NCL30086BHDR2G [ONSEMI]

Analog/Digital Dimmable Power Factor Corrected Quasi-Resonant PrimarySide Current-Mode Controller for LED Lighting;
NCL30086BHDR2G
型号: NCL30086BHDR2G
厂家: ONSEMI    ONSEMI
描述:

Analog/Digital Dimmable Power Factor Corrected Quasi-Resonant PrimarySide Current-Mode Controller for LED Lighting

驱动 光电二极管 接口集成电路
文件: 总31页 (文件大小:452K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NCL30086BH  
Analog/Digital Dimmable  
Power Factor Corrected  
Quasi-Resonant Primary  
Side Current-Mode  
www.onsemi.com  
Controller for LED Lighting  
The NCL30086BH is a controller targeting isolated and  
non−isolated “smart−dimmable” constant−current LED drivers.  
Designed to support flyback, buck−boost, and SEPIC topologies, its  
proprietary current−control algorithm provides near−unity power  
factor and tightly regulates a constant LED current from the primary  
side, thus eliminating the need for a secondary−side feedback circuitry  
or an optocoupler.  
SOIC−10  
CASE 751BQ  
MARKING DIAGRAM  
Housed in the SOIC10 which has the same body size as a standard  
SOIC8, the NCL30086BH is specifically intended for very compact  
space−efficient designs. The device is highly integrated with a  
minimum number of external components. A robust suite of safety  
protections is built in to simplify the design. To ensure reliable  
operation at elevated temperatures, a user configurable current  
foldback circuit is also provided. In addition, it supports analog and  
PWM dimming with a dedicated dimming input intended to control  
the average LED current.  
Pin−to−pin compatible to the NCL30086, the NCL30086BH  
provides the same benefits with in addition, an increased resolution of  
the digital current−control algorithm for a 75% reduction in the LED  
current quantization ripple.  
L30086BH  
ALYW  
G
L30086BH = Specific Device Code  
A
L
Y
W
G
= Assembly Location  
= Wafer Lot  
= Year  
= Work Week  
= Pb-Free Package  
PIN CONNECTIONS  
1
DIM  
NC  
Features  
ZCD  
VS  
V
CC  
Quasi−resonant Peak Current−mode Control Operation  
Valley Lockout Optimizes Efficiency over the Line/Load Range  
Constant Current Control with Primary Side Feedback  
Tight LED Constant Current Regulation of 2% Typical  
Power Factor Correction  
DRV  
GND  
CS  
COMP  
SD  
(Top View)  
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
dimensions section on page 29 of this data sheet.  
Analog or PWM dimming  
Line Feedforward for Enhanced Regulation Accuracy  
Low Start−up Current (10 mA typ.)  
Wide V Range  
cc  
Current Sense (CS) Short Detection  
User programmable NTC Based Thermal Foldback  
Thermal Shutdown  
300 mA / 500 mA Totem Pole Driver with 12 V Gate  
Clamp  
Robust Protection Features  
−40 to 125°C Operating Junction Temperature  
Pb−Free, Halide−Free Product  
Brown−Out Detection  
OVP on V  
Programmable Over Voltage / LED Open Circuit  
Protection  
Cycle−by−cycle Peak Current Limit  
Winding Short Circuit Protection  
Secondary Diode Short Protection  
Output Short Circuit Protection  
CC  
Typical Applications  
Integral LED Bulbs  
LED Light Engines  
LED Driver Power Supplies  
Smart LED Lighting Applications  
© Semiconductor Components Industries, LLC, 2016  
1
Publication Order Number:  
NCL30086BH/D  
February, 2016 − Rev. 0  
NCL30086BH  
.
Aux  
.
.
VDIM  
NCL30086BH  
1
2
3
4
5
10  
9
8
7
6
R
sense  
Figure 1. Typical Application Schematic in a Flyback Converter  
.
Aux  
.
VDIM  
NCL30086BH  
1
2
3
4
5
10  
9
8
7
6
R
sense  
Figure 2. Typical Application Schematic in a Buck−Boost Converter  
www.onsemi.com  
2
 
NCL30086BH  
Table 1. PIN FUNCTION DESCRIPTION  
Pin No  
Pin Name  
Function  
Pin Description  
This pin is used for analog or PWM dimming control. An analog signal that can be  
1
DIM  
Analog / PWM Dimming  
varied between V  
LED current.  
and V  
or a PWM signal can be used to adjust the  
DIM0  
DIM100  
2
3
ZCD  
VS  
Zero Crossing Detection  
Input Voltage Sensing  
Connected to the auxiliary winding, this pin detects the core reset event.  
This pin monitors the input voltage rail for:  
Power Factor Correction  
Valley lockout  
Brownout Detection  
4
5
COMP  
SD  
Filtering Capacitor  
This pin receives a filtering capacitor for power factor correction. Typical values  
ranges from 1 − 4.7 mF.  
Thermal Foldback and  
Shutdown  
Connecting an NTC to this pin allows the user to program thermal current fold-  
back threshold and slope. A Zener diode can also be used to pull−up the pin and  
stop the controller for adjustable OVP protection.  
6
7
8
9
CS  
Current Sense  
This pin monitors the primary peak current.  
Controller ground pin.  
GND  
DRV  
Driver Output  
IC Supply Pin  
The driver’s output to an external MOSFET  
V
CC  
This pin is the positive supply of the IC. The circuit starts to operate when V  
CC  
exceeds 18 V and turns off when V goes below 8.8 V (typical values). After  
CC  
start−up, the operating range is 9.4 V up to 26 V (V  
minimum level).  
CC(OVP)  
10  
NC  
www.onsemi.com  
3
NCL30086BH  
Internal Circuit Architecture  
Enable  
STOP  
V
V
REF  
DD  
Over Voltage Protection  
(Auto−recovery or Latched)  
Aux_SCP  
OFF  
VCC  
UVLO  
Latch  
Fault  
Management  
VCC Management  
Over Temp. Protection  
(Auto−recovery or Latched)  
Internal  
Thermal  
Shutdown  
VCC_max  
VCC Over Voltage  
Protection  
SD  
Thermal  
V
TF  
Foldback  
WOD_SCP  
BO_NOK  
FF_mode  
DRV  
V
VS  
VCC  
FF_mode  
Zero Crossing Detection Logic  
(ZCD Blanking, Time−Out, ...)  
Aux_SCP  
ZCD  
Clamp  
Circuit  
Valley Selection  
Frequency Foldback  
Aux. Winding Short Circuit Prot.  
DRV  
S
Q
Q
CS_ok  
V
VS  
R
Line  
feed−forward  
DIM_disable  
V
VS  
V
REFX  
STOP  
GND  
CS  
Power Factor and  
Constant−Current  
Control  
Leading  
Edge  
Blanking  
CS_reset  
Ipkmax  
Maximum  
on time  
STOP  
DIM_disable  
t
on,max  
COMP  
Ipkmax  
Max. Peak  
Current  
Limit  
V
VS  
BO_NOK  
VS  
Brown−Out  
CS_ok  
CS Short  
Protection  
V
REF  
UVLO  
t
on,max  
DIM_disable  
V
DIM  
REFX  
Dimming  
Winding and  
Output diode  
Short Circuit  
Protection  
WOD_SCP  
control  
V
TF  
Figure 3. Internal Circuit Architecture  
www.onsemi.com  
4
 
