NCL30080A [ONSEMI]

Quasi-Resonant Primary Side Current-Mode Controller for LED Lighting; 准谐振初级端电流模式控制器,用于LED照明
NCL30080A
型号: NCL30080A
厂家: ONSEMI    ONSEMI
描述:

Quasi-Resonant Primary Side Current-Mode Controller for LED Lighting
准谐振初级端电流模式控制器,用于LED照明

控制器
文件: 总26页 (文件大小:257K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NCL30080  
Quasi-Resonant Primary  
Side Current-Mode  
Controller for LED Lighting  
The NCL30080 is a PWM current mode controller targeting isolated  
flyback and nonisolated constant current topologies. The controller  
operates in a quasiresonant mode to provide high efficiency. Thanks  
to a novel control method, the device is able to precisely regulate a  
constant LED current from the primary side. This removes the need  
for secondary side feedback circuitry, biasing and an optocoupler.  
The device is highly integrated with a minimum number of external  
http://onsemi.com  
1
TSOP6  
SN SUFFIX  
CASE 318G  
components. A wide V range simplifies the design process and  
CC  
allows a single design to support a wide LED forward voltage range. A  
robust suite of safety protection is built in to simplify the design. This  
device is specifically intended for very compact space efficient  
designs  
MARKING DIAGRAM  
Features  
AAxAYWG  
Quasiresonant Peak Currentmode Control Operation  
Primary Side Sensing (no optocoupler needed)  
G
1
Wide V Range  
CC  
AAx = Specific Device Code  
Precise LED Constant Current Regulation 1% Typical  
Line Feedforward for Enhanced Regulation Accuracy  
Low LED Current Ripple  
250 mV 2% Guaranteed Voltage Reference for Current Regulation  
~ 0.9 Power Factor with Valley Fill Input Stage  
Low LED Current Ripple  
Source 300 mA / Sink 500 mA Totem Pole Driver with 12 V Gate  
Clamp  
Low Startup Current (13 mA typ.)  
x
= E or F  
= Assembly Location  
= Year  
= Work Week  
= PbFree Package  
A
Y
W
G
(Note: Microdot may be in either location)  
PIN CONNECTIONS  
1
ZCD  
GND  
CS  
VIN  
Small Space Saving Low Profile Package  
Wide Temperature Range of 40 to +125°C  
Pbfree, Halidefree MSL1 Product  
VCC  
DRV  
(Top View)  
Robust Protection Features  
Over Voltage / LED Open Circuit Protection  
Secondary Diode Short Protection  
Output Short Circuit Protection  
Typical Applications  
Integral LED Bulbs  
Shorted Current Sense Pin Fault Detection  
Latched and Autorecoverable Versions  
Brownout  
LED Power Driver Supplies  
LED Light Engines  
V Under Voltage Lockout  
CC  
Thermal Shutdown  
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
dimensions section on page 25 of this data sheet.  
©
Semiconductor Components Industries, LLC, 2013  
1
Publication Order Number:  
April, 2013 Rev. 0  
NCL30080/D  
NCL30080  
.
.
Aux  
.
1
2
3
6
5
4
Figure 1. Typical Application Schematic for NCL30080  
Table 1. PIN FUNCTION DESCRIPTION  
Pin No  
Pin Name  
ZCD  
Function  
Zero Crossing Detection  
Pin Description  
Connected to the auxiliary winding; this pin detects the core reset event.  
The controller ground  
1
2
3
4
GND  
CS  
Current sense  
Driver output  
This pin monitors the primary peak current  
DRV  
The current capability of the totem pole gate drive (+0.3/0.5 A) makes it suit-  
able to effectively drive a broad range of power MOSFETs.  
5
6
VCC  
VIN  
Supplies the controller  
This pin is connected to an external auxiliary voltage.  
Input voltage sensing  
This pin observes the HV rail and is used in valley selection. This pin also  
monitors and protects for low mains conditions.  
BrownOut  
http://onsemi.com  
2
NCL30080  
V
DD  
V
REF  
STOP  
OFF  
Aux_SCP  
VCC  
GND  
ZCD  
CS  
Fault  
Management  
UVLO  
Latch  
VCC Management  
CS_shorted  
Internal  
Thermal  
Shutdown  
VCC_max  
VCC Over Voltage  
Protection  
Ipkmax  
WOD_SCP  
BO_NOK  
Qdrv  
V
VIN  
V
CC  
Clamp  
Circuit  
Zero Crossing Detection  
Valley Selection  
Aux. Winding  
Short Circuit Protection  
DRV  
S
R
Qdrv  
Aux_SCP  
Q
V
VIN  
V
VLY  
Line  
Feedforward  
V
REF  
STOP  
Leading  
Edge  
Blanking  
CS_reset  
Ipkmax  
ConstantCurrent  
Control  
V
VIN  
STOP  
VIN  
Max. Peak  
Current  
Limit  
Ipkmax  
BrownOut  
BO_NOK  
CS Short  
Protection  
CS_shorted  
V
VIN  
Winding and  
Output diode  
Short Circuit  
Protection  
WOD_SCP  
Figure 2. Internal Circuit Architecture  
http://onsemi.com  
3
NCL30080  
Table 2. MAXIMUM RATINGS TABLE  
Symbol  
Rating  
Value  
Unit  
V
Maximum Power Supply voltage, VCC pin, continuous voltage  
Maximum current for VCC pin  
0.3, +35  
Internally limited  
V
mA  
CC(MAX)  
I
CC(MAX)  
V
Maximum driver pin voltage, DRV pin, continuous voltage  
Maximum current for DRV pin  
0.3, V  
(Note 1)  
V
mA  
DRV(MAX)  
DRV  
I
500, +800  
DRV(MAX)  
V
Maximum voltage on low power pins (except pins DRV and VCC)  
Current range for low power pins (except pins ZCD, DRV and VCC)  
0.3, +5.5  
2, +5  
V
mA  
MAX  
I
MAX  
V
Maximum voltage for ZCD pin  
Maximum current for ZCD pin  
0.3, +10  
2, +5  
V
mA  
ZCD(MAX)  
I
ZCD(MAX)  
R
Thermal Resistance, JunctiontoAir  
Maximum Junction Temperature  
Operating Temperature Range  
Storage Temperature Range  
360  
150  
°C/W  
°C  
θ
JA  
T
J(MAX)  
40 to +125  
60 to +150  
4
°C  
°C  
ESD Capability, HBM model (Note 2)  
ESD Capability, MM model (Note 2)  
kV  
V
200  
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the  
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect  
device reliability.  
1. V  
is the DRV clamp voltage V  
when V is higher than V  
. V  
is V unless otherwise noted.  
DRV  
DRV(high)  
CC  
DRV(high) DRV CC  
2. This device series contains ESD protection and exceeds the following tests: Human Body Model 4000 V per MilStd883, Method 3015.  
3. This device contains latchup protection and exceeds 100 mA per JEDEC Standard JESD78 except for VIN pin which passes 60 mA.  
http://onsemi.com  
4
 
