NCV612SQ25T1G [ONSEMI]

100 mA CMOS Low Iq Voltage Regulator in an SC70−5; 百毫安CMOS低Iq稳压器,在SC70-5
NCV612SQ25T1G
型号: NCV612SQ25T1G
厂家: ONSEMI    ONSEMI
描述:

100 mA CMOS Low Iq Voltage Regulator in an SC70−5
百毫安CMOS低Iq稳压器,在SC70-5

稳压器
文件: 总11页 (文件大小:78K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NCP612, NCV612  
100 mA CMOS Low Iq  
Voltage Regulator in an  
SC70−5  
The NCP612/NCV612 series of fixed output linear regulators are  
designed for handheld communication equipment and portable battery  
powered applications which require low quiescent. The  
NCP612/NCV612 series features an ultra−low quiescent current of  
40 A. Each device contains a voltage reference unit, an error  
amplifier, a PMOS power transistor, resistors for setting output  
voltage, current limit, and temperature limit protection circuits.  
The NCP612/NCV612 has been designed to be used with low cost  
ceramic capacitors. The device is housed in the micro−miniature  
SC70−5 surface mount package. Standard voltage versions are 1.5,  
1.8, 2.5, 2.7, 2.8, 3.0, 3.1, 3.3, 3.7, and 5.0 V.  
http://onsemi.com  
MARKING  
DIAGRAM  
5
1
SC70−5  
(SC−88A/SOT−353)  
SQ SUFFIX  
xxxM G  
5
G
CASE 419A  
1
xxx = Specific Device Code  
Features  
M
= Date Code*  
Low Quiescent Current of 40 A Typical  
G
= Pb−Free Package  
Low Dropout Voltage of 230 mV at 100 mA and 3.0 V V  
out  
(Note: Microdot may be in either location)  
Low Output Voltage Option  
*Date Code orientation and/or position may vary  
depending upon manufacturing location.  
Output Voltage Accuracy of 2.0%  
Temperature Range of −40°C to 85°C (NCP612)  
Temperature Range of −40°C to 125°C (NCV612)  
NCV Prefix for Automotive and Other Applications Requiring Site  
and Control Changes  
PIN CONNECTIONS  
Pb−Free Packages are Available  
Typical Applications  
V
1
2
V
out  
5
in  
Cellular Phones  
Gnd  
Battery Powered Consumer Products  
Hand−Held Instruments  
Camcorders and Cameras  
Enable  
3
4
N/C  
(Top View)  
Battery or  
Unregulated  
Voltage  
Vout  
C2  
ORDERING INFORMATION  
1
2
3
5
4
+
See detailed ordering and shipping information in the package  
dimensions section on page 9 of this data sheet.  
C1  
+
ON  
OFF  
This device contains 86 active transistors  
Figure 1. Typical Application Diagram  
©
Semiconductor Components Industries, LLC, 2007  
1
Publication Order Number:  
January, 2007 − Rev. 1  
NCP612/D  
 