NCL30086BH  
Table 2. MAXIMUM RATINGS TABLE(S)  
Symbol  
Rating  
Value  
Unit  
V
Maximum Power Supply voltage, V pin, continuous voltage  
−0.3 to 30  
V
CC(MAX)  
CC  
I
Maximum current for V pin  
Internally limited  
mA  
CC(MAX)  
CC  
V
Maximum driver pin voltage, DRV pin, continuous voltage  
Maximum current for DRV pin  
−0.3, V  
(Note 1)  
V
DRV(MAX)  
DRV  
I
−300, +500  
mA  
DRV(MAX)  
V
Maximum voltage on low power pins (except DRV and V pins)  
−0.3, 5.5 (Notes 2 and 5)  
−2, +5  
V
MAX  
CC  
I
Current range for low power pins (except DRV and V pins)  
mA  
MAX  
CC  
R
Thermal Resistance Junction−to−Air  
Maximum Junction Temperature  
Operating Temperature Range  
180  
150  
°C/W  
°C  
θ
J−A  
T
J(MAX)  
−40 to +125  
−60 to +150  
3.5  
°C  
Storage Temperature Range  
°C  
ESD Capability, HBM model (Note 3)  
ESD Capability, MM model (Note 3)  
ESD Capability, CDM model (Note 3)  
kV  
V
250  
2
kV  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
1. V  
is the DRV clamp voltage V  
when V is higher than V  
. V  
is V otherwise.  
DRV  
DRV(high)  
CC  
DRV(high) DRV CC  
2. These levels are low enough not to exceed the maximum ratings of the internal ESD 5.5−V Zener diode. More positive and negative voltages  
can be applied if the pin current stays within the −2 mA / 5 mA range.  
3. This device contains ESD protection and exceeds the following tests: Human Body Model 3500 V per JEDEC Standard JESD22−A114E,  
Machine Model Method 250 V per JEDEC Standard JESD22−A115B, Charged Device Model 2000 V per JEDEC Standard JESD22−C101E.  
4. This device contains latch−up protection and has been tested per JEDEC Standard JESD78D, Class I and exceeds 100 mA.  
5. Recommended maximum V voltage for optimal operation is 4 V. 0.3 V to +4.0 V is hence, the V pin recommended range.  
S
S
Table 3. ELECTRICAL CHARACTERISTICS (Unless otherwise noted: For typical values T = 25°C, V = 12 V, V = 0 V,  
ZCD  
J
CC  
V
CS  
= 0 V, V = 1.5 V) For min/max values T = −40°C to +125°C, V = 12 V)  
SD J CC  
Description  
Test Condition  
Symbol  
Min  
Typ  
Max  
Unit  
STARTUP AND SUPPLY CIRCUITS  
Supply Voltage  
V
Startup Threshold  
V
V
rising  
rising  
falling  
V
V
16.0  
8.2  
8
18.0  
8.8  
20.0  
9.4  
CC  
CC  
CC  
CC(on)  
Minimum Operating Voltage  
CC(off)  
Hysteresis V  
– V  
V
V
CC(on)  
CC(off)  
CC(HYS)  
CC(reset)  
Internal logic reset  
V
4
5
6
V
Over Voltage Protection Threshold  
V
25.5  
26.8  
28.5  
V
CC  
CC(OVP)  
VCC(off)  
V
V
noise filter  
t
5
ms  
CC(off)  
noise filter  
t
20  
CC(reset)  
VCC(reset)  
Startup current  
I
13  
58  
30  
75  
mA  
mA  
CC(start)  
Startup current in fault mode  
I
CC(Fault)  
Supply Current  
mA  
Device Disabled/Fault  
V
> V  
I
I
I
0.8  
1.0  
2.6  
3.0  
1.2  
4.0  
4.5  
CC  
CC(off)  
CC1  
CC2  
CC3  
Device Enabled/No output load on DRV pin  
Device Switching  
F
= 65 kHz  
sw  
C
= 470 pF, F = 65 kHz  
DRV  
sw  
CURRENT SENSE  
Maximum Internal current limit  
V
0.95  
240  
1.00  
300  
100  
1.05  
360  
150  
V
ILIM  
LEB  
ILIM  
Leading Edge Blanking Duration for V  
t
ns  
ns  
ILIM  
Propagation delay from current detection to gate  
off−state  
t
6. Guaranteed by Design  
7. A NTC is generally placed between the SD and GND pins. Parameters R  
, R  
, R  
and R  
give the resistance the  
OTP(on)  
TF(start) TF(stop) OTP(off)  
NTC must exhibit to respectively, enter thermal foldback, stop thermal foldback, trigger the OTP limit and allow the circuit recovery after  
an OTP situation.  
8. At startup, when V reaches V  
, the controller blanks OTP for more than 250 ms to avoid detecting an OTP fault by allowing the  
CC(on)  
CC  
SD pin voltage to reach its nominal value if a filtering capacitor is connected to the SD pin.  
www.onsemi.com  
5
 