NCL30080  
Table 3. ELECTRICAL CHARACTERISTICS (Unless otherwise noted: For typical values T = 25°C, V = 12 V;  
J
CC  
For min/max values T = 40°C to +125°C, Max T = 150°C, V = 12 V)  
J
J
CC  
Description  
Test Condition  
Symbol  
Min  
Typ  
Max  
Unit  
STARTUP AND SUPPLY CIRCUITS  
Supply Voltage  
V
Startup Threshold  
Minimum Operating Voltage  
V
V
V
increasing  
decreasing  
decreasing  
V
V
16  
8.2  
8
18  
8.8  
20  
9.4  
CC  
CC  
CC  
CC(on)  
CC(off)  
Hysteresis V  
– V  
V
CC(on)  
CC(off)  
CC(HYS)  
CC(reset)  
Internal logic reset  
V
3.5  
4.5  
5.5  
Over Voltage Protection  
VCC OVP threshold  
V
26  
28  
30  
V
CC(OVP)  
V
V
noise filter  
t
5
20  
ms  
CC(off)  
VCC(off)  
noise filter−  
t
I
CC(reset)  
VCC(reset)  
Startup current  
I
13  
46  
30  
60  
mA  
mA  
CC(start)  
Startup current in fault mode  
CC(sFault)  
Supply Current  
mA  
Device Disabled/Fault  
Device Enabled/No output load on pin 4  
V
F
> V  
= 65 kHz  
= 470 pF,  
= 65 kHz  
I
I
I
0.8  
1.0  
2.15  
2.6  
1.4  
4.0  
5.0  
CC  
CC(off)  
CC1  
CC2  
CC3  
sw  
Device Switching (F = 65 kHz)  
C
sw  
DRV  
F
sw  
CURRENT SENSE  
Maximum Internal current limit  
V
0.95  
250  
1
1.05  
350  
V
ILIM  
Leading Edge Blanking Duration for V  
(T = 25°C to 125°C)  
j
t
300  
ns  
ILIM  
ILIM  
LEB  
Leading Edge Blanking Duration for V  
(T = 40°C to 125°C)  
j
t
240  
300  
350  
ns  
LEB  
Input Bias Current  
DRV high  
I
0.02  
50  
1.5  
120  
150  
1.65  
mA  
ns  
V
bias  
Propagation delay from current detection to gate offstate  
t
ILIM  
Threshold for immediate fault protection activation  
V
1.35  
CS(stop)  
Leading Edge Blanking Duration for V  
t
ns  
ms  
ms  
CS(stop)  
BCS  
Blanking time for CS to GND short detection V  
= 1 V  
t
t
6
12  
4
pinVIN  
CS(blank1)  
CS(blank2)  
Blanking time for CS to GND short detection V  
= 3.3 V  
2
pinVIN  
GATE DRIVE  
Drive Resistance  
DRV Sink  
DRV Source  
W
R
SNK  
R
SRC  
13  
30  
Drive current capability  
DRV Sink (Note 4)  
DRV Source (Note 4)  
mA  
I
500  
300  
SNK  
SRC  
I
Rise Time (10% to 90%)  
Fall Time (90% to 10%)  
DRV minimum high level  
C
C
= 470 pF  
t
8
40  
30  
ns  
ns  
V
DRV  
r
= 470 pF  
t
f
DRV  
V
= V  
+0.2 V  
V
CC  
CC(off)  
DRV(low)  
C
= 470 pF,  
DRV  
R
= 33 kW  
DRV  
DRV high clamp level  
V
DRV  
= 30 V  
V
10  
12  
14  
V
CC  
DRV(high)  
C
= 470 pF,  
R
DRV  
= 33 kW  
4. Guaranteed by design  
http://onsemi.com  
5
 