NCP612, NCV612  
PIN FUNCTION DESCRIPTION  
Pin No.  
Pin Name  
Vin  
Description  
1
2
3
Positive power supply input voltage.  
Power supply ground.  
Gnd  
Enable  
This input is used to place the device into low−power standby. When this input is pulled low, the device is  
disabled. If this function is not used, Enable should be connected to Vin.  
4
5
N/C  
No internal connection.  
Vout  
Regulated output voltage.  
MAXIMUM RATINGS  
Rating  
Symbol  
Value  
Unit  
V
Input Voltage  
Enable Voltage  
Output Voltage  
V
in  
0 to 6.0  
Enable  
−0.3 to V +0.3  
V
in  
V
out  
−0.3 to V +0.3  
V
in  
Power Dissipation and Thermal Characteristics  
Power Dissipation  
Thermal Resistance, Junction−to−Ambient  
P
Internally Limited  
300  
W
°C/W  
D
R
JA  
Operating Junction Temperature  
Operating Ambient Temperature  
Storage Temperature  
T
+150  
°C  
°C  
°C  
J
T
A
−40 to +125  
−55 to +150  
T
stg  
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the  
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect  
device reliability.  
1. This device series contains ESD protection and exceeds the following tests:  
Human Body Model 2000 V per MIL−STD−883, Method 3015  
Machine Model Method 200 V  
2. Latch−up capability (85°C) "200 mA DC with trigger voltage.  
http://onsemi.com  
2
NCP612, NCV612  
ELECTRICAL CHARACTERISTICS  
(V = V  
+ 1.0 V, V = V , C = 1.0 F, C = 1.0 F, T = 25°C, unless otherwise noted.)  
enable in in out J  
in  
out(nom.)  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
Output Voltage (TA = 25°C, I = 10 mA)  
V
out  
V
out  
1.5 V  
1.8 V  
2.5 V  
2.7 V  
2.8 V  
3.0 V  
3.1 V  
3.3 V  
3.7 V  
5.0 V  
1.455  
1.746  
2.425  
2.646  
2.744  
2.940  
3.038  
3.234  
3.626  
4.900  
1.5  
1.8  
2.5  
2.7  
2.8  
3.0  
3.1  
3.3  
3.7  
5.0  
1.545  
1.854  
2.575  
2.754  
2.856  
3.060  
3.162  
3.366  
3.774  
5.100  
Output Voltage (TA = −40°C to 85°C, I = 10 mA)  
V
out  
V
out  
1.5 V  
1.8 V  
2.5 V  
2.7 V  
2.8 V  
3.0 V  
3.1 V  
3.3 V  
3.7 V  
5.0 V  
1.455  
1.746  
2.425  
2.619  
2.716  
2.910  
3.007  
3.201  
3.626  
4.900  
1.5  
1.8  
2.5  
2.7  
2.8  
3.0  
3.1  
3.3  
3.7  
5.0  
1.545  
1.854  
2.575  
2.781  
2.884  
3.090  
3.193  
3.399  
3.774  
5.100  
Output Voltage (TA = −40°C to 125°C, I = 10 mA) NCV612 Only  
V
out  
V
out  
1.5 V  
1.8 V  
2.5 V  
2.7 V  
2.8 V  
3.0 V  
3.1 V  
3.3 V  
5.0 V  
1.440  
1.728  
2.400  
2.592  
2.688  
2.880  
2.976  
3.201  
4.850  
1.5  
1.8  
2.5  
2.7  
2.8  
3.0  
3.1  
3.3  
5.0  
1.560  
1.872  
2.600  
2.808  
2.912  
3.120  
3.224  
3.399  
5.150  
Output Voltage (TA = −40°C to 85°C, I = 100 mA)  
V
out  
V
out  
1.5 V  
1.8 V  
2.5 V  
2.7 V  
2.8 V  
3.0 V  
3.1 V  
3.3 V  
3.7 V  
5.0 V  
1.440  
1.728  
2.400  
2.592  
2.688  
2.880  
2.976  
3.201  
3.589  
4.850  
1.5  
1.8  
2.5  
2.7  
2.8  
3.0  
3.1  
3.3  
3.7  
5.0  
1.560  
1.872  
2.600  
2.808  
2.912  
3.120  
3.224  
3.399  
3.811  
5.150  
Line Regulation (I = 10 mA)  
Reg  
mV/V  
out  
line  
1.5 V−4.4 V (V = V  
+ 1.0 V to 6.0 V)  
1.0  
1.0  
3.0  
3.0  
in  
out(nom.)  
4.5 V−5.0 V (V = 5.5 V to 6.0 V)  
in  
Load Regulation (I = 1.0 mA to 100 mA)  
Reg  
0.3  
0.8  
mV/mA  
mA  
out  
load  
Output Current (V = (V at I = 100 mA) −3%)  
I
o(nom.)  
out  
out  
out  
1.5 V−3.9 V (V = V  
+ 2.0 V)  
100  
100  
200  
200  
in  
out(nom.)  
4.0 V−5.0 V (V = 6.0 V)  
in  
http://onsemi.com  
3
NCP612, NCV612  
ELECTRICAL CHARACTERISTICS (continued)  
(V = V + 1.0 V, V = V , C = 1.0 F, C = 1.0 F, T = 25°C, unless otherwise noted.)  
in  
out(nom.)  
enable  
in  
in  
out  
J
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
Dropout Voltage (T = −40°C to 85°C, I = 100 mA,  
V −V  
in out  
mV  
A
out  
Measured at V  
−3.0%)  
out(nom)  
1.5 V  
1.8 V  
2.5 V  
2.7 V  
2.8 V  
3.0 V  
3.1 V  
3.3 V  
530  
420  
270  
270  
250  
230  
210  
200  
180  
160  
680  
560  
380  
380  
380  
380  
380  
380  
380  
300  
3.7 V  
5.0 V  
Ground Current  
(Enable Input = V , I = 1.0 mA to I  
I
A  
A  
GND  
)
)
40  
90  
in out  
o(nom.)  
Quiescent Current (TA = −40°C to 85°C)  
(Enable Input = 0 V)  
(Enable Input = V , I = 1.0 mA to I  
I
Q
0.03  
40  
1.0  
90  
in out  
o(nom.)  
Output Short Circuit Current (V = 0 V)  
I
mA  
out  
out(max)  
1.5 V−3.9 V (V = V  
+ 2.0 V)  
150  
150  
300  
300  
600  
600  
in  
out(nom.)  
4.0 V−5.0 V (V = 6.0 V)  
