NCV612SQ28T2G [ONSEMI]

100 mA CMOS Low Iq Voltage Regulator;
NCV612SQ28T2G
型号: NCV612SQ28T2G
厂家: ONSEMI    ONSEMI
描述:

100 mA CMOS Low Iq Voltage Regulator

光电二极管 输出元件 调节器
文件: 总9页 (文件大小:86K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NCP612, NCV612  
100 mA CMOS Low Iq  
Voltage Regulator in an  
SC70-5  
The NCP612/NCV612 series of fixed output linear regulators are  
designed for handheld communication equipment and portable battery  
powered applications which require low quiescent. The  
NCP612/NCV612 series features an ultra−low quiescent current of  
40 A. Each device contains a voltage reference unit, an error  
amplifier, a PMOS power transistor, resistors for setting output  
voltage, current limit, and temperature limit protection circuits.  
The NCP612/NCV612 has been designed to be used with low cost  
ceramic capacitors. The device is housed in the micro−miniature  
SC70−5 surface mount package. Standard voltage versions are 1.5,  
1.8, 2.5, 2.7, 2.8, 3.0, 3.1, 3.3, 3.7, and 5.0 V.  
www.onsemi.com  
SC70−5  
CASE 419A  
PIN CONNECTIONS  
Features  
V
1
2
5
4
V
out  
in  
Low Quiescent Current of 40 A Typical  
Gnd  
Low Dropout Voltage of 230 mV at 100 mA and 3.0 V V  
out  
Low Output Voltage Option  
Enable  
3
N/C  
Output Voltage Accuracy of 2.0%  
(Top View)  
Temperature Range of −40°C to 85°C (NCP612)  
Temperature Range of −40°C to 125°C (NCV612)  
NCV Prefix for Automotive and Other Applications Requiring  
Unique Site and Control Change Requirements; AEC−Q100  
Qualified and PPAP Capable  
MARKING DIAGRAM  
5
These are Pb−Free Devices  
Typical Applications  
xxxM G  
G
1
Cellular Phones  
Battery Powered Consumer Products  
Hand−Held Instruments  
Camcorders and Cameras  
xxx = Specific Device Code  
M
= Date Code*  
G
= Pb−Free Package  
(Note: Microdot may be in either location)  
ORDERING INFORMATION  
Battery or  
Unregulated  
Voltage  
Vout  
C2  
See detailed ordering and shipping information in the package  
dimensions section on page 8 of this data sheet.  
1
2
3
5
4
+
C1  
+
ON  
OFF  
This device contains 86 active transistors  
Figure 1. Typical Application Diagram  
© Semiconductor Components Industries, LLC, 2013  
1
Publication Order Number:  
April, 2017 − Rev. 4  
NCP612/D  
 
