
lvds_bias  
lvds_ibias  
lvds_iref  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
0x5  
0x8  
5
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
LVDS Bias Configuration  
LVDS Ibias  
LVDS Iref  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
8
[11:8]  
[15:12]  
0x8  
8
0x8  
8
2
3
66  
67  
0x53C8  
0x8  
21448  
RW  
RW  
[3:0]  
[7:4]  
8
0xC  
12  
[14:8]  
0x53  
0x8888  
0x8  
83  
34952  
[3:0]  
[7:4]  
8
0x8  
8
[11:8]  
[15:12]  
0x8  
8
0x8  
8
4
5
68  
69  
0x0088  
0x8  
136  
RW  
RW  
[3:0]  
[7:4]  
8
0x8  
8
0x0888  
0x8  
2184  
[3:0]  
[7:4]  
8
0x8  
8
[11:8]  
0x8  
8
34952  
8
6
70  
0x8888  
0x8  
RW  
[3:0]  
www.onsemi.com  
52  
NOIP1SN025KA, NOIP1SN016KA, NOIP1SN012KA, NOIP1SN010KA  
Table 30. REGISTER MAP  
Block  
Offset  
Address  
Offset  
Bit  
Field  
Default  
(Hex)  
Category  
Address  
Register Name  
reserved  
Default  
Description  
Reserved  
Type  
[7:4]  
[11:8]  
[15:12]  
0x8  
0x8  
8
8
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
0x8  
8
7
0
71  
72  
0x8888  
0x8888  
34952  
34952  
RW  
RW  
[15:0]  
72  
0x2220  
0x0  
8736  
[0]  
[1]  
0
0
0
2
2
2
0x0  
[2]  
0x0  
[6:4]  
[10:8]  
[14:12]  
0x2  
0x2  
0x2  
80  
0
80  
0x0000  
0x0  
0
RW  
[1:0]  
[3:2]  
[5:4]  
[7:6]  
[9:8]  
0
0x0  
0
0x0  
0
0
0x0  
0x0  
0
1
0
81  
96  
0x8881  
0x8881  
34945  
34945  
RW  
RW  
[15:0]  
Tempera-  
ture Sensor  
96  
enable  
enable  
0x0000  
0x0  
0
0
Temperature Sensor  
Configuration  
[0]  
Temperature Diode  
Enable  
’0’: disabled,  
’1’: enabled  
[1]  
[2]  
reserved  
reserved  
reserved  
reserved  
reserved  
offset  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0
0
0
0
0
0
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
[3]  
[4]  
[5]  
[13:8]  
Temperature Offset  
(signed)  
1
97  
temp  
0x0000  
0x00  
0
0
Temperature Sensor  
Status  
Status  
[7:0]  
temp  
Temperature Readout  
Reserved  
104  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
0
1
104  
105  
0x0000  
0x0  
0
0
0
0
0
0
0
0
0
0
Reserved  
RW  
RW  
[15:0]  
Reserved  
0x0000  
0x0  
Reserved  
[1:0]  
[6:2]  
[7]  
Reserved  
0x0  
Reserved  
0x0  
Reserved  
[9:8]  
[14:10]  
[15]  
0x0  
Reserved  
0x0  
Reserved  
0x0  
Reserved  
2
106  
0x0000  
Reserved  
Status  
www.onsemi.com  
53  
NOIP1SN025KA, NOIP1SN016KA, NOIP1SN012KA, NOIP1SN010KA  
Table 30. REGISTER MAP  
Block  
Offset  
Address  
Offset  
Bit  
Field  
Default  
(Hex)  
Category  
Address  
107  
Register Name  
reserved  
Default  
Description  
Reserved  
Type  
Status  
Status  
Status  
Status  
Status  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0
0
0
0
0
0
0
0
0
0
0
3
4
5
6
7
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
108  
109  
110  
111  
Serializers/  
LVDS/IO  
112  
0
112  
power_down  
0x0000  
0x0  
0
0
LVDS Power Down Con-  
figuration  
RW  
[0]  
[1]  
[2]  
clock_out_pwd_n  
Power down for Clock  
Output.  
’0 ’: powered down,  
’1’: powered up  
sync_pwd_n  
data_pwd_n  
0x0  
0x0  
0
0
Power down for Sync  
channel  
’0’: powered down,  
’1’: powered up  
Power down for data  
channels (4 channels)  
’0’: powered down,  
’1’: powered up  
Sync  
Words  
116  
4
116  
trainingpattern  
trainingpattern  
0x03A6  
0x3A6  
934  
934  
Data Formating −  
Training Pattern  
RW  
[9:0]  
Training pattern sent on  
Data channels during  
idle mode. This data is  
used to perform word  
alignment on the LVDS  
data channels.  
5
6
117  
118  
sync_code0  
frame_sync_0  
sync_code1  
bl_0  
0x002A  
0x02A  
0x0015  
0x015  
42  
42  
21  
21  
LVDS Power Down Con-  
figuration  
RW  
RW  
[6:0]  
[9:0]  
Frame Sync Code LSBs  
− Even kernels  
Data Formating − BL In-  
dication  
Black Pixel Identification  
Sync Code − Even  
kernels  
7
8
119  
120  
sync_code2  
img_0  
0x0035  
0x035  
53  
53  
Data Formating − IMG  
Indication  
RW  
RW  
[9:0]  
[9:0]  
[6:0]  
Valid Pixel Identification  
Sync Code − Even  
kernels  
sync_code3  
ref_0  
0x0025  
0x025  
37  
37  
Data Formating − IMG  
Indication  
Reference Pixel Identifi-  
cation Sync Code −  
Even kernels  
9
121  
122  
sync_code4  
frame_sync_1  
sync_code5  
0x002A  
0x02A  
42  
42  
21  
LVDS Power Down Con-  
figuration  
RW  
RW  
Frame Sync Code LSBs  
− Odd kernels  
10  
0x0015  
Data Formating − BL In-  
dication  
www.onsemi.com  
54  
NOIP1SN025KA, NOIP1SN016KA, NOIP1SN012KA, NOIP1SN010KA  
Table 30. REGISTER MAP  
Block  
Offset  
Address  
Offset  
Bit  
Field  
Default  
(Hex)  
Category  
Address  
Register Name  
bl_1  
Default  
Description  
Type  
[9:0]  
[9:0]  
[9:0]  
[9:0]  
0x015  
21  
Black Pixel Identification  
Sync Code − Odd  
kernels  
11  
12  
123  
sync_code6  
img_1  
0x0035  
0x035  
53  
53  
Data Formating − IMG  
Indication  
RW  
Valid Pixel Identification  
Sync Code − Odd  
kernels  
124  
sync_code7  
ref_1  
0x0025  
0x025  
37  
37  
Data Formating − IMG  
Indication  
RW  
Reference Pixel Identifi-  
cation Sync Code − Odd  
kernels  
13  
14  
125  
126  
sync_code8  
0x0059  
0x059  
89  
89  
Data Formating − CRC  
Indication  
RW  
RW  
crc  
CRC Value Identification  
Sync Code  
sync_code9  
tr  
0x03A6  
0x3A6  
934  
934  
Data Formating − TR In-  
dication  
[9:0]  
[9:0]  
Training Value Identifica-  
tion Sync Code  
15  
0
127  
128  
reserved  
reserved  
0x02AA  
0x2AA  
682  
682  
Reserved  
Reserved  
RW  
RW  
Data Block  
128  
blackcal  
0x4008  
0x08  
0x0  
16392  
Black Calibration Config-  
uration  
[7:0]  
black_offset  
black_samples  
8
0
Desired black level at  
output  
[10:8]  
Black pixels taken into  
account for black  
calibration.  
Total samples =  
2**black_samples  
[14:11]  
[15]  
reserved  
crc_seed  
0x8  
0x0  
8
0
Reserved  
CRC Seed  
’0’: All−0  
’1’: All−1  
1
129  
general_configuration  
auto_blackcal_enable  
0x0001  
0x1  
1
1
Black Calibration and  
Data Formating  
Configuration  
RW  
[0]  
Automatic  
blackcalibration is  
enabled when 1,  
bypassed when 0  
[9:1]  
[10]  
blackcal_offset  
0x00  
0x0  
0
0
Black Calibration offset  
used when au-  
to_black_cal_en = ’0’.  
blackcal_offset_dec  
blackcal_offset is added  
when 0, subtracted when  
1
[11]  
[12]  
[13]  
[14]  
reserved  
reserved  
reserved  
ref_mode  
0x0  
0x0  
0x0  
0x0  
0
0
0
0
Reserved  
Reserved  
Reserved  
Data contained on  
reference lines:  
’0’: reference pixels  
’1’: black average for the  
corresponding data  
channel  
[15]  
ref_bcal_enable  
0x0  
0
Enable black calibration  
on reference lines  
’0’: Disabled  
’1’: Enabled  
www.onsemi.com  
55  
NOIP1SN025KA, NOIP1SN016KA, NOIP1SN012KA, NOIP1SN010KA  
Table 30. REGISTER MAP  
Block  
Offset  
Address  
Offset  
Bit  
Field  
Default  
(Hex)  
Category  
Address  
Register Name  
reserved  
Default  
Description  
Reserved  
Type  
2
130  
0x000F  
0x1  
15  
1
RW  
[0]  
[1]  
[2]  
[3]  
[4]  
[8]  
reserved  
Reserved  
reserved  
0x1  
1
Reserved  
reserved  
0x1  
1
Reserved  
reserved  
0x1  
1
Reserved  
reserved  
0x0  
0
Reserved  
reserved  
0x0  
0
Reserved  
8
9
136  
137  
138  
139  
blackcal_error0  
blackcal_error[15:0]  
0x0000  
0x0000  
0
Black Calibration Status  
Status  
Status  
Status  
Status  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
0
Black Calibration Error.  
This flag is set when not  
enough black samples  
are availlable. Black  
Calibration shall not be  
valid. Channels 0−16  
blackcal_error1  
0x0000  
0x0000  
0
0
Black Calibration Status  
blackcal_error[31:16]  
Black Calibration Error.  
This flag is set when not  
enough black samples  
are availlable. Black  
Calibration shall not be  
valid. Channels 16−31  
10  
11  
blackcal_error2  
0x0000  
0x0000  
0
0
Black Calibration Status  
blackcal_error[47:32]  
Black Calibration Error.  
This flag is set when not  
enough black samples  
are availlable. Black  
Calibration shall not be  
valid. Channels 32−47  
blackcal_error3  
0x0000  
0x0000  
0
0
Black Calibration Status  
blackcal_error[63:48]  
Black Calibration Error.  
This flag is set when not  
enough black samples  
are availlable. Black  
Calibration shall not be  
valid. Channels 48−63  
12  
13  
16  
140  
141  
144  
reserved  
0x0000  
0x0000  
0xFFFF  
0xFFFF  
0x0000  
0
0
Reserved  
Reserved  
Reserved  
Reserved  
RW  
RW  
RW  
[15:0]  
[15:0]  
reserved  
reserved  
65535  
65535  
0
reserved  
test_configuration  
Data Formating Test  
Configuration  
[0]  
[1]  
testpattern_en  
inc_testpattern  
0x0  
0x0  
0
0
Insert synthesized test-  
pattern when ’1’  
Incrementing testpattern  
when ’1’, constant test-  
pattern when ’0’  
[2]  
[3]  
prbs_en  
0x0  
0x0  
0
0
Insert PRBS when ’1’  
frame_testpattern  
Frame test patterns  
when ’1’, unframed  
testpatterns when ’0’  
[4]  
reserved  
0x0  
0
0
Reserved  
Reserved  
Reserved  
17  
18  
145  
146  
reserved  
0x0000  
RW  
RW  
[15:0]  
reserved  
0
test_configuration0  
0x0100  
0x00  
256  
Data Formating Test  
Configuration  
[7:0]  
testpattern0_lsb  
0
Testpattern used on  
datapath #0 when  
testpattern_en = ’1’.  
Note: Most significant  
bits are configured in  
register 150.  
www.onsemi.com  
56  
NOIP1SN025KA, NOIP1SN016KA, NOIP1SN012KA, NOIP1SN010KA  
Table 30. REGISTER MAP  
Block  
Offset  
Address  
Offset  
Bit  
Field  
Default  
(Hex)  
Category  
Address  
Register Name  
Default  
Description  
Type  
[15:8]  
testpattern1_lsb  
0x01  
1
Testpattern used on  
datapath #1 when  
testpattern_en = ’1’.  
Note: Most significant  
bits are configured in  
register 150.  
19  
20  
21  
22  
147  
test_configuration1  
testpattern2_lsb  
0x0302  
0x02  
770  
2
Data Formating Test  
Configuration  
RW  
[7:0]  
Testpattern used on  
datapath #2 when  
testpattern_en = ’1’.  
Note: Most significant  
bits are configured in  
register 150.  
[15:8]  
testpattern3_lsb  
0x03  
3
Testpattern used on  
datapath #3 when  
testpattern_en = ’1’.  
Note: Most significant  
bits are configured in  
register 150.  
148  
149  
150  
test_configuration2  
testpattern4_lsb  
0x0504  
0x04  
1284  
4
Data Formating Test  
Configuration  
RW  
RW  
RW  
[7:0]  
Testpattern used on  
datapath #4 when  
testpattern_en = ’1’.  
Note: Most significant  
bits are configured in  
register 150.  
[15:8]  
testpattern5_lsb  
0x05  
5
Testpattern used on  
datapath #5 when  
testpattern_en = ’1’.  
Note: Most significant  
bits are configured in  
register 150.  
test_configuration3  
testpattern6_lsb  
0x0706  
0x06  
1798  
6
Data Formating Test  
Configuration  
[7:0]  
Testpattern used on  
datapath #6 when  
testpattern_en = ’1’.  
Note: Most significant  
bits are configured in  
register 150.  
[15:8]  
testpattern7_lsb  
0x07  
7
Testpattern used on  
datapath #7 when  
testpattern_en = ’1’.  
Note: Most significant  
bits are configured in  
register 150.  
test_configuration16  
testpattern0_msb  
testpattern1_msb  
testpattern2_msb  
testpattern3_msb  
testpattern4_msb  
testpattern5_msb  
testpattern6_msb  
testpattern7_msb  
reserved  
0x0000  
0x0  
0
0
0
0
0
0
0
0
0
0
Data Formating Test  
Configuration  
[1:0]  
[3:2]  
Testpattern used when  
testpattern_en = ’1’  
0x0  
Testpattern used when  
testpattern_en = ’1’  
[5:4]  
0x0  
Testpattern used when  
testpattern_en = ’1’  
[7:6]  
0x0  
Testpattern used when  
testpattern_en = ’1’  
[9:8]  
0x0  
Testpattern used when  
testpattern_en = ’1’  
