NCV612SQ27T1 [ONSEMI]

100 mA CMOS Low Iq Voltage Regulator in an SC70-5; 百毫安CMOS低Iq稳压器,在SC70-5
NCV612SQ27T1
型号: NCV612SQ27T1
厂家: ONSEMI    ONSEMI
描述:

100 mA CMOS Low Iq Voltage Regulator in an SC70-5
百毫安CMOS低Iq稳压器,在SC70-5

线性稳压器IC 调节器 电源电路 光电二极管 输出元件
文件: 总10页 (文件大小:65K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NCP612, NCV612  
100 mA CMOS Low Iq  
Voltage Regulator in an  
SC70−5  
The NCP612/NCV612 series of fixed output linear regulators are  
designed for handheld communication equipment and portable battery  
powered applications which require low quiescent. The  
NCP612/NCV612 series features an ultra−low quiescent current of  
40 m A. Each device contains a voltage reference unit, an error  
amplifier, a PMOS power transistor, resistors for setting output  
voltage, current limit, and temperature limit protection circuits.  
The NCP612/NCV612 has been designed to be used with low cost  
ceramic capacitors. The device is housed in the micro−miniature  
SC70−5 surface mount package. Standard voltage versions are 1.5,  
1.8, 2.5, 2.7, 2.8, 3.0, 3.3, and 5.0 V.  
http://onsemi.com  
MARKING  
DIAGRAM  
SC70−5/SC−88A/  
SOT−353  
SQ SUFFIX  
CASE 419A  
5
xxxd  
1
xxx = Specific Device Code  
Features  
d
= Date Code  
Low Quiescent Current of 40 m A Typical  
Low Dropout Voltage of 300 mV at 100 mA  
Low Output Voltage Option  
Output Voltage Accuracy of 2.0%  
PIN CONNECTIONS  
Temperature Range of −40°C to 85°C (NCP612)  
Temperature Range of −40°C to 125°C (NCV612)  
NCV Prefix for Automotive and Other Applications Requiring Site  
and Control Changes  
V
1
2
5
V
in  
out  
Gnd  
Enable  
3
4
N/C  
Pb−Free Packages are Available  
Typical Applications  
(Top View)  
Cellular Phones  
Battery Powered Consumer Products  
Hand−Held Instruments  
Camcorders and Cameras  
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
dimensions section on page 9 of this data sheet.  
Battery or  
Unregulated  
Voltage  
Vout  
C2  
1
2
3
5
4
+
C1  
+
ON  
OFF  
This device contains 86 active transistors  
Figure 1. Typical Application Diagram  
Semiconductor Components Industries, LLC, 2005  
1
Publication Order Number:  
April, 2005 − Rev. 0  
NCP612/D  
 
