MC14532BCPG [ONSEMI]

MC14532B_06;
MC14532BCPG
型号: MC14532BCPG
厂家: ONSEMI    ONSEMI
描述:

MC14532B_06

文件: 总7页 (文件大小:99K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MC14532B  
8−Bit Priority Encoder  
The MC14532B is constructed with complementary MOS (CMOS)  
enhancement mode devices. The primary function of a priority  
encoder is to provide a binary address for the active input with the  
highest priority. Eight data inputs (D0 thru D7) and an enable input  
(E are provided. Five outputs are available, three are address outputs  
in)  
http://onsemi.com  
MARKING  
(Q0 thru Q2), one group select (GS) and one enable output (E ).  
out  
Features  
Diode Protection on All Inputs  
DIAGRAMS  
Supply Voltage Range = 3.0 Vdc to 18 Vdc  
Capable of Driving Two Low−Power TTL Loads or One Low−Power  
Schottky TTL Load over the Rated Temperature Range  
Pb−Free Packages are Available*  
MC14532BCP  
AWLYYWWG  
1
MAXIMUM RATINGS (Voltages Referenced to V  
)
SS  
1
PDIP−16  
P SUFFIX  
CASE 648  
Rating  
Symbol  
Value  
0.5 to +18.0  
Unit  
V
DC Supply Voltage Range  
V
DD  
Input or Output Voltage Range  
(DC or Transient)  
V ,  
−0.5 to V + 0.5  
V
in  
DD  
V
out  
Input or Output Current  
(DC or Transient) per Pin  
I , I  
in out  
10  
mA  
Power Dissipation, per Package (Note 1)  
Ambient Temperature Range  
P
T
500  
mW  
°C  
D
14532BG  
AWLYWW  
55 to +125  
65 to +150  
260  
A
SOIC−16  
D SUFFIX  
CASE 751B  
1
Storage Temperature Range  
T
stg  
°C  
1
Lead Temperature (8 Sec Soldering)  
T
°C  
L
Stresses exceeding Maximum Ratings may damage the device. Maximum  
Ratings are stress ratings only. Functional operation above the Recommended  
Operating Conditions is not implied. Extended exposure to stresses above the  
Recommended Operating Conditions may affect device reliability.  
1. Temperature Derating:  
A
WL  
= Assembly Location  
= Wafer Lot  
YY, Y = Year  
Plastic “P and D/DW” Packages: – 7.0 mW/_C From 65_C To 125_C  
WW = Work Week  
G
= Pb−Free Package  
This device contains protection circuitry to guard against damage due to high  
static voltages or electric fields. However, precautions must be taken to avoid  
applications of any voltage higher than maximum rated voltages to this  
high−impedance circuit. For proper operation, V and V should be constrained  
in  
out  
PIN ASSIGNMENT  
to the range V v (V or V ) v V  
.
SS  
in  
out  
DD  
Unused inputs must always be tied to an appropriate logic voltage level  
(e.g., either V or V ). Unused outputs must be left open.  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
D4  
D5  
D6  
D7  
V
E
SS  
DD  
DD  
TRUTH TABLE  
out  
Input  
Output  
GS  
E
D7 D6 D5 D4 D3 D2 D1 D0 GS Q2 Q1 Q0  
E
D3  
D2  
D1  
D0  
Q0  
in  
out  
0
1
0
1
X
0
X
0
X
0
X
0
X
0
X
0
X
0
X
0
0
0
0
0
0
0
0
0
E
in  
Q2  
Q1  
1
1
1
1
1
0
0
0
X
1
0
0
X
X
1
0
X
X
X
1
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
1
1
1
1
1
1
1
1
1
1
0
0
1
0
1
0
0
0
0
0
V
SS  
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
X
1
0
0
X
X
1
0
X
X
X
1
1
1
1
1
0
0
0
0
1
1
0
0
1
0
1
0
0
0
0
0
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
dimensions section on page 2 of this data sheet.  
X = Don’t Care  
*For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting  
Techniques Reference Manual, SOLDERRM/D.  
©
Semiconductor Components Industries, LLC, 2006  
1
Publication Order Number:  
April, 2006 − Rev. 6  
MC14532B/D  
 