NCP612, NCV612  
PIN FUNCTION DESCRIPTION  
Pin No.  
Pin Name  
Vin  
Description  
1
2
3
Positive power supply input voltage.  
Power supply ground.  
Gnd  
Enable  
This input is used to place the device into low−power standby. When this input is pulled low, the device is  
disabled. If this function is not used, Enable should be connected to Vin.  
4
5
N/C  
No internal connection.  
Vout  
Regulated output voltage.  
MAXIMUM RATINGS  
Rating  
Symbol  
Value  
Unit  
V
Input Voltage  
Enable Voltage  
Output Voltage  
V
in  
0 to 6.0  
Enable  
−0.3 to V +0.3  
V
in  
V
out  
−0.3 to V +0.3  
V
in  
Power Dissipation and Thermal Characteristics  
Power Dissipation  
Thermal Resistance, Junction−to−Ambient  
P
Internally Limited  
300  
W
°C/W  
D
R
JA  
Operating Junction Temperature  
Operating Ambient Temperature  
Storage Temperature  
T
+150  
°C  
°C  
°C  
J
T
A
−40 to +125  
−55 to +150  
T
stg  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
1. This device series contains ESD protection and exceeds the following tests:  
Human Body Model 2000 V per MIL−STD−883, Method 3015  
Machine Model Method 200 V  
2. Latch−up capability (85°C) "200 mA DC with trigger voltage.  
ELECTRICAL CHARACTERISTICS  
(V = V  
+ 1.0 V, V = V , C = 1.0 F, C = 1.0 F, T = 25°C, unless otherwise noted.)  
enable in in out J  
in  
out(nom.)  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
Output Voltage (TA = 25°C, I = 10 mA)  
V
out  
V
out  
1.5 V  
1.8 V  
2.5 V  
2.7 V  
2.8 V  
3.0 V  
3.1 V  
3.3 V  
3.7 V  
5.0 V  
1.455  
1.746  
2.425  
2.646  
2.744  
2.940  
3.038  
3.234  
3.626  
4.900  
1.5  
1.8  
2.5  
2.7  
2.8  
3.0  
3.1  
3.3  
3.7  
5.0  
1.545  
1.854  
2.575  
2.754  
2.856  
3.060  
3.162  
3.366  
3.774  
5.100  
Output Voltage (TA = −40°C to 85°C, I = 10 mA)  
V
out  
V
out  
1.5 V  
1.8 V  
2.5 V  
2.7 V  
2.8 V  
3.0 V  
3.1 V  
3.3 V  
3.7 V  
5.0 V  
1.455  
1.746  
2.425  
2.619  
2.716  
2.910  
3.007  
3.201  
3.626  
4.900  
1.5  
1.8  
2.5  
2.7  
2.8  
3.0  
3.1  
3.3  
3.7  
5.0  
1.545  
1.854  
2.575  
2.781  
2.884  
3.090  
3.193  
3.399  
3.774  
5.100  
www.onsemi.com  
2
NCP612, NCV612  
ELECTRICAL CHARACTERISTICS (continued)  
(V = V + 1.0 V, V = V , C = 1.0 F, C = 1.0 F, T = 25°C, unless otherwise noted.)  
in  
out(nom.)  
enable  
in  
in  
out  
J
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
Output Voltage (TA = −40°C to 125°C, I = 10 mA) NCV612 Only  
V
out  
V
out  
1.5 V  
1.8 V  
2.5 V  
2.7 V  
2.8 V  
3.0 V  
3.1 V  
3.3 V  
5.0 V  
1.440  
1.728  
2.400  
2.592  
2.688  
2.880  
2.976  
3.201  
4.850  
1.5  
1.8  
2.5  
2.7  
2.8  
3.0  
3.1  
3.3  
5.0  
1.560  
1.872  
2.600  
2.808  
2.912  
3.120  
3.224  
3.399  
5.150  
Output Voltage (TA = −40°C to 85°C, I = 100 mA)  
V
out  
V
out  
1.5 V  
1.8 V  
2.5 V  
2.7 V  
2.8 V  
3.0 V  
3.1 V  
3.3 V  
3.7 V  
5.0 V  
1.440  
1.728  
2.400  
2.592  
2.688  
2.880  
2.976  
3.201  
3.589  
4.850  
1.5  
1.8  
2.5  
2.7  
2.8  
3.0  
3.1  
3.3  
3.7  
5.0  
1.560  
1.872  
2.600  
2.808  
2.912  
3.120  
3.224  
3.399  
3.811  
5.150  
Line Regulation (I = 10 mA)  
Reg  
mV/V  
out  
line  
1.5 V−4.4 V (V = V  
+ 1.0 V to 6.0 V)  
1.0  
1.0  
3.0  
3.0  
in  
out(nom.)  
4.5 V−5.0 V (V = 5.5 V to 6.0 V)  
in  
Load Regulation (I = 1.0 mA to 100 mA)  
Reg  
0.3  
0.8  
mV/mA  
mA  
out  
load  
Output Current (V = (V at I = 100 mA) −3%)  
I
o(nom.)  
out  
out  
out  
1.5 V−3.9 V (V = V  
+ 2.0 V)  
100  
100  
200  
200  
in  
out(nom.)  
4.0 V−5.0 V (V = 6.0 V)  
in  
Dropout Voltage (T = −40°C to 85°C, I = 100 mA,  
V −V  
in out  
mV  
A
out  
Measured at V  
−3.0%)  
out(nom)  
1.5 V  
1.8 V  
2.5 V  
2.7 V  
2.8 V  
3.0 V  
3.1 V  
3.3 V  
530  
420  
270  
270  
250  
230  
210  
200  
180  
160  
680  
560  
380  
380  
380  
380  
380  
380  
380  
300  
3.7 V  
5.0 V  
Ground Current  
(Enable Input = V , I = 1.0 mA to I  
I
A  
A  
GND  
)
)
40  
90  
in out  
o(nom.)  
Quiescent Current (TA = −40°C to 85°C)  
(Enable Input = 0 V)  
(Enable Input = V , I = 1.0 mA to I  
I
Q
0.03  
40  
1.0  
90  
in out  
o(nom.)  
Output Short Circuit Current (V = 0 V)  
I
mA  
out  
out(max)  
1.5 V−3.9 V (V = V  
+ 2.0 V)  
150  
150  
300  
300  
600  
600  
in  
out(nom.)  
4.0 V−5.0 V (V = 6.0 V)  
in  
Output Voltage Noise (f = 100 Hz to 100 kHz)  
= 30 mA, C = 1 F  
V
n
V
r
m
s
I
100  
out  
out  
Enable Input Threshold Voltage  
V
th(en)  
V
(Voltage Increasing, Output Turns On, Logic High)  
(Voltage Decreasing, Output Turns Off, Logic Low)  
0.95  
0.3  
Output Voltage Temperature Coefficient  
T
C
"100  
ppm/°C  
3. Maximum package power dissipation limits must be observed.  
T
*T  
A
JA  
J(max)  
PD +  
R
4. Low duty cycle pulse techniques are used during testing to maintain the junction temperature as close to ambient as possible.  
www.onsemi.com  
3
NCP612, NCV612  
