BUH150G [ONSEMI]

SWITCHMODE NPN Silicon Planar Power Transistor; 开关模式? NPN硅平面功率晶体管
BUH150G
型号: BUH150G
厂家: ONSEMI    ONSEMI
描述:

SWITCHMODE NPN Silicon Planar Power Transistor
开关模式? NPN硅平面功率晶体管

晶体 开关 晶体管 功率双极晶体管 局域网
文件: 总10页 (文件大小:234K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
BUH150G  
SWITCHMODEt NPN  
Silicon Planar Power  
Transistor  
The BUH150G has an application specific stateofart die designed  
for use in 150 Watts Halogen electronic transformers.  
This power transistor is specifically designed to sustain the large  
inrush current during either the startup conditions or under a short  
circuit across the load.  
http://onsemi.com  
POWER TRANSISTOR  
15 AMPERES  
700 VOLTS, 150 WATTS  
Features  
Improved Efficiency Due to the Low Base Drive Requirements:  
High and Flat DC Current Gain h  
Fast Switching  
FE  
Robustness Thanks to the Technology Developed to Manufacture  
this Device  
ON Semiconductor Six Sigma Philosophy Provides Tight and  
Reproducible Parametric Distributions  
These Devices are PbFree and are RoHS Compliant*  
MAXIMUM RATINGS  
TO220AB  
CASE 221A09  
STYLE 1  
Rating  
Symbol  
Value  
400  
Unit  
Vdc  
Vdc  
CollectorEmitter Sustaining Voltage  
CollectorBase Breakdown Voltage  
V
CEO  
CBO  
V
700  
1
2
3
CollectorEmitter Breakdown Voltage  
EmitterBase Voltage  
V
V
700  
10  
Vdc  
Vdc  
Adc  
CES  
EBO  
Collector Current Continuous  
Peak (Note 1)  
I
C
15  
25  
I
MARKING DIAGRAM  
CM  
Base Current  
Continuous  
Peak (Note 1)  
I
6
12  
Adc  
B
I
BM  
Total Device Dissipation @ T = 25_C  
P
150  
1.2  
W
W/_C  
_C  
C
D
Derate above 25°C  
BUH150G  
AY WW  
Operating and Storage Temperature  
THERMAL CHARACTERISTICS  
T , T  
J
65 to 150  
stg  
Characteristics  
Symbol  
Max  
Unit  
_C/W  
_C/W  
_C  
Thermal Resistance, JunctiontoCase  
R
q
JC  
0.85  
BUH150 = Device Code  
Thermal Resistance, JunctiontoAmbient  
R
q
JA  
62.5  
260  
A
Y
= Assembly Location  
= Year  
Maximum Lead Temperature for Soldering  
Purposes 1/8from Case for 5 Seconds  
T
L
WW  
G
= Work Week  
= PbFree Package  
Stresses exceeding Maximum Ratings may damage the device. Maximum  
Ratings are stress ratings only. Functional operation above the Recommended  
Operating Conditions is not implied. Extended exposure to stresses above the  
Recommended Operating Conditions may affect device reliability.  
1. Pulse Test: Pulse Width = 5 ms, Duty Cycle 10%.  
ORDERING INFORMATION  
Device  
Package  
Shipping  
50 Units / Rail  
BUH150G  
TO220  
(PbFree)  
*For additional information on our PbFree strategy and soldering details, please  
download the ON Semiconductor Soldering and Mounting Techniques  
Reference Manual, SOLDERRM/D.  
©
Semiconductor Components Industries, LLC, 2010  
1
Publication Order Number:  
April, 2010 Rev. 5  
BUH150/D  
 