NCL30080  
Table 3. ELECTRICAL CHARACTERISTICS (Unless otherwise noted: For typical values T = 25°C, V = 12 V;  
J
CC  
For min/max values T = 40°C to +125°C, Max T = 150°C, V = 12 V)  
J
J
CC  
Description  
Test Condition  
Symbol  
Min  
Typ  
Max  
Unit  
ZERO VOLTAGE DETECTION CIRCUIT  
ZCD threshold voltage  
V
increasing  
decreasing  
V
25  
5
45  
25  
65  
45  
mV  
mV  
mV  
V
ZCD  
ZCD(THI)  
ZCD(THD)  
ZCD(HYS)  
ZCD(short)  
ZCD threshold voltage (Note 4)  
ZCD hysteresis (Note 4)  
V
ZCD  
V
V
10  
0.8  
Threshold voltage for output short circuit or aux. winding  
short circuit detection  
V
1
1.2  
Short circuit detection Timer  
V
ZCD  
< V  
t
OVLD  
70  
3
90  
4
110  
5
ms  
s
ZCD(short)  
Autorecovery timer duration  
t
recovery  
Input clamp voltage  
High state  
Low state  
V
I
= 3.0 mA  
= 2.0 mA  
V
0.9  
9.5  
0.6  
0.3  
pin1  
CH  
CL  
I
V
pin1  
Propagation Delay from valley detection to DRV high  
Equivalent time constant for ZCD input (Note 4)  
Blanking delay after ontime  
V
ZCD  
decreasing  
t
20  
3
150  
ns  
ns  
ms  
ms  
DEM  
t
PAR  
t
2.25  
5
3.75  
8
BLANK  
Timeout after last demag transition  
t
6.5  
TIMO  
CONSTANT CURRENT CONTROL  
Reference Voltage at T = 25°C  
V
V
245  
242.5  
30  
250  
250  
55  
255  
257.5  
80  
mV  
mV  
mV  
j
REF  
Reference Voltage T = 40°C to 125°C  
j
REF  
Current sense lower threshold for detection of the  
leakage inductance reset time  
V
CS(low)  
LINE FEEDFORWARD  
V
to I  
conversion ratio  
K
15  
17  
19  
mA/V  
mA  
VIN  
CS(offset)  
LFF  
Offset current maximum value  
V
pinVIN  
= 4.5 V  
I
67.5  
76.5  
85.5  
offset(MAX)  
VALLEY SELECTION  
Threshold for line range detection V increasing  
V
increasing  
decreasing  
V
HL  
2.28  
2.18  
15  
2.4  
2.3  
25  
2.52  
2.42  
35  
V
V
in  
VIN  
st  
nd  
(1 to 2 valley transition for V  
> 0.75 V)  
REF  
Threshold for line range detection V decreasing  
V
VIN  
V
LL  
in  
nd  
st  
(2 to 1 valley transition for V  
> 0.75 V)  
REF  
Blanking time for line range detection  
THERMAL SHUTDOWN  
t
ms  
HL(blank)  
Thermal Shutdown (Note 4)  
Device switching  
around 65 kHz)  
T
130  
155  
55  
170  
°C  
°C  
SHDN  
(F  
SW  
Thermal Shutdown Hysteresis (Note 4)  
BROWNOUT  
T
SHDN(HYS)  
BrownOut ON level (IC start pulsing)  
BrownOut OFF level (IC shuts down)  
BO comparators delay  
V
increasing  
decreasing  
V
V
0.90  
0.85  
1
0.9  
30  
50  
1.10  
0.95  
V
V
SD  
BO(on)  
V
SD  
BO(off)  
t
ms  
ms  
nA  
BO(delay)  
BO(blank)  
BrownOut blanking time  
t
35  
65  
BrownOut pin bias current  
4. Guaranteed by design  
I
250  
250  
BO(bias)  
http://onsemi.com  
6
 
