LMV301SN3T1G [ONSEMI]

Rail-to-Rail Operational Amplifier;
LMV301SN3T1G
型号: LMV301SN3T1G
厂家: ONSEMI    ONSEMI
描述:

Rail-to-Rail Operational Amplifier

放大器 光电二极管
文件: 总13页 (文件大小:139K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LMV301  
Low Bias Current,  
1.8V to 5V Single-Supply,  
Rail-to-Rail  
Operational Amplifier  
www.onsemi.com  
MARKING  
The LMV301 CMOS operational amplifier can operate over a  
power supply range from 1.8 V to 5 V and has a quiescent current of  
less than 200 mA, maximum, making it ideal for portable  
battery−operated applications such as notebook computers, PDA’s and  
medical equipment. Low input bias current and high input impedance  
make it highly tolerant of high source−impedance signal−sources such  
as photodiodes and pH probes. In addition, the LMV301’s excellent  
rail−to−rail performance will enhance the signal−to−noise  
performance of any application together with an output stage capable  
of easily driving a 600 W resistive load and up to 1000 pF capacitive  
load.  
DIAGRAMS  
SC70−5  
SQ SUFFIX  
CASE 419A  
STYLES 2, 3  
AAD MG  
G
5
Features  
TSOP−5  
CASE 483  
ADYAYWG  
5
G
Single Supply Operation (or $V /2)  
S
1
1
V from 1.8 V to 5 V  
S
Low Quiescent Current: 185 mA, Max with V = 1.8 V  
S
M
A
Y
W
G
= Date Code  
= Assembly Location  
= Year  
= Work Week  
= Pb−Free Package  
Rail−to−Rail Output Swing  
Low Bias Current: 35 pA, max  
No Output Phase−Reversal when the Inputs are Overdriven  
These are Pb−Free Devices  
(Note: Microdot may be in either location)  
*Date Code orientation and/or position may  
vary depending upon manufacturing location.  
Typical Applications  
Portable Battery−Powered Instruments  
Notebook Computers and PDAs  
Cell Phones and Mobile Communication  
Digital Cameras  
Photodiode Amplifiers  
Transducer Amplifiers  
Medical Instrumentation  
Consumer Products  
PIN CONNECTION  
+IN  
V
V
CC  
1
2
3
5
+
EE  
4
−IN  
OUTPUT  
STYLE 3 PINOUT  
ORDERING INFORMATION  
See detailed ordering and shipping information in the  
dimensions section on page 11 of this data sheet.  
© Semiconductor Components Industries, LLC, 2011  
1
Publication Order Number:  
August, 2016 − Rev. 3  
LMV301/D  
LMV301  
MAXIMUM RATINGS  
Symbol  
Rating  
Value  
5.5  
Unit  
V
V
S
Power Supply (Operating Voltage Range V = 1.8 V to 5.0 V)  
S
V
IDR  
V
ICR  
Input Differential Voltage  
Supply Voltage  
−0.5 to (V+) + 0.5  
10  
V
Input Common Mode Voltage Range  
Maximum Input Current  
V
mA  
t
Output Short Circuit (Note 1)  
Continuous  
150  
So  
T
J
Maximum Junction Temperature (Operating Range −40°C to 85°C)  
Thermal Resistance (5−Pin SC70−5)  
Storage Temperature  
°C  
°C/W  
°C  
J
280  
A
T
−65 to 150  
260  
stg  
Mounting Temperature (Infrared or Convection (30 sec))  
V
ESD  
ESD Tolerance  
Machine Model  
Human Body Model  
V
100  
1500  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
1. Continuous short−circuit to ground operation at elevated ambient temperature can result in exceeding the maximum allowed junction  
temperature of 150°C. Output currents in excess of 45 mA over long term may adversely affect reliability. Also, shorting output to V+ will  
adversely affect reliability; likewise shorting output to V− will adversely affect reliability.  
www.onsemi.com  
2
 