BUH150G  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
C
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
OFF CHARACTERISTICS  
CollectorEmitter Sustaining Voltage  
V
400  
700  
10  
460  
860  
12.3  
Vdc  
Vdc  
CEO(sus)  
(I = 100 mA, L = 25 mH)  
C
CollectorBase Breakdown Voltage  
V
V
CBO  
EBO  
CEO  
(I  
CBO  
= 1 mA)  
EmitterBase Breakdown Voltage  
(I = 1 mA)  
Vdc  
EBO  
Collector Cutoff Current  
I
100  
mAdc  
mAdc  
mAdc  
mAdc  
(V = Rated V  
, I = 0)  
CEO B  
CE  
Collector Cutoff Current  
@ T = 25°C  
I
100  
1000  
C
CES  
CBO  
(V = Rated V  
, V = 0)  
CES EB  
@ T = 125°C  
CE  
C
Collector Base Current  
@ T = 25°C  
I
100  
1000  
C
(V = Rated V  
, V = 0)  
CBO EB  
@ T = 125°C  
CB  
C
EmitterCutoff Current  
I
100  
EBO  
(V = 9 Vdc, I = 0)  
EB  
C
ON CHARACTERISTICS  
BaseEmitter Saturation Voltage  
(I = 10 Adc, I = 2 Adc)  
V
V
1
1.25  
Vdc  
Vdc  
BE(sat)  
C
B
CollectorEmitter Saturation Voltage  
(I = 2 Adc, I = 0.4 Adc)  
@ T = 25°C  
0.16  
0.15  
0.4  
0.4  
C
CE(sat)  
@ T = 125°C  
C
B
C
(I = 10 Adc, I = 2 Adc)  
@ T = 25°C  
0.45  
2
1
5
Vdc  
Vdc  
C
B
C
(I = 20 Adc, I = 4 Adc)  
@ T = 25°C  
C
C
B
DC Current Gain (I = 20 Adc, V = 5 Vdc)  
@ T = 25°C  
h
FE  
4
7
C
CE  
C
@ T = 125°C  
2.5  
4.5  
C
(I = 10 Adc, V = 5 Vdc)  
@ T = 25°C  
8
6
12  
10  
C
CE  
C
@ T = 125°C  
C
(I = 2 Adc, V = 1 Vdc)  
@ T = 25°C  
12  
14  
20  
22  
C
CE  
C
@ T = 125°C  
C
(I = 100 mAdc, V = 5 Vdc)  
@ T = 25°C  
10  
20  
C
CE  
C
DYNAMIC SATURATION VOLTAGE  
@ T = 25°C  
V
1.5  
2.8  
2.4  
5
V
V
V
V
C
CE(dsat)  
I
= 5 Adc, I = 1 Adc  
B1  
C
Dynamic Saturation  
Voltage:  
V
= 300 V  
CC  
@ T = 125°C  
C
Determined 3 ms after  
@ T = 25°C  
rising I reaches 90% of  
C
B1  
I
C
= 10 Adc, I = 2 Adc  
B1  
final I (see Figure 19)  
B1  
V
CC  
= 300 V  
@ T = 125°C  
C
DYNAMIC CHARACTERISTICS  
Current Gain Bandwidth  
f
23  
MHz  
pF  
T
(I = 1 Adc, V = 10 Vdc, f = 1 MHz)  
C
CE  
Output Capacitance  
C
100  
150  
ob  
(V = 10 Vdc, I = 0, f = 1 MHz)  
CB  
E
Input Capacitance  
C
ib  
1300  
1750  
pF  
(V = 8 Vdc, f = 1 MHz)  
EB  
http://onsemi.com  
2
BUH150G  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
C
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
SWITCHING CHARACTERISTICS: Resistive Load (D.C. 10%, Pulse Width = 40 ms)  
Turnon Time  
Storage Time  
Fall Time  
@ T = 25°C  
t
200  
5.3  
240  
5.6  
100  
6.1  
320  
6.5  
300  
6.5  
350  
7
ns  
ms  
ns  
ms  
ns  
ms  
ns  
ms  
ns  
C
on  
I
= 2 Adc, I = 0.2 Adc  
@ T = 25°C  
t
s
C
B1  
C
I
= 0.2 Adc  
= 300 Vdc  
B2  
CC  
@ T = 25°C  
t
f
V
C
Turnoff Time  
Turnon Time  
Storage Time  
Fall Time  
@ T = 25°C  
t
C
off  
on  
@ T = 25°C  
t
200  
7.5  
500  
8
C
I
I
= 2 Adc, I = 0.4 Adc  
@ T = 25°C  
t
s
C
B1  
C
I
= 0.4 Adc  
= 300 Vdc  
B2  
@ T = 25°C  
t
f
V
C
CC  
Turnoff Time  
Turnon Time  
@ T = 25°C  
t
C
off  
on  
@ T = 25°C  
t
450  
800  
650  
C
= 5 Adc, I = 0.5 Adc  
@ T = 125°C  
C
B1  