NCL30080  
TYPICAL CHARACTERISTICS  
18.15  
18.10  
18.05  
18.00  
8.85  
8.80  
8.75  
8.70  
8.65  
17.95  
17.90  
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 3. VCC(on) vs. Junction Temperature  
Figure 4. VCC(off) vs. Junction Temperature  
27.80  
27.75  
27.70  
1.09  
1.07  
1.05  
1.03  
27.65  
27.60  
27.55  
27.50  
1.01  
0.99  
0.97  
0.95  
27.45  
27.40  
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 5. VCC(OVP) vs. Junction Temperature  
Figure 6. ICC1 vs. Junction Temperature  
2.20  
2.15  
2.70  
2.65  
2.60  
2.55  
2.50  
2.45  
2.10  
2.05  
2.00  
2.40  
2.35  
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 7. ICC2 vs. Junction Temperature  
Figure 8. ICC3 vs. Junction Temperature  
http://onsemi.com  
7
NCL30080  
TYPICAL CHARACTERISTICS  
54  
52  
50  
19  
17  
15  
13  
48  
46  
44  
42  
11  
9
40  
38  
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 9. ICC(start) vs. Junction Temperature  
Figure 10. ICC(sFault) vs. Junction Temperature  
1.51  
1.50  
1.49  
1.48  
1.002  
1.000  
0.998  
0.996  
0.994  
1.47  
1.46  
0.992  
0.990  
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 11. VCS(stop) vs. Junction Temperature  
Figure 12. VILIM vs. Junction Temperature  
305  
303  
3.00  
2.98  
2.96  
2.94  
301  
299  
297  
295  
293  
291  
289  
2.92  
2.90  
287  
285  
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 13. tLEB vs. Junction Temperature  
Figure 14. tBLANK vs. Junction Temperature  
http://onsemi.com  
8
NCL30080  
TYPICAL CHARACTERISTICS  
6.80  
6.70  
6.60  
6.50  
6.40  
254  
253  
252  
251  
250  
249  
248  
6.30  
6.20  
247  
246  
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 15. tTIMO vs. Junction Temperature  
Figure 16. VREF vs. Junction Temperature  
55.8  
55.6  
55.4  
55.2  
17.65  
17.60  
17.55  
17.50  
55.0  
54.8  
54.6  
17.45  
17.40  
54.4  
54.2  
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 17. VCS(low) vs. Junction Temperature  
Figure 18. KLFF vs. Junction Temperature  
2.42  
2.41  
2.40  
2.39  
2.38  
2.30  
2.29  
2.28  
2.27  
2.26  
2.37  
2.36  
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 19. VHL vs. Junction Temperature  
Figure 20. VLL vs. Junction Temperature  
http://onsemi.com  
9
NCL30080  
TYPICAL CHARACTERISTICS  
25.5  
25.0  
24.5  
24.0  
1.000  
0.995  
0.990  
0.985  
0.980  
0.975  
23.5  
23.0  
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 21. tHL(BLANK) vs. Junction Temperature  
Figure 22. VBO(on) vs. Junction Temperature  
0.910  
0.905  
53.5  
53.0  
52.5  
52.0  
51.5  
51.0  
0.900  
0.895  
0.890  
50.5  
50.0  
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 23. VBO(off) vs. Junction Temperature  
Figure 24. tBO(BLANK) vs. Junction  
Temperature  
85.0  
84.5  
84.0  
83.5  
83.0  
82.5  
4.40  
4.35  
4.30  
4.25  
4.20  
4.15  
82.0  
81.5  
4.10  
4.05  
81.0  
80.5  
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 25. tOVLD vs. Junction Temperature  
Figure 26. trecovery vs. Junction Temperature  
http://onsemi.com  
10  
NCL30080  
Application Information  
The NCL30080 implements a currentmode architecture  
BrownOut: the controller includes a brownout  
circuit with a validation timer which safely stops the  
controller in the event that the input voltage is too low.  
The device will automatically restart if the line recovers.  
operating in quasiresonant mode. Thanks to proprietary  
circuitry, the controller is able to accurately regulate the  
secondary side current of the flyback converter without  
using any optocoupler or measuring directly the secondary  
side current.  
Cyclebycycle peak current limit: when the current  
sense voltage exceeds the internal threshold V  
, the  
ILIM  
QuasiResonance CurrentMode Operation:  
implementing quasiresonance operation in peak  
currentmode control, the NCL30080 optimizes the  
efficiency by switching in the valley of the MOSFET  
drainsource voltage. Thanks to a smart control  
algorithm, the controller locksout in a selected valley  
and remains locked until the input voltage or the output  
current set point significantly changes.  
Primary Side Constant Current Control: thanks to a  
proprietary circuit, the controller is able to compensate  
for the leakage inductance of the transformer and allow  
accurate control of the secondary side current.  
Line Feedforward: compensation for possible  
variation of the output current caused by system slew  
rate variation.  
MOSFET is turned off for the rest of the switching cycle.  
Winding ShortCircuit Protection: an additional  
comparator with a short LEB filter (t ) senses the CS  
BCS  
signal and stops the controller if V reaches 1.5 x  
CS  
V . For noise immunity reasons, this comparator is  
ILIM  
enabled only during the main LEB duration t  
.
LEB  
Output Shortcircuit protection: If a very low  
voltage is applied on ZCD pin for 90 ms (nominal), the  
controllers assume that the output or the ZCD pin is  
shorted to ground and enters shutdown. The auto−  
restart version (B suffix) waits 4 seconds, then the  
controller restarts switching. In the latched version (A  
suffix), the controller is latched as long as V stays  
CC  
above the V  
threshold.  
CC(reset)  
Open LED protection: if the voltage on the VCC pin  
exceeds an internal limit, the controller shuts down and  
waits 4 seconds before restarting switching.  
http://onsemi.com  
11  
NCL30080  
Constant Current Control  
Figure 27 shows the basic circuit of a flyback converter.  
Figure 28 portrays the primary and secondary current of a  
flyback converter operating in discontinuous conduction  
mode (DCM).  
Transformer  
V
bulk  
L
leak  
N
sp  
R
clp  
V
out  
C
clp  
L
p
Clamping  
network  
DRV  
C
lump  
R
sense  
Figure 27. Basic Flyback Converter Schematic  
http://onsemi.com  
12  
 