[11:10]  
[13:12]  
[15:14]  
0x0  
Testpattern used when  
testpattern_en = ’1’  
0x0  
Testpattern used when  
testpattern_en = ’1’  
0x0  
Testpattern used when  
testpattern_en = ’1’  
26  
154  
0x0000  
Reserved  
RW  
www.onsemi.com  
57  
NOIP1SN025KA, NOIP1SN016KA, NOIP1SN012KA, NOIP1SN010KA  
Table 30. REGISTER MAP  
Block  
Offset  
Address  
Offset  
Bit  
Field  
Default  
(Hex)  
Category  
Address  
Register Name  
reserved  
Default  
Description  
Reserved  
Type  
[15:0]  
[15:0]  
0x0000  
0x0000  
0x0000  
0
0
0
27  
0
155  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
RW  
160  
160  
0x0010  
0x0  
16  
0
RW  
[0]  
[1]  
[2]  
[3]  
[4]  
0x0  
0
0x0  
0
0x0  
0
0x1  
1
1
161  
0x60B8  
0xB8  
24760  
184  
24  
RW  
[9:0]  
[15:10]  
0x018  
0x0080  
0x80  
2
3
4
5
6
7
162  
163  
164  
165  
166  
167  
128  
128  
128  
128  
128  
128  
128  
128  
1023  
1023  
2048  
0
RW  
RW  
RW  
RW  
RW  
RW  
[9:0]  
[9:0]  
[9:0]  
[9:0]  
[15:0]  
0x0080  
0x80  
0x0080  
0x80  
0x0080  
0x80  
0x03FF  
0x03FF  
0x0800  
0x0  
[1:0]  
[3:2]  
0x0  
0
[15:4]  
0x080  
0x0001  
0x0001  
0x0800  
0x0  
128  
1
8
9
168  
169  
RW  
RW  
[15:0]  
1
2048  
0
[1:0]  
[3:2]  
0x0  
0
[15:4]  
0x080  
0x03FF  
0x03FF  
0x100D  
0x1  
128  
1023  
1023  
4109  
1
10  
11  
170  
171  
RW  
RW  
[15:0]  
[1:0]  
[3:2]  
0x3  
3
[15:4]  
0x100  
0x0083  
0x083  
0x00  
256  
131  
131  
0
12  
172  
RW  
[7:0]  
[13:8]  
[15:14]  
0x0  
0
13  
14  
173  
174  
0x2824  
0x024  
0x028  
0x2A96  
0x6  
10276  
36  
RW  
RW  
[7:0]  
[15:8]  
40  
10902  
6
[3:0]  
www.onsemi.com  
58  
NOIP1SN025KA, NOIP1SN016KA, NOIP1SN012KA, NOIP1SN010KA  
Table 30. REGISTER MAP  
Block  
Offset  
Address  
Offset  
Bit  
Field  
Default  
(Hex)  
Category  
Address  
Register Name  
reserved  
Default  
9
Description  
Reserved  
Type  
[7:4]  
[11:8]  
[15:12]  
0x9  
0xA  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
10  
2
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
0x2  
15  
16  
17  
18  
19  
20  
21  
24  
25  
26  
175  
176  
177  
178  
179  
180  
181  
184  
185  
186  
0x0080  
0x080  
0x0100  
0x100  
0x0100  
0x100  
0x0080  
0x080  
0x00AA  
0x0AA  
0x0100  
0x100  
0x0155  
0x155  
0x0000  
0x0000  
0x0000  
0x0  
128  
128  
256  
256  
256  
256  
128  
128  
170  
170  
256  
256  
341  
341  
0
RW  
RW  
[9:0]  
[9:0]  
[9:0]  
[9:0]  
[9:0]  
[9:0]  
[9:0]  
[15:0]  
[7:0]  
RW  
RW  
RW  
RW  
RW  
Status  
Status  
Status  
0
0
0
0x0000  
0x000  
0x0  
0
[9:0]  
[12]  
0
0
27  
28  
187  
188  
0x0000  
0x0000  
0x0000  
0x0  
0
Status  
Status  
[15:0]  
0
0
[1:0]  
[3:2]  
0
0x0  
0
[15:4]  
0x000  
0x0000  
0x000  
0x0  
0
29  
189  
192  
0
Status  
RW  
[12:0]  
[13]  
0
0
Sequencer  
192  
0
general_configuration  
enable  
0x0000  
0x0  
0
0
Sequencer General  
Configuration  
[0]  
Enable sequencer  
‘0’: Idle,  
‘1’: enabled  
[1]  
[2]  
reserved  
0x0  
0x0  
0
0
Reserved  
zero_rot_enable  
Zero ROT mode  
Selection.  
‘0’: Normal ROT,  
‘1’: Zero ROT’  
[3]  
[4]  
reserved  
0x0  
0x0  
0
0
Reserved  
triggered_mode  
Triggered Mode  
Selection  
‘0’: Normal Mode,  
‘1’: Triggered Mode  
[5]  
slave_mode  
0x0  
0
Master/Slave Selection  
‘0’: master,  
‘1’: slave  
www.onsemi.com  
59  
NOIP1SN025KA, NOIP1SN016KA, NOIP1SN012KA, NOIP1SN010KA  
Table 30. REGISTER MAP  
Block  
Offset  
Address  
Offset  
Bit  
Field  
Default  
(Hex)  
Category  
Address  
Register Name  
Default  
Description  
Type  
[6]  
nzrot_xsm_delay_en-  
able  
0x0  
0
Insert delay between  
end of ROT and start of  
readout in normal ROT  
readout mode if ‘1’.  
ROT delay is defined by  
register xsm_delay  
[7]  
[8]  
subsampling  
binning  
0x0  
0x0  
0
0
Subsampling mode  
selection  
‘0’: no subsampling,  
‘1’: subsampling  
Binning mode selection  
‘0’: no binning,  
‘1’: binning  
[10]  
reserved  
0x0  
0x0  
0
0
Reserved  
[13:11]  
monitor_select  
Control of the monitor  
pins  
[14]  
[15]  
reserved  
0x0  
0x0  
0
0
Reserved  
sequence  
Enable a sequenced  
readout with different  
parameters for even and  
odd frames.  
1
2
193  
194  
reserved  
0x0000  
0x00  
0x00  
0x00E4  
0x0  
0
0
Reserved  
RW  
RW  
[7:0]  
reserved  
Reserved  
[15:8]  
reserved  
0
Reserved  
integration_control  
reserved  
228  
0
Integration Control  
Reserved  
[0]  
[1]  
[2]  
reserved  
0x0  
0
Reserved  
fr_mode  
0x1  
1
Representation of  
fr_length.  
‘0’: reset length  
‘1’: frame length  
[3]  
[4]  
reserved  
0x0  
0x0  
0
0
Reserved  
int_priority  
Integration Priority  
‘0’: Frame readout has  
priority over integration  
‘1’: Integration End has  
priority over frame read-  
out  
[5]  
halt_mode  
0x1  
1
The current frame will be  
completed when the  
sequencer is disabled  
and halt_mode = ‘1’.  
When ‘0’, the sensor  
stops immediately when  
disabled, without fin-  
ishing the current frame.  
[6]  
[7]  
fss_enable  
fse_enable  
0x1  
0x1  
1
1
Generation of Frame  
Sequence Start Sync  
code (FSS)  
‘0’: No generation of  
FSS  
‘1’: Generation of FSS  
Generation of Frame  
Sequence End Sync  
code (FSE)  
‘0’: No generation of  
FSE  
‘1’: Generation of FSE  
[8]  
[9]  
reverse_y  
reserved  
0x0  
0x0  
0
0
Reverse readout  
‘0’: bottom to top readout  
‘1’: top to bottom readout  
Reserved  
www.onsemi.com  
60  
NOIP1SN025KA, NOIP1SN016KA, NOIP1SN012KA, NOIP1SN010KA  
Table 30. REGISTER MAP  
Block  
Offset  
Address  
Offset  
Bit  
Field  
Default  
(Hex)  
Category  
Address  
Register Name  
Default  
Description  
Type  
[11:10]  
subsampling_mode  
0x0  
0
Subsampling mode  
0x0: Subsampling in x  
and y (VITA compatible)  
0x1: Subsampling in x,  
not y  
0x2: Subsampling in y,  
not x  
0x3: Subsampling in x  
an y  
[13:12]  
binning_mode  
0x0  
0
Binning mode  
0x0: Binning in x and y  
(VITA compatible)  
0x1: Binning in x, not y  
0x2: Binning in y, not x  
0x3: Binning in x an y  
[14]  
[15]  
reserved  
0x0  
0x0  
0
0
1
1
Reserved  
reserved  
Reserved  
3
4
5
195  
196  
197  
roi_active0_0  
roi_active0  
0x0001  
0x01  
Active ROI Selection  
RW  
RW  
RW  
[15:0]  
Active ROI Selection  
[0] Roi0 Active  
[1] Roi1 Active  
...  
[15] Roi15 Active  
roi_active1_0  
roi_active1_0  
0x0000  
0x0000  
0
0
Active ROI Selection  
[15:0]  
Active ROI Selection  
[0] Roi16 Active  
[1] Roi17 Active  
...  
[15] Roi31 Active  
black_lines  
black_lines  
0x0102  
0x02  
258  
2
Black Line Configuration  
[7:0]  
Number of black lines.  
Minimum is 1.  
Range 1−255  
[12:8]  
gate_first_line  
0x1  
1
Blank out first lines  
0: no blank  
1−31: blank 1−31 lines  
6
7
198  
199  
reserved  
0x0000  
0x000  
0
0
1
Reserved  
Reserved  
RW  
RW  
[11:0]  
[15:0]  
reserved  
mult_timer0  
0x0001  
Exposure/Frame Rate  
Configuration  
mult_timer0  
0x0001  
1
Mult Timer  
Defines granularity (unit  
= 1/PLL clock) of  
exposure and re-  
set_length  
8
200  
fr_length0  
fr_length0  
0x0000  
0x0000  
0
0
Exposure/Frame Rate  
Configuration  
RW  
[15:0]  
Frame/Reset length  
Reset length when  
fr_mode = ’0’, Frame  
Length when fr_mode =  
’1’  
Granularity defined by  
mult_timer  
9
201  
exposure0  
exposure0  
0x0000  
0x0000  
0
0
Exposure/Frame Rate  
Configuration  
RW  
[15:0]  
Exposure Time  
Granularity defined by  
mult_timer  
10  
11  
12  
202  
203  
204  
reserved  
0x0000  
0x0000  
0x0000  
0x0000  
0x01E3  
0
0
Reserved  
RW  
RW  
RW  
[15:0]  
[15:0]  
reserved  
Reserved  
reserved  
0
Reserved  
reserved  
0
Reserved  
gain_configuration0  
483  
Gain Configuration  
www.onsemi.com  
61  
NOIP1SN025KA, NOIP1SN016KA, NOIP1SN012KA, NOIP1SN010KA  
Table 30. REGISTER MAP  
Block  
Offset  
Address  
Offset  
Bit  
Field  
Default  
(Hex)  
Category  
Address  
Register Name  
mux_gainsw0  
reserved  
Default  
Description  
Column Gain Setting  
Reserved  
Type  
[4:0]  
[12:5]  
[13]  
0x03  
0xF  
0x0  
3
15  
0
gain_lat_comp  
Postpone gain update by  
1 frame when ’1’ to  
compensate for expo-  
sure time updates laten-  
cy.  
Gain is applied at start of  
next frame if ’0’  
13  
14  
205  
206  
digital_gain_con-  
figuration0  
0x0080  
128  
Gain Configuration  
RW  
RW  
[11:0]  
db_gain0  
0x080  
128  
895  
Digital Gain  
sync_configuration  
0x037F  
Synchronization  
Configuration  
[0]  
[1]  
[2]  
[3]  
[4]  
sync_rs_x_length  
sync_black_lines  
sync_dummy_lines  
sync_exposure  
sync_gain  
0x1  
0x1  
0x1  
0x1  
0x1  
1
1
1
1
1
Update of rs_x_length  
will not be sync’ed at  
start of frame when ’0’  
Update of black_lines  
will not be sync’ed at  
start of frame when ’0’  
Update of dummy_lines  
will not be sync’ed at  
start of frame when ’0’  
Update of exposure will  
not be sync’ed at start of  
frame when ’0’  
Update of gain settings  
(gain_sw, afe_gain) will  
not be sync’ed at start of  
frame when ’0’  
[5]  
[6]  
sync_roi  
0x1  
0x1  
1
1
Update of roi updates  
(active_roi) will not be  
sync’ed at start of frame  
when ’0’  
sync_ref_lines  
Update of ref_lines will  
not be sync’ed at start of  
frame when ’0’  
[8]  
[9]  
blank_roi_switch  
0x1  
0x1  
1
1
Blank first frame after  
ROI switching  
blank_subsam-  
pling_ss  
Blank first frame after  
subsampling/binning  
mode switching  
’0’: No blanking  
’1’: Blanking  
[10]  
exposure_sync_mode  
0x0  
0
When ’0’, exposure con-  
figurations are sync’ed at  
the start of FOT. When  
’1’, exposure configura-  
tions sync is disabled  
(continuously syncing).  
This mode is only rele-  
vant for Triggered −  
master mode, where the  
exposure configurations  
are sync’ed at the start  
of exposure rather than  
the start of FOT. For all  
other modes it should be  
set to ’0’.  
Note: Sync is still post-  
poned if sync_expo-  
sure=’0’.  
15  
16  
207  
208  
ref_lines  
ref_lines  
0x0000  
0x00  
0
0
Reference Line Configu-  
ration  
RW  
RW  
[7:0]  
Number of Reference  
Lines  
0−255  
reserved  
0x4F00  
20224  
Reserved  
www.onsemi.com  
62  
NOIP1SN025KA, NOIP1SN016KA, NOIP1SN012KA, NOIP1SN010KA  
Table 30. REGISTER MAP  
Block  
Offset  
Address  
Offset  
Bit  
Field  
Default  
(Hex)  
Category  
Address  
Register Name  
reserved  
Default  
Description  
Reserved  
Type  
[7:0]  
0x00  
0x4F  
0x0E5B  
0x1  
0
[15:8]  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
79  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
19  
211  
3675  
RW  
[0]  
[1]  
1
0x1  
1
[2]  
0x0  
0
[3]  
0x1  
1
[6:4]  
[15:8]  
0x5  
5
0xE  
14  
20  
212  
0x0000  
0x0000  
0x0  
0
RW  
[12:0]  
[15]  
0
0
21  
22  
213  
214  
0x13FF  
0x13FF  
0x0000  
0x00  
0x0  
5119  
RW  
RW  
[12:0]  
5119  
0
[7:0]  
0
[15:8]  
0
23  
215  
0x0103  
0x1  
259  
RW  
[0]  
[1]  
1
0x1  
1
[2]  
0x0  
0
[3]  
0x0  
0
[4]  
0x0  
0
[5]  
0x0  
0
[6]  
0x0  
0
0
[7]  
0x0  
[8]  
0x1  
1
[9]  
0x0  
0
[10]  
[11]  
[12]  
[13]  
[14]  
0x0  
0
0x0  
0
0x0  
0
0x0  
0
0x0  
0
24  
25  
26  
27  
28  
216  
217  
218  
219  
220  
0x7F08  
0x08  
0x7F  
0x4444  
0x44  
0x44  
0x4444  
0x44  
0x44  
0x0016  
0x016  
0x00  
0x301F  
0x1F  
0x30  
32520  
8
RW  
RW  
RW  
RW  
RW  
[6:0]  
[14:8]  
127  
17476  
68  
68  
17476  
68  
68  
22  
22  
0
[6:0]  
[14:8]  
[6:0]  
[14:8]  
[6:0]  
[14:8]  
12319  
31  
48  
[6:0]  
[14:8]  
www.onsemi.com  
63  
NOIP1SN025KA, NOIP1SN016KA, NOIP1SN012KA, NOIP1SN010KA  
Table 30. REGISTER MAP  