LMV301  
1.8 V DC ELECTRICAL CHARACTERISTICS (Unless otherwise specified, all limits are guaranteed for T = 25°C, V = 1.8 V,  
A
CC  
R = 1 MW, V = 0 V, V = V /2)  
L
EE  
O
CC  
Parameter  
Symbol  
Condition  
Min  
Typ  
1.7  
5
Max  
Unit  
mV  
Input Offset Voltage  
V
IO  
T = −40°C to +85°C  
9
A
Input Offset Voltage Average Drift  
Input Bias Current (Note 2)  
T V  
T = −40°C to +85°C  
mV/°C  
pA  
C
IO  
A
I
B
3
35  
50  
T = −40°C to +85°C  
A
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
CMRR  
PSRR  
0 V v V  
v 0.9 V  
50  
62  
63  
dB  
dB  
CM  
1.8 V v V v 5 V,  
100  
CC  
V
O
= 1 V, V  
= 1 V  
CM  
Input Common−Mode Voltage  
Range  
V
CM  
For CMRR 50 dB  
0 to  
0.9  
−0.2  
to 0.9  
V
Large Signal Voltage Gain (Note 2)  
A
V
83  
80  
83  
80  
100  
100  
dB  
R = 600W  
L
T = −40°C to +85°C  
A
R = 2 kW  
L
T = −40°C to +85°C  
A
Output Swing  
V
OH  
1.65  
1.63  
V
R = 600 W to 0.9 V  
T = −40°C to +85°C  
A
L
V
R = 600 W to 0.9 V  
T = −40°C to +85°C  
A
75  
1.76  
25  
100  
120  
mV  
V
OL  
L
V
OH  
R = 2 kW to 0.9 V  
1.5  
1.4  
L
T = −40°C to +85°C  
A
V
OL  
R = 2 kW to 0.9 V  
35  
40  
mV  
mA  
mA  
L
T = −40°C to +85°C  
A
Output Short Circuit Current  
(Note 2)  
I
Sourcing = V = 0 V  
10  
20  
60  
160  
O
O
Sinking = V = 1.8 V  
O
Supply Current  
I
T = −40°C to +85°C  
A
185  
CC  
1.8 V AC ELECTRICAL CHARACTERISTICS (Unless otherwise specified, all limits are guaranteed for T = 25°C, V = 1.8 V,  
A
CC  
R = 1 MW, V = 0 V, V = V /2)  
L
EE  
O
CC  
Parameter  
Symbol  
Condition  
Min  
Typ  
1
Max  
Unit  
V/ms  
MHz  
°
Slew Rate  
S
R
Gain Bandwidth Product  
Phase Margin  
GBWP  
C = 200 pF  
L
1
Q
m
60  
10  
50  
0.01  
Gain Margin  
G
m
e
n
dB  
Input−Referred Voltage Noise  
Total Harmonic Distortion  
f = 50 kHz  
nV/Hz  
%
THD  
A = +1, V − 1 V ,  
V PP  
R = 10 kW, f = 1 kHz  
L
2. Guaranteed by design and/or characterization.  
www.onsemi.com  
3
LMV301  
2.7 V DC ELECTRICAL CHARACTERISTICS (Unless otherwise specified, all limits are guaranteed for T = 25°C, V = 2.7 V,  
A
CC  
R = 1 MW, V = 0 V, V = V /2)  
L
EE  
O
CC  
Parameter  
Symbol  
Condition  
Min  
Typ  
1.7  
5
Max  
Unit  
mV  
Input Offset Voltage  
V
IO  
T = −40°C to +85°C  
9
A
Input Offset Voltage Average Drift  
Input Bias Current (Note 2)  
T V  
T = −40°C to +85°C  
mV/°C  
pA  
C
IO  
A
I
B
3
35  
50  
T = −40°C to +85°C  
A
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
CMRR  
PSRR  
0 V v V  
v 1.35 V  
50  
62  
63  
dB  
dB  
CM  
1.8 V v V v 5 V,  
100  
CC  
V
O
= 1 V, V  
= 1 V  
CM  
Input Common−Mode Voltage  
Range  
V
CM  
For CMRR 50 dB  
0 to  
1.35  
−0.2  
to1.35  
V
Large Signal Voltage Gain (Note 2)  
A
V
83  
80  
83  
80  
100  
100  
dB  
R = 600 W  
L
T = −40°C to +85°C  
A
R = 2 kW  
L
T = −40°C to +85°C  
A
Output Swing  
V
2.55  
2.53  
2.62  
78  
V
R = 600 W to 1.35 V  
T = −40°C to +85°C  
A
OH  