TYPICAL CHARACTERISTICS  
300  
3.020  
3.015  
3.010  
3.005  
NCP612SQ30  
V
in  
= 6.0 V  
250  
200  
I = 80 mA  
o
V
in  
= 4.0 V  
150  
100  
3.000  
2.995  
2.990  
2.985  
I = 40 mA  
o
50  
0
I = 10 mA  
o
−50  
−25  
0
25  
50  
75  
100  
125  
−60 −40  
−20  
0
20  
40  
60  
80  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 2. Dropout Voltage vs. Temperature  
Figure 3. Output Voltage vs. Temperature  
60  
48  
46  
44  
42  
40  
I
V
V
= 0 mA  
= 4.0 V  
= 3.0 V  
V
C
C
= 3.0 V  
= 1.0 F  
= 1.0 F  
out  
out  
in  
in  
out  
50  
40  
out  
T = 25°C  
A
30  
20  
10  
0
0
1
2
3
4
5
6
7
−60 −40  
−20  
0
20  
40  
60  
80  
100  
V
in  
INPUT VOLTAGE (V)  
TEMPERATURE (°C)  
Figure 5. Quiescent Current vs. Input Voltage  
Figure 4. Quiescent Current vs. Temperature  
60  
70  
60  
V
in  
= 4.0 V  
V
C
C
= 3.0 V  
= 1.0 F  
= 1.0 F  
out  
C
I
= 1.0 F  
out  
50  
40  
in  
out  
= 30 mA  
out  
50  
40  
30  
20  
I
= 30 mA  
out  
T = 25°C  
A
30  
20  
10  
0
10  
0
0
1
2
3
4
5
6
7
100  
1000  
10000  
100000 1000000  
V
in  
INPUT VOLTAGE (V)  
FREQUENCY (Hz)  
Figure 6. Ground Pin Current vs. Input Voltage  
Figure 7. Ripple Rejection vs. Frequency  
www.onsemi.com  
4
NCP612, NCV612  
TYPICAL CHARACTERISTICS  
7
7
6
V
C
= 4.0 V  
in  
6
5
= 1.0 F  
out  
I
= 30 mA  
out  
C
= 1.0 F  
out  
= 10 mA  
5
4
3
2
1
I
out  
4
3
200  
100  
0
−100  
0
10  
100  
1000  
10000  
100000 1000000  
0
50 100 150 200 250 300 350 400 450 500  
TIME (s)  
FREQUENCY (Hz)  
Figure 9. Line Transient Response  
Figure 8. Output Noise Density  
6
4
60 mA  
2
0
4
3
2
1
0
200  
100  
0
I
V
C
C
= 10 mA  
= 4.0 V  
= 1.0 F  
in  
= 1.0 F  
out  
out  
in  
I
V
C
C
= 1 mA to 60 mA  
= 4.0 V  
= 1.0 F  
out  
−100  
−200  
in  
in  
0
= 1.0 F  
out  
0
100  
200  
300 400  
TIME (s)  
500 600  
700 800  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
TIME (ms)  
Figure 10. Load Transient Response  
Figure 11. Turn−on Response  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
0
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
V , INPUT VOLTAGE (V)  
in  
Figure 12. Output Voltage vs. Input Voltage  
www.onsemi.com  
5
NCP612, NCV612  
DEFINITIONS  
Load Regulation  
Line Regulation  
The change in output voltage for a change in output  
current at a constant temperature.  
The change in output voltage for a change in input voltage.  
The measurement is made under conditions of low  
dissipation or by using pulse technique such that the average  
chip temperature is not significantly affected.  
Dropout Voltage  
The input/output differential at which the regulator output  
no longer maintains regulation against further reductions in  
input voltage. Measured when the output drops 3.0% below  
its nominal. The junction temperature, load current, and  
minimum input supply requirements affect the dropout level.  
Line Transient Response  
Typical over and undershoot response when input voltage  
is excited with a given slope.  
Thermal Protection  
Internal thermal shutdown circuitry is provided to protect  
the integrated circuit in the event that the maximum junction  
temperature is exceeded. When activated at typically 160°C,  
the regulator turns off. This feature is provided to prevent  
failures from accidental overheating.  
Maximum Power Dissipation  
The maximum total dissipation for which the regulator  
will operate within its specifications.  
Quiescent Current  
The quiescent current is the current which flows through  
the ground when the LDO operates without a load on its  
output: internal IC operation, bias, etc. When the LDO  
becomes loaded, this term is called the Ground current. It is  
actually the difference between the input current (measured  
through the LDO input pin) and the output current.  
Maximum Package Power Dissipation  
The maximum power package dissipation is the power  
dissipation level at which the junction temperature reaches  
its maximum operating value, i.e. 150°C. Depending on the  
ambient power dissipation and thus the maximum available  
output current.  
www.onsemi.com  
6
NCP612, NCV612  
APPLICATIONS INFORMATION  
Thermal  
A typical application circuit for the NCP612/NCV612 is  
shown in Figure 1, front page.  
As power across the NCP612/NCV612 increases, it might  
become necessary to provide some thermal relief. The  
maximum power dissipation supported by the device is  
dependent upon board design and layout. Mounting pad  
configuration on the PCB, the board material and also the  
ambient temperature effect the rate of temperature rise for  
the part. This is stating that when the NCP612/NCV612 has  
good thermal conductivity through the PCB, the junction  
temperature will be relatively low with high power  
dissipation applications.  
Input Decoupling (C1)  
A 1.0 F capacitor either ceramic or tantalum is  