Block  
Offset  
Address  
Offset  
Bit  
Field  
Default  
(Hex)  
Category  
Address  
Register Name  
reserved  
Default  
Description  
Reserved  
Type  
29  
221  
0x6245  
0x45  
0x62  
0x6230  
0x30  
0x62  
0x001A  
0x1A  
0x3E01  
0x1  
25157  
RW  
[6:0]  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
roi_active0_1  
roi_active1  
69  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Active ROI Selection  
[14:8]  
98  
30  
222  
25136  
RW  
[6:0]  
48  
[14:8]  
98  
31  
32  
223  
224  
26  
RW  
RW  
[6:0]  
26  
15873  
[3:0]  
[7:4]  
[8]  
1
0x00  
0x0  
0
0
[9]  
0x1  
1
[10]  
[11]  
[12]  
[13]  
0x1  
1
0x1  
1
0x1  
1
0x1  
1
33  
34  
35  
225  
226  
227  
0x5EF1  
0x11  
0x17  
0x17  
0x0  
24305  
RW  
RW  
RW  
[4:0]  
[9:5]  
17  
23  
[14:10]  
[15]  
23  
0
0x6000  
0x00  
0x00  
0x18  
0x0  
24576  
[4:0]  
[9:5]  
0
0
[14:10]  
[15]  
24  
0
0x0000  
0x0  
0
[0]  
[1]  
[2]  
[3]  
[4]  
0
0x0  
0
0x0  
0
0x0  
0
0x0  
0
36  
37  
38  
39  
228  
229  
230  
231  
0x0001  
0x01  
1
RW  
RW  
RW  
RW  
[7:0]  
1
Active ROI Selection  
[0] Roi0 Active  
[1] Roi1 Active  
...  
[15] Roi15 Active  
roi_active1_1  
roi_active1_1  
0x0000  
0x0000  
0
0
Active ROI Selection  
[15:0]  
Active ROI Selection  
[0] Roi16 Active  
[1] Roi17 Active  
...  
[15] Roi31 Active  
mult_timer1  
mult_timer1  
0x0001  
0x0001  
1
1
Exposure/Frame Rate  
Configuration  
[15:0]  
Mult Timer  
Defines granularity (unit  
= 1/PLL clock) of expo-  
sure and reset_length  
fr_length1  
0x0000  
0
Exposure/Frame Rate  
Configuration  
www.onsemi.com  
64  
NOIP1SN025KA, NOIP1SN016KA, NOIP1SN012KA, NOIP1SN010KA  
Table 30. REGISTER MAP  
Block  
Offset  
Address  
Offset  
Bit  
Field  
Default  
(Hex)  
Category  
Address  
Register Name  
fr_length1  
Default  
Description  
Type  
[15:0]  
0x0000  
0
Frame/Reset length  
Reset length when  
fr_mode = ’0’, Frame  
Length when fr_mode =  
’1’  
Granularity defined by  
mult_timer  
40  
232  
exposure1  
exposure1  
0x0000  
0x0000  
0
0
Exposure/Frame Rate  
Configuration  
RW  
[15:0]  
Exposure Time  
Granularity defined by  
mult_timer  
41  
42  
43  
233  
234  
235  
reserved  
0x0000  
0x0000  
0x0000  
0x0000  
0x01E3  
0x03  
0
0
Reserved  
RW  
RW  
RW  
[15:0]  
[15:0]  
reserved  
Reserved  
reserved  
0
Reserved  
reserved  
0
Reserved  
gain_configuration1  
mux_gainsw1  
afe_gain1  
483  
3
Gain Configuration  
Column Gain Setting  
[4:0]  
[12:5]  
0xF  
15  
AFE Programmable  
Gain Setting  
44  
236  
digital_gain_con-  
figuration1  
0x0080  
128  
Gain Configuration  
RW  
[11:0]  
[15:0]  
[15:0]  
[15:0]  
db_gain1  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
x_resolution  
0x080  
0x0000  
0x0000  
0xFFFF  
0xFFFF  
0x0000  
0x0  
128  
Digital Gain  
Reserved  
45  
46  
47  
48  
237  
238  
239  
240  
0
RW  
RW  
0
65535  
65535  
0
Reserved  
Reserved  
Reserved  
Reserved  
RW  
0
Reserved  
0x0050  
[0x0042,  
0x0042,  
0x003E]  
80  
[66, 66,  
62]  
Sequencer Status  
Status  
[7:0]  
[12:0]  
[15:0]  
x_resolution  
0x0050  
[0x0042,  
0x0042,  
0x003E]  
80  
[66, 66,  
62]  
Sensor x Resolution  
49  
50  
241  
242  
y_resolution  
y_resolution  
0x1400  
5120  
Sequencer Status  
Sequencer Status  
Status  
Status  
0x1400  
[0x1010,  
0x0C10,  
0x0B60]  
5120  
[4112,  
3088,  
2912]  
mult_timer_status  
mult_timer  
0x0000  
0x0000  
0
0
Sequencer Status  
Mult Timer Status  
(Master Global Shutter  
only)  
51  
52  
53  
54  
55  
243  
244  
245  
246  
247  
reset_length_status  
reset_length  
0x0000  
0x0000  
0
0
Sequencer Status  
Status  
Status  
Status  
Status  
Status  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
Current Reset Length  
(not in Slave mode)  
exposure_status  
exposure  
0x0000  
0x0000  
0
0
Sequencer Status  
Current Exposure Time  
(not in Slave mode)  
exposure_ds_status  
exposure_ds  
0x0000  
0x0000  
0
0
Sequencer Status  
Current Exposure Time  
(not in Slave mode)  
exposure_ts_status  
exposure_ts  
0x0000  
0x0000  
0
0
Sequencer Status  
Current Exposure Time  
(not in Slave mode)  
gain_status  
0x0000  
0
Sequencer Status  
www.onsemi.com  
65  
NOIP1SN025KA, NOIP1SN016KA, NOIP1SN012KA, NOIP1SN010KA  
Table 30. REGISTER MAP  
Block  
Offset  
Address  
Offset  
Bit  
Field  
Default  
(Hex)  
Category  
Address  
Register Name  
mux_gainsw  
Default  
Description  
Type  
[4:0]  
0x00  
0
Current Column Gain  
Setting  
[12:5]  
afe_gain  
0x00  
0
Current AFE Program-  
mable Gain  
56  
58  
248  
250  
digital_gain_status  
db_gain  
0x0000  
0x000  
0x0  
0
Sequencer Status  
Digital Gain  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Status  
RW  
[11:0]  
[12]  
0
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
0
[13]  
0x0  
0
0x0423  
0x03  
1059  
[4:0]  
[9:5]  
3
1
0x01  
[14:10]  
0x01  
1
59  
60  
61  
251  
252  
253  
0x030F  
0xF  
783  
15  
3
RW  
RW  
RW  
[7:0]  
[15:8]  
0x3  
0x0601  
0x1  
1537  
1
[7:0]  
[15:8]  
0x6  
6
0x0000  
0x00  
0
[7:0]  
0
[15:8]  
0x00  
0
62  
63  
254  
255  
0x0000  
0x0000  
0x0000  
0x0000  
0
RW  
RW  
[12:0]  
[12:0]  
0
0
0
Sequencer  
ROI  
256  
0
256  
roi0_configuration0  
x_start  
0x4F00  
0x00  
20224  
0
ROI Configuration  
X Start Configuration  
X End Configuration  
ROI Configuration  
Y Start Configuration  
ROI Configuration  
Y End Configuration  
ROI Configuration  
X Start Configuration  
X End Configuration  
ROI Configuration  
Y Start Configuration  
ROI Configuration  
Y End Configuration  
ROI Configuration  
X Start Configuration  
X End Configuration  
ROI Configuration  
Y Start Configuration  
ROI Configuration  
Y End Configuration  
ROI Configuration  
RW  
[7:0]  
[15:8]  
x_end  
0x4F  
79  
1
2
3
257  
258  
259  
roi0_configuration1  
y_start  
0x0000  
0x0000  
0x13FF  
0x13FF  
0x4F00  
0x00  
0
RW  
RW  
RW  
[12:0]  
[12:0]  
0
roi0_configuration2  
y_end  
5119  
5119  
20224  
0
roi1_configuration0  
x_start  
[7:0]  
[15:8]  
x_end  
0x4F  
79  
4
5
6
260  
261  
262  
roi1_configuration1  
y_start  
0x0000  
0x0000  
0x13FF  
0x13FF  
0x4F00  
0x00  
0
RW  
RW  
RW  
[12:0]  
[12:0]  
0
roi1_configuration2  
y_end  
5119  
5119  
20224  
0
roi2_configuration0  
x_start  
[7:0]  
[15:8]  
x_end  
0x4F  
79  
7
8
9
263  
264  
265  
roi2_configuration1  
y_start  
0x0000  
0x0000  
0x13FF  
0x13FF  
0x4F00  
0
RW  
RW  
RW  
[12:0]  
[12:0]  
0
roi2_configuration2  
y_end  
5119  
5119  
20224  
roi3_configuration0  
www.onsemi.com  
66  
NOIP1SN025KA, NOIP1SN016KA, NOIP1SN012KA, NOIP1SN010KA  
Table 30. REGISTER MAP  
Block  
Offset  
Address  
Offset  
Bit  
Field  
Default  
(Hex)  
Category  
Address  
Register Name  
x_start  
Default  
0
Description  
X Start Configuration  
X End Configuration  
ROI Configuration  
Y Start Configuration  
ROI Configuration  
Y End Configuration  
ROI Configuration  
X Start Configuration  
X End Configuration  
ROI Configuration  
Y Start Configuration  
ROI Configuration  
Y End Configuration  
ROI Configuration  
X Start Configuration  
X End Configuration  
ROI Configuration  
Y Start Configuration  
ROI Configuration  
Y End Configuration  
ROI Configuration  
X Start Configuration  
X End Configuration  
ROI Configuration  
Y Start Configuration  
ROI Configuration  
Y End Configuration  
ROI Configuration  
X Start Configuration  
X End Configuration  
ROI Configuration  
Y Start Configuration  
ROI Configuration  
Y End Configuration  
ROI Configuration  
X Start Configuration  
X End Configuration  
ROI Configuration  
Y Start Configuration  
ROI Configuration  
Y End Configuration  
ROI Configuration  
X Start Configuration  
X End Configuration  
ROI Configuration  
Y Start Configuration  
ROI Configuration  
Y End Configuration  
Type  
[7:0]  
0x00  
0x4F  
[15:8]  
x_end  
79  
10  
11  
12  
266  
267  
268  
roi3_configuration1  
y_start  
0x0000  
0x0000  
0x13FF  
0x13FF  
0x4F00  
0x00  
0
RW  
RW  
RW  
[12:0]  
[12:0]  
0
roi3_configuration2  
y_end  
5119  
5119  
20224  
0
roi4_configuration0  
x_start  
[7:0]  
[15:8]  
x_end  
0x4F  
79  
13  
14  
15  
269  
270  
271  
roi4_configuration1  
y_start  
0x0000  
0x0000  
0x13FF  
0x13FF  
0x4F00  
0x00  
0
RW  
RW  
RW  
[12:0]  
[12:0]  
0
roi4_configuration2  
y_end  
5119  
5119  
20224  
0
roi5_configuration0  
x_start  
[7:0]  
[15:8]  
x_end  
0x4F  
79  
16  
17  
18  
272  
273  
274  
roi5_configuration1  
y_start  
0x0000  
0x0000  
0x13FF  
0x13FF  
0x4F00  
0x00  
0
RW  
RW  
RW  
[12:0]  
[12:0]  
0
roi5_configuration2  
y_end  
5119  
5119  
20224  
0
roi6_configuration0  
x_start  
[7:0]  
[15:8]  
x_end  
0x4F  
79  
19  
20  
21  
275  
276  
277  
roi6_configuration1  
y_start  
0x0000  
0x0000  
0x13FF  
0x13FF  
0x4F00  
0x00  
0
RW  
RW  
RW  
[12:0]  
[12:0]  
0
roi6_configuration2  
y_end  
5119  
5119  
20224  
0
roi7_configuration0  
x_start  
[7:0]  
[15:8]  
x_end  
0x4F  
79  
22  
23  
24  
278  
279  
280  
roi7_configuration1  
y_start  
0x0000  
0x0000  
0x13FF  
0x13FF  
0x4F00  
0x00  
0
RW  
RW  
RW  
[12:0]  
[12:0]  
0
roi7_configuration2  
y_end  
5119  
5119  
20224  
0
roi8_configuration0  
x_start  
[7:0]  
[15:8]  
x_end  
0x4F  
79  
25  
26  
27  
281  
282  
283  
roi8_configuration1  
y_start  
0x0000  
0x0000  
0x13FF  
0x13FF  
0x4F00  
0x00  
0
RW  
RW  
RW  
[12:0]  
[12:0]  
0
roi8_configuration2  
y_end  
5119  
5119  
20224  
0
roi9_configuration0  
x_start  
[7:0]  
[15:8]  
x_end  
0x4F  
79  
28  
29  
284  
285  
roi9_configuration1  
y_start  
0x0000  
0x0000  
0x13FF  
0x13FF  
0
RW  
RW  
[12:0]  
[12:0]  
0
roi9_configuration2  
y_end  
5119  
5119  
www.onsemi.com  
67  
NOIP1SN025KA, NOIP1SN016KA, NOIP1SN012KA, NOIP1SN010KA  
Table 30. REGISTER MAP  
Block  
Offset  
Address  
Offset  
Bit  
Field  
Default  
(Hex)  
Category  
Address  
Register Name  
roi10_configuration0  
x_start  
Default  
20224  
0
Description  
ROI Configuration  
X Start Configuration  
X End Configuration  
ROI Configuration  
Y Start Configuration  
ROI Configuration  
Y End Configuration  
ROI Configuration  
X Start Configuration  
X End Configuration  
ROI Configuration  
Y Start Configuration  
ROI Configuration  
Y End Configuration  
ROI Configuration  
X Start Configuration  
X End Configuration  
ROI Configuration  
Y Start Configuration  
ROI Configuration  
Y End Configuration  
ROI Configuration  
X Start Configuration  
X End Configuration  
ROI Configuration  
Y Start Configuration  
ROI Configuration  
Y End Configuration  
ROI Configuration  
X Start Configuration  
X End Configuration  
ROI Configuration  
Y Start Configuration  
ROI Configuration  
Y End Configuration  
ROI Configuration  
X Start Configuration  
X End Configuration  
ROI Configuration  
Y Start Configuration  
ROI Configuration  
Y End Configuration  
ROI Configuration  
X Start Configuration  
X End Configuration  
ROI Configuration  
Y Start Configuration  
ROI Configuration  
Type  
30  
286  
0x4F00  
0x00  
RW  
[7:0]  
[15:8]  
x_end  
0x4F  
79  
31  
32  
33  
287  
288  
289  
roi10_configuration1  
y_start  
0x0000  
0x0000  
0x13FF  
0x13FF  
0x4F00  
0x00  
0
RW  
RW  
RW  
[12:0]  
[12:0]  
0
roi10_configuration2  
y_end  
5119  
5119  
20224  
0
roi11_configuration0  
x_start  
[7:0]  
[15:8]  
x_end  
0x4F  
79  
34  
35  
36  
290  
291  
292  
roi11_configuration1  
y_start  