L
V
R = 600 W to 1.35 V  
100  
280  
mV  
V
OL  
L
T = −40°C to +85°C  
A
V
OH  
R = 2 kW to 1.35 V  
2.65  
2.64  
2.675  
75  
L
T = −40°C to +85°C  
A
V
R = 2 kW to 1.35 V  
100  
110  
mV  
mA  
mA  
OL  
L
T = −40°C to +85°C  
A
Output Short Circuit Current  
(Note 2)  
I
Sourcing = V = 0 V  
10  
20  
60  
160  
O
O
Sinking = V = 2.7 V  
O
Supply Current  
I
T = −40°C to +85°C  
A
185  
CC  
2.7 V AC ELECTRICAL CHARACTERISTICS (Unless otherwise specified, all limits are guaranteed for T = 25°C, V = 2.7 V,  
A
CC  
R = 1 MW, V = 0 V, V = V /2)  
L
EE  
O
CC  
Parameter  
Symbol  
Condition  
Min  
Typ  
1
Max  
Unit  
V/ms  
MHz  
°
Slew Rate  
S
R
Gain Bandwidth Product  
Phase Margin  
GBWP  
C = 200 pF  
L
1
Q
m
60  
10  
50  
0.01  
Gain Margin  
G
m
e
n
dB  
Input−Referred Voltage Noise  
Total Harmonic Distortion  
f = 50 kHz  
nV/Hz  
%
THD  
A = +1, V − 1 V ,  
V PP  
R = 10 kW, f = 1 kHz  
L
2. Guaranteed by design and/or characterization.  
www.onsemi.com  
4
LMV301  
5.0 V DC ELECTRICAL CHARACTERISTICS (Unless otherwise specified, all limits are guaranteed for T = 25°C, V = 5.0 V,  
A
CC  
R = 1 MW, V = 0 V, V = V /2)  
L
EE  
O
CC  
Parameter  
Symbol  
Condition  
Min  
Typ  
1.7  
5
Max  
Unit  
mV  
Input Offset Voltage  
V
IO  
T = −40°C to +85°C  
9
A
Input Offset Voltage Average Drift  
Input Bias Current (Note 2)  
T V  
T = −40°C to +85°C  
mV/°C  
pA  
C
IO  
A
I
B
3
35  
50  
T = −40°C to +85°C  
A
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
CMRR  
PSRR  
0 V v V  
v 4 V  
50  
62  
63  
dB  
dB  
CM  
1.8 V v V v 5 V,  
100  
CC  
V
O
= 1 V, V  
= 1 V  
CM  
Input Common−Mode Voltage  
Range  
V
CM  
For CMRR 50 dB  
0 to 4  
−0.2  
to 4.2  
V
Large Signal Voltage Gain (Note 2)  
A
V
83  
80  
83  
80  
100  
100  
dB  
R = 600 W  
L
T = −40°C to +85°C  
A
R = 2 kW  
L
T = −40°C to +85°C  
A
Output Swing  
V
OH  
4.850  
4.840  
V
R = 600 W to 2.5 V  
T = −40°C to +85°C  
A
L
V
R = 600 W to 2.5 V  
T = −40°C to +85°C  
A
150  
160  
mV  
V
OL  
L
V
OH  
R = 2 kW to 2.5 V  
4.935  
4.900  
L
T = −40°C to +85°C  
A
V
R = 2 kW to 2.5 V  
T = −40°C to +85°C  
A
65  
75  
mV  
mA  
µA  
OL  
L
Output Short Circuit Current  
(Note 2)  
I
Sourcing = V = 0 V  
10  
10  
60  
160  
O
O
Sinking = V = 5 V  
O
Supply Current  
I
T = −40°C to +85°C  
A
200  
CC  
5.0 V AC ELECTRICAL CHARACTERISTICS (Unless otherwise specified, all limits are guaranteed for T = 25°C, V = 5.0 V,  
A
CC  
R = 1 MW, V = 0 V, V = V /2)  
L
EE  
O
CC  
Parameter  
Symbol  
Condition  
Min  
Typ  
1
Max  
Unit  
V/ms  
MHz  
°
Slew Rate  
S
R
Gain Bandwidth Product  
Phase Margin  
GBWP  
C = 200 pF  
L
1
Q
m
60  
10  
50  
0.01  
Gain Margin  
G
m
e
n
dB  
Input−Referred Voltage Noise  
Total Harmonic Distortion  
f = 50 kHz  
nV/Hz  
%
THD  
A = +1, V − 1 V ,  
V PP  
R = 10 kW, f = 1 kHz  
L
2. Guaranteed by design and/or characterization.  
www.onsemi.com  
5
 