NCP612, NCV612  
PIN FUNCTION DESCRIPTION  
Pin No.  
Pin Name  
Vin  
Description  
1
2
3
Positive power supply input voltage.  
Power supply ground.  
Gnd  
Enable  
This input is used to place the device into low−power standby. When this input is pulled low, the device is  
disabled. If this function is not used, Enable should be connected to Vin.  
4
5
N/C  
No internal connection.  
Vout  
Regulated output voltage.  
MAXIMUM RATINGS  
Rating  
Symbol  
Value  
Unit  
V
Input Voltage  
Enable Voltage  
Output Voltage  
V
in  
0 to 6.0  
Enable  
−0.3 to V +0.3  
V
in  
V
out  
−0.3 to V +0.3  
V
in  
Power Dissipation and Thermal Characteristics  
Power Dissipation  
Thermal Resistance, Junction−to−Ambient  
P
Internally Limited  
300  
W
°C/W  
D
R
q
JA  
Operating Junction Temperature  
Operating Ambient Temperature  
Storage Temperature  
T
+150  
°C  
°C  
°C  
J
T
A
−40 to +125  
−55 to +150  
T
stg  
Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit  
values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied,  
damage may occur and reliability may be affected.  
1. This device series contains ESD protection and exceeds the following tests:  
Human Body Model 2000 V per MIL−STD−883, Method 3015  
Machine Model Method 200 V  
2. Latch−up capability (85°C) "200 mA DC with trigger voltage.  
http://onsemi.com  
2
NCP612, NCV612  
ELECTRICAL CHARACTERISTICS  
(V = V  
+ 1.0 V, V = V , C = 1.0 m F, C = 1.0 m F, T = 25°C, unless otherwise noted.)  
enable in in out J  
in  
out(nom.)  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
Output Voltage (TA = 25°C, I = 10 mA)  
V
out  
V
out  
1.5 V  
1.8 V  
2.5 V  
2.7 V  
2.8 V  
3.0 V  
3.1 V  
3.3 V  
5.0 V  
1.455  
1.746  
2.425  
2.646  
2.744  
2.940  
3.038  
3.234  
4.900  
1.5  
1.8  
2.5  
2.7  
2.8  
3.0  
3.1  
3.3  
5.0  
1.545  
1.854  
2.575  
2.754  
2.856  
3.060  
3.162  
3.366  
5.100  
Output Voltage (TA = −40°C to 85°C, I = 10 mA)  
V
out  
V
out  
1.5 V  
1.8 V  
2.5 V  
2.7 V  
2.8 V  
3.0 V  
3.1 V  
3.3 V  
5.0 V  
1.455  
1.746  
2.425  
2.619  
2.716  
2.910  
3.007  
3.201  
4.900  
1.5  
1.8  
2.5  
2.7  
2.8  
3.0  
3.1  
3.3  
5.0  
1.545  
1.854  
2.575  
2.781  
2.884  
3.090  
3.193  
3.399  
5.100  
Output Voltage (TA = −40°C to 125°C, I = 10 mA) NCV612 Only  
V
out  
V
out  
1.5 V  
1.8 V  
2.5 V  
2.7 V  
2.8 V  
3.0 V  
3.1 V  
3.3 V  
5.0 V  
1.440  
1.728  
2.400  
2.592  
2.688  
2.880  
2.976  
3.201  
4.850  
1.5  
1.8  
2.5  
2.7  
2.8  
3.0  
3.1  
3.3  
5.0  
1.560  
1.872  
2.600  
2.808  
2.912  
3.120  
3.224  
3.399  
5.150  
Output Voltage (TA = −40°C to 85°C, I = 100 mA)  
V
out  
V
out  
1.5 V  
1.8 V  
2.5 V  
2.7 V  
2.8 V  
3.0 V  
3.1 V  
3.3 V  
5.0 V  
1.440  
1.728  
2.400  
2.592  
2.688  
2.880  
2.976  
3.201  
4.850  
1.5  
1.8  
2.5  
2.7  
2.8  
3.0  
3.1  
3.3  
5.0  
1.560  
1.872  
2.600  
2.808  
2.912  
3.120  
3.224  
3.399  
5.150  
Line Regulation (I = 10 mA)  
Reg  
mV/V  
out  
line  
1.5 V−4.4 V (V = V  
+ 1.0 V to 6.0 V)  
1.0  
1.0  
3.0  
3.0  
in  
out(nom.)  
4.5 V−5.0 V (V = 5.5 V to 6.0 V)  
in  
Load Regulation (I = 1.0 mA to 100 mA)  
Reg  
0.3  
0.8  
mV/mA  
mA  
out  
load  
Output Current (V = (V at I = 100 mA) −3%)  
I
o(nom.)  
out  
out  
out  
1.5 V−3.9 V (V = V  
+ 2.0 V)  
100  
100  
200  
200  
in  
out(nom.)  
4.0 V−5.0 V (V = 6.0 V)  
in  
Dropout Voltage (T = −40°C to 85°C, I = 100 mA,  
V −V  
in out  
mV  
A
out  
Measured at V −3.0%)  
out  
1.5 V  
1.8 V  
2.5 V  
2.7 V  
2.8 V  
3.0 V  
3.1 V  
3.3 V  
5.0 V  
530  
420  
270  
270  
250  
230  
210  
200  
160  
680  
560  
380  
380  
380  
380  
380  
380  
300  
http://onsemi.com  
3
NCP612, NCV612  
ELECTRICAL CHARACTERISTICS (continued)  
(V = V + 1.0 V, V = V , C = 1.0 m F, C = 1.0 m F, T = 25°C, unless otherwise noted.)  
in  
out(nom.)  
enable  
in  
in  
out  
J
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
Quiescent Current (TA = −40°C to 85°C)  
I
Q
m A  
(Enable Input = 0 V)  
0.1  
40  
1.0  
90  
(Enable Input = V , I = 1.0 mA to I  
)
in out  
o(nom.)  
Output Short Circuit Current (V = 0 V)  
I
mA  
out  
out(max)  
1.5 V−3.9 V (V = V  
+ 2.0 V)  
150  
150  
300  
300  
600  
600  
in  
out(nom.)  
4.0 V−5.0 V (V = 6.0 V)  
in  
Output Voltage Noise (f = 100 Hz to 100 kHz)  
= 30 mA, C = 1 m F  
V
n
m
V
r
m
s
I
100  
out  
out  
Enable Input Threshold Voltage  
V
th(en)  
V
(Voltage Increasing, Output Turns On, Logic High)  
(Voltage Decreasing, Output Turns Off, Logic Low)  
0.95  
0.3  
Output Voltage Temperature Coefficient  
T
C
"100  
ppm/°C  
3. Maximum package power dissipation limits must be observed.  
*T  
T
J(max)  
A
PD +  
R
q
J
A
4. Low duty cycle pulse techniques are used during testing to maintain the junction temperature as close to ambient as possible.  