0x0000  
0x0000  
0x13FF  
0x13FF  
0x4F00  
0x00  
0
RW  
RW  
RW  
[12:0]  
[12:0]  
0
roi11_configuration2  
y_end  
5119  
5119  
20224  
0
roi12_configuration0  
x_start  
[7:0]  
[15:8]  
x_end  
0x4F  
79  
37  
38  
39  
293  
294  
295  
roi12_configuration1  
y_start  
0x0000  
0x0000  
0x13FF  
0x13FF  
0x4F00  
0x00  
0
RW  
RW  
RW  
[12:0]  
[12:0]  
0
roi12_configuration2  
y_end  
5119  
5119  
20224  
0
roi13_configuration0  
x_start  
[7:0]  
[15:8]  
x_end  
0x4F  
79  
40  
41  
42  
296  
297  
298  
roi13_configuration1  
y_start  
0x0000  
0x0000  
0x13FF  
0x13FF  
0x4F00  
0x00  
0
RW  
RW  
RW  
[12:0]  
[12:0]  
0
roi13_configuration2  
y_end  
5119  
5119  
20224  
0
roi14_configuration0  
x_start  
[7:0]  
[15:8]  
x_end  
0x4F  
79  
43  
44  
45  
299  
300  
301  
roi14_configuration1  
y_start  
0x0000  
0x0000  
0x13FF  
0x13FF  
0x4F00  
0x00  
0
RW  
RW  
RW  
[12:0]  
[12:0]  
0
roi14_configuration2  
y_end  
5119  
5119  
20224  
0
roi15_configuration0  
x_start  
[7:0]  
[15:8]  
x_end  
0x4F  
79  
46  
47  
48  
302  
303  
304  
roi15_configuration1  
y_start  
0x0000  
0x0000  
0x13FF  
0x13FF  
0x4F00  
0x00  
0
RW  
RW  
RW  
[12:0]  
[12:0]  
0
roi15_configuration2  
y_end  
5119  
5119  
20224  
0
roi16_configuration0  
x_start  
[7:0]  
[15:8]  
x_end  
0x4F  
79  
49  
50  
305  
306  
roi16_configuration1  
y_start  
0x0000  
0x0000  
0x13FF  
0
RW  
RW  
[12:0]  
0
roi16_configuration2  
5119  
www.onsemi.com  
68  
NOIP1SN025KA, NOIP1SN016KA, NOIP1SN012KA, NOIP1SN010KA  
Table 30. REGISTER MAP  
Block  
Offset  
Address  
Offset  
Bit  
Field  
Default  
(Hex)  
Category  
Address  
Register Name  
y_end  
Default  
5119  
20224  
0
Description  
Y End Configuration  
ROI Configuration  
X Start Configuration  
X End Configuration  
ROI Configuration  
Y Start Configuration  
ROI Configuration  
Y End Configuration  
ROI Configuration  
X Start Configuration  
X End Configuration  
ROI Configuration  
Y Start Configuration  
ROI Configuration  
Y End Configuration  
ROI Configuration  
X Start Configuration  
X End Configuration  
ROI Configuration  
Y Start Configuration  
ROI Configuration  
Y End Configuration  
ROI Configuration  
X Start Configuration  
X End Configuration  
ROI Configuration  
Y Start Configuration  
ROI Configuration  
Y End Configuration  
ROI Configuration  
X Start Configuration  
X End Configuration  
ROI Configuration  
Y Start Configuration  
ROI Configuration  
Y End Configuration  
ROI Configuration  
X Start Configuration  
X End Configuration  
ROI Configuration  
Y Start Configuration  
ROI Configuration  
Y End Configuration  
ROI Configuration  
X Start Configuration  
X End Configuration  
ROI Configuration  
Y Start Configuration  
Type  
[12:0]  
0x13FF  
0x4F00  
0x00  
51  
307  
roi17_configuration0  
x_start  
RW  
[7:0]  
[15:8]  
x_end  
0x4F  
79  
52  
53  
54  
308  
309  
310  
roi17_configuration1  
y_start  
0x0000  
0x0000  
0x13FF  
0x13FF  
0x4F00  
0x00  
0
RW  
RW  
RW  
[12:0]  
[12:0]  
0
roi17_configuration2  
y_end  
5119  
5119  
20224  
0
roi18_configuration0  
x_start  
[7:0]  
[15:8]  
x_end  
0x4F  
79  
55  
56  
57  
311  
312  
313  
roi18_configuration1  
y_start  
0x0000  
0x0000  
0x13FF  
0x13FF  
0x4F00  
0x00  
0
RW  
RW  
RW  
[12:0]  
[12:0]  
0
roi18_configuration2  
y_end  
5119  
5119  
20224  
0
roi19_configuration0  
x_start  
[7:0]  
[15:8]  
x_end  
0x4F  
79  
58  
59  
60  
314  
315  
316  
roi19_configuration1  
y_start  
0x0000  
0x0000  
0x13FF  
0x13FF  
0x4F00  
0x00  
0
RW  
RW  
RW  
[12:0]  
[12:0]  
0
roi19_configuration2  
y_end  
5119  
5119  
20224  
0
roi20_configuration0  
x_start  
[7:0]  
[15:8]  
x_end  
0x4F  
79  
61  
62  
63  
317  
318  
319  
roi20_configuration1  
y_start  
0x0000  
0x0000  
0x13FF  
0x13FF  
0x4F00  
0x00  
0
RW  
RW  
RW  
[12:0]  
[12:0]  
0
roi20_configuration2  
y_end  
5119  
5119  
20224  
0
roi21_configuration0  
x_start  
[7:0]  
[15:8]  
x_end  
0x4F  
79  
64  
65  
66  
320  
321  
322  
roi21_configuration1  
y_start  
0x0000  
0x0000  
0x13FF  
0x13FF  
0x4F00  
0x00  
0
RW  
RW  
RW  
[12:0]  
[12:0]  
0
roi21_configuration2  
y_end  
5119  
5119  
20224  
0
roi22_configuration0  
x_start  
[7:0]  
[15:8]  
x_end  
0x4F  
79  
67  
68  
69  
323  
324  
325  
roi22_configuration1  
y_start  
0x0000  
0x0000  
0x13FF  
0x13FF  
0x4F00  
0x00  
0
RW  
RW  
RW  
[12:0]  
[12:0]  
0
roi22_configuration2  
y_end  
5119  
5119  
20224  
0
roi23_configuration0  
x_start  
[7:0]  
[15:8]  
x_end  
0x4F  
79  
70  
326  
roi23_configuration1  
y_start  
0x0000  
0x0000  
0
RW  
[12:0]  
0
www.onsemi.com  
69  
NOIP1SN025KA, NOIP1SN016KA, NOIP1SN012KA, NOIP1SN010KA  
Table 30. REGISTER MAP  
Block  
Offset  
Address  
Offset  
Bit  
Field  
Default  
(Hex)  
Category  
Address  
Register Name  
roi23_configuration2  
y_end  
Default  
5119  
5119  
20224  
0
Description  
ROI Configuration  
Y End Configuration  
ROI Configuration  
X Start Configuration  
X End Configuration  
ROI Configuration  
Y Start Configuration  
ROI Configuration  
Y End Configuration  
ROI Configuration  
X Start Configuration  
X End Configuration  
ROI Configuration  
Y Start Configuration  
ROI Configuration  
Y End Configuration  
ROI Configuration  
X Start Configuration  
X End Configuration  
ROI Configuration  
Y Start Configuration  
ROI Configuration  
Y End Configuration  
ROI Configuration  
X Start Configuration  
X End Configuration  
ROI Configuration  
Y Start Configuration  
ROI Configuration  
Y End Configuration  
ROI Configuration  
X Start Configuration  
X End Configuration  
ROI Configuration  
Y Start Configuration  
ROI Configuration  
Y End Configuration  
ROI Configuration  
X Start Configuration  
X End Configuration  
ROI Configuration  
Y Start Configuration  
ROI Configuration  
Y End Configuration  
ROI Configuration  
X Start Configuration  
X End Configuration  
ROI Configuration  
Type  
71  
327  
0x13FF  
0x13FF  
0x4F00  
0x00  
RW  
[12:0]  
72  
328  
roi24_configuration0  
x_start  
RW  
[7:0]  
[15:8]  
x_end  
0x4F  
79  
73  
74  
75  
329  
330  
331  
roi24_configuration1  
y_start  
0x0000  
0x0000  
0x13FF  
0x13FF  
0x4F00  
0x00  
0
RW  
RW  
RW  
[12:0]  
[12:0]  
0
roi24_configuration2  
y_end  
5119  
5119  
20224  
0
roi25_configuration0  
x_start  
[7:0]  
[15:8]  
x_end  
0x4F  
79  
76  
77  
78  
332  
333  
334  
roi25_configuration1  
y_start  
0x0000  
0x0000  
0x13FF  
0x13FF  
0x4F00  
0x00  
0
RW  
RW  
RW  
[12:0]  
[12:0]  
0
roi25_configuration2  
y_end  
5119  
5119  
20224  
0
roi26_configuration0  
x_start  
[7:0]  
[15:8]  
x_end  
0x4F  
79  
79  
80  
81  
335  
336  
337  
roi26_configuration1  
y_start  
0x0000  
0x0000  
0x13FF  
0x13FF  
0x4F00  
0x00  
0
RW  
RW  
RW  
[12:0]  
[12:0]  
0
roi26_configuration2  
y_end  
5119  
5119  
20224  
0
roi27_configuration0  
x_start  
[7:0]  
[15:8]  
x_end  
0x4F  
79  
82  
83  
84  
338  
339  
340  
roi27_configuration1  
y_start  
0x0000  
0x0000  
0x13FF  
0x13FF  
0x4F00  
0x00  
0
RW  
RW  
RW  
[12:0]  
[12:0]  
0
roi27_configuration2  
y_end  
5119  
5119  
20224  
0
roi28_configuration0  
x_start  
[7:0]  
[15:8]  
x_end  
0x4F  
79  
85  
86  
87  
341  
342  
343  
roi28_configuration1  
y_start  
0x0000  
0x0000  
0x13FF  
0x13FF  
0x4F00  
0x00  
0
RW  
RW  
RW  
[12:0]  
[12:0]  
0
roi28_configuration2  
y_end  
5119  
5119  
20224  
0
roi29_configuration0  
x_start  
[7:0]  
[15:8]  
x_end  
0x4F  
79  
88  
89  
90  
344  
345  
346  
roi29_configuration1  
y_start  
0x0000  
0x0000  
0x13FF  
0x13FF  
0x4F00  
0x00  
0
RW  
RW  
RW  
[12:0]  
[12:0]  
0
roi29_configuration2  
y_end  
5119  
5119  
20224  
0
roi30_configuration0  
x_start  
[7:0]  
[15:8]  
x_end  
0x4F  
79  
91  
347  
roi30_configuration1  
0x0000  
0
RW  
www.onsemi.com  
70  
NOIP1SN025KA, NOIP1SN016KA, NOIP1SN012KA, NOIP1SN010KA  
Table 30. REGISTER MAP  
Block  
Offset  
Address  
Offset  
Bit  
Field  
Default  
(Hex)  
Category  
Address  
348  
Register Name  
y_start  
Default  
0
Description  
Y Start Configuration  
ROI Configuration  
Y End Configuration  
ROI Configuration  
X Start Configuration  
X End Configuration  
ROI Configuration  
Y Start Configuration  
ROI Configuration  
Y End Configuration  
Type  
RW  
[12:0]  
[12:0]  
0x0000  
0x13FF  
0x13FF  
0x4F00  
0x00  
92  
93  
roi30_configuration2  
y_end  
5119  
5119  
20224  
0
349  
roi31_configuration0  
x_start  
RW  
[7:0]  
[15:8]  
x_end  
0x4F  
79  
94  
95  
350  
351  
roi31_configuration1  
y_start  
0x0000  
0x0000  
0x13FF  
0x13FF  
0
RW  
RW  
[12:0]  
[12:0]  
0
roi31_configuration2  
y_end  
5119  
5119  
384  
0
384  
reserved  
reserved  
Reserved  
Reserved  
RW  
[15:0]  
127  
511  
Reserved  
Reserved  
[15:0]  
reserved  
www.onsemi.com  
71  
NOIP1SN025KA, NOIP1SN016KA, NOIP1SN012KA, NOIP1SN010KA  
PACKAGE INFORMATION  
Pin Description  
Refer to Electrical Specifications on page 4 for power supplies and references. The CMOS IO follow the JEDEC Standard  
(JEDEC−JESD8C−01).  
Table 31. PIN DESCRIPTION  
Pin No.  
A01  
A02  
A03  
A04  
A05  
A06  
A07  
A08  
A09  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
A21  
A22  
A23  
A24  
A25  
B01  
B02  
B03  
B04  
B05  
B06  
B07  
B08  
B09  
B10  
B11  
B12  
B13  
Name  
vddd_18  
Type  
Supply  
Analog  
CMOS  
Ground  
Ground  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
Analog  
CMOS  
Ground  
LVDS  
Direction  
Description  
Digital supply - 1.8 V domain  
mbs2_out  
adc_dout1  
gnd_colbias  
gnd_colbias  
vdda_33  
vdda_33  
vdda_33  
vdda_33  
vdda_33  
vdda_33  
vdda_33  
vdda_33  
vdda_33  
vdda_33  
vdda_33  
vdda_33  
vdda_33  
vdda_33  
vdda_33  
vdda_33  
vdda_33  
vdda_33  
vddd_18  
vddd_18  
vddd_33  
ibias_master  
adc_dout2  
gnd_colbias  
doutn30  
Out  
Out  
For test purposes only. Do not connect  
For test purposes only. Do not connect  
Column biasing ground - Connect to ground  
Column biasing ground - Connect to ground  
Analog supply - 3.3 V domain  
Analog supply - 3.3 V domain  
Analog supply - 3.3 V domain  
Analog supply - 3.3 V domain  
Analog supply - 3.3 V domain  
Analog supply - 3.3 V domain  
Analog supply - 3.3 V domain  
Analog supply - 3.3 V domain  
Analog supply - 3.3 V domain  
Analog supply - 3.3 V domain  
Analog supply - 3.3 V domain  
Analog supply - 3.3 V domain  
Analog supply - 3.3 V domain  
Analog supply - 3.3 V domain  
Analog supply - 3.3 V domain  
Analog supply - 3.3 V domain  
Analog supply - 3.3 V domain  
Analog supply - 3.3 V domain  
Digital supply - 1.8 V domain  
Digital supply - 1.8 V domain  
Digital supply - 3.3 V domain  
In/Out  
Out  
Bias reference - Connect with 47 kW to ibias_out  
For test purposes only. Do not connect  
Column biasing ground - Connect to ground  
LVDS data out negative - Channel 30  
LVDS data out positive - Channel 28  
LVDS data out negative - Channel 27  
LVDS data out negative - Channel 25  
LVDS data out negative - Channel 23  
LVDS data out negative - Channel 21  
LVDS data out negative - Channel 19  
LVDS data out positive - Channel 17  
LVDS data out negative - Channel 16  
Out  
Out  
Out  
Out  
Out  
Out  
Out  
Out  
Out  
doutp28  
LVDS  
doutn27  
LVDS  
doutn25  
LVDS  
doutn23  
LVDS  
doutn21  
LVDS  
doutn19  
LVDS  
doutp17  
LVDS  
doutn16  
LVDS  
www.onsemi.com  
72  
 