NCL30080  
During the ontime of the MOSFET, the bulk voltage  
is applied to the magnetizing and leakage inductors L  
turned off, the drain voltage begins to oscillate because of  
the resonating network formed by the inductors (L +L  
V
bulk  
)
leak  
p
p
and L  
and the current ramps up.  
and the lump capacitor. This voltage is reflected on the  
auxiliary winding wired in flyback mode. Thus, by  
monitoring the auxiliary winding voltage, we can detect the  
end of the conduction time of secondary diode. The constant  
current control block picks up the leakage inductor current,  
the end of conduction of the output rectifier and controls the  
drain current to maintain the output current constant.  
leak  
When the MOSFET is turnedoff, the inductor current  
first charges C . The output diode is off until the voltage  
lump  
across L reverses and reaches:  
p
ǒV  
Ǔ
Nsp out ) Vf  
(eq. 1)  
The output diode current increase is limited by the leakage  
inductor. As a result, the secondary peak current is reduced:  
We have:  
VREF  
2NspRsense  
IL,pk  
(eq. 3)  
Iout  
+
I
D,pk t  
(eq. 2)  
Nsp  
The output current value is set by choosing the sense  
resistor:  
The diode current reaches its peak when the leakage inductor  
is reset. Thus, in order to accurately regulate the output  
current, we need to take into account the leakage inductor  
current. This is accomplished by sensing the clamping  
network current. Practically, a node of the clamp capacitor  
Vref  
2NspIout  
(eq. 4)  
Rsense  
+
From Equation 3, the first key point is that the output  
current is independent of the inductor value. Moreover, the  
leakage inductance does not influence the output current  
value as the reset time is processed by the controller.  
is connected to R  
instead of the bulk voltage V  
.
sense  
bulk  
Then, by monitoring the voltage on the CS pin, we have an  
image of the primary current (red curve in Figure 28).  
When the diode conducts, the secondary current decreases  
linearly from I  
to zero. When the diode current has  
D,pk  
I
L,pk  
N
I
sp D,pk  
I (t)  
pri  
I (t)  
sec  
time  
t
1
t
2
t
on  
t
demag  
V (t)  
aux  
time  
Figure 28. Flyback Currents and Auxiliary Winding Voltage in DCM  
http://onsemi.com  
13  
 
NCL30080  
Internal SoftStart  
At startup or after recovering from a fault, there is a small  
internal softstart of 40 ms.  
In addition, during startup, as the output voltage is zero  
volts, the demagnetization time is long and the constant  
current control block will slowly increase the peak current  
towards its nominal value as the output voltage grows.  
Figure 29 shows a softstart simulation example for a 9 W  
LED driver illustrating a natural soft startup.  
16.0  
12.0  
8.00  
4.00  
0
V
out  
1
800m  
600m  
400m  
200m  
0
I
2
out  
800m  
600m  
400m  
200m  
0
V
V
4
3
Control  
CS  
604u  
1.47m  
2.34m  
3.21m  
4.07m  
time in seconds  
Figure 29. Startup Simulation Showing the Natural Softstart  
CyclebyCycle Current Limit  
When the current sense voltage exceeds the internal  
Winding and Output Diode ShortCircuit Protection  
In parallel with the cyclebycycle sensing of the CS pin,  
threshold V , the MOSFET is turned off for the rest of the  
ILIM  
another comparator with a reduced LEB (t ) and a higher  
BCS  
switching cycle (Figure 30).  
threshold (1.5 V typical) is integrated to sense a winding  
shortcircuit and immediately stops the DRV pulses. The  
controller goes into autorecovery mode in version B.  
In version A, the controller is latched. In latch mode, the  
DRV pulses stop and VCC ramps up and down. The circuit  
unlatches when VCC pin voltage drops below V  
CC(reset)  
threshold.  
http://onsemi.com  
14  
 