C
I
= 0.5 Adc  
= 300 Vdc  
B2  
Turnoff Time  
Turnon Time  
Turnoff Time  
@ T = 25°C  
t
2.5  
3.9  
3
ms  
ns  
ms  
V
C
off  
on  
CC  
@ T = 125°C  
C
@ T = 25°C  
t
500  
900  
700  
2.75  
C
I
= 10 Adc, I = 2 Adc  
B1  
@ T = 125°C  
C
C
I
= 2 Adc  
= 300 Vdc  
B2  
@ T = 25°C  
t
2.25  
2.75  
V
C
off  
CC  
@ T = 125°C  
C
SWITCHING CHARACTERISTICS: Inductive Load (V  
= 300 V, V = 15 V, L = 200 mH)  
CC  
clamp  
Fall Time  
@ T = 25°C  
t
110  
160  
250  
8
ns  
ms  
ns  
ns  
ms  
ns  
ns  
ms  
ns  
ns  
ms  
ns  
C
fi  
@ T = 125°C  
C
I
B1  
B2  
= 2 Adc  
= 0.2 Adc  
= 0.2 Adc  
C
Storage Time  
Crossover Time  
Fall Time  
@ T = 25°C  
t
si  
6.5  
8
C
I
I
@ T = 125°C  
C
@ T = 25°C  
t
235  
240  
350  
250  
7.5  
C
c
fi  
@ T = 125°C  
C
@ T = 25°C  
t
110  
170  
C
@ T = 125°C  
C
I
C
= 2 Adc  
= 0.4 Adc  
= 0.4 Adc  
Storage Time  
Crossover Time  
Fall Time  
@ T = 25°C  
t
si  
6
7.8  
C
I
I
B1  
B2  
@ T = 125°C  
C
@ T = 25°C  
t
c
250  
270  
350  
150  
3.75  
350  
175  
2.75  
350  
C
@ T = 125°C  
C
@ T = 25°C  
t
fi  
110  
140  
C
@ T = 125°C  
C
I
C
= 5 Adc  
= 0.5 Adc  
= 0.5 Adc  
Storage Time  
Crossover Time  
Fall Time  
@ T = 25°C  
t
si  
3.25  
4.6  
C
I
I
B1  
B2  
@ T = 125°C  
C
@ T = 25°C  
t
c
275  
450  
C
@ T = 125°C  
C
@ T = 25°C  
t
fi  
110  
160  
C
@ T = 125°C  
C
I
= 10 Adc  
= 2 Adc  
= 2 Adc  
C
B1  
B2  
Storage Time  
Crossover Time  
@ T = 25°C  
t
si  
2.3  
2.8  
C
I
@ T = 125°C  
C
I
@ T = 25°C  
t
c
250  
475  
C
@ T = 125°C  
C
http://onsemi.com  
3
BUH150G  
TYPICAL STATIC CHARACTERISTICS  
100  
100  
V
CE  
= 1 V  
V
CE  
= 3 V  
T = 125°C  
J
T = 125°C  
J
T = -ꢀ20°C  
J
T = -ꢀ20°C  
J
10  
10  
T = 25°C  
J
T = 25°C  
J
1
0.001  
1
0.001  
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
I , COLLECTOR CURRENT (AMPS)  
C
I , COLLECTOR CURRENT (AMPS)  
C
Figure 1. DC Current Gain @ 1 Volt  
Figure 2. DC Current Gain @ 3 Volt  
100  
10  
1
V
CE  
= 5 V  
I /I = 5  
C B  
T = 125°C  
J
T = 125°C  
J
T = -ꢀ20°C  
J
T = 25°C  
J
T = 25°C  
J
10  
T = -ꢀ20°C  
J
0.1  
0.01  
1
0.01  
0.1  
1
10  
100  
0.001  
0.01  
0.1  
1
10  
100  
I , COLLECTOR CURRENT (AMPS)  
C
I , COLLECTOR CURRENT (AMPS)  
C
Figure 3. DC Current Gain @ 5 Volt  
Figure 4. CollectorEmitter Saturation Voltage  
10  
1
1.5  
I /I = 10  
C B  
I /I = 5  
C B  
1
T = -ꢀ20°C  
J
T = 125°C  
J
T = 25°C  
J
0.1  
0.5  
T = 125°C  
J
T = 25°C  
J
0.01  
0
0.001  
0.001  
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
I , COLLECTOR CURRENT (AMPS)  
C
I , COLLECTOR CURRENT (AMPS)  
C
Figure 5. CollectorEmitter Saturation Voltage  
Figure 6. BaseEmitter Saturation Region  
http://onsemi.com  
4
BUH150G  
TYPICAL STATIC CHARACTERISTICS  
1.5  
2
T = 25°C  
J
I /I = 10  
C B  
1.5  
1
1
T = -ꢀ20°C  
J
T = 25°C  
J
20 A  
0.5  
15 A  
V
CE(sat)  
(I = 1 A)  
T = 125°C  
J
0.5  
10 A  
C
8 A  
5 A  
1
0
0.001  
0
0.01  
0.01  
0.1  
1
10  
100  
0.1  
10  
100  
I , COLLECTOR CURRENT (AMPS)  
C
