LMV321 [CADEKA]

General Purpose, Rail-to-Rail Output Amplifi er Rail-to-Rail Amplifi ers; 通用,轨到轨输出功率放大器呃轨到轨器功率放大器
LMV321
型号: LMV321
厂家: CADEKA MICROCIRCUITS LLC.    CADEKA MICROCIRCUITS LLC.
描述:

General Purpose, Rail-to-Rail Output Amplifi er Rail-to-Rail Amplifi ers
通用,轨到轨输出功率放大器呃轨到轨器功率放大器

放大器 功率放大器
文件: 总15页 (文件大小:1822K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Data Sheet  
LMV321  
General Purpose, Rail-to-Rail Output Amplifier  
Rail-to-Rail Amplifiers  
F E A T U R E S  
General Description  
130μA supply current  
The LMV321 is a single channel, low cost, voltage feedback amplifier. The  
1MHz gain bandwidth  
LMV321 consumes only 130μA of supply current and is designed to operate  
from a supply range of 2.7V to 5.5V (±1.35 to ±2.75). The input voltage  
range extends 200mV below the negative rail and 800mV below the positive  
rail.  
Input voltage range with 5V supply:  
-0.2V to 4.2V  
Output voltage range with 5V supply:  
0.065V to 4.99V  
>
1V/μs slew rate  
The LMV321 is fabricated on a CMOS process. It offers 1MHz gain bandwidth  
product and >1V/μs slew rate. The combination of low power, low supply  
voltage operation, and rail-to-rail performance make the LMV321 well suited  
for battery-powered systems. The LMV321 is packaged in the space saving  
TSOT-5 package. TSOT-5 package is pin compatible with the SOT23-5  
package.  
No crossover distortion  
Fully specified at 2.7V and 5V supplies  
LMV321: Pb-free TSOT-5  
A P P L I C A T I O N S  
Portable/battery-powered applications  
Mobile communications, cell phones,  
pagers  
ADC buffer  
Typical Performance Examples  
Active filters  
Slew Rate vs. Supply Voltage  
Vout vs. Vcm  
Portable test instruments  
ꢁꢂꢆ  
ꢁꢂꢅ  
ꢁꢂꢃ  
ꢁꢂꢄ  
ꢃꢁꢄ  
ꢃꢁꢃ  
ꢃꢁꢂ  
ꢀꢁꢆ  
ꢀꢁꢅ  
ꢀꢁꢄ  
ꢀꢁꢃ  
ꢀꢁꢂ  
ꢂꢁꢆ  
ꢂꢁꢅ  
ꢂꢁꢄ  
ꢖꢌꢗꢘꢀꢄꢂꢙꢍ  
Signal conditioning  
Medical Equipment  
ꢙꢍꢈꢈꢔꢕꢖꢋꢗꢘꢖꢉ  
ꢌꢔꢒꢔꢕꢖꢋꢗꢘꢖꢉ  
Portable medical instrumentation  
ꢀꢁꢂꢄ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢅ  
ꢀꢁꢂꢆ  
ꢀꢇ  
 
