AU5517 [ONSEMI]

Dual Operational Transconductance Amplifier; 双路运算跨导放大器
AU5517
型号: AU5517
厂家: ONSEMI    ONSEMI
描述:

Dual Operational Transconductance Amplifier
双路运算跨导放大器

放大器
文件: 总14页 (文件大小:187K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NE5517, NE5517A, AU5517  
Dual Operational  
Transconductance Amplifier  
The AU5517 and NE5517 contain two current-controlled  
transconductance amplifiers, each with a differential input and  
push-pull output. The AU5517/NE5517 offers significant design and  
performance advantages over similar devices for all types of  
programmable gain applications. Circuit performance is enhanced  
through the use of linearizing diodes at the inputs which enable a  
10 dB signal-to-noise improvement referenced to 0.5% THD. The  
AU5517/NE5517 is suited for a wide variety of industrial and  
consumer applications.  
http://onsemi.com  
MARKING  
DIAGRAMS  
Constant impedance of the buffers on the chip allow general use of  
the AU5517/NE5517. These buffers are made of Darlington  
transistors and a biasing network that virtually eliminate the change of  
SOIC−16  
D SUFFIX  
CASE 751B  
xx5517DG  
AWLYWW  
1
1
offset voltage due to a burst in the bias current I , hence eliminating  
ABC  
the audible noise that could otherwise be heard in high quality audio  
applications.  
Features  
Constant Impedance Buffers  
1
PDIP−16  
N SUFFIX  
CASE 648  
DV of Buffer is Constant with Amplifier I  
Change  
BE  
BIAS  
NE5517yy  
AWLYYWWG  
Excellent Matching Between Amplifiers  
Linearizing Diodes  
High Output Signal-to-Noise Ratio  
Pb−Free Packages are Available*  
1
xx  
yy  
A
= AU or NE  
= AN or N  
= Assembly Location  
Applications  
WL = Wafer Lot  
YY, Y = Year  
WW = Work Week  
Multiplexers  
Timers  
G
= Pb−Free Package  
Electronic Music Synthesizers  
Dolby® HX Systems  
Current-Controlled Amplifiers, Filters  
Current-Controlled Oscillators, Impedances  
PIN CONNECTIONS  
N, D Packages  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
I
I
ABCb  
ABCa  
D
a
D
b
+IN  
a
+IN  
−IN  
VO  
b
−IN  
a
b
VO  
a
b
V−  
V+  
IN  
IN  
BUFFERa  
BUFFERa  
BUFFERb  
VO  
VO  
BUFFERb  
(Top View)  
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
dimensions section on page 13 of this data sheet.  
*For additional information on our Pb−Free strategy and soldering details, please  
download the ON Semiconductor Soldering and Mounting Techniques  
Reference Manual, SOLDERRM/D.  
© Semiconductor Components Industries, LLC, 2006  
1
Publication Order Number:  
April, 2006 − Rev. 3  
NE5517/D  
NE5517, NE5517A, AU5517  
PIN DESCRIPTION  
Pin No.  
Symbol  
Description  
1
2
I
Amplifier Bias Input A  
Diode Bias A  
ABCa  
D
a
3
+IN  
Non-inverted Input A  
Inverted Input A  
Output A  
a
4
−IN  
a
a
5
VO  
6
V−  
Negative Supply  
Buffer Input A  
7
IN  
BUFFERa  
8
VO  
VO  
Buffer Output A  
Buffer Output B  
Buffer Input B  
BUFFERa  
BUFFERb  
9
10  
11  
12  
13  
14  
15  
16  
IN  
BUFFERb  
V+  
Positive Supply  
Output B  
VO  
b
−IN  
Inverted Input B  
Non-inverted Input B  
Diode Bias B  
b
+IN  
b
D
b
I
Amplifier Bias Input B  
ABCb  
V+  
11  
D4  
D6  
Q12  
Q14  
Q13  
8,9  
7,10  
Q6  
Q10  
Q7  
Q11  
2,15  
V
D3  
OUTPUT  
D2  
Q4  
5,12  
Q5  
+INPUT  
3,14  
−INPUT  
4,13  
Q15  
Q16  
1,16  
AMP BIAS  
INPUT  
Q3  
Q2  
D7  
D8  
Q9  
R1  
Q1  
Q8  
D1  
D5  
V−  
6
Figure 1. Circuit Schematic  
http://onsemi.com  
2
NE5517, NE5517A, AU5517  
B
B
AMP  
BIAS  
INPUT  
B
B
B
B
INPUT  
(−)  
DIODE  
BIAS  
INPUT  
(+)  
B
BUFFER  
INPUT  
BUFFER  
OUTPUT  
V+ (1)  
11  
OUTPUT  
16  
15  
14  
13  
12  
10  
9
B
+
+
A
1
2
3
4
5
6
7
8
INPUT  
(−)  
A
V−  
AMP  
BIAS  
INPUT  
A
DIODE  
BIAS  
A
INPUT  
(+)  
A
OUTPUT  
A
BUFFER  
INPUT  
A
BUFFER  
OUTPUT  
A
NOTE: V+ of output buffers and amplifiers are internally connected.  
Figure 2. Connection Diagram  
MAXIMUM RATINGS  
Rating  
Symbol  
Value  
Unit  
V
Supply Voltage (Note 1)  
V
S
D
44 V or 22  
DC  
Power Dissipation, T  
= 25 °C (Still Air) (Note 2)  
P
mW  
amb  
NE5517N, NE5517AN  
NE5517D, AU5517D  
1500  
1125  
Thermal Resistance, Junction−to−Ambient  
R
°C/W  
q
JA  
D Package  
N Package  
140  
94  
Differential Input Voltage  
Diode Bias Current  
V
5.0  
2.0  
V
IN  
I
D
mA  
mA  
Amplifier Bias Current  
I
2.0  
ABC  
Output Short-Circuit Duration  
Buffer Output Current (Note 3)  
I
Indefinite  
20  
SC  
I
mA  
OUT  
Operating Temperature Range  
NE5517N, NE5517AN  
AU5517T  
T
amb  
°C  
0 °C to +70 °C  
−40 °C to +125 °C  
Operating Junction Temperature  
DC Input Voltage  
T
150  
°C  
J
V
DC  
+V to −V  
S S  
Storage Temperature Range  
Lead Soldering Temperature (10 sec max)  
T
−65 °C to +150 °C  
°C  
°C  
stg  
T
sld  
230  
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the  
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect  
device reliability.  
1. For selections to a supply voltage above 22 V, contact factory.  
2. The following derating factors should be applied above 25 °C  
N package at 10.6 mW/°C  
D package at 7.1 mW/°C.  
3. Buffer output current should be limited so as to not exceed package dissipation.  
http://onsemi.com  
3
 