in  
Output Voltage Noise (f = 100 Hz to 100 kHz)  
= 30 mA, C = 1 F  
V
V
r
m
s
n
I
100  
out  
out  
Enable Input Threshold Voltage  
V
V
th(en)  
(Voltage Increasing, Output Turns On, Logic High)  
(Voltage Decreasing, Output Turns Off, Logic Low)  
0.95  
0.3  
Output Voltage Temperature Coefficient  
T
"100  
ppm/°C  
C
3. Maximum package power dissipation limits must be observed.  
T
*T  
A
JA  
J(max)  
PD +  
R
4. Low duty cycle pulse techniques are used during testing to maintain the junction temperature as close to ambient as possible.  
http://onsemi.com  
4
NCP612, NCV612  
TYPICAL CHARACTERISTICS  
300  
3.020  
3.015  
3.010  
3.005  
NCP612SQ30  
V
in  
= 6.0 V  
250  
200  
I = 80 mA  
o
V
in  
= 4.0 V  
150  
100  
3.000  
2.995  
2.990  
2.985  
I = 40 mA  
o
50  
0
I = 10 mA  
o
−50  
−25  
0
25  
50  
75  
100  
125  
−60 −40  
−20  
0
20  
40  
60  
80  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 2. Dropout Voltage vs. Temperature  
Figure 3. Output Voltage vs. Temperature  
60  
48  
46  
44  
42  
40  
I
V
V
= 0 mA  
= 4.0 V  
= 3.0 V  
V
C
C
= 3.0 V  
= 1.0 F  
= 1.0 F  
out  
out  
in  
in  
out  
50  
40  
out  
T = 25°C  
A
30  
20  
10  
0
0
1
2
3
4
5
6
7
−60 −40  
−20  
0
20  
40  
60  
80  
100  
V
in  
INPUT VOLTAGE (V)  
TEMPERATURE (°C)  
Figure 5. Quiescent Current vs. Input Voltage  
Figure 4. Quiescent Current vs. Temperature  
60  
70  
60  
V
in  
= 4.0 V  
V
C
C
= 3.0 V  
= 1.0 F  
= 1.0 F  
out  
C = 1.0 F  
out  
50  
40  
in  
out  
I
= 30 mA  
out  
50  
40  
30  
I
= 30 mA  
out  
T = 25°C  
A
30  
20  
20  
10  
0
10  
0
0
1
2
3
4
5
6
7
100  
1000  
10000  
100000 1000000  
V
in  
INPUT VOLTAGE (V)  
FREQUENCY (Hz)  
Figure 6. Ground Pin Current vs. Input Voltage  
Figure 7. Ripple Rejection vs. Frequency  
http://onsemi.com  
5
NCP612, NCV612  
TYPICAL CHARACTERISTICS  
7
7
6
V
C
= 4.0 V  
in  
6
5
= 1.0 F  
out  
I
= 30 mA  
out  
C
= 1.0 F  
= 10 mA  
out  
5
4
3
2
1
I
out  
4
3
200  
100  
0
−100  
0
10  
100  
1000  
10000  
100000 1000000  
0
50 100 150 200 250 300 350 400 450 500  
TIME (s)  
FREQUENCY (Hz)  
Figure 9. Line Transient Response  
Figure 8. Output Noise Density  
6
4
60 mA  
2
0
4
3
2
1
0
200  
100  
0
I
V
C
C
= 10 mA  
= 4.0 V  
= 1.0 F  
in  
= 1.0 F  
out  
out  
in  
I
V
C
C
= 1 mA to 60 mA  
= 4.0 V  
= 1.0 F  
out  
−100  
−200  
in  
in  
0
= 1.0 F  
out  
0
100  
200  
300 400  
TIME (s)  
500 600  
700 800  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
TIME (ms)  
Figure 10. Load Transient Response  
Figure 11. Turn−on Response  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
0
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
V , INPUT VOLTAGE (V)  
in  
Figure 12. Output Voltage vs. Input Voltage  
http://onsemi.com  
6
NCP612, NCV612  
DEFINITIONS  
Load Regulation  
Line Regulation  
The change in output voltage for a change in output  
current at a constant temperature.  
The change in output voltage for a change in input voltage.  
The measurement is made under conditions of low  
dissipation or by using pulse technique such that the average  
chip temperature is not significantly affected.  
Dropout Voltage  
The input/output differential at which the regulator output  
no longer maintains regulation against further reductions in  
input voltage. Measured when the output drops 3.0% below  
its nominal. The junction temperature, load current, and  
minimum input supply requirements affect the dropout level.  
Line Transient Response  
Typical over and undershoot response when input voltage  
is excited with a given slope.  
Thermal Protection  
Internal thermal shutdown circuitry is provided to protect  
the integrated circuit in the event that the maximum junction  
temperature is exceeded. When activated at typically 160°C,  
the regulator turns off. This feature is provided to prevent  
failures from accidental overheating.  
Maximum Power Dissipation  
The maximum total dissipation for which the regulator  
will operate within its specifications.  
Quiescent Current  
The quiescent current is the current which flows through  
the ground when the LDO operates without a load on its  
output: internal IC operation, bias, etc. When the LDO  
becomes loaded, this term is called the Ground current. It is  
actually the difference between the input current (measured  
through the LDO input pin) and the output current.  