NCL30086BH  
Table 3. ELECTRICAL CHARACTERISTICS (Unless otherwise noted: For typical values T = 25°C, V = 12 V, V = 0 V,  
ZCD  
J
CC  
V
CS  
= 0 V, V = 1.5 V) For min/max values T = −40°C to +125°C, V = 12 V)  
SD J CC  
Description  
Test Condition  
Symbol  
Min  
Typ  
Max  
Unit  
CURRENT SENSE  
Maximum on−time  
t
26  
1.35  
36  
1.50  
150  
500  
65  
46  
1.65  
ms  
V
on(MAX)  
Threshold for immediate fault protection activation  
Leading Edge Blanking Duration for V  
V
CS(stop)  
t
ns  
mA  
mV  
CS(stop)  
BCS  
Current source for CS to GND short detection  
I
400  
30  
600  
100  
CS(short)  
Current sense threshold for CS to GND short de-  
tection  
V
CS  
rising  
V
CS(low)  
GATE DRIVE  
Drive Resistance  
DRV Sink  
W
R
R
13  
30  
SNK  
DRV Source  
SRC  
Drive current capability  
DRV Sink (Note 6)  
mA  
I
500  
300  
SNK  
DRV Source (Note 6)  
I
SRC  
Rise Time (10% to 90%)  
Fall Time (90% to 10%)  
DRV Low Voltage  
C
C
= 470 pF  
= 470 pF  
t
8
40  
30  
ns  
ns  
V
DRV  
r
t
DRV  
f
V
= V  
+0.2 V  
CC(off)  
V
CC  
DRV(low)  
C
C
= 470 pF, R  
= 33 kW  
DRV  
DRV  
DRV High Voltage  
V
CC  
= V  
V
10  
12  
14  
V
CC(MAX)  
DRV(high)  
= 470 pF, R  
= 33 kW  
DRV  
DRV  
ZERO VOLTAGE DETECTION CIRCUIT  
Upper ZCD threshold voltage  
Lower ZCD threshold voltage  
ZCD hysteresis  
V
rising  
falling  
V
35  
15  
90  
55  
150  
mV  
mV  
mV  
ns  
ZCD  
ZCD(rising)  
V
ZCD(falling)  
V
ZCD  
V
ZCD(HYS)  
Propagation Delay from valley detection to DRV  
high  
V
ZCD  
falling  
T
DEM  
100  
300  
Blanking delay after on−time  
Blanking delay at light load  
Timeout after last DEMAG transition  
Pulling−down resistor  
V
> 30% V  
< 25% V  
T
T
1.12  
0.56  
5.0  
1.50  
0.75  
6.5  
1.88  
0.94  
8.0  
ms  
ms  
ms  
kW  
REFX  
REF  
ZCD(blank1)  
V
REFX  
REF  
ZCD(blank2)  
T
TIMO  
V
= V  
R
200  
ZCD  
ZCD(falling)  
ZCD(PD)  
CONSTANT CURRENT AND POWER FACTOR CONTROL  
Reference Voltage at T = 25°C  
V
245  
250  
255  
mV  
mV  
mV  
mV  
J
REF  
Reference Voltage T = 25°C to 100°C  
V
REF  
242.5 250.0 257.5  
J
Reference Voltage T = −40°C to 125°C  
V
REF  
240  
20  
250  
50  
4
260  
100  
J
Current sense lower threshold  
V
falling  
V
CS(low)  
CS  
V
control  
to current setpoint division ratio  
V
I
ratio  
Error amplifier gain  
V
= V  
G
40  
50  
60  
mS  
mA  
REFX  
REF  
EA  
EA  
Error amplifier current capability  
V
REFX  
= V  
(no dimming)  
60  
REF  
V
REFX  
= 25%* V  
REF  
240  
COMP Pin Start−up Current Source  
6. Guaranteed by Design  
COMP pin grounded  
I
140  
mA  
EA_STUP  
7. A NTC is generally placed between the SD and GND pins. Parameters R  
, R  
, R  
and R  
give the resistance the  
OTP(on)  
TF(start) TF(stop) OTP(off)  
NTC must exhibit to respectively, enter thermal foldback, stop thermal foldback, trigger the OTP limit and allow the circuit recovery after  
an OTP situation.  
8. At startup, when V reaches V  
, the controller blanks OTP for more than 250 ms to avoid detecting an OTP fault by allowing the  
CC(on)  
CC  
SD pin voltage to reach its nominal value if a filtering capacitor is connected to the SD pin.  
www.onsemi.com  
6
NCL30086BH  
Table 3. ELECTRICAL CHARACTERISTICS (Unless otherwise noted: For typical values T = 25°C, V = 12 V, V = 0 V,  
ZCD  
J
CC  
V
CS  
= 0 V, V = 1.5 V) For min/max values T = −40°C to +125°C, V = 12 V)  
SD J CC  
Description  
LINE FEED FORWARD  
to I conversion ratio  
Test Condition  
Symbol  
Min  
Typ  
Max  
Unit  
V
VS  
K
I
18  
35  
80  
20  
40  
22  
45  
mS  
mA  
mA  
CS(offset)  
LFF  
Line feed−forward current on CS pin  
Offset current maximum value  
DRV high, V = 2 V  
VS  
FF  
I
100  
120  
offset(MAX)  
VALLEY LOCKOUT SECTION  
Threshold for high− line range (HL) detection  
Threshold for low−line range (LL) detection  
Blanking time for line range detection  
FREQUENCY FOLDBACK  
V
rising  
falling  
V
2.28  
2.18  
15  
2.40  
2.30  
25  
2.52  
2.42  
35  
V
V
VS  
HL  
V
VS  
V
LL  
HL(blank)  
t
ms  
Minimum additional dead time in frequency fold-  
back mode  
t
1.4  
2.0  
40  
2.6  
ms  
FF1LL  
Additional dead time  
V
V
= 5% V  
= 0% V  
t
t
ms  
ms  
REFX  
REF  
FF2HL  
Additional dead time  
90  
REFX  
REF  
FF3HL  
FAULT PROTECTION  
Thermal Shutdown (Note 6)  
Thermal Shutdown Hysteresis  
F
SW  
= 65 kHz  
T
130  
150  
50  
170  
°C  
°C  
V
SHDN  
T
SHDN(HYS)  
Threshold voltage for output short circuit or aux.  
winding short circuit detection  
V
0.8  
1.0  
1.2  
ZCD(short)  
Short circuit detection Timer  
Auto−recovery timer duration  
SD pin Clamp series resistor  
Clamped voltage  
V
< V  
t
OVLD  
70  
3
90  
4
110  
5
ms  
s
ZCD  
ZCD(short)  
t
recovery  
R
1.6  
1.35  
2.50  
30.0  
85  
kW  
V
SD(clamp)  
SD(clamp)  
SD pin open  
V
1.13  
2.35  
22.5  
80  
1.57  
2.65  
37.5  
90  
SD pin detection level for OVP  
Delay before OVP or OTP confirmation  
V
rising  
V
OVP  
V
SD  
T
ms  
mA  
SD(delay)  
OTP(REF)  
Reference current for direct connection of an  
NTC (Note 8)  
I
Fault detection level for OTP (Note 7)  
V
falling  
rising  
V
V
0.47  
0.66  
0.50  
0.70  
0.53  
0.74  
V
V
SD  
OTP(off)  
SD pin level for operation recovery after an OTP  
detection  
V
SD  
OTP(on)  
OTP blanking time when circuit starts operating  
(Note 8)  
t
250  
0.94  
0.64  
370  
1.06  
0.74  
ms  
V
OTP(start)  
SD pin voltage where thermal fold−back starts  
V
V
R
1.00  
0.69  
TF(start)  
TF(stop)  
TF(start)  
(V  
REF  
is decreased)  
SD pin voltage at which thermal fold−back stops  
V
(V  
REF  
is clamped to V  
)
REF50  
V
over I  
ratio (Note 7)  
ratio (Note 7)  
ratio (Note 7)  
ratio (Note 7)  
T = +25°C to +125°C  
10.8  
7.4  
5.4  
7.5  
11.7  
8.1  
5.9  
8.1  
12.6  
8.8  
6.4  
8.7  
kW  
kW  
kW  
kW  
TF(start)  
TF(stop)  
OTP(off)  
OTP(on)  
OTP(REF)  
OTP(REF)  
OTP(REF)  
OTP(REF)  
J
V
V
V
over I  
over I  
over I  
T = +25°C to +125°C  
J
R
R
R
TF(stop)  
OTP(off)  
OTP(on)  
T = +25°C to +125°C  
J
T = +25°C to +125°C  
J
6. Guaranteed by Design  
7. A NTC is generally placed between the SD and GND pins. Parameters R  
, R  
, R  
and R  
give the resistance the  
OTP(on)  
TF(start) TF(stop) OTP(off)  
NTC must exhibit to respectively, enter thermal foldback, stop thermal foldback, trigger the OTP limit and allow the circuit recovery after  
an OTP situation.  
8. At startup, when V reaches V  
, the controller blanks OTP for more than 250 ms to avoid detecting an OTP fault by allowing the  
CC(on)  
CC  
SD pin voltage to reach its nominal value if a filtering capacitor is connected to the SD pin.  
www.onsemi.com  
7
NCL30086BH  
Table 3. ELECTRICAL CHARACTERISTICS (Unless otherwise noted: For typical values T = 25°C, V = 12 V, V = 0 V,  
ZCD  
J
CC  
V
CS  
= 0 V, V = 1.5 V) For min/max values T = −40°C to +125°C, V = 12 V)  
SD  
J
CC  
Description  
FAULT PROTECTION  
@ V = 600 mV (as percentage of V  
Test Condition  
Symbol  
Min  
Typ  
Max  
Unit  
V
REFX  
)
SD pin falling (no OTP  
detection)  
V
REF(50)  
40  
50  
60  
%
SD  
REF  
BROWN−OUT  
Brown−Out ON level (IC start pulsing)  
Brown−Out OFF level (IC shuts down)  
BO comparators delay  
V
rising  
falling  
V
0.95  
0.85  
1.00  
0.90  
30  
1.05  
0.95  
V
V
S
BO(on)  
V
S
V
BO(off)  
t
t
ms  
ms  
nA  
BO(delay)  
BO(blank)  
Brown−Out blanking time  
15  
50  
25  
35  
V
S
pin Pulling−down Current  
V = V  
S
I
BO(bias)  
250  
450  
BO(on)  
DIMMING SECTION  
DIM pin voltage for zero output current  
(OFF voltage)  
V
falling  
rising  
V
0.66  
0.70  
2.45  
1.57  
0.74  
2.60  
1.75  
V
V
V
DIM  
DIM0  
DIM pin voltage for maximum output current  
V
V
DIM100  
DIM  
(V  
REFX  
= V  
)
REF  
DIM pin voltage for 50% output current  
(V = 125 mV)  
V
rising or falling  
V
DIM50  
1.35  
DIM  
REFX  
Dimming range  
V
1.75  
9.6  
V
DIM(range)  
Dimming pin pull−up current source  
6. Guaranteed by Design  
I
7.5  
12  
mA  
DIM(pullup)  
7. A NTC is generally placed between the SD and GND pins. Parameters R  
, R  
, R  
and R  
give the resistance the  
OTP(on)  
TF(start) TF(stop) OTP(off)  
NTC must exhibit to respectively, enter thermal foldback, stop thermal foldback, trigger the OTP limit and allow the circuit recovery after  
an OTP situation.  
8. At startup, when V reaches V  
, the controller blanks OTP for more than 250 ms to avoid detecting an OTP fault by allowing the  
CC(on)  
CC  
SD pin voltage to reach its nominal value if a filtering capacitor is connected to the SD pin.  
www.onsemi.com  
8
NCL30086BH  
TYPICAL CHARACTERISTICS  
20.0  
19.5  
19.0  
18.5  
18.0  
17.5  
17.0  
9.4  
9.3  
9.2  
9.1  
9.0  
8.9  
8.8  
8.7  
8.6  
8.5  
8.4  
16.5  
16.0  
8.3  
8.2  
−50 −25  
0
25  
50  
75  
100  
125 150  
−50 −25  
0
25  
50  
75  
100  
125 150  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 4. VCC Start−up Threshold vs.  
Temperature  
Figure 5. VCC Minimum Operating Voltage vs.  
Temperature  
11.5  
11.0  
10.5  
10.0  
9.5  
6.0  
5.8  
5.6  
5.4  
5.2  
5.0  
4.8  
4.6  
4.4  
9.0  
8.5  
8.0  
7.5  
4.2  
4.0  
−50 −25  
−50 −25  
0
25  
50  
75  
100  
125 150  
0
25  
50  
75  
100  
125 150  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 6. Hysteresis (VCC(on) − VCC(off)) vs.  
Temperature  
Figure 7. VCC(reset) vs. Temperature  
www.onsemi.com  
9
NCL30086BH  
TYPICAL CHARACTERISTICS  
28.0  
27.8  
40  
35  
30  
25  
20  
15  
10  
27.6  
27.4  
27.2  
27.0  
26.8  
26.6  
26.4  
26.2  
26.0  
5
0
25.8  
25.6  
−50 −25  
0
25  
50  
75  
100  
125 150  
−50 −25  
0
25  
50  
75  
100  
125 150  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 8. VCC Over Voltage Protection  
Threshold vs. Temperature  
Figure 9. Start−up Current vs. Temperature  
150  
125  
100  
75  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
50  
25  
0
0.6  
0.4  
−50 −25  
0
25  
50  
75  
100  
125  
150  
−50 −25  
0
25  
50  
75  
100  
125 150  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 10. Start−up Current in Fault Mode vs.  
Temperature  
Figure 11. ICC1 vs. Temperature  
3.8  
3.6  
3.4  
3.2  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
1.8  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.6  
1.4  
1.2  
1.5  
1.0  
−50 −25  
0
25  
50  
75  
100  
125 150  
−50 −25  
0
25  
50  
75  
100  
125 150  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 12. ICC2 vs. Temperature  
Figure 13. ICC3 vs. Temperature  
www.onsemi.com  
10  
NCL30086BH  
TYPICAL CHARACTERISTICS  
1.05  
1.04  
1.03  
1.02  
1.01  
1.00  
0.99  
0.98  
0.97  
400  
380  
360  
340  
320  
300  
280  
260  
240  
220  
200  
0.96  
0.95  
−50 −25  
0
25  
50  
75  
100  
125 150  
−50 −25  
0
25  
50  
75  
100  
125 150  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 14. Maximum Internal Current Limit vs.  
Temperature  
Figure 15. Leading Edge Blanking vs.  
Temperature  
150  
140  
130  
120  
110  
100  
90  
50  
48  
46  
44  
42  
80  
40  
38  
36  
34  
70  
60  
50  
40  
30  
20  
10  
0
32  
30  
−50 −25  
0
25  
50  
75  
100  
125  
150  
−50 −25  
0
25  
50  
75  
100  
125 150  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 16. Current Limit Propagation Delay vs.  
Temperature  
Figure 17. Maximum On−time vs. Temperature  
1.60  
1.58  
1.56  
1.54  
1.52  
1.50  
1.48  
220  
210  
200  
190  
180  
170  
160  
150  
140  
130  
120  
1.46  
1.44  
1.42  
1.40  
1.38  
110  
100  
−50 −25  
0
25  
50  
75  
100  
125 150  
−50 −25  
0
25  
50  
75  
100  
125 150  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 18. VCS(stop) vs. Temperature  
Figure 19. Leading Edge Blanking Duration for  
CS(stop) vs. Temperature  
V
www.onsemi.com  
11  
NCL30086BH  
TYPICAL CHARACTERISTICS  
600  
580  
560  
540  
520  
500  
480  
460  
440  
100  
90  
80  
70  
60  
50  
40  
30  
20  
420  
400  
−50 −25  
0
25  
50  
75  
100  
125 150  
−50 −25  
0
25  
50  
75  
100  
125 150  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 20. ICS(short) vs. Temperature  
Figure 21. VCS(low), VCS Rising vs.  
Temperature  
40  
20  
18  
16  
14  
12  
10  
8
38  
36  
34  
32  
30  
28  
26  
24  
22  
20  
18  
16  
6
4
14  
12  
10  
2
0
−50 −25  
0
25  
50  
75  
100  
125  
150  
−50 −25  
0
25  
50  
75  
100  
125 150  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 22. Sink Gate Drive Resistance vs.  
Temperature  
Figure 23. Source Gate Drive Resistance vs.  
Temperature  
50  
45  
40  
35  
30  
25  
20  
15  
10  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
0
5
0
−50 −25  
0
25  
50  
75  
100  
125 150  
−50 −25  
0
25  
50  
75  
100  
125 150  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 24. Gate Drive Rise Time vs.  
Temperature  
Figure 25. Gate Drive Fall Time  
(CDRV = 470 pF) vs. Temperature  
www.onsemi.com  
12  
NCL30086BH  
TYPICAL CHARACTERISTICS  
9.8  
9.6  
9.4  
9.2  
9.0  
8.8  
8.6  
15.0  
14.5  
14.0  
13.5  
13.0  
12.5  
12.0  
11.5  
11.0  
8.4  
8.2  
10.5  
10.0  
−50 −25  
0
25  
50  
75  
100  
125 150  
−50 −25  
0
25  
50  
75  
100  
125 150  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 26. DRV Low Voltage vs. Temperature  
Figure 27. DRV High Voltage vs. Temperature  
150  
140  
130  
120  
110  
100  
90  
80  
75  
70  
65  
60  
55  
50  
45  
40  
80  
70  
60  
50  
35  
30  
40  
30  
−50 −25  
0
25  
50  
75  
100  
125  
150  
−50 −25  
0
25  
50  
75  
100  
125 150  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 28. Upper ZCD Threshold Voltage vs.  
Temperature  
Figure 29. Lower ZCD Threshold vs.  
Temperature  
50  
45  
40  
35  
30  
25  
20  
15  
10  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
−50 −25  
5
0
−50 −25  
0
25  
50  
75  
100  
125 150  
0
25  
50  
75  
100  
125 150  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 30. ZCD Hysteresis vs. Temperature  
Figure 31. ZCD Blanking Delay vs.  
Temperature  
www.onsemi.com  
13  
NCL30086BH  
TYPICAL CHARACTERISTICS  
7.8  
7.6  
7.4  
7.2  
7.0  
6.8  
6.6  
6.4  
6.2  
256  
255  
254  
253  
252  
251  
250  
249  
248  
247  
246  
6.0  
5.8  
−50 −25  
245  
244  
0
25  
50  
75  
100  
125 150  
−50 −25  
0
25  
50  
75  
100  
125 150  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 32. ZCD Time−out vs. Temperature  
Figure 33. Reference Voltage vs. Temperature  
110  
100  
90  
60  
58  
56  
54  
52  
50  
48  
80  
70  
60  
50  
40  
46  
30  
44  
42  
20  
10  
−50 −25  
0
25  
50  
75  
100  
125  
150  
−50 −25  
0
25  
50  
75  
100  
125 150  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 34. Current Sense Lower Threshold  
(VCS Falling) vs. Temperature  
Figure 35. Error Amplifier Trans−conductance  
Gain vs. Temperature  
22.0  
21.5  
21.0  
44  
43  
42  
41  
40  
39  
38  
20.5  
20.0  
19.5  
19.0  
18.5  
18.0  
37  
36  
−50 −25  
0
25  
50  
75  
100  
125 150  
−50 −25  
0
25  
50  
75  
100  
125 150  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 36. Feedforward VVS to ICS(offset)  
Conversion Ratio vs. Temperature  
Figure 37. Line Feedforward Current on CS  
Pin (@ VVS = 2 V) vs. Temperature  
www.onsemi.com  
14  
NCL30086BH  
TYPICAL CHARACTERISTICS  
120  
115  
110  
105  
100  
95  
2.55  
2.50  
2.45  
2.40  
2.35  
90  
2.30  
2.25  
85  
80  
−50 −25  
0
25  
50  
75  
100  
125 150  
−50 −25  
0
25  
50  
75  
100  
125 150  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 38. Ioffset(MAX) vs. Temperature  
Figure 39. Threshold for High−line Range  
Detection vs. Temperature  
40  
38  
36  
34  
32  
30  
28  
26  
24  
2.60  
2.55  
2.50  
2.45  
2.40  
2.35  
2.30  
2.25  
2.20  
22  
20  
−50 −25  
0
25  
50  
75  
100  
125  
150  
−50 −25  
0
25  
50  
75  
100  
125 150  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 40. Threshold for Low−line Range  
Detection vs. Temperature  
Figure 41. Blanking Time for Low−line Range  
Detection vs. Temperature  
1.20  
1.15  
1.10  
1.05  
1.00  
0.95  
0.90  
115  
110  
105  
100  
95  
90  
85  
0.85  
0.80  
80  
75  
−50 −25  
0
25  
50  
75  
100  
125 150  
−50 −25  
0
25  
50  
75  
100  
125 150  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 42. Threshold Voltage for Output Short  
Circuit Detection vs. Temperature  
Figure 43. Short Circuit Detection Timer vs.  
Temperature  
www.onsemi.com  
15  
NCL30086BH  
TYPICAL CHARACTERISTICS  
5.00  
4.75  
4.50  
4.25  
4.00  
3.75  
3.50  
2.20  
2.10  
2.00  
1.90  
1.80  
1.70  
1.60  
1.50  
1.40  
1.30  
1.20  
3.25  
3.00  
1.10  
1.00  
−50 −25  
0
25  
50  
75  
100  
125 150  
−50 −25  
0
25  
50  
75  
100  
125 150  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 44. Auto−recovery Timer Duration vs.  
Temperature  
Figure 45. SD Pin Clamp Series Resistor vs.  
Temperature  
1.60  
1.55  
1.50  
1.45  
1.40  
1.35  
1.30  
1.25  
1.20  
2.58  
2.56  
2.54  
2.52  
2.50  
2.48  
2.46  
2.44  
2.42  
2.40  
1.15  
1.10  
−50 −25  
0
25  
50  
75  
100  
125  
150  
−50 −25  
0
25  
50  
75  
100  
125 150  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 46. SD Pin Clamp Voltage vs.  
Temperature  
Figure 47. SD Pin OVP Threshold Voltage vs.  
Temperature  
38  
36  
34  
32  
30  
28  
26  
91  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
24  
22  
80  
79  
−50 −25  
0
25  
50  
75  
100  
125 150  
−50 −25  
0
25  
50  
75  
100  
125 150  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 48. TSD(delay) vs. Temperature  
Figure 49. IOTP(REF) vs. Temperature  
www.onsemi.com  
16  
NCL30086BH  
TYPICAL CHARACTERISTICS  
12.5  
12.4  
12.3  
12.2  
12.1  
12.0  
11.9  
11.8  
11.7  
11.6  
11.5  
11.4  
11.3  
8.8  
8.7  
8.6  
8.5  
8.4  
8.3  
8.2  
8.1  
8.0  
7.9  
7.8  
7.7  
7.6  
11.2  
11.1  
11.0  
−50 −25  
0
25  
50  
75  
100  
125 150  
−50 −25  
0
25  
50  
75  
100  
125 150  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 50. RTF(start) vs. Temperature  
Figure 51. RTF(stop) vs. Temperature  
8.8  
8.7  
8.6  
8.5  
8.4  
8.3  
8.2  
8.1  
8.0  
7.9  
6.4  
6.3  
6.2  
6.1  
6.0  
5.9  
5.8  
5.7  
5.6  
7.8  
7.7  
7.6  
5.5  
5.4  
−50 −25  
0
25  
50  
75  
100  
125  
150  
−50 −25  
0
25  
50  
75  
100  
125 150  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 52. ROTP(off) vs. Temperature  
Figure 53. ROTP(on) vs. Temperature  
55  
54  
53  
52  
51  
50  
49  
48  
47  
1.05  
1.04  
1.03  
1.02  
1.01  
1.00  
0.99  
0.98  
0.97  
46  
45  
0.96  
0.95  
−50 −25  
0
25  
50  
75  
100  
125 150  
−50 −25  
0
25  
50  
75  
100  
125 150  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 54. Ratio VREF(50) over VREF vs.  
Temperature  
Figure 55. Brown−out ON Level vs.  
Temperature  
www.onsemi.com  
17  
NCL30086BH  
TYPICAL CHARACTERISTICS  
0.95  
0.94  
0.93  
0.92  
0.91  
0.90  
0.89  
0.88  
0.87  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
0.86  
0.85  
−50 −25  
0
25  
50  
75  
100  
125 150  
−50 −25  
0
25  
50  
75  
100  
125 150  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 56. Brown−out OFF Level vs.  
Temperature  
Figure 57. Brown−out Blanking Time vs.  
Temperature  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
0
−50 −25  
0
25  
50  
75  
100  
125  
150  
T , JUNCTION TEMPERATURE (°C)  
J
Figure 58. VS Pin Pulling−down Current vs.  
Temperature  
www.onsemi.com  
18  
NCL30086BH  
Application Information  
The NCL30086BH is a driver for power−factor corrected  
and second temperature thresholds depend on the  
NTC connected to the circuit SD pin. The SD pin  
can also be used to shutdown the device by pulling  
flyback and non−isolated buck−boost/ SEPIC converters. It  
implements a current−mode, quasi−resonant architecture  
including valley lockout and frequency fold−back  
capabilities for maintaining high−efficiency performance  
over a wide load range. A proprietary circuitry ensures both  
accurate regulation of the output current (without the need  
for a secondary−side feedback) and near−unity power factor  
correction. The circuit contains a suite of powerful  
protections to ensure a robust LED driver design without the  
need of extra external components or overdesign  
this pin below the V  
min level. A Zener  
OTP(off)  
diode can also be used to pull−up the pin and stop  
the controller for adjustable OVP protection. When  
triggered, both protections lead the controller to stop  
operating for the 4−s auto−recovery time.  
Cycle−by−cycle peak current limit: when the  
current sense voltage exceeds the internal threshold  
V , the MOSFET is immediately turned off.  
ILIM  
Quasi−Resonance Current−Mode Operation:  
implementing quasi−resonance operation in peak  
current−mode control, the NCL30086BH optimizes the  
efficiency by turning on the MOSFET when its  
drain−source voltage is minimal (valley). In light−load  
conditions, the circuit changes valleys to reduce the  
switching losses. For a stable operation, the valley at  
which the MOSFET switches on remains locked until  
the input voltage or the output current set−point  
significantly changes.  
Primary−Side Constant−Current Control with  
Power Factor Correction: a proprietary circuitry  
allows the LED driver to achieve both near−unity  
power factor correction and accurate regulation of the  
output current without requiring any secondary−side  
feedback (no optocoupler needed). A power factor as  
high as 0.99 and an output current deviation below 2%  
are typically obtained.  
Winding or Output Diode Short−Circuit  
Protection: an additional comparator senses the CS  
signal and stops the controller for the 4−s  
auto−recovery time if it exceeds 150% x VILIM for  
4 consecutive cycles. This feature can protect the  
converter if a winding is shorted or if the output  
diode is shorted or simply if the transformer  
saturates.  
Output Short−circuit protection: if the ZCD pin  
voltage remains low for a 90−ms time interval, the  
controller detects that the output or the ZCD pin is  
grounded and hence, stops operation for the 4−s  
auto−recovery time.  
Open LED protection: if the V pin voltage  
CC  
exceeds the OVP threshold, the controller shuts  
down and waits 4 seconds before restarting  
switching operation.  
Floating or Short Pin Detection: NCL30086BH  
protections aid in pass safety tests. For instance, the  
circuit stops operating when the CS pin is grounded  
or open.  
Linear or PWM dimming: the DIM pin allows  
implementing both analog and PWM dimming.  
Main protection features:  
Over Temperature Thermal Fold−back/  
Shutdown/Over Voltage Protection: the  
Power Factor and Constant Current Control  
The NCL30086BH embeds an analog/digital block to  
control the power factor and regulate the output current by  
NCL30086BH features a gradual current foldback to  
protect the driver from excessive temperature down  
to 50% of the programmed current. If the  
monitoring the ZCD, V and CS pin voltages (signals ZCD,  
S
V and V of Figure 59). This circuitry generates the  
S
CS  
temperature continues to rise after this point to a  
second level, the controller stops operating. This  
mode would only be expected to be reached under  
normal conditions if there is a severe fault. The first  
current setpoint (V  
current sense signal (V ) to dictate the MOSFET turning  
/4) and compares it to the  
CONTROL  
CS  
off event when V exceeds V  
/4.  
CONTROL  
CS  
V
V
VS  
ZCD STOP  
REF  
PWM Latch reset  
V
Power Factor and  
Constant−Current  
Control  
CS  
COMP  
DIM_disable  
C1  
Figure 59. Power Factor and Constant−Current Control  
www.onsemi.com  
19  
 