I , BASE CURRENT (A)  
B
Figure 7. BaseEmitter Saturation Region  
Figure 8. Collector Saturation Region  
10000  
1000  
900  
800  
700  
600  
T = 25°C  
J
T = 25°C  
(test)  
J
f
= 1 MHz  
BVCER @ 10 mA  
C (pF)  
ib  
BVCER(sus) @ 200 mA  
C
ob  
(pF)  
100  
10  
500  
400  
1
10  
100  
10  
100  
(W)  
1000  
V , REVERSE VOLTAGE (VOLTS)  
R
R
BE  
Figure 9. Capacitance  
Figure 10. Resistive Breakdown  
http://onsemi.com  
5
BUH150G  
TYPICAL SWITCHING CHARACTERISTICS  
12  
10  
2000  
1800  
1600  
1400  
1200  
1000  
800  
T = 25°C  
T = 125°C  
J
I
= I  
I
= I  
J
B1 B2  
B1 B2  
V
= 300 V  
V
= 300 V  
CC  
CC  
I /I = 10  
C B  
PW = 20 ms  
PW = 40 ms  
25°C  
8
6
4
125°C  
I /I = 5  
C B  
125°C  
600  
400  
2
0
I /I = 10  
C B  
25°C  
I /I = 5  
C B  
200  
0
0
3
6
9
12  
15  
15  
15  
0
5
10  
15  
10  
10  
I , COLLECTOR CURRENT (AMPS)  
C
I , COLLECTOR CURRENT (AMPS)  
C
Figure 11. Resistive Switching, ton  
Figure 12. Resistive Switch Time, toff  
8
7
6
5
4
3
2
1
0
8
7
6
5
4
3
2
I /I = 5  
C B  
I
= I  
B1 B2  
I /I = 10  
C B  
I = I  
B1 B2  
V
CC  
V = 300 V  
= 15 V  
V
CC  
= 15 V  
V = 300 V  
Z
Z
L = 200 mH  
C
L = 200 mH  
C
T = 125°C  
T = 25°C  
T = 125°C  
T = 25°C  
J
J
1
0
J
J
1
3
5
7
9
11  
13  
1
4
7
I , COLLECTOR CURRENT (AMPS)  
C
I , COLLECTOR CURRENT (AMPS)  
C
Figure 13. Inductive Storage Time, tsi  
Figure 13 Bis. Inductive Storage Time, tsi  
550  
450  
350  
250  
800  
700  
600  
500  
400  
300  
200  
I
= I  
T = 125°C  
T = 25°C  
B1 B2  
J
I
= I  
T = 125°C  
B1 B2  
C
V
= 15 V  
V = 300 V  
CC  
J
V = 15 V  
V = 300 V  
T = 25°C  
C
CC  
Z
Z
L = 200 mH  
C
L = 200 mH  
C
t
c
t
c
t
fi  
t
fi  
150  
50  
100  
0
1
3
5
7
9
11  
13  
0
2
4
6
8
I , COLLECTOR CURRENT (AMPS)  
C
I , COLLECTOR CURRENT (AMPS)  
C
Figure 14. Inductive Storage Time,  
tc & tfi @ IC/IB = 5  
Figure 15. Inductive Storage Time,  
tc & tfi @ IC/IB = 10  
http://onsemi.com  
6
BUH150G  
TYPICAL SWITCHING CHARACTERISTICS  
5
4
3
2
200  
T = 125°C  
T = 25°C  
J
J
I = 5 A  
C
150  
100  
I = 5 A  
C
I
= I  
I
= I  
B1 B2  
Boff B2  
50  
0
I = 10 A  
C
V = 15 V  
V = 300 V  
V
= 15 V  
1
0
CC  
CC  
I = 10 A  
C
V = 300 V  
Z
T = 125°C  
T = 25°C  
J
Z
J
L = 200 mH  
C
L = 200 mH  
C
2
4
6
8
10  
3
4
5
6
7
8
9
10  
h
FE  
, FORCED GAIN  
h
FE  
, FORCED GAIN  
Figure 16. Inductive Storage Time  
Figure 17. Inductive Fall Time  
800  
I
= I  
T = 125°C  
T = 25°C  
J
B1 B2  
J
700  
600  
500  
400  
V = 15 V  
V = 300 V  
CC  
Z
L = 200 mH  
C
I = 10 A  
C
I = 5 A  
C
300  
200  
100  
3
4
5
6
7
8
9
10  
h
FE  
, FORCED GAIN  
Figure 18. Inductive Crossover Time  
http://onsemi.com  
7
BUH150G  
TYPICAL SWITCHING CHARACTERISTICS  
10  
V
I
C
9
8
7
6
5
4
CE  
90% I  
C
t
fi  
dyn 1 ms  
t
si  
dyn 3 ms  
10% I  
C
V
10% V  
90% I  
0 V  
clamp  
clamp  
t
c
90% I  
B
B1  
3
2
1
0
I
B
1 ms  
I
B
3 ms  
0
1
2
3
4
5
6
8
7
TIME  
TIME  
Figure 19. Dynamic Saturation Voltage  
Measurements  
Figure 20. Inductive Switching Measurements  