Maximum Package Power Dissipation  
The maximum power package dissipation is the power  
dissipation level at which the junction temperature reaches  
its maximum operating value, i.e. 150°C. Depending on the  
ambient power dissipation and thus the maximum available  
output current.  
http://onsemi.com  
7
NCP612, NCV612  
APPLICATIONS INFORMATION  
A typical application circuit for the NCP612/NCV612 is  
shown in Figure 1, front page.  
Set external components, especially the output capacitor,  
as close as possible to the circuit, and make leads as short as  
possible.  
Input Decoupling (C1)  
A 1.0 F capacitor either ceramic or tantalum is  
recommended and should be connected close to the  
NCP612/NCV612 package. Higher values and lower ESR  
will improve the overall line transient response.  
TDK capacitor: C2012X5R1C105K, or C1608X5R1A105K  
Thermal  
As power across the NCP612/NCV612 increases, it might  
become necessary to provide some thermal relief. The  
maximum power dissipation supported by the device is  
dependent upon board design and layout. Mounting pad  
configuration on the PCB, the board material and also the  
ambient temperature effect the rate of temperature rise for  
the part. This is stating that when the NCP612/NCV612 has  
good thermal conductivity through the PCB, the junction  
temperature will be relatively low with high power  
dissipation applications.  
Output Decoupling (C2)  
The NCP612/NCV612 is a stable regulator and does not  
require any specific Equivalent Series Resistance (ESR) or  
a minimum output current. Capacitors exhibiting ESRs  
ranging from a few mup to 5.0 can thus safely be used.  
The minimum decoupling value is 1.0 F and can be  
augmented to fulfill stringent load transient requirements.  
The regulator accepts ceramic chip capacitors as well as  
tantalum capacitors. Larger values improve noise rejection  
and load regulation transient response.  
The maximum dissipation the package can handle is  
given by:  
T
*T  
A
JA  
J(max)  
PD +  
R
If junction temperature is not allowed above the  
maximum 125°C, then the NCP612/NCV612 can dissipate  
up to 330 mW @ 25°C.  
The power dissipated by the NCP612/NCV612 can be  
calculated from the following equation:  
TDK capacitor: C2012X5R1C105K, C1608X5R1A105K,  
or C3216X7R1C105K  
Enable Operation  
The enable pin will turn on the regulator when pulled high  
and turn off the regulator when pulled low. These limits of  
threshold are covered in the electrical specification section  
of this data sheet. If the enable is not used then the pin should  
[
]
[
]
* I  
P
tot  
+ V * I  
(I ) ) V * V  
in gnd out  
in out out  
or  
)
*
I
be connected to V .  
P
V
in  
tot  
I
out out  
) I  
V
+
inMAX  
gnd  
out  
Hints  
If an 100 mA output current is needed then the ground  
current from the data sheet is 40 A. For an  
NCP612/NCV612 (3.0 V), the maximum input voltage will  
then be 6.0 V (Limited by maximum input voltage).  
Please be sure the Vin and Gnd lines are sufficiently wide.  
When the impedance of these lines is high, there is a chance  
to pick up noise or cause the regulator to malfunction.  
http://onsemi.com  
8
NCP612, NCV612  
ORDERING INFORMATION  
Nominal  
Output Voltage  
Device  
NCP612SQ15T1  
Marking  
Package  
Shipping  
SC70−5  
1.5  
1.8  
2.5  
2.7  
2.8  
3.0  
3.1  
LHO  
NCP612SQ15T1G  
SC70−5  
(Pb−Free)  
NCP612SQ18T1  
SC70−5  
LHP  
LHQ  
LHR  
LHS  
LHT  
LHU  
NCP612SQ18T1G  
SC70−5  
(Pb−Free)  
NCP612SQ25T1  
SC70−5  
NCP612SQ25T1G  
SC70−5  
(Pb−Free)  
NCP612SQ27T1  
SC70−5  
NCP612SQ27T1G  
SC70−5  
(Pb−Free)  
NCP612SQ28T1  
SC70−5  
NCP612SQ28T1G  
SC70−5  
(Pb−Free)  
NCP612SQ30T1  
SC70−5  
NCP612SQ30T1G  
SC70−5  
(Pb−Free)  
NCP612SQ31T1  
SC70−5  
NCP612SQ31T1G  
SC70−5  
(Pb−Free)  
NCP612SQ33T1  
SC70−5  
3000 Units/Tape & Reel  
3.3  
3.7  
5.0  
LHV  
LKH  
LHW  
NCP612SQ33T1G  
SC70−5  
(Pb−Free)  
NCP612SQ37T1G  
SC70−5  
(Pb−Free)  
NCP612SQ50T1  
SC70−5  
NCP612SQ50T1G  
SC70−5  
(Pb−Free)  
NCV612SQ15T1*  
NCV612SQ15T1G*  
SC70−5  
1.5  
1.8  
2.5  
2.7  
2.8  
LHO  
LHP  
LHQ  
LHR  
LHS  
SC70−5  
(Pb−Free)  
NCV612SQ18T1*  
NCV612SQ18T1G*  
SC70−5  
SC70−5  
(Pb−Free)  
NCV612SQ25T1*  
NCV612SQ25T1G*  
SC70−5  
SC70−5  
(Pb−Free)  
NCV612SQ27T1*  
NCV612SQ27T1G*  
SC70−5  
SC70−5  
(Pb−Free)  
NCV612SQ28T1*  
NCV612SQ28T1G*  
SC70−5  
SC70−5  
(Pb−Free)  
http://onsemi.com  
9
 