MC14532B  
ORDERING INFORMATION  
Device  
Package  
Shipping  
MC14532BCP  
PDIP−16  
25 Units / Rail  
48 Units / Rail  
MC14532BCPG  
PDIP−16  
(Pb−Free)  
MC14532BD  
SOIC−16  
MC14532BDG  
SOIC−16  
(Pb−Free)  
MC14532BDR2  
SOIC−16  
2500 / Tape & Reel  
MC14532BDR2G  
SOIC−16  
(Pb−Free)  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
ELECTRICAL CHARACTERISTICS (Voltages Referenced to V  
)
SS  
− 55_C  
25_C  
Typ  
125_C  
V
DD  
(Note 2)  
Min  
Max  
Min  
Max  
Min  
Max  
Symbol  
Vdc  
Characteristic  
Output Voltage  
Unit  
“0” Level  
V
5.0  
10  
15  
0.05  
0.05  
0.05  
0
0
0
0.05  
0.05  
0.05  
0.05  
0.05  
0.05  
Vdc  
OL  
V
in  
= V or 0  
DD  
V
5.0  
10  
15  
4.95  
9.95  
14.95  
4.95  
9.95  
14.95  
5.0  
10  
15  
4.95  
9.95  
14.95  
Vdc  
Vdc  
“1” Level  
“0” Level  
OH  
V
in  
= 0 or V  
DD  
Input Voltage  
(V = 4.5 or 0.5 Vdc)  
V
IL  
5.0  
10  
15  
1.5  
3.0  
4.0  
2.25  
4.50  
6.75  
1.5  
3.0  
4.0  
1.5  
3.0  
4.0  
O
(V = 9.0 or 1.0 Vdc)  
O
(V = 13.5 or 1.5 Vdc)  
O
V
Vdc  
“1” Level  
IH  
5.0  
10  
15  
3.5  
7.0  
11  
3.5  
7.0  
11  
2.75  
5.50  
8.25  
3.5  
7.0  
11  
(V = 0.5 or 4.5 Vdc)  
O
(V = 1.0 or 9.0 Vdc)  
O
(V = 1.5 or 13.5 Vdc)  
O
Output Drive Current  
I
mAdc  
OH  
(V  
(V  
(V  
(V  
= 2.5 Vdc)  
= 4.6 Vdc)  
= 9.5 Vdc)  
= 13.5 Vdc)  
Source  
Sink  
5.0  
5.0  
10  
–3.0  
– 0.64  
–1.6  
–2.4  
– 0.51  
–1.3  
–4.2  
– 0.88  
– 2.25  
– 8.8  
–1.7  
– 0.36  
–0.9  
OH  
OH  
OH  
OH  
15  
– 4.2  
–3.4  
–2.4  
(V = 0.4 Vdc)  
I
5.0  
10  
15  
0.64  
1.6  
4.2  
0.51  
1.3  
3.4  
0.88  
2.25  
8.8  
0.36  
0.9  
2.4  
mAdc  
OL  
OL  
(V = 0.5 Vdc)  
OL  
(V = 1.5 Vdc)  
OL  
Input Current  
I
15  
0.1  
0.00001  
5.0  
0.1  
7.5  
1.0  
mAdc  
in  
Input Capacitance  
C
pF  
in  
(V = 0)  
in  
Quiescent Current  
(Per Package)  
I
5.0  
10  
15  
5.0  
10  
20  
0.005  
0.010  
0.015  
5.0  
10  
20  
150  
300  
600  
mAdc  
mAdc  
DD  
Total Supply Current (Notes 3, 4)  
(Dynamic plus Quiescent,  
Per Package)  
I
5.0  
10  
15  
I
I
I
= (1.74 mA/kHz) f + I  
= (3.65 mA/kHz) f + I  
= (5.73 mA/kHz) f + I  
T
T
T
T
DD  
DD  
DD  
(C = 50 pF on all outputs, all  
L
buffers switching)  
2. Data labelled “Typ” is not to be used for design purposes but is intended as an indication of the IC’s potential performance.  
3. The formulas given are for the typical characteristics only at 25_C.  
4. To calculate total supply current at loads other than 50 pF:  
I (C ) = I (50 pF) + (C – 50) Vfk  
T
L
T
L
where: I is in mA (per package), C in pF, V = (V – V ) in volts, f in kHz is input frequency, and k = 0.005.  
T
L
DD  
SS  
http://onsemi.com  
2
 