LMV301  
TYPICAL CHARACTERISTICS  
(T = 25°C and V = 5 V unless otherwise specified)  
A
S
50  
40  
30  
20  
10  
100  
90  
80  
70  
60  
Over −40°C to +85°C  
Same Gain $1.8 dB (Typ)  
0
50  
40  
−10  
10k  
100k  
1M  
10M  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 2. Open Loop Phase Margin  
Figure 1. Open Loop Frequency Response  
(RL = 2 kW, TA = 255C)  
(RL = 2 kW, TA = 255C, VS = 5 V)  
100  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
S
= 2.7 V  
f = 10 kHz  
10  
100  
1k  
10k  
100k  
−0.5  
0
0.5  
1
1.5  
2
2.5  
3
FREQUENCY (Hz)  
INPUT COMMON MODE VOLTAGE (V)  
Figure 3. CMRR vs. Frequency  
Figure 4. CMRR vs. Input Common Mode  
Voltage  
(RL = 5 kW, VS = 5 V)  
80  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
70  
60  
50  
40  
30  
V
= 5 V  
S
f = 10 kHz  
1k  
10k  
100k  
1M  
10M  
−1  
0
1
2
3
4
5
INPUT COMMON MODE VOLTAGE (V)  
FREQUENCY (Hz)  
Figure 6. PSRR vs. Frequency  
(RL = 5 kW, VS = 2.7 V, +PSRR)  
Figure 5. CMRR vs. Input Common Mode  
Voltage  
www.onsemi.com  
6
LMV301  
TYPICAL CHARACTERISTICS  
(T = 25°C and V = 5 V unless otherwise specified)  
A
S
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
Figure 7. PSRR vs. Frequency  
(RL = 5 kW, VS = 2.7 V, PSRR)  
Figure 8. PSRR vs. Frequency  
(RL = 5 kW, VS = 5 V, +PSRR)  
5
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
4.5  
4
3.5  
3
2.5  
2
1.5  
1
V
S
= 2.7 V  
0.5  
0
0
0.5  
1
1.5  
(V)  
2
2.5  
3
1k  
10k  
100k  
1M  
10M  
V
CM  
FREQUENCY (Hz)  
Figure 10. VOS vs CMR  
Figure 9. PSRR vs. Frequency  
(RL = 5 kW, VS = 5 V, PSRR)  
5
4.5  
4
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
3.5  
3
2.5  
2
1.5  
1
V
= 5.0 V  
S
0.5  
0
0
0.5  
1
1.5  
2
2.5  
(V)  
3
3.5  
4
4.5  
5
1.8  
2.2  
2.6  
3
3.4  
3.8  
4.2  
4.6  
5
V
SUPPLY VOLTAGE (V)  
CM  
Figure 11. VOS vs CMR  
Figure 12. Supply Current vs. Supply Voltage  
www.onsemi.com  
7
LMV301  
TYPICAL CHARACTERISTICS  
(T = 25°C and V = 5 V unless otherwise specified)  
A
S
1
0.1  
0
−0.01  
−0.02  
−0.03  
−0.04  
−0.05  
−0.06  
−0.07  
−0.08  
−0.09  
−0.1  
R = 10 kW  
L
V
out  
= 1 V  
PP  
Positive Swing  
Av = +1  
0.01  
0.001  
10  
100  
1k  
10k  
100k  
2.5  
3
3.5  
4
4.5  
5
(Hz)  
SUPPLY VOLTAGE (V)  
Figure 13. THD+N vs Frequency  
Figure 14. Output Voltage Swing vs Supply  
Voltage (RL = 10k)  
0.1  
0.09  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0
0
−20  
−40  
−60  
−80  
−100  
−120  
−140  
−160  
Negative Swing  
2.5  
3
3.5  
4
4.5  
5
0
0.5  
1
1.5  
2
2.5  
SUPPLY VOLTAGE (V)  
V
OUT  
REFERENCED TO V− (V)  
Figure 15. Output Voltage Swing vs Supply  
Voltage (RL = 10k)  
Figure 16. Sink Current vs. Output Voltage  
VS = 2.7 V  
0
−20  
120  
100  
80  
60  
40  
20  
0
−40  
−60  
−80  
−100  
−120  
0
1
2
3
4
5
0
0.5  
1.0  
1.5  
2.0  
2.5  
V
OUT  
REFERENCED TO V− (V)  
V
OUT  
REFERENCED TO V+ (V)  
Figure 17. Sink Current vs. Output Voltage  
VS = 5.0 V  
Figure 18. Source Current vs. Output Voltage  
VS = 2.7 V  
www.onsemi.com  
8
LMV301  
TYPICAL CHARACTERISTICS  
(T = 25°C and V = 5 V unless otherwise specified)  
A
S
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
R
= 2 kW  
L
AV = 1  
50 mV/div  
2 ms/div  
0
1
2
3
4
5
V
OUT  
REFERENCED TO V+ (V)  
Figure 19. Source Current vs. Output Voltage  
VS = 5.0 V  
Figure 20. Settling Time vs. Capacitive Load  
R
= 1 MW  
50 mV/div  
L
AV = 1  
2 ms/div  
50 mV/div  
2 ms/div  
Non−Inverting (G = +1)  
Input  
Output  
Figure 21. Settling Time vs. Capacitive Load  
Figure 22. Step Response − Small Signal  
50 mV/div  
2 ms/div  
1 V/div  
2 ms/div  
Non−Inverting (G = +1)  
Inverting (G = −1)  
Input  
Input  
Output  
Output  
Figure 24. Step Response − Large Signal  
Figure 23. Step Response − Small Signal  
www.onsemi.com  
9
LMV301  
TYPICAL CHARACTERISTICS  
(T = 25°C and V = 5 V unless otherwise specified)  
A
S
1 V/div  
2 ms/div  
Inverting (G = −1)  
Input  
Output  
Figure 25. Step Response − Large Signal  
www.onsemi.com  
10  
LMV301  
APPLICATIONS  
50 k  
R1  
5.0 k  
V
CC  
10 k  
V
CC  
V
CC  
R2  
V
ref  
V
O
LMV301  
LMV301  
V
O
+
1
f
+
MC1403  
+
O
1
2
2pRC  
V
+
V
2.5 V  
ref  
CC  
For: f = 1.0 kHz  
o
R = 16 kW  
C = 0.01 mF  
R
R1  
R2  
C
R
V
+ 2.5 V(1 )  
)
C
O
Figure 26. Voltage Reference  
Figure 27. Wien Bridge Oscillator  
V
CC  
R3  