recommended and should be connected close to the  
NCP612/NCV612 package. Higher values and lower ESR  
will improve the overall line transient response.  
TDK capacitor: C2012X5R1C105K, or C1608X5R1A105K  
Output Decoupling (C2)  
The NCP612/NCV612 is a stable regulator and does not  
require any specific Equivalent Series Resistance (ESR) or  
a minimum output current. Capacitors exhibiting ESRs  
ranging from a few mup to 5.0 can thus safely be used.  
The minimum decoupling value is 1.0 F and can be  
augmented to fulfill stringent load transient requirements.  
The regulator accepts ceramic chip capacitors as well as  
tantalum capacitors. Larger values improve noise rejection  
and load regulation transient response.  
The maximum dissipation the package can handle is  
given by:  
T
*T  
A
JA  
J(max)  
PD +  
R
If junction temperature is not allowed above the  
maximum 125°C, then the NCP612/NCV612 can dissipate  
up to 330 mW @ 25°C.  
The power dissipated by the NCP612/NCV612 can be  
calculated from the following equation:  
TDK capacitor: C2012X5R1C105K, C1608X5R1A105K,  
or C3216X7R1C105K  
ƪ
ƫ
[
]
P
+ V * I  
(I ) ) V * V  
in  
* I  
tot  
in gnd out  
out out  
Enable Operation  
or  
The enable pin will turn on the regulator when pulled high  
and turn off the regulator when pulled low. These limits of  
threshold are covered in the electrical specification section  
of this data sheet. If the enable is not used then the pin should  
)
*
I
P
V
tot  
I
out out  
) I  
V
+
inMAX  
gnd  
out  
If an 100 mA output current is needed then the ground  
current from the data sheet is 40 A. For an  
NCP612/NCV612 (3.0 V), the maximum input voltage will  
then be 6.0 V (Limited by maximum input voltage).  
be connected to V .  
in  
Hints  
Please be sure the Vin and Gnd lines are sufficiently wide.  
When the impedance of these lines is high, there is a chance  
to pick up noise or cause the regulator to malfunction.  
Set external components, especially the output capacitor,  
as close as possible to the circuit, and make leads as short as  
possible.  
www.onsemi.com  
7
NCP612, NCV612  
ORDERING INFORMATION  
Nominal  
Output Voltage  
Device  
NCP612SQ15T2G  
NCP612SQ18T2G  
NCP612SQ25T2G  
NCP612SQ27T2G  
NCP612SQ28T2G  
NCP612SQ30T2G  
NCP612SQ31T2G  
NCP612SQ33T2G  
NCP612SQ37T2G  
NCP612SQ50T2G  
NCV612SQ15T2G*  
NCV612SQ18T2G*  
NCV612SQ25T2G*  
NCV612SQ27T2G*  
NCV612SQ28T2G*  
NCV612SQ30T2G*  
NCV612SQ31T2G*  
NCV612SQ33T2G*  
NCV612SQ37T2G*  
NCV612SQ50T2G*  
Marking  
LHO  
LHP  
LHQ  
LHR  
LHS  
LHT  
Package  
Shipping  
1.5  
1.8  
2.5  
2.7  
2.8  
3.0  
3.1  
3.3  
3.7  
5.0  
1.5  
1.8  
2.5  
2.7  
2.8  
3.0  
3.1  
3.3  
3.7  
5.0  
LHU  
LHV  
LKH  
LHW  
LHO  
LHP  
LHQ  
LHR  
LHS  
LHT  
SC70−5  
(Pb−Free)  
3000 Units/Tape & Reel  
LHU  
LHV  
LKH  
LHW  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specification Brochure, BRD8011/D.  
*NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC−Q100 Qualified and PPAP  
Capable.  
www.onsemi.com  
8
NCP612, NCV612  
PACKAGE DIMENSIONS  
SC−88A  
(SC−70−5/SOT−353)  
CASE 419A−02  
ISSUE L  
A
NOTES:  
1. DIMENSIONING AND TOLERANCING  
PER ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
3. 419A−01 OBSOLETE. NEW STANDARD  
419A−02.  
G
4. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD FLASH, PROTRUSIONS, OR GATE  
BURRS.  
5
4
3
−B−  
S
INCHES  
DIM MIN MAX  
MILLIMETERS  
MIN  
1.80  
1.15  
0.80  
0.10  
MAX  
2.20  
1.35  
1.10  
0.30  
1
2
A
B
C
D
G
H
J
0.071  
0.045  
0.031  
0.004  
0.087  
0.053  
0.043  
0.012  
0.026 BSC  
0.65 BSC  
M
M
B
D 5 PL  
0.2 (0.008)  
---  
0.004  
0.004  
0.004  
0.010  
0.012  
---  
0.10  
0.10  
0.10  
0.25  
0.30  
K
N
S
N
0.008 REF  
0.20 REF  
0.079  
0.087  
2.00  
2.20  
J
C
K
H
SOLDER FOOTPRINT  
0.50  
0.0197  
0.65  
0.025  
0.65  
0.025  
0.40  
0.0157  
1.9  
0.0748  
mm  
inches  
ǒ
Ǔ
SCALE 20:1  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent  
coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein.  
ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards,  
regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer  
application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not  
designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification  
in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized  
application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and  
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such  
claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This  
literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 800−282−9855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81−3−5817−1050  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA  
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada  
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
NCP612/D  