NCL30086BH  
Start−up Sequence  
The V pin provides the sinusoidal reference necessary  
S
Generally an LED lamp is expected to emit light in < 1 sec  
and typically within 300 ms. The start−up phase consists of  
for shaping the input current. The obtained current reference  
is further modulated so that when averaged over a half−line  
the time to charge the V capacitor, initiate startup and  
period, it is equal to the output current reference (V  
).  
CC  
REFX  
begin switching and the time to charge the output capacitor  
until sufficient current flows into the LED string. To  
speed−up this phase, the following defines the start−up  
sequence:  
This averaging process is made by an internal Operational  
Trans−conductance Amplifier (OTA) and the capacitor  
connected to the COMP pin (C1 in Figure 59). Typical  
COMP capacitance is 2.2 mF and should not be less than 1 mF  
to ensure stability. The COMP ripple does not affect the  
power factor performance as the circuit digitally eliminates  
it when generating the current setpoint.  
The COMP pin is grounded when the circuit is off. The  
average COMP voltage needs to exceed the V pin  
S
peak value to have the LED current properly regulated  
(whatever the current target is). To speed−up the COMP  
capacitance charge and shorten the start−up phase, an  
internal 80−mA current source adds to the OTA sourced  
current (60 mA max typically) to charge up the COMP  
capacitance. The 80−mA current source remains on until  
the OTA starts to sink current as a result of the COMP  
pin voltage sufficient rise. At that moment, the COMP  
pin being near its steady−state value, it is only driven  
by the OTA.  
If the V pin properly conveys the sinusoidal shape, power  
S
factor will be close to 1. Also, the Total Harmonic Distortion  
(THD) will be low, especially if the output voltage ripple is  
small. In any case, the output current will be well regulated  
following the equation below:  
VREFX  
2NPSRsense  
(eq. 1)  
Iout  
+
Where:  
N is the secondary to primary transformer turns N  
PS  
PS  
If V drops below the V  
threshold because the  
CC  
CC(off)  
= N / N  
S
P
circuit fails to start−up properly on the first attempt, a  
new attempt takes place as soon as V is recharged to  
R  
V  
V
is the current sense resistor (see Figure 1).  
is the output current internal reference. V  
(250 mV, typically) at full load.  
sense  
REFX  
CC  
=
V . The COMP voltage is not reset at that  
CC(on)  
REFX  
moment. Instead, the new attempt starts with the  
COMP level obtained at the end of the previous  
operating phase.  
REF  
The output current reference (V  
) is V  
unless  
REFX  
REF  
thermal fold−back is activated by the SD pin voltage being  
reduced below 1 V typical (see “protections” section) or  
If the load is shorted, the circuit will operate in hiccup  
mode with V oscillating between V  
and  
unless the DIM pin voltage is below V  
dimming section).  
(see analog  
CC  
CC(off)  
DIM100  
V
CC(on)  
until the AUX_SCP protection trips  
(AUX_SCP is triggered if the ZCD pin voltage does  
not exceed 1 V within a 90−ms operation period of time  
thus indicating a short to ground of the ZCD pin or an  
excessive load preventing the output voltage from  
rising). The AUX_SCP protection forces the 4−s  
auto−recovery delay to reduce the operation duty−ratio.  
Figure 60 illustrates a start−up sequence with the output  
shorted to ground.  
If a major fault is detected, the circuit enters the  
latched−off or auto−recovery mode and the COMP pin is  
grounded (except in an UVLO condition). This ensures a  
clean start−up when the circuit resumes operation.  
www.onsemi.com  
20  
NCL30086BH  
VCC(on)  
VCC  
VCC(off)  
‧‧‧  
( )  
‧‧‧  
( )  
time  
time  
AUX_SCPtrips  
as t1 + t2 + t3 = tOVLD  
t
(
^90 ms  
)
DRV  
OVLD  
t1  
t3  
t1  
t3  
t2  
t2  
trecovery ^4 s  
trecovery ^4 s  
(
)
(
)
Figure 60. Start−up Sequence in a Load Short−circuit Situation  
Zero Crossing Detection Block  
The ZCD pin detects when the drain−source voltage of the  
power MOSFET reaches a valley by crossing below the  
situation, the NCL30086BH features a time−out circuit that  
generates pulses if the voltage on ZCD pin stays below the  
55−mV threshold for 6.5 ms nominal. The time−out also acts  
as a substitute clock for the valley detection and simulates  
a missing valley in case the free oscillations are too damped.  
55−mV internal threshold (V  
). At startup or in case  
ZCD(TH)  
of extremely damped free oscillations, the ZCD comparator  
may not be able to detect the valleys. To avoid such a  
www.onsemi.com  
21  
NCL30086BH  
t
ZCD(blank1)  
ZCD(blank2)  
t
ZCD(blank)  
FF_mode  
t
ZCD  
+
V
ZCD(TH)  
Clock  
Time−Out  
+
+
V
ZCD(short)  
S
Aux_SCP  
Q
Q
90−ms Timer  
R
4−s Auto−Recovery Timer  
Figure 61. Zero Current Detection Block  
www.onsemi.com  
22  
 