NOIP1SN025KA, NOIP1SN016KA, NOIP1SN012KA, NOIP1SN010KA  
Table 31. PIN DESCRIPTION  
Pin No.  
B14  
B15  
B16  
B17  
B18  
B19  
B20  
B21  
B22  
B23  
B24  
B25  
C01  
C02  
Name  
doutn14  
Type  
LVDS  
LVDS  
LVDS  
LVDS  
LVDS  
LVDS  
LVDS  
LVDS  
Ground  
LVDS  
LVDS  
Supply  
Supply  
Analog  
Direction  
Out  
Description  
LVDS data out negative - Channel 14  
LVDS data out positive - Channel 12  
LVDS data out positive - Channel 10  
LVDS data out positive - Channel 8  
LVDS data out positive - Channel 6  
LVDS data out positive - Channel 4  
LVDS data out negative - Channel 3  
LVDS data out positive - Channel 1  
Column biasing ground - Connect to ground  
LVDS clock in positive  
doutp12  
doutp10  
doutp8  
Out  
Out  
Out  
doutp6  
Out  
doutp4  
Out  
doutn3  
Out  
doutp1  
Out  
gnd_colbias  
clock_inp  
clock_inn  
vddd_33  
vddd_33  
ibias_out  
In  
In  
LVDS clock in negative  
Digital supply - 3.3 V domain  
Digital supply - 3.3 V domain  
In/Out  
Out  
Bias ground reference - Connect with 47 kW to  
ibias_master  
C03  
C04  
C05  
C06  
C07  
C08  
C09  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
C18  
C19  
C20  
C21  
C22  
C23  
C24  
C25  
D01  
D02  
D03  
D04  
adc_dout9  
gnd_colbias  
doutp30  
CMOS  
Ground  
LVDS  
LVDS  
LVDS  
LVDS  
LVDS  
LVDS  
LVDS  
LVDS  
LVDS  
LVDS  
LVDS  
LVDS  
LVDS  
LVDS  
LVDS  
LVDS  
LVDS  
Ground  
Ground  
Ground  
Supply  
Analog  
CMOS  
CMOS  
Ground  
For test purposes only. Do not connect  
Column biasing ground - Connect to ground  
LVDS data out positive - Channel 30  
LVDS data out negative - Channel 28  
LVDS data out positive - Channel 27  
LVDS data out positive - Channel 25  
LVDS data out positive - Channel 23  
LVDS data out positive - Channel 21  
LVDS data out positive - Channel 19  
LVDS data out negative - Channel 17  
LVDS data out positive - Channel 16  
LVDS data out positive - Channel 14  
LVDS data out negative - Channel 12  
LVDS data out negative - Channel 10  
LVDS data out negative - Channel 8  
LVDS data out negative - Channel 6  
LVDS data out negative - Channel 4  
LVDS data out positive - Channel 3  
LVDS data out negative - Channel 1  
Column biasing ground - Connect to ground  
Column biasing ground - Connect to ground  
Column biasing ground - Connect to ground  
Digital supply - 3.3 V domain  
Out  
Out  
Out  
Out  
Out  
Out  
Out  
Out  
Out  
Out  
Out  
Out  
Out  
Out  
Out  
Out  
Out  
doutn28  
doutp27  
doutp25  
doutp23  
doutp21  
doutp19  
doutn17  
doutp16  
doutp14  
doutn12  
doutn10  
doutn8  
doutn6  
doutn4  
doutp3  
doutn1  
gnd_colbias  
gnd_colbias  
gnd_colbias  
vddd_33  
mbs1_out  
adc_dout5  
adc_dout10  
gnd_colbias  
Out  
Out  
Out  
For test purposes only. Do not connect  
For test purposes only. Do not connect  
For test purposes only. Do not connect  
Column biasing ground - Connect to ground  
www.onsemi.com  
73  
NOIP1SN025KA, NOIP1SN016KA, NOIP1SN012KA, NOIP1SN010KA  
Table 31. PIN DESCRIPTION  
Pin No.  
D05  
D06  
D07  
D08  
D09  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
D19  
D20  
D21  
D22  
D23  
D24  
D25  
E01  
E02  
E03  
E04  
E05  
E06  
E07  
E08  
E09  
E10  
E11  
E12  
E13  
E14  
E15  
E16  
E17  
E18  
E19  
E20  
E21  
Name  
clock_outp  
Type  
LVDS  
LVDS  
LVDS  
LVDS  
LVDS  
LVDS  
LVDS  
LVDS  
LVDS  
LVDS  
LVDS  
LVDS  
LVDS  
LVDS  
LVDS  
LVDS  
LVDS  
Ground  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
Analog  
Ground  
LVDS  
LVDS  
LVDS  
LVDS  
LVDS  
LVDS  
LVDS  
LVDS  
LVDS  
LVDS  
LVDS  
LVDS  
LVDS  
LVDS  
LVDS  
LVDS  
LVDS  
Direction  
Out  
Out  
Out  
Out  
Out  
Out  
Out  
Out  
Out  
Out  
Out  
Out  
Out  
Out  
Out  
Out  
Out  
Description  
LVDS clock out positive  
doutn31  
doutn29  
doutn26  
doutn24  
doutn22  
doutn20  
doutn18  
doutp15  
doutp13  
doutp11  
doutp9  
LVDS data out negative - Channel 31  
LVDS data out negative - Channel 29  
LVDS data out negative - Channel 26  
LVDS data out negative - Channel 24  
LVDS data out negative - Channel 22  
LVDS data out negative - Channel 20  
LVDS data out negative - Channel 18  
LVDS data out positive - Channel 15  
LVDS data out positive - Channel 13  
LVDS data out positive - Channel 11  
LVDS data out positive - Channel 9  
LVDS data out positive - Channel 7  
LVDS data out positive - Channel 5  
LVDS data out positive - Channel 2  
LVDS data out positive - Channel 0  
LVDS sync positive  
doutp7  
doutp5  
doutp2  
doutp0  
syncp  
gnd_colbias  
miso  
Column biasing ground - Connect to ground  
SPI master in -slave out  
Out  
In  
mosi  
SPI master out - slave in  
ss_n  
In  
SPI slave select (active low)  
adc_dout0  
adc_dout4  
srd2_n  
Out  
Out  
For test purposes only. Do not connect  
For test purposes only. Do not connect  
Not connected  
gnd_colbias  
clock_outn  
doutp31  
doutp29  
doutp26  
doutp24  
doutp22  
doutp20  
doutp18  
doutn15  
doutn13  
doutn11  
doutn9  
Column biasing ground - Connect to ground  
LVDS clock out negative  
Out  
Out  
Out  
Out  
Out  
Out  
Out  
Out  
Out  
Out  
Out  
Out  
Out  
Out  
Out  
Out  
Out  
LVDS data out positive - Channel 31  
LVDS data out positive - Channel 29  
LVDS data out positive - Channel 26  
LVDS data out positive - Channel 24  
LVDS data out positive - Channel 22  
LVDS data out positive - Channel 20  
LVDS data out positive - Channel 18  
LVDS data out negative - Channel 15  
LVDS data out negative - Channel 13  
LVDS data out negative - Channel 11  
LVDS data out negative - Channel 9  
LVDS data out negative - Channel 7  
LVDS data out negative - Channel 5  
LVDS data out negative - Channel 2  
LVDS data out negative - Channel 0  
LVDS sync negative  
doutn7  
doutn5  
doutn2  
doutn0  
syncn  
www.onsemi.com  
74  
NOIP1SN025KA, NOIP1SN016KA, NOIP1SN012KA, NOIP1SN010KA  
Table 31. PIN DESCRIPTION  
Pin No.  
E22  
E23  
E24  
E25  
F01  
F02  
F03  
F04  
F05  
F06  
F07  
F08  
F09  
F10  
F11  
Name  
gnd_colbias  
trigger  
Type  
Direction  
Description  
Column biasing ground - Connect to ground  
Trigger  
Ground  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
Analog  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
CMOS  
CMOS  
In  
In  
sck  
SPI clock  
reset_n  
In  
Active low system reset  
adc_dout3  
adc_dout6  
srd2_nguard  
gnd_colbias  
gnd_colbias  
gnd_colbias  
gnd_colbias  
gnd_colbias  
gnd_colbias  
gnd_colbias  
gnd_colbias  
gnd_colbias  
gnd_colbias  
gnd_colbias  
gnd_colbias  
gnd_colbias  
gnd_colbias  
gnd_colbias  
gnd_colbias  
gnd_colbias  
gnd_colbias  
gnd_colbias  
scan_in2  
Out  
Out  
For test purposes only. Do not connect  
For test purposes only. Do not connect  
Not connected  
Column biasing ground - Connect to ground  
Column biasing ground - Connect to ground  
Column biasing ground - Connect to ground  
Column biasing ground - Connect to ground  
Column biasing ground - Connect to ground  
Column biasing ground - Connect to ground  
Column biasing ground - Connect to ground  
Column biasing ground - Connect to ground  
Column biasing ground - Connect to ground  
Column biasing ground - Connect to ground  
Column biasing ground - Connect to ground  
Column biasing ground - Connect to ground  
Column biasing ground - Connect to ground  
Column biasing ground - Connect to ground  
Column biasing ground - Connect to ground  
Column biasing ground - Connect to ground  
Column biasing ground - Connect to ground  
Column biasing ground - Connect to ground  
Column biasing ground - Connect to ground  
Scan chain input #2 - Connect to ground  
Selects number of output channels  
Selects number of output channels  
For test purposes only. Do not connect  
For test purposes only. Do not connect  
For test purposes only. Do not connect  
Not connected  
F12  
F13  
F14  
F15  
F16  
F17  
F18  
F19  
F20  
F21  
F22  
F23  
F24  
F25  
G01  
G02  
G03  
G04  
G05  
G06  
G07  
G08  
G09  
G10  
G11  
G12  
G13  
In  
In  
muxmode1  
muxmode0  
adc_dout8  
adc_dout7  
afe_clk  
In  
Out  
Out  
Out  
srd1_nguard  
srd1_n  
Not connected  
td_anode  
In/Out  
In/Out  
In  
Temperature diode - Anode  
td_cathode  
mbs3_in  
Temperature diode - Cathode  
Analog test input - Connect to ground  
Analog test input - Connect to ground  
For test purposes only. Do not connect  
For test purposes only. Do not connect  
Digital test input - Connect to ground  
Digital test input - Connect to ground  
mbs4_in  
In  
spare_ana  
spare_ana  
spare_dig_in  
spare_dig_in  
Out  
Out  
In  
In  
www.onsemi.com  
75  
NOIP1SN025KA, NOIP1SN016KA, NOIP1SN012KA, NOIP1SN010KA  
Table 31. PIN DESCRIPTION  
Pin No.  
G14  
G15  
G16  
G17  
G18  
G19  
G20  
G21  
G22  
G23  
G24  
G25  
H21  
H22  
H23  
H24  
H25  
J01  
J02  
J03  
J04  
J05  
J06  
J07  
J08  
J09  
J10  
J11  
Name  
spare_dig_in  
gnd_colbias  
gnd_colbias  
gnd_colbias  
gnd_colbias  
gnd_colbias  
gnd_colbias  
gnd_colbias  
scan_clk  
Type  
Direction  
Description  
Digital test input - Connect to ground  
Column biasing ground - Connect to ground  
Column biasing ground - Connect to ground  
Column biasing ground - Connect to ground  
Column biasing ground - Connect to ground  
Column biasing ground - Connect to ground  
Column biasing ground - Connect to ground  
Column biasing ground - Connect to ground  
Scan chain clock - Connect to ground  
Monitor output #2  
CMOS  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
Analog  
Analog  
Analog  
Analog  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Supply  
Ground  
Ground  
In  
In  
Out  
Out  
Out  
In  
monitor2  
monitor1  
Monitor output #1  
monitor0  
Monitor output #0  
test_enable  
adc_mode  
spare_dig_out  
spare_dig_out  
spare_dig_out  
spare_vref6t_hv  
spare_vref6t_hv  
spare_vref6t_hv  
spare_vref6t_hv  
gndd_33  
Test enable - Connect to ground  
Connect to Gndd_33 (‘0’)  
In  
Not connected  
Not connected  
Not connected  
Not connected  
Not connected  
Not connected  
Not connected  
Digital ground - 3.3 V domain  
Digital ground - 3.3 V domain  
Digital ground - 3.3 V domain  
Digital ground - 3.3 V domain  
Digital ground - 3.3 V domain  
Digital ground - 3.3 V domain  
Digital ground - 3.3 V domain  
Digital ground - 3.3 V domain  
Digital ground - 1.8 V domain  
Digital ground - 1.8 V domain  
Digital ground - 1.8 V domain  
Digital ground - 1.8 V domain  
Digital ground - 1.8 V domain  
Digital ground - 1.8 V domain  
Digital ground - 1.8 V domain  
Digital ground - 1.8 V domain  
Digital ground - 1.8 V domain  
Pixel calibration ground - Connect to ground  
Pixel transfer ground - sinking supply  
Floating diffusion reset ground - Connect to ground  
Floating diffusion reset ground - Connect to ground  
gndd_33  
gndd_33  
gndd_33  
gndd_33  
gndd_33  
gndd_33  
J12  
J13  
J14  
J15  
J16  
J17  
J18  
J19  
J20  
J21  
J22  
J23  
J24  
J25  
gndd_33  
gndd_18  
gndd_18  
gndd_18  
gndd_18  
gndd_18  
gndd_18  
gndd_18  
gndd_18  
gndd_18  
gnd_calib  
gnd_trans  
gnd_resfd  
gnd_resfd  
www.onsemi.com  
76  
NOIP1SN025KA, NOIP1SN016KA, NOIP1SN012KA, NOIP1SN010KA  
Table 31. PIN DESCRIPTION  
Pin No.  
K01  
K02  
K03  
K04  
K05  
K06  
K07  
K08  
K9  
Name  
spare_vref6t  
spare_vref6t  
spare_vref6t  
spare_vref6t  
spare_vref6t  
spare_vref6t  
spare_vref6t  
spare_vref6t  
vdd_pix  
Type  
Direction  
Description  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
Ground  
Ground  
Ground  
Ground  
Supply  
Ground  
Supply  
Ground  
Ground  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
Not connected  
Not connected  
Not connected  
Not connected  
Not connected  
Not connected  
Not connected  
Not connected  
Pixel array supply  
Pixel array supply  
Pixel array supply  
Pixel array supply  
Pixel array supply  
Pixel array supply  
Pixel array supply  
Pixel array supply  
K10  
K11  
K12  
K13  
K14  
K15  
K16  
K17  
K18  
K19  
K20  
K21  
K22  
K23  
K24  
K25  
L01  
L02  