NCL30080  
S
aux  
Q
DRV  
latch  
Vdd  
Q
VCC  
CS  
R
Vcc  
management  
LEB1  
+
PWMreset  
Ipkmax  
Rsense  
Vcontrol  
VCCstop  
UVLO  
+
grand  
reset  
8_HICC  
OVP  
V
ILIMIT  
OVP  
STOP  
LEB2  
+
WOD_SCP  
latch  
S
OFF  
WOD_SCP  
S
R
V
Q
Q
CS(stop)  
Q
Q
R
8_HICC  
grand  
reset  
from Fault Management Block  
Figure 30. Winding Short Circuit Protection, Max. Peak Current Limit Circuits  
http://onsemi.com  
15  
NCL30080  
VCC Over Voltage Protection (Open LED Protection)  
If no output load is connected to the LED string fails open  
circuited, the controller must be able to safely limit the  
output voltage excursion.  
In the NCL30080, when the V voltage reaches the  
CC  
V
threshold, the controller stops the DRV pulses and  
CC(OVP)  
the 4s timer starts counting. The IC restart switching after  
the 4s timer has elapsed as long as V V  
. This is  
CC(on)  
CC  
illustrated in Figure 31.  
40.0  
V
CC(OVP)  
30.0  
20.0  
10.0  
0
V
1
CC  
V
CC(on)  
V
CC(off)  
40.0  
30.0  
20.0  
10.0  
0
V
2
out  
800m  
600m  
400m  
200m  
0
I
3
4
out  
8.00  
6.00  
4.00  
2.00  
0
OVP  
1.38  
3.96  
6.54  
9.11  
11.7  
time in seconds  
Figure 31. Open LED Protection Chronograms  
http://onsemi.com  
16  
 
NCL30080  
Valley Lockout  
Quasisquare wave resonant systems have a wide  
switching frequency excursion. The switching frequency  
increases when the output load decreases or when the input  
voltage increases. The switching frequency of such systems  
must be limited.  
The NCL30080 changes the valley as the input voltage  
increases. This limits the switching frequency excursion.  
Once a valley is selected, the controller stays locked in the  
valley until the input voltage varies significantly. This  
avoids valley jumping and the inherent noise caused by this  
phenomenon.  
The input voltage is sensed by the VIN pin. The internal  
logic selects the operating valley according to VIN pin  
voltage (line range detection in Figure 32). For a universal  
mains design, the controller operates in the first valley at low  
line and in the second valley at high line.  
Vbulk  
VIN  
+
LLine  
HLine  
25ms blanking time  
2.4 V if LLine low  
2.3 V if LLine high  
Figure 32. Line Range Detection  
Table 4. VALLEY SELECTION  
VIN pin voltage for valley change  
V
VIN  
decreases  
2.3 V  
0
0
LL−  
HL−  
5 V  
5 V  
st  
nd  
Valley number  
1
2
LL−  
2.4 V  
HL−  
V
VIN  
increases  
VIN pin voltage for valley change  
http://onsemi.com  
17  
 
NCL30080  
Zero Crossing Detection Block  
The ZCD pin detects when the drain-source voltage of the  
power MOSFET reaches a valley.  
the valleys. To avoid such a situation, the NCL30080  
features a time-out circuit that generates pulses if the voltage  
on ZCD pin stays below the V  
(nominal).  
threshold for 6.5 ms  
ZCD(THD)  
A valley is detected when the voltage on pin 1 crosses  
below the V  
internal threshold.  
The time-out also acts as a substitute clock for the valley  
detection and simulates a missing valley in case of very  
damped free oscillations.  
ZCD(THD)  
At startup or in case of extremely damped free  
oscillations, the ZCD comparator may not be able to detect  
V
V
ZCD  
3
4
ZCD(THD)  
The 3rd valley  
is validated  
high  
low  
14  
12  
2nd, 3rd  
The 3rd valley is not detected  
by the ZCD comp  
The 2nd valley is detected  
By the ZCD comparator  
high  
ZCD comp  
TimeOut  
low  
15  
16  
high  
low  
Timeout circuit adds a pulse to  
account for the missing 3rd valley  
high  
low  
Clk  
17  
Figure 33. Timeout Chronograms  
Normally with this type of timeout function, in the event  
the ZCD pin or the auxiliary winding is shorted, the  
controller could continue switching leading to improper  
regulation of the LED current. Moreover during an output  
short circuit, the controller will strive to maintain constant  
current operation.  
To avoid these scenarios, a protection circuit consisting of  
a comparator and secondary timer starts counting when the  
ZCD voltage is below the V  
threshold. If this timer  
ZCD(short)  
reaches 90 ms, the controller detects a fault and shutdown.  
The autorestart version (B suffix) waits 4 seconds, then the  
controller restarts switching. In the latched version  
(A suffix), the controller is latched as long as V stays  
CC  
above the V  
threshold.  
CC(reset)  
http://onsemi.com  
18  
NCL30080  
Line Feedforward  
Because of internal and external propagation delays, the  
MOSFET is not turnedoff immediately when the current  
setpoint is reached. As a result, the primary peak current is  
slightly higher than expected resulting in a small output  
current error which can be compensated for during  
component selection.  
Normally this error would increase if the input line  
voltage increased because the slew rate through the primary  
inductance would increase. To compensate for the peak  
current increase brought by the variation, a positive voltage  
proportional to the line voltage is added to the current sense  
signal. The amount of offset voltage can be adjusted using  
the R  
resistor as shown in Figure 34.  
LFF  
V
CS(offset) + KLFFVpinVINRCS  
(eq. 5)  
The offset voltage is applied only during the MOSFET  
ontime.  
Bulk rail  
V
I
DD  
VIN  
CS  
R
CS  
CS(offset)  
R
sense  
Q_drv  
Figure 34. Line Feedforward Schematic  
Brownout  
condition overrides the hiccup on V (V does not wait  
CC  
CC  
In order to protect the supply against a very low input  
voltage, the NCL30080 features a brownout circuit with a  
fixed ON/OFF threshold. The controller is allowed to start  
if a voltage higher than 1 V is applied to the VIN pin and  
shutsdown if the VIN pin voltage decreases and stays  
below 0.9 V for 50 ms nominal. Exiting a brownout  
to reach V  
) and the IC immediately goes into startup  
CC(off)  
mode (I = I  
). Note for most compact LED driver  
CC(start)  
CC  
applications, if a true line dropout occurs, the energy in the  
input bulk capacitor will be discharged and the LED load  
will turn off before the 50 ms timer expires.  
Vbulk  
VIN  
+
BO_NOK  
50ms blanking time  
1 V if BONOK high  
0.9 V if BONOK low  
Figure 35. Brownout Circuit  
http://onsemi.com  
19  
 