NCL30086BH  
If the ZCD pin or the auxiliary winding happen to be  
After the appropriate number of “clock” pulses in  
shorted, the time−out function would normally make the  
controller keep switching and hence lead to improper LED  
current value. The “AUX_SCP” protection prevents such a  
stressful operation: a secondary timer starts counting that is  
thermal foldback or dimming mode  
For an optimal operation, the maximum ZCD level  
should be maintained below 5 V to stay safely below the  
built in clamping voltage of the pin.  
only reset when the ZCD voltage exceeds the V  
ZCD(short)  
threshold (1 V typically). If this timer reaches 90 ms (no  
ZCD voltage pulse having exceeded V for this time  
Line Range Detection  
As sketched in Figure 62, this circuit detects the low−line  
ZCD(short)  
period), the controller detects a fault and stops operation for  
4 seconds.  
The “clock” shown in Figure 61 is used by the “valley  
selection frequency foldback” circuitry of the block diagram  
(Figure 3), to generate the next DRV pulse (if no fault  
prevents it):  
range if the V pin remains below the V threshold (2.3 V  
S
LL  
typical) for more than the 25−ms blanking time. High−line  
is detected as soon as the V pin voltage exceeds V (2.4 V  
S
HL  
typical). These levels roughly correspond to 184−V rms and  
192−V rms line voltages if the external resistors divider  
applied to the V pin is designed to provide a 1−V peak value  
S
at 80 V rms.  
Immediately when the clock occurs in QR mode at low  
line or valley 2 at high line (full load)  
Figure 62. Line Range Detection  
In the low−line range, conduction losses are generally  
dominant. Adding a dead−time would further increase these  
losses. Hence, only a short dead−time is necessary to reach  
the MOSFET valley. In high−line conditions, switching  
losses generally are the most critical. It is thus efficient to  
skip one valley to lower the switching frequency. Hence,  
under normal operation, the NCL30086BH optimizes the  
efficiency over the line range by turning on the MOSFET at  
the first valley in low−line conditions and at the second  
valley in the high−line case. This is illustrated by Figure 63  
that sketches the MOSFET Drain−Source voltage in both  
cases. In the event that thermal foldback is activated,  
additional valleys can be skipped as the power is reduced.  
Figure 63. Full−load Operation − Quasi−resonant Mode in low line (left), turn on at valley 2 when in high line  
(right)  
Line Feedforward  
To compensate for current regulation errors due to AC line  
variation, the NCL30086BH includes a method to add line  
feedforward adjustment. As illustrated by Figure 64, the  
current. By adding an external resistor in series between the  
sense resistor and the CS pin, a voltage offset proportional  
to the input voltage is added to the CS signal for the  
MOSFET on−time.  
input voltage is sensed by the V pin and converted into a  
S
www.onsemi.com  
23  
 