NCP612, NCV612  
ORDERING INFORMATION  
Nominal  
Output Voltage  
Device  
NCV612SQ30T1*  
NCV612SQ30T1G*  
Marking  
Package  
Shipping  
SC70−5  
3.0  
3.1  
3.3  
5.0  
LHT  
SC70−5  
(Pb−Free)  
NCV612SQ31T1*  
NCV612SQ31T1G*  
SC70−5  
LHU  
LHV  
LHW  
SC70−5  
(Pb−Free)  
3000 Units/Tape & Reel  
NCV612SQ33T1*  
NCV612SQ33T1G*  
SC70−5  
SC70−5  
(Pb−Free)  
NCV612SQ50T1*  
NCV612SQ50T1G*  
SC70−5  
SC70−5  
(Pb−Free)  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specification Brochure, BRD8011/D.  
*NCV prefix for automotive and other applications requiring site and control changes.  
http://onsemi.com  
10  
NCP612, NCV612  
PACKAGE DIMENSIONS  
SC−88A, SOT−353, SC−70  
CASE 419A−02  
ISSUE J  
A
NOTES:  
1. DIMENSIONING AND TOLERANCING  
PER ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
3. 419A−01 OBSOLETE. NEW STANDARD  
419A−02.  
G
4. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD FLASH, PROTRUSIONS, OR GATE  
BURRS.  
5
4
3
−B−  
S
INCHES  
DIM MIN MAX  
MILLIMETERS  
MIN  
1.80  
1.15  
0.80  
0.10  
MAX  
2.20  
1.35  
1.10  
0.30  
1
2
A
B
C
D
G
H
J
0.071  
0.045  
0.031  
0.004  
0.087  
0.053  
0.043  
0.012  
0.026 BSC  
0.65 BSC  
M
M
B
D 5 PL  
0.2 (0.008)  
−−−  
0.004  
0.004  
0.004  
0.010  
0.012  
−−−  
0.10  
0.10  
0.10  
0.25  
0.30  
K
N
S
N
0.008 REF  
0.20 REF  
0.079  
0.087  
2.00  
2.20  
J
C
K
H
SOLDERING FOOTPRINT*  
0.50  
0.0197  
0.65  
0.025  
0.65  
0.025  
0.40  
0.0157  
1.9  
0.0748  
mm  
inches  
ǒ
Ǔ
SCALE 20:1  
*For additional information on our Pb−Free strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 800−282−9855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81−3−5773−3850  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada  
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
NCP612/D  