L03  
L04  
L05  
L06  
L07  
L08  
L09  
L10  
L11  
vdd_pix  
vdd_pix  
vdd_pix  
vdd_pix  
vdd_pix  
vdd_pix  
vdd_pix  
gnd_sel  
Pixel select ground - Connect to ground  
Pixel select ground - Connect to ground  
Pixel select ground - Connect to ground  
Pixel select ground - Connect to ground  
Pixel calibration supply  
gnd_sel  
gnd_sel  
gnd_sel  
vdd_calib  
gnd_calib  
gnd_trans  
gnd_resfd  
gnd_resfd  
vref_colmux  
vdd_pix  
Pixel calibration ground - Connect to ground  
Pixel transfer ground - sinking supply  
Floating diffusion reset ground - Connect to ground  
Floating diffusion reset ground - Connect to ground  
Column multiplexer reference supply  
Pixel array supply  
vdd_pix  
Pixel array supply  
vdd_pix  
Pixel array supply  
vdd_pix  
Pixel array supply  
vdd_pix  
Pixel array supply  
vdd_pix  
Pixel array supply  
vdd_pix  
Pixel array supply  
vdd_pix  
Pixel array supply  
vdd_pix  
Pixel array supply  
vdd_pix  
Pixel array supply  
L12  
L13  
L14  
L15  
L16  
L17  
vdd_pix  
Pixel array supply  
vdd_pix  
Pixel array supply  
vdd_pix  
Pixel array supply  
vdd_pix  
Pixel array supply  
vdd_pix  
Pixel array supply  
vdd_casc  
Cascode supply  
www.onsemi.com  
77  
NOIP1SN025KA, NOIP1SN016KA, NOIP1SN012KA, NOIP1SN010KA  
Table 31. PIN DESCRIPTION  
Pin No.  
L18  
Name  
vdd_casc  
Type  
Direction  
Description  
Supply  
Supply  
Supply  
Supply  
Ground  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
Ground  
Supply  
Supply  
Supply  
Supply  
Supply  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Cascode supply  
L19  
vdd_sel  
Pixel select supply  
Pixel select supply  
L20  
vdd_sel  
L21  
vdd_calib  
gnd_calib  
gnd_trans  
vdd_resfd  
vref_colmux  
vref_colmux  
vdd_pix  
Pixel calibration supply  
L22  
Pixel calibration ground - Connect to ground  
Pixel transfer ground - sinking supply  
Floating diffusion reset supply  
Column multiplexer reference supply  
Column multiplexer reference supply  
Pixel array supply  
L23  
L24  
L25  
M01  
M02  
M03  
M04  
M05  
M06  
M07  
M08  
M09  
M10  
M11  
M12  
M13  
M14  
M15  
M16  
M17  
M18  
M19  
M20  
M21  
M22  
M23  
M24  
M25  
N01  
N02  
N03  
N04  
N05  
N06  
N07  
N08  
N09  
vdd_pix  
Pixel array supply  
vdd_pix  
Pixel array supply  
vdd_pix  
Pixel array supply  
vdd_pix  
Pixel array supply  
vdd_pix  
Pixel array supply  
vdd_pix  
Pixel array supply  
vdd_pix  
Pixel array supply  
vdd_pix  
Pixel array supply  
vdd_pix  
Pixel array supply  
vdd_pix  
Pixel array supply  
vdd_pix  
Pixel array supply  
vdd_pix  
Pixel array supply  
vdd_pix  
Pixel array supply  
vdd_pix  
Pixel array supply  
vdd_casc  
vdd_casc  
vdd_sel  
Cascode supply  
Cascode supply  
Pixel select supply  
vdd_sel  
Pixel select supply  
vdd_calib  
gnd_calib  
gnd_trans  
vdd_resfd  
vref_colmux  
vddd_33  
vdd_pix  
Pixel calibration supply  
Pixel calibration ground - Connect to ground  
Pixel transfer ground - sinking supply  
Floating diffusion reset supply  
Column multiplexer reference supply  
Digital supply - 3.3-V domain  
Pixel array supply  
gnd_colpc  
gnd_colpc  
gnd_colpc  
gnd_colpc  
gnd_colpc  
gnd_colpc  
gnd_colpc  
Column precharge ground - Connect to ground  
Column precharge ground - Connect to ground  
Column precharge ground - Connect to ground  
Column precharge ground - Connect to ground  
Column precharge ground - Connect to ground  
Column precharge ground - Connect to ground  
Column precharge ground - Connect to ground  
www.onsemi.com  
78  
NOIP1SN025KA, NOIP1SN016KA, NOIP1SN012KA, NOIP1SN010KA  
Table 31. PIN DESCRIPTION  
Pin No.  
N10  
N11  
N12  
N13  
N14  
N15  
N16  
N17  
N18  
N19  
N20  
N21  
N22  
N23  
N24  
N25  
P01  
P02  
P03  
P04  
P05  
P06  
P07  
P08  
P09  
P10  
P11  
P12  
P13  
P14  
P15  
P16  
P17  
P18  
P19  
P20  
P21  
P22  
P23  
P24  
P25  
R01  
Name  
gnd_colpc  
Type  
Direction  
Description  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Supply  
Supply  
Supply  
Supply  
Supply  
Column precharge ground - Connect to ground  
Column precharge ground - Connect to ground  
Column precharge ground - Connect to ground  
Column precharge ground - Connect to ground  
Column precharge ground - Connect to ground  
Column precharge ground - Connect to ground  
Column precharge ground - Connect to ground  
Column precharge ground - Connect to ground  
Column precharge ground - Connect to ground  
Column precharge ground - Connect to ground  
Column precharge ground - Connect to ground  
Pixel calibration supply  
gnd_colpc  
gnd_colpc  
gnd_colpc  
gnd_colpc  
gnd_colpc  
gnd_colpc  
gnd_colpc  
gnd_colpc  
gnd_colpc  
gnd_colpc  
vdd_calib  
vdd_trans  
vdd_trans  
vdd_resfd  
vddd_33  
Pixel transfer supply  
Pixel transfer supply  
Floating diffusion reset supply  
Digital supply - 3.3 V domain  
vddd_33  
Digital supply - 3.3 V domain  
vdd_pix  
Pixel array supply  
gnd_colpc  
gnd_colpc  
gnd_colpc  
gnd_colpc  
gnd_colpc  
gnd_colpc  
gnd_colpc  
gnd_colpc  
gnd_colpc  
gnd_colpc  
gnd_colpc  
gnd_colpc  
gnd_colpc  
gnd_colpc  
gnd_colpc  
gnd_colpc  
gnd_colpc  
gnd_colpc  
gnd_colpc  
vdd_trans  
vdd_trans  
vdd_resfd  
vddd_33  
Column precharge ground - Connect to ground  
Column precharge ground - Connect to ground  
Column precharge ground - Connect to ground  
Column precharge ground - Connect to ground  
Column precharge ground - Connect to ground  
Column precharge ground - Connect to ground  
Column precharge ground - Connect to ground  
Column precharge ground - Connect to ground  
Column precharge ground - Connect to ground  
Column precharge ground - Connect to ground  
Column precharge ground - Connect to ground  
Column precharge ground - Connect to ground  
Column precharge ground - Connect to ground  
Column precharge ground - Connect to ground  
Column precharge ground - Connect to ground  
Column precharge ground - Connect to ground  
Column precharge ground - Connect to ground  
Column precharge ground - Connect to ground  
Column precharge ground - Connect to ground  
Pixel transfer supply  
Pixel transfer supply  
Floating diffusion reset supply  
Digital supply - 3.3 V domain  
vddd_18  
Digital supply - 1.8 V domain  
www.onsemi.com  
79  
NOIP1SN025KA, NOIP1SN016KA, NOIP1SN012KA, NOIP1SN010KA  
Table 31. PIN DESCRIPTION  
Pin No.  
R02  
R03  
R04  
R05  
R06  
R07  
R08  
R09  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
R18  
R19  
R20  
R21  
R22  
R23  
R24  
R25  
Name  
vddd_18  
Type  
Direction  
Description  
Digital supply - 1.8 V domain  
Supply  
Supply  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Supply  
Supply  
Supply  
vddd_18  
gnd_colpc  
gnda_33  
gnda_33  
gnda_33  
gnda_33  
gnda_33  
gnda_33  
gnda_33  
gnda_33  
gnda_33  
gnda_33  
gnda_33  
gnda_33  
gnda_33  
gnda_33  
gnda_33  
gnda_33  
gnda_33  
gnda_33  
vddd_18  
vddd_18  
vddd_18  
Digital supply - 1.8 V domain  
Column precharge ground - Connect to ground  
Analog ground - 3.3 V domain  
Analog ground - 3.3 V domain  
Analog ground - 3.3 V domain  
Analog ground - 3.3 V domain  
Analog ground - 3.3 V domain  
Analog ground - 3.3 V domain  
Analog ground - 3.3 V domain  
Analog ground - 3.3 V domain  
Analog ground - 3.3 V domain  
Analog ground - 3.3 V domain  
Analog ground - 3.3 V domain  
Analog ground - 3.3 V domain  
Analog ground - 3.3 V domain  
Analog ground - 3.3 V domain  
Analog ground - 3.3 V domain  
Analog ground - 3.3 V domain  
Analog ground - 3.3 V domain  
Analog ground - 3.3 V domain  
Digital supply - 1.8 V domain  
Digital supply - 1.8 V domain  
Digital supply - 1.8 V domain  
www.onsemi.com  
80  
NOIP1SN025KA, NOIP1SN016KA, NOIP1SN012KA, NOIP1SN010KA  
Mechanical Specifications  
Table 32. MECHANICAL SPECIFICATIONS  
Parameter  
Description  
Min  
Typ  
Max  
Units  
Die  
Die thickness  
725  
mm  
2
Die size  
25.5 x 32.5  
mm  
Die center, X offset to the center of package  
Die center, Y offset to the center of the package  
Die position, tilt to the Die Attach Plane  
-50  
-50  
−1  
0
0
0
0
50  
50  
1
mm  
mm  
deg  
deg  
Die rotation accuracy (referenced to die scribe and lead  
fingers on package on all four sides)  
−1  
1
Optical center referenced from the die/package center (X-dir)  
Optical center referenced from the die/package center (Y-dir)  
Distance from bottom of the package to top of the die surface  
Distance from top of the die surface to top of the glass lid  
XY size  
0
3602  
mm  
mm  
1.605  
1.075  
1.80  
1.995  
1.855  
mm  
mm  
1.45  
2
Glass Lid  
32.47 x 39.4  
0.7  
mm  
Specification  
Thickness  
mm  
nm  
%
Spectral response range  
400  
1000  
Transmission of glass lid (refer to Figure 44)  
D263 Teco (no coatings on glass)  
92  
Glass Lid Material  
Mechanical Shock  
Vibration  
JESD22-B104C; Condition G  
2000  
2000  
g
JESD22-B103B; Condition 1  
Hz  
Mounting Profile  
Pb−free wave soldering profile for pin grid array package  
Andon Electronics Corporation (www.andonelectronics.com)  
Recommended  
Socket  
10−31−13A−355−400T4−R27−L14  
NOTE: Optical center min/max tolerance is calculated on X/Y package tolerances with package center as a reference.  
www.onsemi.com  
81  
NOIP1SN025KA, NOIP1SN016KA, NOIP1SN012KA, NOIP1SN010KA  
Package Drawing  
All dimensions are in mm,  
unless specified otherwise.  
Figure 49. PYTHON XK Package Diagram  
www.onsemi.com  
82  
NOIP1SN025KA, NOIP1SN016KA, NOIP1SN012KA, NOIP1SN010KA  
Optical Center Information  
A1 is the at (1214, 31388) mm  
A2 is at (24286, 31388) mm  
A3 is at (24286, 8316) mm  
A4 is at (1214, 8316) mm  
Center of the Active Area  
AA is at (12750, 19852) mm  
Center of the Die  
The center of the die (CD) is the center of the cavity  
The center of the die (CD) is exactly at 50% between the  
outsides of the two outer seal rings  
The center of the cavity is exactly at 50% between the  
insides of the finger pads.  
Die outer dimensions:  
B4 is the reference for the Die (0,0) in mm  
B1 is at (0,32500) mm  
CD is at (12750, 16250) mm  
B2 is at (25500,32500) mm  
B3 is at (25500,0) mm  
NOTE: The data represented here is for the 25K variant.  
For the other variants only A1−A4 are different.  
Centers remain the same.  
Active Area outer dimensions  
Figure 50. Graphical Representation of the Optical Center  
www.onsemi.com  
83  
NOIP1SN025KA, NOIP1SN016KA, NOIP1SN012KA, NOIP1SN010KA  
Glass Lid  
As seen in Figure 51, the sensor does not have an infrared  
The PYTHON XK image sensor uses a glass lid without  
any coatings. Figure 51 shows the transmission  
characteristics of the glass lid.  
attenuating filter glass. A filter must be provided in the  
optical path when color devices are used (source:  
http://www.pgo-online.com).  
Figure 51. Transmission Characteristics of Glass Lid  
SPECIFICATIONS AND USEFUL REFERENCES  
Application Note and References  
Specifications, Application Notes and useful resources  
can be accessible via customer login account at MyOn -  
ISG Extranet.  
https://www.onsemi.com/PowerSolutions/myon/erCispFol  
der.do  
PYTHON XK Layout DSN drawing  
PYTHON XK 3D package STP file for CAD  
Acceptance Criteria Specification  
The Product Acceptance Criteria is available on request.  
This document contains the criteria to which the PYTHON  
XK is tested prior to being shipped.  
Useful References  
For information on ESD and cover glass care and  
cleanliness, please download the Image Sensor Handling  
and Best Practices Application Note (AN52561/D) from  
www.onsemi.com.  
For quality and reliability information, please download  
the Quality & Reliability Handbook (HBD851/D) from  
www.onsemi.com.  
Return Material Authorization (RMA)  
Refer to the ON Semiconductor RMA policy procedure at  
http://www.onsemi.com/site/pdf/CAT_Returns_FailureAn  
alysis.pdf  
For information on Standard terms and Conditions of  
Sale, please download Terms and Conditions from  
www.onsemi.com.  
www.onsemi.com  
84  
 