Table 1. Inductive Load Switching Drive Circuit  
+15 V  
I PEAK  
C
100 mF  
1 mF  
100 W  
3 W  
MTP8P10  
150 W  
3 W  
V
CE  
PEAK  
V
CE  
MTP8P10  
R
MPF930  
B1  
I 1  
B
MUR105  
MJE210  
MPF930  
I
I
B
+10 V  
out  
A
I 2  
B
50  
R
B2  
W
COMMON  
MTP12N10  
150 W  
3 W  
V
(BR)CEO(sus)  
L = 10 mH  
Inductive Switching  
RBSOA  
L = 500 mH  
L = 200 mH  
R
500 mF  
R
= ∞  
= 20 Volts  
= 100 mA  
= 0  
= 15 Volts  
selected for  
R
= 0  
= 15 Volts  
B2  
CC  
B2  
B2  
V
V
V
CC  
1 mF  
CC  
I
R
B1  
desired I  
R selected for  
B1  
C(pk)  
-V  
off  
desired I  
B1  
B1  
http://onsemi.com  
8
BUH150G  
TYPICAL THERMAL RESPONSE  
There are two limitations on the power handling ability of  
a transistor: average junction temperature and second  
breakdown. Safe operating area curves indicate I V  
1
0.8  
0.6  
0.4  
C
CE  
limits of the transistor that must be observed for reliable  
operation; i.e., the transistor must not be subjected to greater  
dissipation than the curves indicate. The data of Figure 22 is  
SECOND BREAKDOWN  
DERATING  
based on T = 25°C; T  
is variable depending on power  
level. Second breakdown pulse limits are valid for duty cycles  
C
J(pk)  
THERMAL DERATING  
to 10% but must be derated when T > 25°C. Second  
C
breakdown limitations do not derate the same as thermal  
limitations. Allowable current at the voltages shown on  
Figure 22 may be found at any case temperature by using the  
appropriate curve on Figure 21.  
0.2  
0
T
J(pk)  
may be calculated from the data in Figure 24. At any  
case temperatures, thermal limitations will reduce the power  
that can be handled to values less than the limitations imposed  
by second breakdown. For inductive loads, high voltage and  
current must be sustained simultaneously during turnoff  
with the base to emitter junction reverse biased. The safe level  
is specified as a reverse biased safe operating area  
(Figure 23). This rating is verified under clamped conditions  
so that the device is never subjected to an avalanche mode.  
20  
40  
60  
80  
100  
120  
140  
160  
T , CASE TEMPERATURE (°C)  
C
Figure 21. Forward Bias Power Derating  
16  
100  
10  
GAIN 5  
T 125°C  
C
C
14  
12  
10  
8
1 ms  
L = 4 mH  
10 ms  
5 ms  
1 ms  
DC  
1
6
-5 V  
0.1  
4
0 V  
-1.5 V  
2
0
0.01  
1
10  
100  
1000  
300  
400  
500  
600  
700  
800  
V
CE  
, COLLECTOR-EMITTER VOLTAGE (VOLTS)  
V , COLLECTOR-EMITTER VOLTAGE (VOLTS)  
CE  
Figure 22. Forward Bias Safe Operating Area  
Figure 23. Reverse Bias Safe Operating Area  
1
0.5  
0.2  
0.1  
0.1  
P
(pk)  
R
R
(t) = r(t) R  
q
JC  
q
JC  
= 0.83°C/W MAX  
q
JC  
D CURVES APPLY FOR POWER  
PULSE TRAIN SHOWN  
READ TIME AT t  
0.05  
0.02  
t
1
1
t
2
T
- T = P  
C
R (t)  
q
JC  
J(pk)  
(pk)  
DUTY CYCLE, D = t /t  
1 2  
SINGLE PULSE  
0.1  
0.01  
0.01  
1
10  
100  
1000  
t, TIME (ms)  
Figure 24. Typical Thermal Response (ZqJC(t)) for BUH150  
http://onsemi.com  
9
 