!ꢂ  
" #ꢋꢂ$%i  
1J Yꢁꢂꢀ]]  
ꢀꢃ  
ꢀꢚ  
ꢀꢄ  
ꢀꢇ  
ꢀꢁꢄ  
ꢃꢁꢄ  
ꢚꢁꢄ  
ꢛꢜ ꢓꢍꢔ  
ꢇꢛꢜꢜꢈꢝꢋꢐꢞꢈꢎꢍꢖꢉꢋꢏꢐꢓ  
Ordering Information  
Part Number  
Package  
TSOT-5  
Pb-Free  
Yes  
RoHS Compliant  
Yes  
Operating Temperature Range Packaging Method  
-40°C to +85°C Reel  
LMV321IST5X*  
Moisture sensitivity level for all parts is MSL-1. *Advance Information, contact CADEKA for availability.  
©2009-2012 CADEKA Microcircuits, LLC  
www.cadeka.com  
Data Sheet  
LMV321 Pin Assignments1  
LMV321 Pin Configuration  
Pin No.  
Pin Name  
+IN  
Description  
1
2
3
4
5
Positive input  
Negative supply  
Negative input  
Output  
+IN  
1
2
3
5
4
+V  
S
-V  
S
+
-
-IN  
-V  
S
OUT  
OUT  
+V  
S
Positive supply  
-IN  
Notes:  
1.Pin compatible to SOT23-5.  
©2009-2012 CADEKA Microcircuits, LLC  
www.cadeka.com  
2
Data Sheet  
Absolute Maximum Ratings  
The safety of the device is not guaranteed when it is operated above the “Absolute Maximum Ratings. The device  
should not be operated at these “absolute” limits. Adhere to the “Recommended Operating Conditions” for proper de-  
vice function. The information contained in the Electrical Characteristics tables and Typical Performance plots reflect the  
operating conditions noted on the tables and plots.  
Parameter  
Min  
Max  
7
Unit  
Supply Voltage  
V
V
Input Voltage Range  
Continuous Output Current  
-V -0.4V  
S
+V  
S
Output is protected against momentary short circuit  
Reliability Information  
Parameter  
Min  
-65  
Typ  
221  
Max  
Unit  
Junction Temperature  
Storage Temperature Range  
Lead Temperature (Soldering, 10s)  
Package Thermal Resistance  
5-Lead TSOT  
150  
150  
260  
°C  
°C  
°C  
°C/W  
Notes:  
Package thermal resistance (θ ), JDEC standard, multi-layer test boards, still air.  
JA  
ESD Protection  
Product  
TSOT-5  
Human Body Model (HBM)  
2kV  
2kV  
Charged Device Model (CDM)  
Recommended Operating Conditions  
Parameter  
Min  
Typ  
Max  
Unit  
Operating Temperature Range  
Supply Voltage Range  
-40  
2.7  
+85  
5.5  
°C  
V
©2009-2012 CADEKA Microcircuits, LLC  
www.cadeka.com  
3
Data Sheet  
Electrical Characteristics at +2.7V  
TA = 25°C, VS = +2.7V, Rf = Rg =10 KΩ, RL = 10kΩ to VS/2, G = 2; unless otherwise noted.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
DC Performance  
VIO  
Input Offset Voltage  
1.7  
5
7
mV  
dVIO  
Ib  
Average Drift  
µV/°C  
nA  
nA  
dB  
dB  
V
Input Bias Current  
<1  
250  
50  
IOS  
Input Offset Current  
<1  
CMRR  
PSRR  
CMIR  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
Common Mode Input Range  
0V ≤ VCM ≤ 1.7V  
2.7V ≤ V+ ≤ 5V, VO=1V, VCM=1V  
50  
50  
0
63  
60  
For VCM ≤ 50 dB  
-0.2  
1.9  
V+ -10  
60  
1.7  
V
VOUT  
Output Voltage Swing  
Supply Current  
RL = 10kΩ to VS / 2  
V+ -100  
mV  
mV  
μA  
180  
170  
IS  
110  
AC Performance  