NCL30086BH  
Bulk rail  
vDD  
VS  
CS  
RCS  
ICS(offset)  
Rsense  
Q_drv  
Figure 64. Line Feed−Forward Schematic  
In Figure 64, Q_drv designates the output of the PWM latch which is high for the on−time and low otherwise.  
PWM or Linear Dimming Detection  
The DIM pin of the NCL30086BH is provided to  
implement linear and/or PWM dimming of the LED current.  
Where:  
N is the secondary to primary transformer turns  
PS  
Applying a voltage on the DIM pin voltage (V ) forces  
DIM  
NPS + NSńNP  
the output current internal reference to operate in one of  
three regions:  
R  
V  
is the current sense resistor (see Figure 1).  
sense  
is the output current internal reference (250 mV  
VREFX + 0  
if VDIM v VDIM0  
REF  
typically)  
(eq. 2)  
VREFX + VREF  
if VDIM w VDIM100  
I  
is the full−load output current.  
out,nom  
The DRV output is disabled whenever the DIM pin  
VDIM * VDIM0  
VDIM100 * VDIM0  
VREFX  
+
VREF  
otherwise  
voltage is lower than V  
is maximal when V  
dimming, a PWM signal with a low−state value below  
and the output current setpoint  
DIM0  
exceeds V  
. Thus, for PWM  
DIM  
DIM100  
V
DIM0  
and V  
respectively, are 0.7 V and 2.45 V  
DIM100  
typically.  
V
DIM0  
and a high−state value above V  
should be  
DIM100  
The output current can then be controlled by the DIM pin  
as follows:  
applied.  
In this case, the output current will be:  
Iout + 0  
if VDIM v VDIM0  
(eq. 3)  
Iout ^ Iout,nom @ d  
(eq. 4)  
VREF  
2 NPSRsense  
Iout + Iout,nom  
+
if VDIM w VDIM100  
Where d is the duty ratio of the DIM pin signal.  
VDIM * VDIM0  
VDIM100 * VDIM0  
Iout  
+
Iout,nom  
otherwise  
VDIM  
VDIM100  
VDIM0  
time  
Iout  
Iout,nom  
0 A  
time  
Figure 65. Pin DIM Chronograms  
www.onsemi.com  
24  
 