NE5517, NE5517A, AU5517  
ELECTRICAL CHARACTERISTICS (Note 4)  
AU5517/NE5517  
Min Typ Max  
NE5517A  
Typ  
Min  
Max  
Test Conditions  
Symbol  
Characteristic  
Unit  
Input Offset Voltage  
V
OS  
0.4  
5.0  
5.0  
0.4  
2.0  
5.0  
2.0  
mV  
Overtemperature Range  
5.0 mA  
I
0.3  
7.0  
0.5  
0.3  
7.0  
0.5  
ABC  
DV /DT  
Avg. TC of Input Offset Voltage  
Diode Bias Current  
mV/°C  
OS  
V
OS  
Including Diodes  
5
2.0  
mV  
(I ) = 500 mA  
D
Input Offset Change  
Input Offset Current  
5.0 mA I  
500 mA  
V
0.1  
0.1  
0.1  
0.1  
3.0  
0.6  
mV  
mA  
ABC  
OS  
OS  
I
0.6  
DI /DT  
Avg. TC of Input Offset Current  
0.001  
0.001  
mA/°C  
mA  
OS  
Input Bias Current  
I
0.4  
1.0  
5.0  
8.0  
0.4  
1.0  
5.0  
7.0  
BIAS  
Overtemperature Range  
Avg. TC of Input Current  
DI /DT  
B
0.01  
0.01  
mA/°C  
Forward Transconductance  
g
M
6700  
5400  
9600 13000 7700  
4000  
9600 12000 mmho  
Overtemperature Range  
g
Tracking  
0.3  
0.3  
5.0  
dB  
M
Peak Output Current  
R = 0, I  
= 5.0 mA  
= 500 mA  
I
5.0  
500  
3.0  
350  
300  
7.0  
650  
mA  
L
ABC  
OUT  
OUT  
350  
300  
650  
R = 0, I  
L
ABC  
500  
R = 0, Overtemperature  
L
Range  
Peak Output Voltage  
V
V
Positive  
Negative  
R = , 5.0 mA I  
L
500 mA  
500 mA  
+12  
−12  
+14.2  
−14.4  
+12  
−12  
+14.2  
−14.4  
L
ABC  
ABC  
R = , 5.0 mA I  
Supply Current  
Sensitivity  
I
= 500 mA, both channels  
I
2.6  
4.0  
2.6  
4.0  
mA  
ABC  
CC  
V
OS  
mV/V  
Positive  
D V /D V+  
20  
20  
150  
150  
20  
20  
150  
150  
OS  
Negative  
D V /D V−  
OS  
Common-mode Rejection  
Ration  
CMRR  
80  
12  
110  
80  
12  
110  
dB  
Common-mode Range  
Crosstalk  
13.5  
100  
13.5  
100  
V
Referred to Input (Note 5)  
20 Hz < f < 20 kHz  
dB  
Differential Input Current  
Leakage Current  
I
= 0, Input = 4.0 V  
I
0.02  
0.2  
26  
100  
100  
0.02  
0.2  
26  
10  
nA  
nA  
ABC  
IN  
I
= 0 (Refer to Test Circuit)  
5.0  
ABC  
Input Resistance  
R
B
10  
10  
10  
10  
kW  
IN  
Open-loop Bandwidth  
Slew Rate  
2.0  
50  
2.0  
50  
MHz  
V/ms  
mA  
W
Unity Gain Compensated  
SR  
Buffer Input Current  
Peak Buffer Output Voltage  
5
5
IN  
0.4  
5.0  
5.0  
0.4  
5.0  
5.0  
BUFFER  
VO  
V
BUFFER  
DV of Buffer  
Refer to Buffer V Test  
0.5  
0.5  
mV  
BE  
BE  
Circuit (Note 6)  
4. These specifications apply for V  
=
15 V, T  
= 25°C, amplifier bias current (I  
) = 500 mA, Pins 2 and 15 open unless otherwise  
ABC  
S
amb  
specified. The inputs to the buffers are grounded and outputs are open.  
5. These specifications apply for V 15 V, I = 500 mA, R = 5.0 kW connected from the buffer output to −V and the input of the buffer  
=
S
ABC  
OUT  
S
is connected to the transconductance amplifier output.  
6. V 15, R = 5.0 kW connected from Buffer output to −V and 5.0 mA I 500 mA.  
ABC  
=
S
OUT  
S
http://onsemi.com  
4
 