GBWP  
Φm  
Gain Bandwidth Product  
Phase Margin  
CL=200 pF  
f = 1kHz  
1
MHz  
°
60  
10  
46  
Gm  
Gain Margin  
dB  
en  
Input Voltage Noise  
nV/√Hz  
Notes:  
Min max specifications are guaranteed by testing, design, or characterization  
©2009-2012 CADEKA Microcircuits, LLC  
www.cadeka.com  
4
Data Sheet  
Electrical Characteristics at +5V  
TA = 25°C, VS = +5V, Rf = Rg =10kΩ, RL = 10kΩ to VS/2, G = 2; unless otherwise noted. Boldface limits apply at the  
temperature extremes.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
DC Performance  
VIO  
Input Offset Voltage  
1.7  
7
mV  
9
dVIO  
Ib  
Average Drift  
5
µV/°C  
Input Bias Current  
<1  
250  
nA  
nA  
500  
IOS  
Input Offset Current  
<1  
50  
150  
CMRR  
PSRR  
CMIR  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
Common Mode Input Range  
0V ≤ VCM ≤ 4V  
2.7V ≤ V+ ≤ 5V, VO=1V, VCM=1V  
50  
50  
0
65  
60  
dB  
dB  
V
For VCM ≤ 50 dB  
-0.2  
4.2  
4
V
AOL  
Open-Loop Gain  
RL = 2kΩ  
15  
100  
V/mV  
10  
V+ -40  
120  
V+ -300  
VOUT  
Output Voltage Swing  
RL = 2kΩ to VS / 2  
mV  
mV  
mV  
mV  
V+ -400  
300  
400  
V+ -10  
65  
V+ -100  
RL = 10kΩ to VS / 2  
V+ -200  
180  
280  
ISC  
Short Circuit Output Current  
Supply Current  
Sourcing VO=0V  
Sinking VO=5V  
5
60  
mA  
mA  
10  
160  
130  
IS  
250  
μA  
350  
AC Performance  
SR  
Slew Rate  
>1  
1
V/µs  
MHz  
°
GBWP  
Φm  
Gm  
Gain Bandwidth Product  
Phase Margin  
CL=200 pF  
f = 1kHz  
60  
10  
39  
Gain Margin  
dB  
en  
Input Voltage Noise  
nV/√Hz  
Notes:  
Min max specifications are guaranteed by testing, design, or characterization  
©2009-2012 CADEKA Microcircuits, LLC  
www.cadeka.com  
5
Data Sheet  
Typical Performance Characteristics at +5V - Continued  
TA = 25°C, VS = +5V, Rf = Rg =10kΩ, RL = 10kΩ to VS/2, G = 2; unless otherwise noted.  
VIO vs. CMR +2.7V  
VIO vs. CMR +5V  
ꢆꢃ  
ꢆꢃ  
ꢎꢏꢐꢑꢀꢆꢒꢓꢔꢇ  
ꢎꢏꢐꢑꢀꢂꢒꢓꢇ  
ꢀꢂ  
ꢀꢁ  
ꢀꢄ  
ꢀꢅ  
ꢀꢆꢃ  
ꢀꢂ  
ꢀꢁ  
ꢀꢄ  
ꢀꢅ  
ꢀꢆꢃ  
ꢀꢆꢒꢔ  
ꢀꢆ  
ꢀꢃꢒꢔ  
ꢃꢒꢔ  
ꢆꢒꢔ  
ꢀꢔ  
ꢀꢂ  
ꢀꢆ  
ꢕꢖ ꢊꢇꢌ  
ꢕꢖ ꢊꢇꢌ  
VOUT vs. VCM +2.7V  
V
vs. V +5V  
iiilll
OUT  
CM  
ꢁꢂꢆ  
ꢁꢂꢅ  
ꢁꢂꢃ  
ꢁꢂꢄ  
ꢁꢂꢆ  
ꢁꢂꢅ  
ꢁꢂꢃ  
ꢁꢂꢄ  
ꢖꢌꢗꢘꢀꢇꢂꢙꢚꢍ  
ꢖꢌꢗꢘꢀꢄꢂꢙꢍ  
ꢀꢁꢂꢄ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢅ  
ꢀꢁꢂꢆ  
ꢀꢇ  
ꢀꢁꢂꢄ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢅ  
ꢀꢁꢂꢆ  
ꢀꢇ  
ꢀꢃ  
ꢀꢚ  
ꢀꢄ  
ꢀꢇ  
ꢀꢄꢂꢚ  
ꢀꢇꢂꢚ  
ꢀꢁꢂꢚ  
ꢛꢜ ꢓꢍꢔ  
ꢁꢂꢚ  
ꢇꢂꢚ  
ꢛꢜ ꢓꢍꢔ  
Supply Current vs. Supply Voltage  
Input Current vs. Temperature  
ꢄꢁꢁ  
ꢃꢂꢁ  
ꢃꢀꢁ  
ꢃꢅꢁ  
ꢃꢄꢁ  
ꢃꢁꢁ  
ꢂꢁ  
ꢁꢂꢆ  
ꢁꢂꢅ  
ꢁꢂꢃ  
ꢁꢂꢄ  
ꢖꢍꢗꢘꢔ  
ꢙꢉ ꢖꢍꢔꢚꢄ  
ꢒꢋꢓꢋꢔꢂꢕꢖꢌ  
ꢒꢋꢓꢋꢔꢄꢕꢖꢌ  
ꢀꢁꢂꢄ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢅ  
ꢀꢁꢂꢆ  
ꢀꢇ  
ꢒꢋꢓꢋꢗꢅꢁꢖꢌ  
ꢀꢁ  
ꢅꢁ  
ꢄꢁ  
ꢀꢃꢁ  
ꢀꢄꢁ  
ꢄꢁ  
ꢃꢁ  
ꢅꢁ  
ꢆꢁ  
ꢆꢇꢈꢈꢉꢊꢋꢙꢚꢉꢐꢛꢜꢎꢋꢑꢙꢝ  
ꢜꢊꢐꢏꢝꢌꢋꢏꢐꢍꢑꢞꢎꢓ  
©2009-2012 CADEKA Microcircuits, LLC  
www.cadeka.com  
6
Data Sheet  