MC14532B  
SWITCHING CHARACTERISTICS (C = 50 pF, T = 25_C) (Note 5)  
L
A
Characteristic  
Symbol  
V
Min  
Typ  
Max  
Unit  
DD  
(Note 6)  
Output Rise and Fall Time  
t
t
,
ns  
TLH  
t
t
t
, t  
= (1.5 ns/pF) C + 25 ns  
= (0.75 ns/pF) C + 12.5 ns  
= (0.55 ns/pF) C + 9.5 ns  
5.0  
10  
15  
100  
50  
40  
200  
100  
80  
TLH THL  
L
THL  
, t  
TLH THL  
L
L
, t  
TLH THL  
Propagation Delay Time — E to E  
t
t
t
t
t
,
PLH  
ns  
ns  
ns  
ns  
ns  
in  
out  
t
t
t
, t  
= (1.7 ns/pF) C + 120 ns  
t
5.0  
10  
15  
205  
110  
80  
410  
220  
160  
PLH PHL  
L
PHL  
, t  
= (0.66 ns/pF) C + 77 ns  
PLH PHL  
L
, t  
= (0.5 ns/pF) C + 55 ns  
L
PLH PHL  
Propagation Delay Time — E to GS  
,
PLH  
in  
t
t
t
, t  
= (1.7 ns/pF) C + 90 ns  
t
5.0  
10  
15  
175  
90  
65  
350  
180  
130  
PLH PHL  
L
PHL  
, t  
= (0.66 ns/pF) C 57 ns  
PLH PHL  
L
, t  
= (0.5 ns/pF) C + 40 ns  
PLH PHL  
L
Propagation Delay Time — E to Q  
,
PHL  
in  
n
t
t
t
, t  
= (1.7 ns/pF) C + 195 ns  
t
5.0  
10  
15  
280  
140  
100  
560  
280  
200  
PLH PHL  
L
PLH  
, t  
= (0.66 ns/pF) C + 107 ns  
PLH PHL  
L
, t  
= (0.5 ns/pF) C + 75 ns  
L
PLH PHL  
Propagation Delay Time — D to Q  
,
PLH  
n
n
t
t
t
, t  
= (1.7 ns/pF) C + 265 ns  
t
5.0  
10  
15  
300  
170  
110  
600  
340  
220  
PLH PHL  
L
PHL  
, t  
= (0.66 ns/pF) C + 137 ns  
PLH PHL  
L
, t  
= (0.5 ns/pF) C + 85 ns  
L
PLH PHL  
Propagation Delay Time — D to GS  
,
PLH  
n
t
t
t
, t  
= (1.7 ns/pF) C + 195 ns  
t
5.0  
10  
15  
280  
140  
100  
560  
280  
200  
PLH PHL  
L
PHL  
, t  
= (0.66 ns/pF) C + 107 ns  
PLH PHL  
L
, t  
= (0.5 ns/pF) C + 75 ns  
L
PLH PHL  
5. The formulas given are for the typical characteristics only at 25_C.  
6. Data labelled “Typ” is not to be used for design purposes but is intended as an indication of the IC’s potential performance.  
V
out  
E
in  
D0  
D1  
E
out  
D2  
D3  
D4  
D5  
D6  
D7  
Q0  
Q1  
Q2  
GS  
SWITCH  
MATRIX  
V
DD  
I
D
500 mF  
I
D
0.01 mF  
EXTERNAL  
POWER  
SUPPLY  
E
E
out  
in  
C
L
D0  
D1  
Q0  
V
V
= V  
V
= V  
GS DD  
GS  
DD  
C
L
= V  
V
= V  
V  
DD  
D2  
D3  
D4  
D5  
D6  
D7  
DS  
out  
DS  
out  
Output  
Under  
Test  
Sink Current  
Source Current  
D0 thru D6 D7 E  
in  
Q1  
Q2  
GS  
C
L
D0 thru D7  
E
in  
E
X
X
X
X
X
0
0
0
0
0
0
0
1
1
1
1
1
out  
C
L
PULSE  
GENERATOR  
(f )  
Q0  
Q1  
Q2  
GS  
0
0
0
0
1
1
1
1
C
o
L
V
SS  
Figure 1. Typical Sink and Source  
Current Characteristics  
Figure 2. Typical Power Dissipation Test Circuit  
http://onsemi.com  
3
 