BUH150G  
PACKAGE DIMENSIONS  
TO220AB  
CASE 221A09  
ISSUE AF  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
3. DIMENSION Z DEFINES A ZONE WHERE ALL  
BODY AND LEAD IRREGULARITIES ARE  
ALLOWED.  
SEATING  
PLANE  
T−  
C
S
B
F
T
INCHES  
DIM MIN MAX  
MILLIMETERS  
4
MIN  
14.48  
9.66  
4.07  
0.64  
3.61  
2.42  
2.80  
0.36  
12.70  
1.15  
4.83  
2.54  
2.04  
1.15  
5.97  
0.00  
1.15  
---  
MAX  
15.75  
10.28  
4.82  
0.88  
4.09  
2.66  
3.93  
0.64  
14.27  
1.52  
5.33  
3.04  
2.79  
1.39  
6.47  
1.27  
---  
A
B
C
D
F
G
H
J
0.570  
0.380  
0.160  
0.025  
0.142  
0.095  
0.110  
0.014  
0.500  
0.045  
0.190  
0.100  
0.080  
0.045  
0.235  
0.000  
0.045  
---  
0.620  
0.405  
0.190  
0.035  
0.161  
0.105  
0.155  
0.025  
0.562  
0.060  
0.210  
0.120  
0.110  
0.055  
0.255  
0.050  
---  
A
K
Q
Z
1
2
3
U
H
K
L
N
Q
R
S
T
U
V
Z
L
R
J
V
G
D
0.080  
2.04  
N
STYLE 1:  
PIN 1. BASE  
2. COLLECTOR  
3. EMITTER  
4. COLLECTOR  
SWITCHMODE is a trademark of Semiconductor Components Industries, LLC.  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 8002829855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81357733850  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 3036752175 or 8003443860 Toll Free USA/Canada  
Fax: 3036752176 or 8003443867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
BUH150/D  

相关型号:

BUH2M20AP

HIGH VOLTAGE NPN SILICON POWER TRANSISTOR
STMICROELECTR

BUH313

Silicon NPN Power Transistors
SAVANTIC

BUH313

Silicon NPN Power Transistors
ISC

BUH313

HIGH VOLTAGE FASTSWITCHING NPN POWER TRANSISTOR
STMICROELECTR

BUH313D

isc Silicon NPN Power Transistor
ISC

BUH313D

5A, 600V, NPN, Si, POWER TRANSISTOR
STMICROELECTR

BUH315

HIGH VOLTAGE FAST-SWITCHING NPN POWER TRANSISTOR
STMICROELECTR

BUH315

Silicon NPN Power Transistors
SAVANTIC

BUH315

Silicon NPN Power Transistors
ISC

BUH315D

HIGH VOLTAGE FAST-SWITCHING NPN POWER TRANSISTOR
STMICROELECTR

BUH315D

isc Silicon NPN Power Transistor
ISC

BUH315DFH

HIGH VOLTAGE FAST-SWITCHING NPN POWER TRANSISTOR
ETC