Typical Performance Characteristics at +5V - Continued  
TA = 25°C, VS = +5V, Rf = Rg =10kΩ, RL = 10kΩ to VS/2, G = 2; unless otherwise noted.  
Sinking Current vs. Output Voltage +2.7V  
Sinking Current vs. Output Voltage +5V  
ꢂꢀꢀ  
ꢂꢀ  
ꢂꢀꢀꢀ  
ꢂꢀꢀ  
ꢂꢀ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢀꢂ  
ꢀꢁꢀꢀꢂ  
ꢀꢁꢀꢂ  
ꢀꢁꢀꢀꢂ  
 ꢝꢏꢞ ꢁ!ꢐ  
 ꢝꢏꢞ ꢐ  
ꢀꢁꢀꢀꢂ  
ꢀꢁꢀꢂ  
ꢀꢁꢂ  
ꢂꢀ  
ꢀꢁꢀꢀꢂ  
ꢀꢁꢀꢂ  
ꢀꢁꢂ  
ꢂꢀ  
ꢋꢌꢍꢎꢌꢍꢏꢐꢑꢒꢍꢓꢔꢕꢏꢖꢕꢗꢕꢘꢕꢙꢚꢕꢏꢍꢑꢏꢛꢅꢜꢏꢇꢐꢊ  
ꢋꢌꢍꢎꢌꢍꢏꢐꢑꢒꢍꢓꢔꢕꢏꢖꢕꢗꢕꢘꢕꢙꢚꢕꢏꢍꢑꢏꢛꢅꢜꢏꢇꢐꢊ  
Sourcing Current vs. Output Voltage +2.7V  
Sourcing Current vs. Output Voltage +5V  
iiilll
ꢂꢀꢀ  
ꢂꢀ  
ꢂꢀꢀ  
ꢂꢀ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢀꢂ  
ꢀꢁꢀꢀꢂ  
ꢀꢁꢀꢂ  
ꢀꢁꢀꢀꢂ  
ꢝꢑꢜꢞꢒ  
 ꢝꢑꢜꢞꢁ ꢒ  
ꢀꢁꢀꢀꢂ  
ꢀꢁꢀꢂ  
ꢀꢁꢂ  
ꢂꢀ  
ꢀꢁꢀꢀꢂ  
ꢀꢁꢀꢂ  
ꢀꢁꢂ  
ꢂꢀ  
ꢅꢎꢏꢐꢎꢏꢑꢒꢓꢔꢏꢕꢖꢗꢑꢇꢗꢘꢗꢙꢗꢚꢛꢗꢑꢏꢓꢑꢒꢜꢑꢊꢒꢍ  
ꢅꢎꢏꢐꢎꢏꢑꢒꢓꢔꢏꢕꢖꢗꢑꢇꢗꢘꢗꢙꢗꢚꢛꢗꢑꢏꢓꢑꢒꢜꢑꢊꢒꢍ  
Short Circuit Current vs. Temperature (Sinking)  
Short Circuit Current vs. Temperature (Sourcing)  
ꢄꢁꢁ  
ꢃꢂꢁ  
ꢃꢀꢁ  
ꢃꢅꢁ  
ꢃꢄꢁ  
ꢃꢁꢁ  
ꢂꢁ  
ꢈꢁꢁ  
ꢆꢍꢑꢚꢍꢑꢛ  
ꢉꢋꢒꢌꢑꢐꢔꢜ  
ꢇꢁ  
ꢆꢁ  
ꢅꢁ  
ꢄꢁ  
ꢃꢁ  
ꢂꢁ  
ꢀꢁ  
ꢝꢁ  
ꢈꢁ  
 ꢗꢋꢘꢙꢖ  
ꢚꢎꢛꢃꢙ  
ꢀꢁ  
ꢅꢁ  
 ꢗꢋꢘꢄ%ꢞꢖ  
ꢄꢁ  
ꢚꢎꢛꢝ$ꢅꢙ  
ꢜꢅꢁ ꢜꢝꢁ ꢜꢄꢁ ꢜꢃꢁ  
ꢃꢁ ꢄꢁ ꢝꢁ ꢅꢁ ꢙꢁ ꢀꢁ ꢞꢁ ꢂꢁ  ꢁ  
!ꢓ"ꢐꢉ#ꢊꢏꢉꢐꢋꢒꢟꢌꢕ  
ꢞꢂꢁ ꢞꢀꢁ ꢞꢝꢁ ꢞꢈꢁ  
ꢈꢁ ꢝꢁ ꢀꢁ ꢂꢁ ꢃꢁ ꢄꢁ ꢅꢁ ꢆꢁ ꢇꢁ  
ꢓꢖ!ꢓꢌ"ꢍꢒꢌꢓꢎꢕꢟꢏꢘ  
©2009-2012 CADEKA Microcircuits, LLC  
www.cadeka.com  
7
Data Sheet  
Typical Performance Characteristics at +5V - Continued  
TA = 25°C, VS = +5V, Rf = Rg =10kΩ, RL = 10kΩ to VS/2, G = 2; unless otherwise noted.  
Output Voltage Swing vs. Supply Voltage  
Slew Rate vs. Supply Voltage  
!ꢀ  
 '  
 %  
 #  
 !  
 ꢀ  
'
ꢃꢁꢄ  
ꢃꢁꢃ  
ꢃꢁꢂ  
ꢀꢁꢆ  
ꢀꢁꢅ  
ꢀꢁꢄ  
ꢀꢁꢃ  
ꢀꢁꢂ  
ꢂꢁꢆ  
ꢂꢁꢅ  
ꢂꢁꢄ  
SG 2ꢁ ꢀxi  
ꢙꢍꢈꢈꢔꢕꢖꢋꢗꢘꢖꢉ  
ꢌꢔꢒꢔꢕꢖꢋꢗꢘꢖꢉ  
Q‚†v‡v‰rꢁTvt  
Irth‡v‰rꢁTvt  
%
 !ꢂ  
" #ꢋꢂ$%i  
1J Yꢁꢂꢀ]]  
#
!
!ꢅ$  
"
"ꢅ$  
#
#ꢅ$  
$
ꢀꢁꢄ  
ꢃꢁꢄ  
ꢚꢁꢄ  
Tˆƒƒy’ꢁW‚y‡htrꢁꢃWꢄ  
ꢇꢛꢜꢜꢈꢝꢋꢐꢞꢈꢎꢍꢖꢉꢋꢏꢐꢓ  
CMRR vs. Frequency  
PSRR vs. Frequency  
iiilll
ꢆꢁ  
ꢅꢁ  
ꢄꢁ  
ꢃꢁ  
ꢂꢁ  
ꢀꢁ  
ꢕꢁ  
ꢒꢁ  
ꢔꢁ  
ꢄꢂ  
ꢃꢀ  
ꢃꢂ  
ꢁꢀ  
ꢁꢂ  
ꢀꢀ  
ꢀꢂ  
ꢓꢀ  
ꢓꢂ  
ꢐꢑꢒꢓꢄꢏ  
ꢏꢐꢑꢒꢃꢍ  
ꢐꢑꢂꢏ  
ꢏꢐꢀꢍ  
!ꢚ ꢏꢈꢍ"ꢑ  
# ꢏꢈꢀꢝi  
" ꢐꢊꢂꢞi  
ꢁꢓꢁꢁꢔ  
ꢁꢓꢁꢔ  
ꢁꢓꢔ  
ꢔꢁ  
ꢔꢁꢁ  
ꢔꢁꢁꢁ  
ꢂꢒꢂꢔ  
ꢂꢒꢔ  
ꢔꢂ  
ꢖꢗꢘꢙꢚꢘꢛꢜꢝꢊꢋꢞ !ꢎ  
ꢕꢖꢗꢘꢙꢗꢚꢛꢜꢈꢉꢝꢞ ꢌ  
Input Voltage Noise vs. Frequency  
THD vs. Frequency  
ꢇꢈꢁ  
ꢇꢇꢁ  
ꢇꢁꢁ  
ꢆꢁ  
ꢅꢁ  
ꢄꢁ  
ꢃꢁ  
ꢂꢁ  
ꢀꢁ  
#ꢁ  
ꢈꢁ  
ꢇꢁ  
ꢂꢀ  
ꢀꢁꢂ  
 ꢌꢆꢍꢎꢁꢏꢊꢐꢆꢑꢍꢂꢐꢆꢊꢒꢓꢃꢌꢂꢊꢔꢔ  
 ꢌꢆꢍꢎꢁꢏꢊꢐꢆꢑꢊꢍꢂꢀꢐꢆꢊꢒꢓꢃꢌꢂꢊꢔꢔ  
  ꢎ!ꢈ"ꢄꢏ  
ꢀꢁꢀꢂ  
 ꢌꢆ ꢊꢐꢆꢑꢍꢂꢐꢆꢊꢒꢓꢃꢌꢂꢊꢔꢔ  
ꢀꢁꢀꢀꢂ  
ꢀꢁꢀꢀꢀꢂ  
  ꢎ!ꢂꢏ  
 ꢌꢆꢍ ꢊꢐꢆꢑꢍꢂꢀꢐꢆꢊꢒꢓꢃꢌꢎꢁ ꢊꢔꢔ  
ꢁ"ꢁꢇ  
ꢁ"ꢇ  
ꢇꢁ  
ꢇꢁꢁ  
ꢀꢁꢀꢀꢂ  
ꢀꢁꢀꢂ  
ꢀꢁꢂ  
ꢂꢀ  
ꢂꢀꢀ  
$%ꢔ&ꢌꢔꢊ'(ꢎꢘ)ꢚꢛꢜ  
ꢕꢖꢗꢘꢙꢗꢚꢛꢜꢆꢇꢝꢄꢞꢉ  
©2009-2012 CADEKA Microcircuits, LLC  
www.cadeka.com  
8
Data Sheet  
Typical Performance Characteristics at +5V - Continued  
TA = 25°C, VS = +5V, Rf = Rg =10kΩ, RL = 10kΩ to VS/2, G = 2; unless otherwise noted.  
Open Loop Output Impedance vs. Frequency  
Open Loop Frequency Response +2.7V  
ꢀꢁꢁꢁ  
ꢀꢁꢁ  
ꢀꢁ  
ꢉꢃ  
ꢆꢃ  
ꢅꢃ  
ꢁꢃ  
ꢄꢃ  
ꢂꢃ  
ꢈꢃ  
ꢀꢃ  
ꢀꢈꢃ  
ꢀꢃꢁ  
ꢇꢃ  
ꢊꢛꢜꢝꢞ  
ꢆꢁ  
 