C
C
R1  
C
V
in  
O
R2  
LMV301  
V
O
Hysteresis  
+
CO = 10 C  
R2  
V
OH  
R1  
V
ref  
V
O
+
V
ref  
LMV301  
Given: f = center frequency  
o
V
O
V
in  
V
OL  
A(f ) = gain at center frequency  
o
V
inL  
V
inH  
Choose value f , C  
V
o
ref  
Q
R1  
Then : R3 +  
V L +  
(V * V  
) V  
) V  
in  
OL  
ref)  
ref)  
ref  
ref  
pf  
C
R1 ) R2  
O
R1  
R3  
2 A(f )  
V H +  
(V  
(V  
* V  
* V  
R1 +  
R2 +  
in  
OH  
R1 ) R2  
O
R1  
R1 R3  
H +  
)
OH  
OL  
R1 ) R2  
2
4Q R1 * R3  
Figure 28. Comparator with Hysteresis  
For less than 10% error from operational amplifier,  
((Q f )/BW) < 0.1 where f and BW are expressed in Hz.  
O
O
o
If source impedance varies, filter may be preceded with  
voltage follower buffer to stabilize filter parameters.  
Figure 29. Multiple Feedback Bandpass Filter  
ORDERING INFORMATION  
Device  
Pinout Style  
Marking  
Package  
Shipping  
LMV301SQ3T2G  
Style 3  
AAD  
SC70−5  
(Pb−Free)  
3000 / Tape & Reel  
LMV301SN3T1G  
Style 3  
ADY  
TSOP−5  
(Pb−Free)  
3000 / Tape & Reel  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
www.onsemi.com  
11  
LMV301  
PACKAGE DIMENSIONS  
SC−88A (SC−70−5/SOT−353)  
CASE 419A−02  
ISSUE L  
A
NOTES:  
1. DIMENSIONING AND TOLERANCING  
PER ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
3. 419A−01 OBSOLETE. NEW STANDARD  
419A−02.  
G
4. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD FLASH, PROTRUSIONS, OR GATE  
BURRS.  
5
4
3
−B−  
S
INCHES  
DIM MIN MAX  
MILLIMETERS  
MIN  
1.80  
1.15  
0.80  
0.10  
MAX  
2.20  
1.35  
1.10  
0.30  
1
2
A
B
C
D
G
H
J
0.071  
0.045  
0.031  
0.004  
0.087  
0.053  
0.043  
0.012  
0.026 BSC  
0.65 BSC  
M
M
B
D 5 PL  
0.2 (0.008)  
---  
0.004  
0.004  
0.004  
0.010  
0.012  
---  
0.10  
0.10  
0.10  
0.25  
0.30  
K
N
S
N
0.008 REF  
0.20 REF  
0.079  
0.087  
2.00  
2.20  
STYLE 2:  
STYLE 3:  
PIN 1. ANODE 1  
2. N/C  
J
PIN 1. ANODE  
2. EMITTER  
3. BASE  
C
3. ANODE 2  
4. CATHODE 2  
5. CATHODE 1  
4. COLLECTOR  
5. CATHODE  
K
H
SOLDERING FOOTPRINT*  
0.50  
0.0197  
0.65  
0.025  
0.65  
0.025  
0.40  
0.0157  
1.9  
0.0748  
mm  
inches  
ǒ
Ǔ
SCALE 20:1  
*For additional information on our Pb−Free strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
www.onsemi.com  
12  
LMV301  
PACKAGE DIMENSIONS  
TSOP−5  
CASE 483  
ISSUE M  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ASME  
Y14.5M, 1994.  
NOTE 5  
5X  
D
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH  
THICKNESS. MINIMUM LEAD THICKNESS IS THE  
MINIMUM THICKNESS OF BASE MATERIAL.  
4. DIMENSIONS A AND B DO NOT INCLUDE MOLD  
FLASH, PROTRUSIONS, OR GATE BURRS. MOLD  
FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT  
EXCEED 0.15 PER SIDE. DIMENSION A.  
5. OPTIONAL CONSTRUCTION: AN ADDITIONAL  
TRIMMED LEAD IS ALLOWED IN THIS LOCATION.  
TRIMMED LEAD NOT TO EXTEND MORE THAN 0.2  
FROM BODY.  
0.20 C A B  
2X  
0.10  
T
M
5
4
3
2X  
0.20  
T
B
S
1
2
K
B
A
DETAIL Z  
G
A
MILLIMETERS  
TOP VIEW  
DIM  
A
B
C
D
G
H
J
K
M
S
MIN  
2.85  
1.35  
0.90  
0.25  
MAX  
3.15  
1.65  
1.10  
0.50  
DETAIL Z  
J
0.95 BSC  
C
0.01  
0.10  
0.20  
0
0.10  
0.26  
0.60  
0.05  
H
SEATING  
PLANE  
END VIEW  
C
10  
3.00  
_
_
SIDE VIEW  
2.50  
SOLDERING FOOTPRINT*  
1.9  
0.074  
0.95  
0.037  
2.4  
0.094  
1.0  
0.039  
0.7  
0.028  
mm  
inches  
ǒ
Ǔ
SCALE 10:1  
*For additional information on our Pb−Free strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent  
coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein.  
ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards,  
regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer  
application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not  
designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification  
in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized  
application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and  
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such  
claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This  
literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 800−282−9855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81−3−5817−1050  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA  
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada  
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
LMV301/D  