NCL30086BH  
Notes:  
The current does not immediately reach its new target  
value when the PWM dimming signal state changes due  
to system time constants like the time necessary to  
charge or discharge the output capacitor to the required  
level. The output current settling time can hence affect  
the obtained output current, particularly if the PWM  
signal frequency is high.  
If either the high−state (V  
) or low−state level  
DIM(high)  
(V  
) of the input or both are between V  
and  
DIM(low)  
DIM0  
V
DIM100  
, the output current will be proportionally  
reduced as both analog and PWM dimming are  
simultaneous active, thus the output current will be:  
VDIM(high) * VDIM0  
VDIM100 * VDIM0  
VDIM(low) * VDIM0  
VDIM100 * VDIM0  
Iout  
^
ǒ
d )  
(1 * d) Iout,nom if VDIM0 v VDIM(low) v VDIM(high) v VDIM100  
Ǔ
VDIM(high) * VDIM0  
VDIM100 * VDIM0  
Iout  
^
^
d @ Iout,nom  
if VDIM0 v VDIM(high) v VDIM100 and VDIM(low) v VDIM0  
VDIM(low) * VDIM0  
Iout  
ǒ
d )  
(1 * d)  
Ǔ
Iout,nom  
if VDIM(high) w VDIM100 and VDIM0 v VDIM(low) v VDIM100  
VDIM100 * VDIM0  
Protections  
If thermal foldback is activated as well, the current  
reduction is cumulative. For instance, if the DIM pin  
voltage and the thermal foldback respectively, reduces  
the output current setpoint by 50% and 20%  
The circuit incorporates a full suite of protection features  
listed below to make the LED driver very rugged.  
Output Short Circuit Situation  
An overload fault is detected if the ZCD pin voltage  
remains below V  
respectively, the output current will be 80%*50% that is  
40% of its nominal level.  
for 90 ms. In such a situation, the  
ZCD(short)  
The DIM pin is pulled up internally by a 10−mA current source.  
Thus, if the pin is let open, the controller is able to start.  
For any power factor corrected single stage architecture  
there will be a component of line ripple (100 / 120 Hz) on the  
output. If PWM dimming is used, it is recommended to  
select the dimming frequency to be sufficiently high not to  
generating beat frequencies that could create optical  
artifacts.  
circuit stops generating pulses until the 4−s delay  
auto−recovery time has elapsed.  
Winding or Output Diode Short Circuit Protection  
If a transformer winding happens to be shorted, the  
primary inductance will collapse leading the current to ramp  
up in a very abrupt manner. The V  
comparator (current  
ILIM  
limitation threshold) will trip to open the MOSFET and  
eventually stop the current rise. However, because of the  
abnormally steep slope of the current, internal propagation  
delays and the MOSFET turn−off time, a current rise > 50%  
>> As a general rule, the minimum PWM frequency  
should be at least 2.5x the line ripple frequency and not  
be set near multiples of the line frequency.  
of the nominal maximum value set by V  
is possible. As  
ILIM  
illustrated in Figure 66, an additional circuit monitors for  
this current overshoot to detect a winding short circuit. The  
leading edge blanking (LEB) time for short circuit  
protection (LEB2) is significantly faster than the LEB time  
for cycle−by−cycle protection (LEB1). Practically, if four  
consecutive switching periods lead the CS pin voltage to  
exceed (V  
= 150% * V ), the controller enters the  
ILIM  
CS(stop)  
auto−recovery mode (4−s operation interruption between  
active bursts.)  
www.onsemi.com  
25  
NCL30086BH  
S
Q
Q
DRV  
R
CS  
LEB1  
+
PWMreset  
+
STOP  
Ipkmax  
UVLO  
BONOK  
V
ILIMIT  
TSD  
SD Pin OVP  
(OVP2)  
LEB2  
+
WOD_SCP  
4−pulse  
counter  
OTP  
S
OFF  
V
Q
Q
AUX_SCP  
VCC(ovp)  
CS(stop)  
R
4−s auto−recovery timer  
Figure 66. Winding Short Circuit Protection, Max. Peak Current Limit Circuits  
VCC Over Voltage Protection  
Programmable Over Voltage Protection (OVP2)  
The circuit stops generating pulses if V  
exceeds  
In addition to the V OVP protection, it is possible to  
CC  
CC  
V
and enters auto−recovery mode. This feature  
connect a Zener diode between V  
and the SD pin to  
CC(OVP)  
CC  
protects the circuit in the event that the output LED string is  
disconnected or an individual LED in the string happens to  
fail open.  
implement programmable V  
Figure 67). The triggering level is (V +V  
the 2.5−V internal threshold. If this protection trips, the circuit  
enters the auto−recovery mode.  
OVP monitoring (D of  
CC  
Z
) where V  
is  
Z
OVP  
OVP  
www.onsemi.com  
26  
NCL30086BH  
Vdd  
I
OTP(REF)  
SD Pin OVP (OVP2) DETECTION  
+
VCC  
V
OVP  
T
SD(delay)  
D
Z
SD  
S
Q
Q
OFF  
OTP DETECTION  
NTC  
+
R
T
OTP(start)  
V
/ V  
OTP(on)  
OTP(off)  
4−s  
auto−recovery  
Timer  
V
TF  
Thermal  
Foldback  
Rclamp  
Vclamp  
Figure 67. Thermal Foldback and OVP/OTP Circuitry  
www.onsemi.com  
27  
NCL30086BH  
The SD pin is clamped to about 1.35 V (V  
) through  
clamp  
a 1.6−kW resistor (R  
). It is then necessary to inject about  
clamp  
VOVP * Vclamp  
ǒ Ǔ  
Rclamp  
that is  
2.50 * 1.35  
ǒ
^ 700 mAǓ  
1.6 k  
typically, to trigger the OVP protection. This current helps  
ensure an accurate detection by using the Zener diode far  
from its knee region.  
Programmable Over Temperature Foldback Protection  
(OTP)  
Connect an NTC between the SD pin and ground to detect  
an over−temperature condition. In response to a high  
Figure 68. Output Current Reduction versus SD  
Pin Voltage  
temperature (detected if V drops below V  
), the  
At startup, when V  
reaches V , the OTP  
CC(on)  
SD  
TF(start)  
CC  
circuit gradually reduces the LED current down to 50% (>  
comparator is blanked for at least 180 ms which allows the  
SD pin voltage to reach its nominal value if a filtering  
capacitor is connected to the SD pin. This avoids flickering  
of the LED light during turn on.  
50% reduction in output power) of its initial value when V  
SD  
reaches V , in accordance with the characteristic of  
TF(stop)  
Figure 68 (Note 9).  
At this point, if the temperature continues to rise and the  
Brown−Out Protection  
secondary OTP level is reached, (V drop below V ), the  
SD  
OTP  
The NCL30086BH prevents operation when the line  
voltage is too low for proper operation. As sketched in  
circuit enters auto−recovery mode and cannot resume  
operation until V exceeds V to provide some  
temperature hysteresis (around 10°C typically). The OTP  
thresholds nearly correspond to the following resistances of the  
NTC:  
SD  
OTP(on)  
Figure 69, the circuit detects a brown−out situation if the V  
S
pin remains below the V  
threshold (0.9 V typical) for  
BO(off)  
more than the 25−ms blanking time. In this case, the  
controller stops operating. Operation resumes as soon as the  
Thermal foldback starts when R  
(11.7 kW, typically)  
R  
NTC  
TF(start)  
V pin voltage exceeds V  
(1.0 V typical) and V is  
S
BO(on)  
CC  
higher than V  
. To ease recovery, the circuit overrides  
CC(on)  
Thermal foldback stops when R  
typically)  
R  
(8.0 kW,  
NTC  
TF(stop)  
the V normal sequence (no need for V cycling down  
CC  
CC  
below V ). Instead, its consumption immediately  
CC(off)  
OTP triggers when R  
R  
(5.9 kW, typically)  
(8.0 kW,  
NTC  
OTP(off)  
reduces to I  
so that V  
rapidly charges up to  
CC(start)  
CC  
OTP is removed when R  
R  
OTP(on)  
V
CC(on)  
and the circuit re−starts operation.  
NTC  
typically)  
Figure 69. Brown−out Circuit  
9. The above mentioned initial value is the output current before the system enters the thermal foldback, that is, its maximum level if PWM or  
analog dimming is not engaged or a lower one based on the dimming value.  
www.onsemi.com  
28  
 