"ꢏꢀꢃꢃ#i  
!
ꢅꢃ  
ꢑꢆꢒꢔꢕꢖꢏ  
 
"ꢏꢈ#i  
!
ꢄꢁ  
 
"ꢏꢅꢃꢃi  
!
ꢂꢃ  
ꢑꢆꢒꢓꢏ  
ꢘꢜ$%  
ꢀꢁ  
&ꢀꢃ  
&ꢈꢃ  
&ꢀꢁ  
&ꢂꢃ  
.
"ꢏ/ꢈ'ꢆ.  
ꢀꢁ  
ꢀꢁꢁ  
ꢀꢁꢁꢁ  
ꢃ'ꢃꢃꢀ  
ꢃ'ꢃꢀ  
ꢃ'ꢀ  
ꢀꢃ  
ꢗꢘꢉꢙꢃꢉꢌꢍꢚꢆꢎꢛꢜꢝꢞ  
(ꢑꢎ)*ꢎꢔ+,ꢏꢕꢐꢛ-ꢗ  
Open Loop Frequency Response 5V  
Open Loop Frequency Response vs. Temperature  
iiilll
ꢉꢃ  
ꢆꢃ  
ꢅꢃ  
ꢁꢃ  
ꢄꢃ  
ꢂꢃ  
ꢈꢃ  
ꢀꢃ  
ꢀꢈꢃ  
ꢀꢃꢁ  
ꢇꢃ  
ꢉꢃ  
ꢀꢈꢃ  
ꢀꢃꢁ  
ꢇꢃ  
ꢆꢃ  
ꢅꢃ  
ꢁꢃ  
ꢄꢃ  
ꢂꢃ  
ꢈꢃ  
ꢀꢃ  
ꢊ#ꢛ$%  
ꢊꢛꢜꢝꢞ  
ꢆꢁ  
ꢆꢁ  
 
"ꢏꢀꢃꢃ#i  
ꢞꢉꢁꢟ!  
!
 
"ꢏꢈ#i  
ꢅꢃ  
ꢅꢃ  
!
ꢞꢈꢁꢟ!  
"ꢄꢃꢟ!  
 
"ꢏꢅꢃꢃi  
!
ꢄꢁ  
ꢄꢁ  
ꢘꢛꢜꢝ  
ꢂꢃ  
ꢂꢃ  
ꢘꢜ$%  
ꢀꢁ  
ꢀꢁ  
-$ .ꢏꢞ  
/0 .2i
ꢁ-  
"ꢀꢃ  
"ꢈꢃ  
"ꢀꢁ  
"ꢂꢃ  
&ꢀꢃ  
.
"ꢏ/ꢁ.  
&ꢀꢁ  
&ꢂꢃ  
&ꢈꢃ  
ꢃ&ꢃꢃꢀ  
ꢃ&ꢃꢀ  
ꢃ&ꢀ  
'ꢑꢎ()ꢎꢔ*+ꢏꢕꢐ#,ꢗ  
ꢀꢃ  
ꢃ'ꢃꢃꢀ  
ꢃ'ꢃꢀ  
ꢃ'ꢀ  
ꢀꢃ  
(ꢑꢎ)*ꢎꢔ+,ꢏꢕꢐꢛ-ꢗ  
Gain and Phase vs. Capacitive Load RL=600Ω  
Gain and Phase vs. Capacitive Load RL=100kΩ  
ꢅꢂ  
ꢉꢂ  
ꢄꢂ  
ꢈꢂ  
ꢁꢂ  
ꢇꢂ  
ꢃꢂ  
ꢆꢂ  
ꢆꢃꢂ  
ꢆꢂꢂ  
ꢅꢂ  
ꢅꢂ  
ꢉꢂ  
ꢄꢂ  
ꢈꢂ  
ꢁꢂ  
ꢇꢂ  
ꢃꢂ  
ꢆꢂ  
ꢆꢃꢂ  
ꢆꢂꢂ  
ꢅꢂ  
ꢊꢛꢜꢝꢞ  
ꢊꢛꢜꢝꢞ  
ꢄꢂ  
ꢄꢂ  
ꢁꢂ  
ꢁꢂ  
 
"ꢏꢆꢂꢂꢂ#$  
!
ꢘꢜ%&  
 
 
"ꢏꢈꢂꢂ#$  
 
ꢃꢂ  
ꢃꢂ  
!
 
"ꢏꢆꢂꢂ#$  
!
ꢘꢜ%&  
"ꢏꢆꢂꢂ#$  
!
 
"ꢏꢂ#$  
ꢀꢃꢂ  
ꢀꢁꢂ
 
ꢀꢄꢂ  
ꢀꢅꢂ  
ꢀꢆꢂꢂ  
ꢀꢆꢃꢂ  
ꢀꢃꢂ  
ꢀꢁꢂ
 
ꢀꢄꢂ  
ꢀꢅꢂ  
ꢀꢆꢂꢂ  
ꢀꢆꢃꢂ  
!
"ꢏꢆꢂꢂꢂ#$  
 
!
 