http://onsemi.com  
4
NCP612, NCV612  
TYPICAL CHARACTERISTICS  
300  
3.020  
3.015  
3.010  
3.005  
NCP612SQ30  
V
in  
= 6.0 V  
250  
200  
I = 80 mA  
o
V
in  
= 4.0 V  
150  
100  
3.000  
2.995  
2.990  
2.985  
I = 40 mA  
o
50  
0
I = 10 mA  
o
−50  
−25  
0
25  
50  
75  
100  
125  
−60 −40  
−20  
0
20  
40  
60  
80  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 2. Dropout Voltage vs. Temperature  
Figure 3. Output Voltage vs. Temperature  
60  
48  
46  
44  
42  
40  
I
V
V
= 0 mA  
= 4.0 V  
V
out  
= 3.0 V  
out  
C
C
= 1.0 m F  
= 1.0 m F  
out  
in  
in  
50  
40  
= 3.0 V  
out  
T = 25°C  
A
30  
20  
10  
0
0
1
2
3
4
5
6
7
−60 −40  
−20  
0
20  
40  
60  
80  
100  
V
in  
INPUT VOLTAGE (V)  
TEMPERATURE (°C)  
Figure 5. Quiescent Current vs. Input Voltage  
Figure 4. Quiescent Current vs. Temperature  
60  
70  
60  
V
in  
= 4.0 V  
V
C
C
= 3.0 V  
= 1.0 m F  
= 1.0 m F  
out  
C
I
= 1.0 m F  
out  
50  
40  
in  
out  
= 30 mA  
out  
50  
40  
30  
20  
I
= 30 mA  
out  
T = 25°C  
A
30  
20  
10  
0
10  
0
0
1
2
3
4
5
6
7
100  
1000  
10000  
100000 1000000  
V
in  
INPUT VOLTAGE (V)  
FREQUENCY (Hz)  
Figure 6. Ground Pin Current vs. Input Voltage  
Figure 7. Ripple Rejection vs. Frequency  
http://onsemi.com  
5
NCP612, NCV612  
TYPICAL CHARACTERISTICS  
7
7
6
V
C
= 4.0 V  
in  
6
5
= 1.0 m F  
out  
I
= 30 mA  
out  
C
= 1.0 m F  
out  
= 10 mA  
5
4
3
2
1
I
out  
4
3
200  
100  
0
−100  
0
10  
100  
1000  
10000  
100000 1000000  
0
50 100 150 200 250 300 350 400 450 500  
TIME (m s)  
FREQUENCY (Hz)  
Figure 9. Line Transient Response  
Figure 8. Output Noise Density  
6
4
60 mA  
2
0
4
3
2
1
0
200  
100  
0
I
V
C
C
= 10 mA  
= 4.0 V  
= 1.0 m F  
in  
= 1.0 m F  
out  
out  
in  
I
V
C
C
= 1 mA to 60 mA  
= 4.0 V  
= 1.0 m F  
out  
−100  
−200  
in  
in  
0
= 1.0 m F  
out  
0
100  
200  
300 400  
TIME (m s)  
500 600  
700 800  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
TIME (m s)  
Figure 10. Load Transient Response  
Figure 11. Turn−on Response  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
0
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
V , INPUT VOLTAGE (V)  
in  
Figure 12. Output Voltage vs. Input Voltage  
http://onsemi.com  
6
NCP612, NCV612  
DEFINITIONS  
Load Regulation  
Line Regulation  
The change in output voltage for a change in output  
current at a constant temperature.  
The change in output voltage for a change in input voltage.  
The measurement is made under conditions of low  
dissipation or by using pulse technique such that the average  
chip temperature is not significantly affected.  
Dropout Voltage  
The input/output differential at which the regulator output  
no longer maintains regulation against further reductions in  
input voltage. Measured when the output drops 3.0% below  
its nominal. The junction temperature, load current, and  
minimum input supply requirements affect the dropout level.  
Line Transient Response  
Typical over and undershoot response when input voltage  
is excited with a given slope.  
Thermal Protection  
Internal thermal shutdown circuitry is provided to protect  
the integrated circuit in the event that the maximum junction  
temperature is exceeded. When activated at typically 160°C,  
the regulator turns off. This feature is provided to prevent  
failures from accidental overheating.  
Maximum Power Dissipation  
The maximum total dissipation for which the regulator  
will operate within its specifications.  
Quiescent Current  
The quiescent current is the current which flows through  
the ground when the LDO operates without a load on its  
output: internal IC operation, bias, etc. When the LDO  
becomes loaded, this term is called the Ground current. It is  
actually the difference between the input current (measured  
through the LDO input pin) and the output current.  
Maximum Package Power Dissipation  
The maximum power package dissipation is the power  
dissipation level at which the junction temperature reaches  
its maximum operating value, i.e. 150°C. Depending on the  
ambient power dissipation and thus the maximum available  
output current.  
http://onsemi.com  
7
NCP612, NCV612  
APPLICATIONS INFORMATION  
A typical application circuit for the NCP612/NCV612 is  
shown in Figure 1, front page.  
Set external components, especially the output capacitor,  
as close as possible to the circuit, and make leads as short as  
possible.  
Input Decoupling (C1)  
A 1.0 m F capacitor either ceramic or tantalum is  
recommended and should be connected close to the  
NCP612/NCV612 package. Higher values and lower ESR  
will improve the overall line transient response.  
TDK capacitor: C2012X5R1C105K, or C1608X5R1A105K  
Thermal  