NOIP1SN025KA, NOIP1SN016KA, NOIP1SN012KA, NOIP1SN010KA  
ACRONYMS  
Acronym  
ADC  
AFE  
BL  
Description  
Analog-to-Digital Converter  
Analog Front End  
Acronym  
LE  
Description  
Line End  
Line Start  
LS  
Black pixel data  
LSB  
LVDS  
MSB  
PGA  
PLS  
PRBS  
PRNU  
QE  
least significant bit  
CDM  
CDS  
CMOS  
CRC  
DAC  
DDR  
DNL  
DS  
Charged Device Model  
Correlated Double Sampling  
Complementary Metal Oxide Semiconductor  
Cyclic Redundancy Check  
Digital-to-Analog Converter  
Double Data Rate  
Low-Voltage Differential Signaling  
most significant bit  
Programmable Gain Amplifier  
Parasitic Light Sensitivity  
Pseudo-Random Binary Sequence  
Photo Response Non-Uniformity  
Quantum Efficiency  
Differential Non-Llinearity  
Double Sampling  
RGB  
RMA  
RMS  
ROI  
Red-Green-Blue  
EIA  
Electronic Industries Alliance  
Electrostatic Discharge  
Frame End  
Return Material Authorization  
Root Mean Square  
ESD  
FE  
Region of Interest  
FOT  
FPGA  
FPN  
FPS  
FS  
Frame Overhead Time  
Field Programmable Gate Array  
Fixed Pattern Noise  
ROT  
S/H  
Row Overhead Time  
Sample and Hold  
SNR  
SPI  
Signal-to-Noise Ratio  
Frame per Second  
Serial Peripheral Interface  
Telecommunications Industry Association  
Junction temperature  
Frame Start  
TIA  
HBM  
IMG  
INL  
Human Body Model  
T
J
Image data (regular pixel data)  
Integral Non-Linearity  
Intellectual Property  
TR  
Training pattern  
% RH  
Percent Relative Humidity  
IP  
www.onsemi.com  
85  
NOIP1SN025KA, NOIP1SN016KA, NOIP1SN012KA, NOIP1SN010KA  
GLOSSARY  
conversion gain  
CDS  
A constant that converts the number of electrons collected by a pixel into the voltage swing of the pixel.  
Conversion gain = q/C where q is the charge of an electron (1.602E 19 Coulomb) and C is the capacitance  
of the photodiode or sense node.  
Correlated double sampling. This is a method for sampling a pixel where the pixel voltage after reset is  
sampled and subtracted from the voltage after exposure to light.  
CFA  
Color filter array. The materials deposited on top of pixels that selectively transmit color.  
Differential non-linearity (for ADCs)  
DNL  
DSNU  
Dark signal non-uniformity. This parameter characterizes the degree of non-uniformity in dark leakage  
currents, which can be a major source of fixed pattern noise.  
fill-factor  
A parameter that characterizes the optically active percentage of a pixel. In theory, it is the ratio of the  
actual QE of a pixel divided by the QE of a photodiode of equal area. In practice, it is never measured.  
INL  
Integral nonlinearity (for ADCs)  
IR  
Infrared. IR light has wavelengths in the approximate range 750 nm to 1 mm.  
2
2
Lux  
Photometric unit of luminance (at 550 nm, 1lux = 1 lumen/m = 1/683 W/m )  
pixel noise  
Variation of pixel signals within a region of interest (ROI). The ROI typically is a rectangular portion of the  
pixel array and may be limited to a single color plane.  
photometric units  
PLS  
Units for light measurement that take into account human physiology.  
Parasitic light sensitivity. Parasitic discharge of sampled information in pixels that have storage nodes.  
PRNU  
Photo-response non-uniformity. This parameter characterizes the spread in response of pixels, which is a  
source of FPN under illumination.  
QE  
Quantum efficiency. This parameter characterizes the effectiveness of a pixel in capturing photons and  
converting them into electrons. It is photon wavelength and pixel color dependent.  
read noise  
reset  
Noise associated with all circuitry that measures and converts the voltage on a sense node or photodiode  
into an output signal.  
The process by which a pixel photodiode or sense node is cleared of electrons. ”Soft” reset occurs when  
the reset transistor is operated below the threshold. ”Hard” reset occurs when the reset transistor is oper-  
ated above threshold.  
reset noise  
responsivity  
Noise due to variation in the reset level of a pixel. In 3T pixel designs, this noise has a component (in units  
of volts) proportionality constant depending on how the pixel is reset (such as hard and soft). In 4T pixel  
designs, reset noise can be removed with CDS.  
The standard measure of photodiode performance (regardless of whether it is in an imager or not). Units  
are typically A/W and are dependent on the incident light wavelength. Note that responsivity and sensitivity  
are used interchangeably in image sensor characterization literature so it is best to check the units.  
ROI  
Region of interest. The area within a pixel array chosen to characterize noise, signal, crosstalk, and so on.  
The ROI can be the entire array or a small subsection; it can be confined to a single color plane.  
sense node  
sensitivity  
In 4T pixel designs, a capacitor used to convert charge into voltage. In 3T pixel designs it is the photodi-  
ode itself.  
A measure of pixel performance that characterizes the rise of the photodiode or sense node signal in Volts  
2
upon illumination with light. Units are typically V/(W/m )/sec and are dependent on the incident light wave-  
length. Sensitivity measurements are often taken with 550 nm incident light. At this wavelength, 1 683 lux  
2
is equal to 1 W/m ; the units of sensitivity are quoted in V/lux/sec. Note that responsivity and sensitivity are  
used interchangeably in image sensor characterization literature so it is best to check the units.  
spectral response  
SNR  
The photon wavelength dependence of sensitivity or responsivity.  
Signal-to-noise ratio. This number characterizes the ratio of the fundamental signal to the noise spectrum  
up to half the Nyquist frequency.  
temporal noise  
Noise that varies from frame to frame. In a video stream, temporal noise is visible as twinkling pixels.  
www.onsemi.com  
86  
NOIP1SN025KA, NOIP1SN016KA, NOIP1SN012KA, NOIP1SN010KA  
ON Semiconductor and the  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.  
SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC’s product/patent coverage may be accessed  
at www.onsemi.com/site/pdf/Patent−Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation  
or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and  
specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets  
and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each  
customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended,  
or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which  
the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and  
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim  
alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable  
copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 800−282−9855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81−3−5817−1050  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA  
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada  
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
NOIP1SN025KA/D  