NCL30080  
160  
120  
80.0  
40.0  
0
V
Bulk  
1
2
18.0  
16.0  
14.0  
12.0  
10.0  
V
CC(on)  
V
CC  
V
CC(off)  
1.10  
900m  
700m  
500m  
300m  
V
V
BO(on)  
BO(off)  
V
pinVIN  
3
8.00  
6.00  
4.00  
2.00  
0
50ms Timer  
BO_NOK low  
=> Startup mode  
BO_NOK  
4
46.1m  
138m  
231m  
time in seconds  
323m  
415m  
Figure 36. BrownOut Chronograms (Valley Fill circuit is used)  
http://onsemi.com  
20  
NCL30080  
CS Pin Short Circuit Protection  
With a traditional controller, if the CS pin or the sense  
resistor is shorted to ground, the driver will not be able to  
turn off, leading to potential damage of the power supply. To  
avoid this, the NCL30080 features a circuit to protect the  
power supply against a short circuit of the CS pin. When the  
MOSFET is on, if the CS voltage stays below V after  
CS(low)  
the adaptive blanking timer has elapsed, the controller shuts  
down and will attempt to restart on the next V hiccup.  
CC  
Adaptative  
Blanking Time  
V
VIN  
Q_drv  
CS  
+
S
R
V
Q
Q
CS_short  
CS(low)  
UVLO  
BO_NOK  
Figure 37. CS Pin Short Circuit Protection Schematic  
Fault Management  
In this mode, the DRV pulses are stopped. V voltage  
CC  
decrease through the controller own consumption (I ).  
For the output diode short circuit protection, the output /  
OFF Mode  
CC1  
The circuit turns off whenever a major condition prevents  
it from operating:  
aux. winding short circuit protection and the V OVP, the  
CC  
controller waits 4 seconds (autorecovery timer) and then  
Incorrect feeding of the circuit: “UVLO high”. The  
initiates a startup sequence (V  
restarting switching.  
V  
) before  
CC(on)  
CC  
UVLO signal becomes high when V drops below  
CC  
V
CC(off)  
and remains high until V exceeds V  
.
CC  
CC(on)  
Latch Mode  
V OVP  
CC  
This mode is activated by the output diode shortcircuit  
protection (WOD_SCP) and the Aux_SCP in version A  
only.  
Output diode short circuit protection: “WOD_SCP  
high”  
Output / Auxiliary winding Short circuit protection:  
“Aux_SCP high”  
Die over temperature (TSD)  
BrownOut: “BO_NOK” high  
Pin CS short circuited to GND: “CS_short high”  
In this mode, the DRV pulses are stopped and the  
controller is latched. There are hiccups on V  
.
CC  
The circuit unlatches when V < V  
.
CC  
CC(reset)  
http://onsemi.com  
21  
NCL30080  
Timer has  
finished  
counting  
V
CC  
> V  
CC(on)  
V
CC  
< V  
CC(off)  
or  
BO_NOK ↓  
V _OVP  
CC  
BO_NOK high  
or TSD  
or CS_Short  
Stop  
4s  
Timer  
V
CC  
Disch.  
BO_NOK high  
or TSD  
or CS_Short  
WOD_SCP  
or Aux_SCP  
or V _OVP  
CC  
Run  
V
CC  
< V  
CC(off)  
With states: Reset  
Controller is reset, I = I  
CC CC(start)  
Controller is ON, DRV is not switching  
Normal switching  
Stop  
Run  
V
CC  
Disch.  
No switching, I = I  
, waiting for V to decrease to V  
CC1 CC CC(off)  
CC  
4s Timer  
the autorecovery timer is counting, V is ramping up and down between V  
and V  
CC(on) CC(off)  
CC  
Figure 38. State Diagram for B Version Faults  
http://onsemi.com  
22  
NCL30080  
Reset  
Timer has  
finished  
counting  
V
CC  
> V  
CC(on)  
V
CC  
< V  
CC(off)  
or  
BO_NOK ↓  
V
CC  
< V  
CC(reset)  
BO_NOK high  
or TSD  
or CS_Short  
4s  
Timer  
V _OVP  
CC  
Stop  
V
CC  
Disch.  
V _OVP  
CC  
BO_NOK high  
or TSD  
or CS_Short  
Latch  
Run  
V
CC  
< V  
CC(off)  
WOD_SCP or  
Aux_SCP  
With states: Reset  
Controller is reset, I = I  
CC CC(start)  
Controller is ON, DRV is not switching  
Normal switching  
Stop  
Run  
V
CC  
Disch.  
No switching, I = I  
, waiting for V to decrease to V  
CC1 CC CC(off)  
CC  
4s Timer  
Latch  
the autorecovery timer is counting, V is ramping up and down between V  
and V  
CC  
CC(on) CC(off)  
Controller is latched off, V is ramping up and down between V  
and V  
,
CC  
CC(on)  
CC(off)  
only V  
can release the latch.  
CC(reset)  
Figure 39. State Diagram for A Version Faults  
http://onsemi.com  
23  
NCL30080  
PACKAGE DIMENSIONS  
TSOP6  
CASE 318G02  
ISSUE V  
NOTES:  
D
1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.  
2. CONTROLLING DIMENSION: MILLIMETERS.  
H
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM  
LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.  
4. DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH,  
PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR  
GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE. DIMENSIONS D  
AND E1 ARE DETERMINED AT DATUM H.  
6
1
5
2
4
L2  
GAUGE  
PLANE  
E1  
E
5. PIN ONE INDICATOR MUST BE LOCATED IN THE INDICATED ZONE.  
3
L
MILLIMETERS  
SEATING  
PLANE  
M
C
NOTE 5  
DIM  
A
A1  
b
c
D
E
E1  
e
MIN  
0.90  
0.01  
0.25  
0.10  
2.90  
2.50  
1.30  
0.85  
0.20  
NOM  
1.00  
MAX  
1.10  
0.10  
0.50  
0.26  
3.10  
3.00  
1.70  
1.05  
0.60  
b
DETAIL Z  
e
0.06  
0.38  
0.18  
3.00  
c
2.75  
A
0.05  
1.50  
0.95  
L
0.40  
A1  
L2  
M
0.25 BSC  
DETAIL Z  
0°  
10°  
RECOMMENDED  
SOLDERING FOOTPRINT*  
6X  
0.60  
6X  
0.95  
3.20  
0.95  
PITCH  
DIMENSIONS: MILLIMETERS  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
http://onsemi.com  
24  
NCL30080  
OPTIONS  
Controller  
Output SCP  
Winding/Output Diode SCP  
Latched  
NCL30080A  
NCL30080B  
Latched  
Autorecovery  
Autorecovery  
ORDERING INFORMATION  
Device  
Package Marking  
Package Type  
Shipping  
NCL30080ASNT1G  
AAE  
TSOP6  
3000 / Tape & Reel  
3000 / Tape & Reel  
(PbFree, HalideFree)  
NCL30080BSNT1G  
AAF  
TSOP6  
(PbFree, HalideFree)  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks,  
copyrights, trade secrets, and other intellectual property. A listing of SCILLC’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. SCILLC  
reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any  
particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without  
limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications  
and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC  
does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where  
personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and  
its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly,  
any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture  
of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 8002829855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81358171050  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 3036752175 or 8003443860 Toll Free USA/Canada  
Fax: 3036752176 or 8003443867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
NCL30080/D  
Mouser Electronics  
Authorized Distributor  
Click to View Pricing, Inventory, Delivery & Lifecycle Information:  
ON Semiconductor:  
NCL30080ASNT1G  