As power across the NCP612/NCV612 increases, it might  
become necessary to provide some thermal relief. The  
maximum power dissipation supported by the device is  
dependent upon board design and layout. Mounting pad  
configuration on the PCB, the board material and also the  
ambient temperature effect the rate of temperature rise for  
the part. This is stating that when the NCP612/NCV612 has  
good thermal conductivity through the PCB, the junction  
temperature will be relatively low with high power  
dissipation applications.  
Output Decoupling (C2)  
The NCP612/NCV612 is a stable regulator and does not  
require any specific Equivalent Series Resistance (ESR) or  
a minimum output current. Capacitors exhibiting ESRs  
ranging from a few mW up to 5.0 W can thus safely be used.  
The minimum decoupling value is 1.0 m F and can be  
augmented to fulfill stringent load transient requirements.  
The regulator accepts ceramic chip capacitors as well as  
tantalum capacitors. Larger values improve noise rejection  
and load regulation transient response.  
The maximum dissipation the package can handle is  
given by:  
T
*T  
A
qJA  
J(max)  
PD +  
R
If junction temperature is not allowed above the  
maximum 125°C, then the NCP612/NCV612 can dissipate  
up to 330 mW @ 25°C.  
TDK capacitor: C2012X5R1C105K, C1608X5R1A105K,  
or C3216X7R1C105K  
Enable Operation  
The power dissipated by the NCP612/NCV612 can be  
calculated from the following equation:  
The enable pin will turn on the regulator when pulled high  
and turn off the regulator when pulled low. These limits of  
threshold are covered in the electrical specification section  
of this data sheet. If the enable is not used then the pin should  
[
]
[
]
P
+ V * I  
(I ) ) V * V  
* I  
tot  
in gnd out  
in  
out out  
or  
)
*
I
be connected to V .  
P
V
in  
tot  
I
out out  
) I  
V
+
inMAX  
gnd  
out  
Hints  
If an 100 mA output current is needed then the ground  
current from the data sheet is 40 m A. For an  
NCP612/NCV612 (3.0 V), the maximum input voltage will  
then be 6.0 V (Limited by maximum input voltage).  
Please be sure the Vin and Gnd lines are sufficiently wide.  
When the impedance of these lines is high, there is a chance  
to pick up noise or cause the regulator to malfunction.  
http://onsemi.com  
8
NCP612, NCV612  
ORDERING INFORMATION  
Nominal  
Output Voltage  
Device  
NCP612SQ15T1  
NCP612SQ18T1  
NCP612SQ25T1  
NCP612SQ27T1  
NCP612SQ28T1  
NCP612SQ30T1  
NCP612SQ31T1  
NCP612SQ33T1  
NCP612SQ50T1  
NCV612SQ15T1*  
NCV612SQ18T1*  
NCV612SQ25T1*  
NCV612SQ27T1*  
NCV612SQ28T1*  
NCV612SQ30T1*  
NCV612SQ31T1*  
NCV612SQ33T1*  
NCV612SQ50T1*  
Marking  
LHO  
LHP  
LHQ  
LHR  
LHS  
LHT  
Package  
Shipping  
1.5  
1.8  
2.5  
2.7  
2.8  
3.0  
3.1  
3.3  
5.0  
1.5  
1.8  
2.5  
2.7  
2.8  
3.0  
3.1  
3.3  
5.0  
LHU  
LHV  
LHW  
LHO  
LHP  
LHQ  
LHR  
LHS  
LHT  
SC70−5  
(SC−88A/SOT−353)  
3000 Units/  
7Tape & Reel  
LHU  
LHV  
LHW  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specification Brochure, BRD8011/D.  
*NCV prefix for automotive and other applications requiring site and control changes.  
http://onsemi.com  
9
NCP612, NCV612  
PACKAGE DIMENSIONS  
SC−88A/SOT−353/SC70−5  
SQ SUFFIX  
CASE 419A−02  
ISSUE G  
A
NOTES:  
G
1. DIMENSIONING AND TOLERANCING  
PER ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
3. 419A−01 OBSOLETE. NEW STANDARD  
419A−02.  
4. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD FLASH, PROTRUSIONS, OR GATE  
BURRS.  
5
4
3
−B−  
S
1
2
INCHES  
DIM MIN MAX  
MILLIMETERS  
MIN  
1.80  
1.15  
0.80  
0.10  
MAX  
2.20  
1.35  
1.10  
0.30  
A
B
C
D
G
H
J
0.071  
0.045  
0.031  
0.004  
0.087  
0.053  
0.043  
0.012  
M
M
B
0.2 (0.008)  
D 5 PL  
0.026 BSC  
0.65 BSC  
N
−−−  
0.004  
0.004  
0.004  
0.010  
0.012  
−−−  
0.10  
0.10  
0.10  
0.25  
0.30  
K
N
S
0.008 REF  
0.20 REF  
J
0.079  
0.087  
2.00  
2.20  
C
K
H
SOLDERING FOOTPRINT*  
0.50  
0.0197  
0.65  
0.025  
0.65  
0.025  
0.40  
0.0157  
1.9  
0.0748  
mm  
inches  
ǒ
Ǔ
SCALE 20:1  
*For additional information on our Pb−Free strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 800−282−9855 Toll Free  
USA/Canada  
ON Semiconductor Website: http://onsemi.com  
Order Literature: http://www.onsemi.com/litorder  
Literature Distribution Center for ON Semiconductor  
P.O. Box 61312, Phoenix, Arizona 85082−1312 USA  
Phone: 480−829−7710 or 800−344−3860 Toll Free USA/Canada  
Fax: 480−829−7709 or 800−344−3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
Japan: ON Semiconductor, Japan Customer Focus Center  
2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051  
Phone: 81−3−5773−3850  
For additional information, please contact your  
local Sales Representative.  
NCP612/D  