"ꢏꢂ#$  
!
"ꢏꢈꢂꢂ#$  
!
ꢀꢆꢂ  
ꢀꢃꢂ  
ꢀꢇꢂ  
ꢀꢁꢂ  
ꢀꢆꢂ  
ꢀꢃꢂ  
ꢀꢇꢂ  
ꢀꢁꢂ  
-
/
"ꢏ.ꢈ-  
-
/
"ꢏ.ꢈ-  
 "ꢏꢄꢂꢂi  
 "ꢏꢆꢂꢂ0i  
!
!
ꢂ'ꢂꢆ  
ꢂ'ꢆ  
$ꢑꢎ()ꢎꢔ*+ꢏꢕꢐꢛ,ꢗ  
ꢆꢂ  
ꢂ'ꢂꢆ  
ꢂ'ꢆ  
$ꢑꢎ()ꢎꢔ*+ꢏꢕꢐꢛ,ꢗ  
ꢆꢂ  
©2009-2012 CADEKA Microcircuits, LLC  
www.cadeka.com  
9
Data Sheet  
Typical Performance Characteristics at +5V - Continued  
TA = 25°C, VS = +5V, Rf = Rg =10kΩ, RL = 10kΩ to VS/2, G = 2; unless otherwise noted.  
Inverting Large Signal Pulse Response  
Inverting Large Signal Pulse Response  
ꢉꢊꢋꢌꢂ  
ꢉꢊꢏꢐi  
 ꢉꢊꢋꢌꢂ  
 ꢉꢊꢏꢐi  
ꢒꢁꢓꢋꢔꢌꢕꢖ  
ꢒꢁꢓꢋꢏꢌꢔꢕ  
ꢖꢗꢘꢙꢚꢊꢈꢅꢛꢗꢜꢝ  
ꢗꢘꢙꢚꢛꢊꢈꢅꢜꢘꢝꢞ  
"ꢙꢚꢘꢙꢚꢊꢈꢅꢛꢗꢜꢝ  
#ꢚꢛꢙꢚꢛꢊꢈꢅꢜꢘꢝꢞ  
ꢞꢅ !ꢊꢀꢁ-ꢀLR10_  
ꢅ!"ꢊꢀꢁ-ꢀLR10_  
Inverting Large Signal Pulse Response  
Inverting Small Signal Pulse Response  
iiilll
 ꢉꢊꢋꢌꢂ  
 ꢉꢊꢏꢐi  
ꢒꢁꢓꢒꢔꢕꢖꢗ  
 ꢋꢌꢍꢁꢄ  
 ꢋꢌꢐꢑi  
ꢓꢔꢕꢍꢐꢁꢖꢗ  
ꢘꢙꢚꢛꢜꢌꢊꢇꢝꢙꢞ  
ꢘꢙꢚꢛꢜꢊꢈꢅꢝꢙꢞ  
#ꢛꢜꢚꢛꢜꢌꢊꢇꢝꢙꢞ  
$ꢛꢜꢚꢛꢜꢊꢈꢅꢝꢙꢞ  
!ꢇꢃ"ꢌꢀꢔ-ꢀLR10_  
!ꢅ"#ꢊꢀꢁ-ꢀLR10_  
Inverting Small Signal Pulse Response  
Inverting Small Signal Pulse Response  
 ꢋꢌꢍꢁꢄ  
 ꢋꢌꢐꢑi  
ꢓꢔꢕꢍꢖꢁꢗꢘ  
 ꢋꢌꢍꢁꢄ  
 ꢋꢌꢐꢑi  
ꢓꢔꢕꢓꢖꢂꢗꢘ  
ꢙꢚꢛꢜꢝꢌꢊꢇꢞꢚ !  
ꢙꢚꢛꢜꢝꢌꢊꢇꢞꢚ !  
$ꢜꢝꢛꢜꢝꢌꢊꢇꢞꢚ !  
$ꢜꢝꢛꢜꢝꢌꢊꢇꢞꢚ !  
"ꢇꢃ#ꢌꢀꢔ-ꢀLR10_  
"ꢇꢃ#ꢌꢀꢔ-ꢀLR10_  
©2009-2012 CADEKA Microcircuits, LLC  
www.cadeka.com  
10  
Data Sheet  
Typical Performance Characteristics at +5V - Continued  
TA = 25°C, VS = +5V, Rf = Rg =10kΩ, RL = 10kΩ to VS/2, G = 2; unless otherwise noted.  
Non-Inverting Large Signal Pulse Response  
Non-Inverting Large Signal Pulse Response  
 ꢉꢊꢋꢌꢂ  
 ꢉꢊꢋꢌꢂ  
 ꢉꢊꢏꢐi  
 ꢉꢊꢏꢐi  
ꢋꢁꢒꢋꢓꢌꢔꢕ  
ꢋꢁꢒꢋꢏꢌꢓꢔ  
ꢖꢗꢘꢙꢚꢊꢈꢅꢛꢗꢜꢝ  
ꢕꢖꢗꢘꢙꢊꢈꢅꢚꢖꢛꢜ  
"ꢙꢚꢘꢙꢚꢊꢈꢅꢛꢗꢜꢝ  
!ꢘꢙꢗꢘꢙꢊꢈꢅꢚꢖꢛꢜ  
ꢝꢅꢞ ꢊꢀꢁ-ꢀLR10_  
ꢞꢅ !ꢊꢀꢁ-ꢀLR10_  
Non-Inverting Large Signal Pulse Response  
Non-Inverting Small Signal Pulse Response  
iill
 ꢉꢊꢋꢌꢂ  
 ꢉꢊꢏꢐi  
ꢋꢌꢍꢁꢄ  
ꢋꢌꢐꢑi  
ꢋꢁꢒꢓꢔꢕꢖꢗ  
ꢍꢓꢔꢍꢐꢁꢕꢖ  
ꢗꢘꢙꢚꢛꢌꢊꢇꢜꢘꢝꢞ  
ꢘꢙꢚꢛꢜꢊꢈꢅꢝꢙꢞ  
$ꢛꢜꢚꢛꢜꢊꢈꢅꢝꢙꢞ  
"ꢚꢛꢙꢚꢛꢌꢊꢇꢜꢘꢝꢞ  
ꢇꢃ!ꢌꢀꢓ-ꢀLR10_  
!ꢅ"#ꢊꢀꢁ-ꢀLR10_  
Non-Inverting Small Signal Pulse Response  
Non-Inverting Small Signal Pulse Response  
 ꢋꢌꢍꢁꢄ  
 ꢋꢌꢐꢑi  
ꢄꢊ ꢋꢌꢍꢁꢄ  
ꢎꢏ ꢋꢌꢐꢑi  
ꢍꢓꢔꢕꢖꢂꢗꢘ  
ꢒꢄꢍꢓꢔꢍꢕꢁꢖꢗ  
ꢙꢚꢛꢜꢝꢌꢊꢇꢞꢚ !  
ꢘꢙꢚꢛꢜꢌꢝꢇꢞꢙ !  
$ꢛꢜꢚꢛꢜꢌꢝꢇꢞꢙ !  
$ꢜꢝꢛꢜꢝꢌꢊꢇꢞꢚ !  
"ꢇꢃ#ꢌꢀꢓ-ꢀLR10_  
"ꢇꢃ#ꢌꢀꢓ-ꢀLR10_  
©2009-2012 CADEKA Microcircuits, LLC  
www.cadeka.com  
11  
Data Sheet  
Application Information  
+Vs  
6.8µF  
0.1µF  
General Description  
The LMV321 is a single supply, general purpose, voltage-  
feedback amplifier fabricated on a CMOS process. The  
LMV321 offers 1MHz gain bandwidth product, >1V/μs slew  
rate, and only 130μA supply current. It features a rail-to-rail  
output stage and is unity gain stable.  
Input  
+
Output  
-
RL  
0.1µF  
6.8µF  
The common mode input range extends to 200mV below  
ground and to 800mV below Vs. Exceeding these values  
will not cause phase reversal. However, if the input voltage  
exceeds the rails by more than 0.5V, the input ESD devices  
will begin to conduct. The output will stay at the rail during  
this overdrive condition.  
G = 1  
-Vs  
Figure 3. Unity Gain Circuit  
+Vs  
The output stage is short circuit protected and offers “soft”  
saturation protection that improves recovery time.Figures  
1, 2, and 3 illustrate typical circuit configurations for non-  
inverting, inverting, and unity gain topologies for dual supply  
applications. They show the recommended bypass capacitor  
values and overall closed loop gain equations. Figure 4  
shows the typical non-inverting gain circuit for single supply  
6.8µF  
0.1µF  
+
Input  
Output  
-
RL  
applications  
+Vs  
Rf  
6.8µF  
Rg  
0.1µF  
Figure 4. Single Supply Non-Inverting Gain Circuit  
Input  
+
-
Output  
RL  
Power Dissipation  
0.1µF  
6.8µF  
Rf  
Power dissipation should not be a factor when operating  
under the stated 2kΩ load condition. However, applications  
with low impedance, DC coupled loads should be analyzed  
to ensure that maximum allowed junction temperature  
is not exceeded. Guidelines listed below can be used to  
verify that the particular application will not cause the  
device to operate beyond it’s intended operating range.  
Rg  
G = 1 + (Rf/Rg)  
-Vs  
Figure 1. Typical Non-Inverting Gain Circuit  
+Vs  
6.8µF  
Maximum power levels are set by the absolute maximum  
junction rating of 150°C. To calculate the junction  
temperature, the package thermal resistance value  
ThetaJA JA) is used along with the total die power  
dissipation.  
R1  
0.1µF  
+
Output  
Rg  
Input  
-
RL  
0.1µF  
6.8µF  
Rf  
TJunction = TAmbient + (ӨJA × PD)  
G = - (Rf/Rg)  
Where TAmbient is the temperature of the working environment.  
For optimum input offset  
voltage set R1 = Rf ||Rg  
-Vs  
In order to determine PD, the power dissipated in the load  
needs to be subtracted from the total power delivered by  
Figure 2. Typical Inverting Gain Circuit  
©2009-2012 CADEKA Microcircuits, LLC  
www.cadeka.com  
12  
Data Sheet  
the supplies.  
PD = Psupply - Pload  
Supply power is calculated by the standard power  
equation.  
Psupply = Vsupply × IRMS supply  
Vsupply = VS+ - VS-  
Figure 5. Addition of RS for Driving Capacitive Loads  
Power delivered to a purely resistive load is:  
For a given load capacitance, adjust RS to optimize the  
tradeoff between settling time and bandwidth. In general,  