相关型号:

NOIP1SE025KA-GDI

Global Shutter CMOS Image Sensors
ONSEMI

NOIP1SE025KA-GTI

CMOS 图像传感器,26.2 MP,全局快门
ONSEMI

NOIP1SE0300A-QDI

MegaPixels Global Shutter CMOS Image Sensors
ONSEMI

NOIP1SE0300A-QTI

MegaPixels Global Shutter CMOS Image Sensors
ONSEMI

NOIP1SE0480A-STI

Megapixel Global Shutter CMOS Image Sensor
ONSEMI

NOIP1SE0480A-STI1

Megapixel Global Shutter CMOS Image Sensor
ONSEMI

NOIP1SE0500A-QDI

MegaPixels Global Shutter CMOS Image Sensors
ONSEMI

NOIP1SE0500A-QTI

MegaPixels Global Shutter CMOS Image Sensors
ONSEMI

NOIP1SE1300A-QDI

MegaPixels Global Shutter CMOS Image Sensors
ONSEMI

NOIP1SE1300A-QTI

MegaPixels Global Shutter CMOS Image Sensors
ONSEMI

NOIP1SE2000A-LTI

CMOS 图像传感器,2.3 MP,全局快门
ONSEMI

NOIP1SE2000A-QDI

PYTHON 5.0/2.0 MegaPixels Global Shutter CMOS Image Sensors
ONSEMI