相关型号:

LMV301SQ3T2G

Low Bias Current, 1.8V to 5V Single-Supply, Rail-to-Rail Operational Amplifier
ONSEMI

LMV301_16

Rail-to-Rail Operational Amplifier
ONSEMI

LMV321

General Purpose, Low Voltage, Rail-to-Rail Output Operational Amplifiers
NSC

LMV321

LOW-VOLTAGE RAIL-TO-RAIL OUTPUT OPERATIONAL AMPLIFIERS
TI

LMV321

General Purpose, Low Voltage, Rail-to-Rail Output Amplifiers
FAIRCHILD

LMV321

Low cost low power input/output rail-to-rail operational amplifiers
STMICROELECTR

LMV321

Single, Dual, Quad Low-Voltage, Rail-to-Rail Operational Amplifiers
ONSEMI

LMV321

GENERAL PURPOSE, LOW VOLTAGE, RAIL-TO-RAIL OUTPUT OPERATIONAL AMPLIFIERS
DIODES

LMV321

General Purpose, Rail-to-Rail Output Amplifi er Rail-to-Rail Amplifi ers
CADEKA

LMV321

1MHZ CMOS Rail-to-Rail IO Opamp with RF Filter
HMSEMI

LMV321-MR

1MHZ CMOS Rail-to-Rail IO Opamp with RF Filter
HMSEMI

LMV321-N

单路、5.5V、1MHz、RRO 运算放大器
TI