reducing RS will increase bandwidth at the expense of  
additional overshoot and ringing.  
2
Pload = ((VLOAD RMS  
)
)/Rloadeff  
The effective load resistor (Rloadeff) will need to include  
the effect of the feedback network. For instance,  
Rloadeff in Figure 3 would be calculated as:  
RL || (Rf + Rg)  
Overdrive Recovery  
An overdrive condition is defined as the point when either  
one of the inputs or the output exceed their specified  
voltage range. Overdrive recovery is the time needed for  
the amplifier to return to its normal or linear operating  
point. The recovery time varies, based on whether the  
input or output is overdriven and by how much the range  
is exceeded. The LMV321 and will typically recover in less  
than 5us from an overdrive condition. Figure 6 shows the  
LMV321 in an overdriven condition.  
These measurements are basic and are relatively easy to  
perform with standard lab equipment. For design purposes  
however, prior knowledge of actual signal levels and load  
impedance is needed to determine the dissipated power.  
Here, PD can be found from  
PD = PQuiescent + PDynamic - PLoad  
Quiescent power can be derived from the specified IS  
values along with known supply voltage, VSupply. Load  
power can be calculated as above with the desired signal  
amplitudes using:  
 ꢗꢑꢘꢙꢀꢂꢚꢛꢓ  
 ꢗꢑꢃꢄꢞi  
ꢘꢂ ꢘꢂꢛꢟ"  
(VLOAD RMS  
)
= VPEAK / √2  
/ Rloadeff  
'ꢎꢍꢊꢎꢍꢑꢖꢌ%$&ꢋ  
#$ꢊꢎꢍꢑꢖꢌ%$&ꢋ  
( ILOAD RMS = ( VLOAD RMS  
)
)
The dynamic power is focused primarily within the output  
stage driving the load. This value can be calculated as:  
ꢀꢃ  
ꢀꢂ  
ꢀꢁ  
PDYNAMIC = (VS+ - VLOAD RMS × ( ILOAD)RMS  
)
Assuming the load is referenced in the middle of the  
power rails or Vsupply/2.  
ꢂꢄ  
ꢅꢄ  
ꢆꢄ  
ꢇꢄ  
ꢃꢄꢄ  
The LMV321 is short circuit protected. However, this may  
not guarantee that the maximum junction temperature  
(+150°C) is not exceeded under all conditions.  
ꢕꢌꢉꢐꢑꢒ-ꢀ_  
Figure 6. Overdrive Recovery  
Layout Considerations  
Driving Capacitive Loads  
General layout and supply bypassing play major roles  
in high frequency performance. CADEKA has evaluation  
boards to use as a guide for high frequency layout and as  
an aid in device testing and characterization. Follow the  
steps below as a basis for high frequency layout:  
Increased phase delay at the output due to capacitive  
loading can cause ringing, peaking in the frequency  
response, and possible unstable behavior. Use a series  
resistance, RS, between the amplifier and the load to  
help improve stability and settling performance. Refer to  
Figure 5.  
Include 6.8µF and 0.1µF ceramic capacitors for power  
©2009-2012 CADEKA Microcircuits, LLC  
www.cadeka.com  
13  
Data Sheet  
supply decoupling  
Place the 6.8µF capacitor within 0.75 inches of the power  
pin  
Place the 0.1µF capacitor within 0.1 inches of thepower pin  
Remove the ground plane under and around the part,  
especially near the input and output pins to reduce  
parasitic capacitance  
Minimize all trace lengths to reduce series inductances  
Evaluation Board Schematics  
Evaluation board schematics and layouts are shown in  
Figures 7-9. These evaluation boards are built for dual  
supply operation. Follow these steps to use the board  
in a single-supply application:  
Figure 8. CEB004 Top View  
1. Short -Vs to ground.  
2. Use C3 (6.8uF) and C4 (0.1uF), if the -VS pin of the  
amplifier is not directly connected to the ground plane.  
+Vs  
6.8µF  
5
Input  
0.1µF  
4
1
3
+
Output  
RL  
Rin  
Rout  
-
2
0.1µF  
6.8µF  
Rf  
Figure 9. CEB004 Bottom View  
Rg  
-Vs  
Figure 7. CEB004 Schematic  
©2009-2012 CADEKA Microcircuits, LLC  
www.cadeka.com  
14  
Data Sheet  
Mechanical Dimensions  
TSOT-5 Package  
NOTE:  
1. ALL DIMENSIONS ARE IN MILLIMETERS.  
2. PACKAGE LENGTH DOES NOT INCLUDE INTERLEAD FALSH OR PROTRUSION  
3. PACKAGE WIDTH DOES NOTINCLUDE INTERLEAD FALSH OR PROTRUSION.  
4. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.10  
MILLIMETERS MAX.  
5. DRAWING CONFROMS TO JEDEC MO-193, VARIATION AA.  
6. DRAWING IS NOT TO SCALE.  
For additional information regarding our products, please visit CADEKA at: cadeka.com  
CADEKA Headquarters Loveland, Colorado  
T: 970.663.5452  
T: 877.663.5452 (toll free)  
CADEKA, the CADEKA logo design, COMLINEAR, and the COMLINEAR logo design are trademarks or registered trademarks of CADEKA  
Microcircuits LLC. All other brand and product names may be trademarks of their respective companies.  
CADEKA reserves the right to make changes to any products and services herein at any time without notice. CADEKA does not assume any  
responsibility or liability arising out of the application or use of any product or service described herein, except as expressly agreed to in  
writing by CADEKA; nor does the purchase, lease, or use of a product or service from CADEKA convey a license under any patent rights,  
copyrights, trademark rights, or any other of the intellectual property rights of CADEKA or of third parties.  
Copyright ©2009-2012 CADEKA Microcircuits, LLC. All rights reserved.  