相关型号:

NCV612SQ27T1G

100 mA CMOS Low Iq Voltage Regulator in an SC70−5
ONSEMI

NCV612SQ27T2G

100 mA CMOS Low Iq Voltage Regulator
ONSEMI

NCV612SQ28T1

100 mA CMOS Low Iq Voltage Regulator in an SC70-5
ONSEMI

NCV612SQ28T1G

100 mA CMOS Low Iq Voltage Regulator in an SC70−5
ONSEMI

NCV612SQ28T2G

100 mA CMOS Low Iq Voltage Regulator
ONSEMI

NCV612SQ30T1

100 mA CMOS Low Iq Voltage Regulator in an SC70-5
ONSEMI

NCV612SQ30T1G

100 mA CMOS Low Iq Voltage Regulator in an SC70−5
ONSEMI

NCV612SQ30T2G

100 mA CMOS Low Iq Voltage Regulator
ONSEMI

NCV612SQ31T1

100 mA CMOS Low Iq Voltage Regulator in an SC70-5
ONSEMI

NCV612SQ31T1G

100 mA CMOS Low Iq Voltage Regulator in an SC70−5
ONSEMI

NCV612SQ31T2G

100 mA CMOS Low Iq Voltage Regulator
ONSEMI

NCV612SQ33T1

100 mA CMOS Low Iq Voltage Regulator in an SC70-5
ONSEMI