相关型号:

NCL30080ASNT1G

Quasi-Resonant Primary Side Current-Mode Controller for LED Lighting
ONSEMI

NCL30080B

Quasi-Resonant Primary Side Current-Mode Controller for LED Lighting
ONSEMI

NCL30080BSNT1G

Quasi-Resonant Primary Side Current-Mode Controller for LED Lighting
ONSEMI

NCL30080_13

Quasi-Resonant Primary Side Current-Mode Controller for LED Lighting
ONSEMI

NCL30081

Dimmable Quasi-Resonant Primary Side Current-Mode Controller for LED Lighting
ONSEMI

NCL30081A

Dimmable Quasi-Resonant Primary Side Current-Mode Controller for LED Lighting
ONSEMI

NCL30081ASNT1G

Dimmable Quasi-Resonant Primary Side Current-Mode Controller for LED Lighting
ONSEMI

NCL30081B

Dimmable Quasi-Resonant Primary Side Current-Mode Controller for LED Lighting
ONSEMI

NCL30081BSNT1G

Dimmable Quasi-Resonant Primary Side Current-Mode Controller for LED Lighting
ONSEMI

NCL30081_13

Dimmable Quasi-Resonant Primary Side Current-Mode Controller for LED Lighting
ONSEMI

NCL30082

Dimmable Quasi-Resonant Primary Side Current-ModeController for LED Lighting with Thermal Fold-back
ONSEMI

NCL30082A

Dimmable Quasi-Resonant Primary Side Current-ModeController for LED Lighting with Thermal Fold-back
ONSEMI