相关型号:

LMV321-MR

1MHZ CMOS Rail-to-Rail IO Opamp with RF Filter
HMSEMI

LMV321-N

单路、5.5V、1MHz、RRO 运算放大器
TI

LMV321-N-Q1

汽车级、单路、5.5V、1MHz、RRO 运算放大器
TI

LMV321-Q1

LOW-VOLTAGE RAIL-TO-RAIL OUTPUT OPERATIONAL AMPLIFIERS
TI

LMV321-Q1_15

LOW-VOLTAGE RAIL-TO-RAIL OUTPUT OPERATIONAL AMPLIFIERS
TI

LMV321-UR

1MHZ CMOS Rail-to-Rail IO Opamp with RF Filter
HMSEMI

LMV321A

80μA, 1.0MHz, Micro-Power Rail-to-Rail I/O Op Amps
3PEAK

LMV321A

单路、5.5V、1MHz、4mV 失调电压、RRO 运算放大器
TI

LMV321A-CR

80μA, 1.0MHz, Micro-Power Rail-to-Rail I/O Op Amps
3PEAK

LMV321A-Q1

LMV321A-Q1, LMV358A-Q1, LMV324A-Q1 Automotive Low-Voltage Rail-to-Rail Output Operational Amplifiers
TI

LMV321A-TR

80μA, 1.0MHz, Micro-Power Rail-to-Rail I/O Op Amps
3PEAK

LMV321AIDBVR

单路、5.5V、1MHz、4mV 失调电压、RRO 运算放大器 | DBV | 5 | -40 to 125
TI