MC14532B  
V
DD  
E
E
out  
in  
D0  
D1  
C
L
Q0  
Q1  
D2  
D3  
D4  
D5  
D6  
D7  
C
PROGRAMMABLE  
PULSE  
GENERATOR  
L
C
L
Q2  
GS  
C
L
C
L
V
SS  
NOTE: Input rise and fall times are 20 ns  
PIN  
NO.  
50%  
D0 10  
50%  
D1  
11  
50%  
D2 12  
D3 13  
50%  
50%  
D4  
D5  
1
2
50%  
50%  
D6  
D7  
3
4
50%  
50%  
E
5
in  
t
t
PHL  
PLH  
90%  
50%  
10%  
E
15  
out  
t
THL  
t
PHL  
t
TLH  
t
PLH  
90%  
50%  
10%  
GS 14  
t
t
t
t
t
TLH  
t
PLH  
PLH  
PLH  
THL  
t
t
t
t
PHL  
PLH  
PHL  
PHL  
PHL  
90%  
50%  
10%  
Q0  
Q1  
9
7
t
t
t
t
PLH  
PLH  
TLH  
THL  
t
t
PHL  
PHL  
90%  
50%  
10%  
t
t
THL  
TLH  
t
t
PHL  
PLH  
90%  
50%  
10%  
Q2  
6
t
t
TLH  
THL  
Figure 3. AC Test Circuit and Waveforms  
http://onsemi.com  
4
MC14532B  
LOGIC EQUATIONS  
E
= E D0 D1 D2 D3 D4 D5 D6 D7  
in  
out  
Q0 = E (D1 D2 D4 D6 + D3 D4 D6 + D5 D6 + D7)  
in  
Q1 = E (D2 D4 D5 + D3 D4 D5 + D6 + D7)  
in  
10  
11  
Q2 = E (D4 + D5 + D6 + D7)  
in  
D0  
D1  
GS = E (D0 + D1 + D2 + D3 + D4 + 05 + D6 + D7)  
in  
9
Q0  
12  
13  
1
D2  
D3  
D4  
D5  
7
Q1  
2
3
4
D6  
D7  
6
Q2  
GS  
5
E
in  
14  
15  
E
out  
Figure 4. Logic Diagram  
(Positive Logic)  
http://onsemi.com  
5
MC14532B  
D15 D14 D13 D12 D11 D10 D9 D8  
D7 D6 D5 D4 D3 D2 D1 D0  
D7 D6 D5 D4 D3 D2 D1 D0  
D7 D6 D5 D4 D3 D2 D1 D0  
E
= ꢀ1"  
WITH D = ꢀ0"  
out  
V
E
E
E
E
out  
DD  
in  
out  
in  
in  
GS  
Q2 Q1 Q0  
Q2 Q1 Q0  
3/4 MC14071B  
Q3  
Q2  
Q1  
Q0  
Figure 5. Two MC14532B’s Cascaded for 4−Bit Output  
V
V
SS  
DD  
CLOCK  
INPUT  
C
E
R
C
E
R
1/2 MC14520B  
Q2 Q3  
1/2 MC14520B  
Q2 Q3  
DIGITAL TO ANALOG CONVERSION  
Q1  
Q4  
Q1  
Q4  
The digital eight−bit word to be converted is applied to the  
inputs of the MC14512 with the most significant bit at X7  
and the least significant bit at X0. A clock input of up to  
2.5 MHz (at V  
= 10 V) is applied to the MC14520B.  
DD  
A compromise between I  
for the MC1710 and DR be-  
bias  
tween N and P−channel outputs gives a value of R of 33 kW.  
In order to filter out the switching frequencies, RC should  
be about 1.0 ms (if R = 33 kW, C [ 0.03 mF). The analog 3.0  
dB bandwidth would then be dc to 1.0 kHz.  
DIGITAL INPUT/OUTPUT  
D0 D1 D2 D3 D4 D5 D6 D7  
8−BIT WORD  
TO BE CONVERTED  
E
in  
V
ANALOG TO DIGITAL CONVERSION  
DD  
Q2 Q1 Q0  
An analog signal is applied to the analog input of the  
MC1710. A digital eight−bit word known to represent a dig-  
itized level less than the analog input is applied to the  
MC14512 as in the D to A conversion. The word is increm-  
ented at rates sufficient to allow steady state to be reached  
between incrementations (i.e. 3.0 ms). The output of the  
MC1710 will change when the digital input represents the  
first digitized level above the analog input. This word is the  
digital representation of the analog word.  
X7 X6 X5 X4 X3 X2 X1 X0  
A
B
C
MC14512  
Z
MC1710  
R
ANALOG  
OUTPUT  
STOP  
WORD  
INCREMENTATION  