NCL30086BH  
Die Over Temperature (TSD)  
Fault Management  
The circuit stops operating if the junction temperature (T )  
J
OFF Mode  
exceeds 150°C typically. The controller remains off until T  
J
The circuit turns off in the case of an incorrect feeding of the  
circuit: “UVLO high”. The UVLO signal becomes high  
when VCC drops below VCC(off) and remains high until  
VCC exceeds VCC(on).  
The circuit also turns off whenever a major faulty  
condition prevents it from operating:  
goes below nearly 100°C.  
Pin Connection Faults  
The circuit addresses most pin connection fault cases:  
CS Pin Short to Ground  
The circuit senses the CS pin impedance every time it  
starts−up and after DRV pulses terminated by the 36−ms  
maximum on−time. If the measured impedance does  
not exceed 120 W typically, the circuit stops operating.  
In practice, it is recommended to place a minimum of  
250 W in series between the CS pin and the current  
sense resistor to take into account parasitics.  
Severe OTP (V level below VOTP(off)  
)
SD  
V OVP  
CC  
OVP2 (additional OVP provided by SD pin)  
Output diode short circuit protection: “WOD_SCP  
high”  
Output / Auxiliary winding Short circuit protection:  
“Aux_SCP high”  
Die over temperature (TSD)  
In this mode, the DRV pulses generation is interrupted.  
In the case of a latching−off fault, the circuit stops pulsing  
Fault of the GND Connection  
If the GND pin is properly connected, the supply  
current drawn from the positive terminal of the V  
CC  
capacitor, flows out of the GND pin to return to the  
negative terminal of the V capacitor. If the GND pin  
CC  
until the LED driver is unplugged and V drops below  
CC  
is not connected, the circuit ESD diodes offer another  
return path. The accidental non−connection of the GND  
pin is monitored by detecting that one of the ESD diode  
is conducting. Practically, the ESD diode of CS pin is  
monitored. If such a fault is detected for 200 ms, the  
circuit stops generating DRV pulses.  
V
. At that moment, the circuit resumes operation.  
CC(reset)  
In the auto−recovery case, the circuit cannot generate  
DRV pulses for the auto−recovery 4−s delay. When this time  
has elapsed, the circuit recovers operation as soon as the  
V
CC  
voltage has exceeded V  
. All these protections are  
CC(on)  
auto−recovery.  
More generally, incorrect pin connection situations  
(open, grounded, shorted to adjacent pin) are covered by  
ANDxxxx.  
ORDERING INFORMATION  
Device  
Package Type  
SOIC−8  
Shipping  
NCL30086BHDR2G  
2500 / Tape & Reel  
(Pb−Free/Halide Free)  
www.onsemi.com  
29  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
SOIC10 NB  
CASE 751BQ  
ISSUE B  
10  
1
DATE 26 NOV 2013  
SCALE 1:1  
2X  
NOTES:  
0.10  
C A-B  
1. DIMENSIONING AND TOLERANCING PER  
ASME Y14.5M, 1994.  
D
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. DIMENSION b DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE PROTRUSION  
SHALL BE 0.10mm TOTAL IN EXCESS OF ’b’  
AT MAXIMUM MATERIAL CONDITION.  
4. DIMENSIONS D AND E DO NOT INCLUDE  
MOLD FLASH, PROTRUSIONS, OR GATE  
BURRS. MOLD FLASH, PROTRUSIONS, OR  
GATE BURRS SHALL NOT EXCEED 0.15mm  
PER SIDE. DIMENSIONS D AND E ARE DE-  
TERMINED AT DATUM F.  
D
H
A
2X  
0.10  
C A-B  
F
10  
6
E
1
5. DIMENSIONS A AND B ARE TO BE DETERM-  
INED AT DATUM F.  
6. A1 IS DEFINED AS THE VERTICAL DISTANCE  
FROM THE SEATING PLANE TO THE LOWEST  
POINT ON THE PACKAGE BODY.  
5
L2  
A3  
L
SEATING  
PLANE  
C
0.20  
C
10X b  
DETAIL A  
B
2X 5 TIPS  
M
MILLIMETERS  
0.25  
C A-B D  
DIM MIN  
MAX  
1.75  
0.25  
0.25  
0.51  
5.00  
4.00  
TOP VIEW  
A
A1  
A3  
b
D
E
1.25  
0.10  
0.17  
0.31  
4.80  
3.80  
10X  
h
X 45  
_
0.10  
C
0.10  
C
M
e
1.00 BSC  
H
h
5.80  
0.37 REF  
6.20  
A
L
L2  
M
0.40  
0
0.80  
0.25 BSC  
DETAIL A  
e
SIDE VIEW  
A1  
SEATING  
PLANE  
C
8
_
_
END VIEW  
GENERIC  
MARKING DIAGRAM*  
RECOMMENDED  
SOLDERING FOOTPRINT*  
10  
1.00  
PITCH  
10X  
0.58  
XXXXX  
ALYWX  
G
1
XXXXX = Specific Device Code  
6.50  
A
L
= Assembly Location  
= Wafer Lot  
Y
W
G
= Year  
= Work Week  
= PbFree Package  
1
10X  
1.18  
DIMENSION: MILLIMETERS  
*This information is generic. Please refer  
to device data sheet for actual part  
marking. PbFree indicator, “G”, may  
or not be present.  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98AON52341E  
SOIC10 NB  
PAGE 1 OF 1  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the  
rights of others.  
© Semiconductor Components Industries, LLC, 2019  
www.onsemi.com  
onsemi,  
, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates  
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.  
A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. onsemi reserves the right to make changes at any time to any  
products or information herein, without notice. The information herein is provided “asis” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the  
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use  
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products  
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information  
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may  
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license  
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems  
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should  
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
ADDITIONAL INFORMATION  
TECHNICAL PUBLICATIONS:  
Technical Library: www.onsemi.com/design/resources/technicaldocumentation  
onsemi Website: www.onsemi.com  
ONLINE SUPPORT: www.onsemi.com/support  
For additional information, please contact your local Sales Representative at  
www.onsemi.com/support/sales  

相关型号:

NCL30086CDR2G

Controller for LED Lighting
ONSEMI

NCL30086DDR2G

Controller for LED Lighting
ONSEMI

NCL30088

Power Factor Corrected Quasi-Resonant Primary Side Current-Mode Controller
ONSEMI

NCL30088ADR2G

Power Factor Corrected Quasi-Resonant Primary Side Current-Mode Controller
ONSEMI

NCL30088BDR2G

Power Factor Corrected Quasi-Resonant Primary Side Current-Mode Controller
ONSEMI

NCL30088CDR2G

Power Factor Corrected Quasi-Resonant Primary Side Current-Mode Controller
ONSEMI

NCL30088DDR2G

Power Factor Corrected Quasi-Resonant Primary Side Current-Mode Controller
ONSEMI

NCL30095ADR2G

LED 驱动器,AC-DC 功率因数校正升压开关稳压器,集成式 MOSFET,三端双向可控硅调光,温度折回
ONSEMI

NCL30100

Fixed Off Time Switched Mode LED Driver Controller
ONSEMI

NCL30100SNT1G

Fixed Off Time Switched Mode LED Driver Controller
ONSEMI

NCL30105

Constant Off Time PWM Current-Mode Controller for LED Applications
ETC

NCL30105DR2G

灵活可调光的降压LED驱动器控制器
ONSEMI