相关型号:

NCV612SQ30T1

100 mA CMOS Low Iq Voltage Regulator in an SC70-5
ONSEMI

NCV612SQ30T1G

100 mA CMOS Low Iq Voltage Regulator in an SC70−5
ONSEMI

NCV612SQ30T2G

100 mA CMOS Low Iq Voltage Regulator
ONSEMI

NCV612SQ31T1

100 mA CMOS Low Iq Voltage Regulator in an SC70-5
ONSEMI

NCV612SQ31T1G

100 mA CMOS Low Iq Voltage Regulator in an SC70−5
ONSEMI

NCV612SQ31T2G

100 mA CMOS Low Iq Voltage Regulator
ONSEMI

NCV612SQ33T1

100 mA CMOS Low Iq Voltage Regulator in an SC70-5
ONSEMI

NCV612SQ33T1G

100 mA CMOS Low Iq Voltage Regulator in an SC70−5
ONSEMI

NCV612SQ33T2G

100 mA CMOS Low Iq Voltage Regulator
ONSEMI

NCV612SQ37T2G

100 mA CMOS Low Iq Voltage Regulator
ONSEMI

NCV612SQ50T1

100 mA CMOS Low Iq Voltage Regulator in an SC70-5
ONSEMI

NCV612SQ50T1G

100 mA CMOS Low Iq Voltage Regulator in an SC70−5
ONSEMI