C
ANALOG  
INPUT  
Figure 6. Digital to Analog and Analog to Digital Converter  
http://onsemi.com  
6
MC14532B  
PACKAGE DIMENSIONS  
PDIP−16  
CASE 648−08  
ISSUE T  
NOTES:  
−A−  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
3. DIMENSION L TO CENTER OF LEADS  
WHEN FORMED PARALLEL.  
4. DIMENSION B DOES NOT INCLUDE  
MOLD FLASH.  
16  
1
9
8
B
S
5. ROUNDED CORNERS OPTIONAL.  
INCHES  
DIM MIN MAX  
0.740 0.770 18.80 19.55  
MILLIMETERS  
F
C
L
MIN MAX  
A
B
C
D
F
0.250 0.270  
0.145 0.175  
0.015 0.021  
6.35  
3.69  
0.39  
1.02  
6.85  
4.44  
0.53  
1.77  
SEATING  
PLANE  
−T−  
0.040  
0.70  
G
H
J
K
L
0.100 BSC  
2.54 BSC  
1.27 BSC  
K
M
H
0.050 BSC  
0.008 0.015  
0.110 0.130  
0.295 0.305  
J
0.21  
0.38  
3.30  
7.74  
10  
G
2.80  
7.50  
0
D 16 PL  
M
M
0.25 (0.010)  
T A  
M
S
0
10  
_
_
_
_
0.020 0.040  
0.51  
1.01  
SOIC−16  
CASE 751B−05  
ISSUE J  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
−A−  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 (0.005) TOTAL  
IN EXCESS OF THE D DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
16  
9
8
−B−  
P 8 PL  
M
S
B
0.25 (0.010)  
1
MILLIMETERS  
INCHES  
MIN  
G
DIM MIN  
MAX  
10.00  
4.00  
1.75  
0.49  
1.25  
MAX  
0.393  
0.157  
0.068  
0.019  
0.049  
A
B
C
D
F
9.80  
3.80  
1.35  
0.35  
0.40  
0.386  
0.150  
0.054  
0.014  
0.016  
F
R X 45  
K
_
G
J
1.27 BSC  
0.050 BSC  
C
0.19  
0.10  
0
5.80  
0.25  
0.25  
0.25  
7
6.20  
0.50  
0.008  
0.004  
0
0.229  
0.010  
0.009  
0.009  
7
0.244  
0.019  
−T−  
SEATING  
PLANE  
K
M
P
R
J
_
_
_
_
M
D
16 PL  
M
S
S
0.25 (0.010)  
T
B
A
ECLinPS is a trademark of Semiconductor Components Industries, LLC (SCILLC).  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer  
purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 800−282−9855 Toll Free  
USA/Canada  
ON Semiconductor Website: http://onsemi.com  
Order Literature: http://www.onsemi.com/litorder  
Literature Distribution Center for ON Semiconductor  
P.O. Box 61312, Phoenix, Arizona 85082−1312 USA  
Phone: 480−829−7710 or 800−344−3860 Toll Free USA/Canada  
Fax: 480−829−7709 or 800−344−3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
Japan: ON Semiconductor, Japan Customer Focus Center  
2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051  
Phone: 81−3−5773−3850  
For additional information, please contact your  
local Sales Representative.  
MC14532B/D  

相关型号:

MC14532BCPS

IC,ENCODER,CMOS,DIP,16PIN,PLASTIC
MOTOROLA

MC14532BD

8-Bit Priority Encoder
MOTOROLA

MC14532BD

8-Bit Priority Encoder
ONSEMI

MC14532BDEBS

暂无描述
MOTOROLA

MC14532BDG

MC14532B_06
ONSEMI

MC14532BDR2

8-Bit Priority Encoder
ONSEMI

MC14532BDR2

Encoder, 4000/14000/40000 Series, 8-Bit, CMOS, PDSO16, SOIC-16
MOTOROLA

MC14532BDR2G

MC14532B_06
ONSEMI

MC14532BF

8-Bit Priority Encoder
ONSEMI

MC14532BFEL

8-Bit Priority Encoder
ONSEMI

MC14532BFR1

8-Bit Priority Encoder
ONSEMI

MC14532B_06

MC14532B_06
ONSEMI