相关型号:

NCV612SQ25T2G

100 mA CMOS Low Iq Voltage Regulator
ONSEMI

NCV612SQ27T1

100 mA CMOS Low Iq Voltage Regulator in an SC70-5
ONSEMI

NCV612SQ27T1G

100 mA CMOS Low Iq Voltage Regulator in an SC70−5
ONSEMI

NCV612SQ27T2G

100 mA CMOS Low Iq Voltage Regulator
ONSEMI

NCV612SQ28T1

100 mA CMOS Low Iq Voltage Regulator in an SC70-5
ONSEMI

NCV612SQ28T1G

100 mA CMOS Low Iq Voltage Regulator in an SC70−5
ONSEMI

NCV612SQ28T2G

100 mA CMOS Low Iq Voltage Regulator
ONSEMI

NCV612SQ30T1

100 mA CMOS Low Iq Voltage Regulator in an SC70-5
ONSEMI

NCV612SQ30T1G

100 mA CMOS Low Iq Voltage Regulator in an SC70−5
ONSEMI

NCV612SQ30T2G

100 mA CMOS Low Iq Voltage Regulator
ONSEMI

NCV612SQ31T1

100 mA CMOS Low Iq Voltage Regulator in an SC70-5
ONSEMI

NCV612SQ31T1G

100 mA CMOS Low Iq Voltage Regulator in an SC70−5
ONSEMI