NE5517, NE5517A, AU5517  
TYPICAL PERFORMANCE CHARACTERISTICS  
3
2
4
3
2
10  
10  
10  
10  
10  
10  
5
4
V
=
15V  
V = 15V  
S
S
V
= 15V  
S
3
2
+125°C  
1
-55°C  
+25°C  
-55°C  
+25°C  
0
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
+125°C  
-55°C  
+25°C  
+125°C  
1
10  
1
+125°C  
0.1  
0.1mA  
1mA  
10mA  
100mA 1000mA  
0.1mA  
1mA  
AMPLIFIER BIAS CURRENT (I )  
ABC  
10mA  
100mA 1000mA  
0.1mA  
1mA  
10mA  
100mA 1000mA  
AMPLIFIER BIAS CURRENT (I  
)
AMPLIFIER BIAS CURRENT (I  
)
ABC  
ABC  
Figure 4. Input Bias Current  
Figure 5. Input Bias Current  
Figure 3. Input Offset Voltage  
5
4
3
2
10  
10  
10  
10  
10  
1
5
4
V
OUT  
(+)V = (−)V = V  
IN IN OUT  
= 36V  
V
= 15V  
S
V
CMR  
3
+125°C  
2
4
3
2
10  
10  
V
= 15V  
S
1
RLOAD = ∞  
0
+25°C  
-55°C  
Tamb = 25°C  
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
V
V
CMR  
0V  
10  
10  
OUT  
0.1mA 1mA  
10mA  
100mA 1000mA  
-50°C -25°C 0°C 25°C 50°C 75°C100°C125°C  
0.1mA 1mA  
10mA  
100mA  
1000mA  
AMBIENT TEMPERATURE (T  
)
A
AMPLIFIER BIAS CURRENT (I  
)
ABC  
AMPLIFIER BIAS CURRENT (I  
)
ABC  
Figure 6. Peak Output Current  
Figure 8. Leakage Current  
Figure 7. Peak Output Voltage and  
Common-Mode Range  
2
1
5
4
10  
10  
10  
10  
10  
10  
10  
1
PINS 2, 15  
OPEN  
gM  
+125°C  
PINS 2, 15  
OPEN  
mq  
m
V
= 15V  
S
M
4
3
2
3
2
10  
10  
10  
10  
1
+25°C  
-55°C  
+125°C  
0.1  
+25°C  
10mA  
0.01  
0.1mA  
1mA  
100mA  
1000mA  
0.1mA  
1mA  
10mA  
100mA  
1000mA  
0
1
2
3
4
5
6
7
INPUT DIFFERENTIAL VOLTAGE  
AMPLIFIER BIAS CURRENT (I  
)
AMPLIFIER BIAS CURRENT (I  
)
ABC  
ABC  
Figure 11. Input Resistance  
Figure 9. Input Leakage  
Figure 10. Transconductance  
http://onsemi.com  
5
NE5517, NE5517A, AU5517  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
2000  
1800  
1600  
1400  
1200  
1000  
800  
7
6
5
4
3
2
1
0
100  
10  
V
=
15V  
T
= +25°C  
S
amb  
RL = 10kW  
IABC = 1mA  
-55°C  
+25°C  
CIN  
COUT  
1
+125°C  
600  
0.1  
0.01  
400  
200  
0
1
10  
100  
1000  
)
0.1mA 1mA  
10mA  
100mA  
1000mA  
0.1mA 1mA  
10mA  
100mA 1000mA  
DIFFERENTIAL INPUT VOLTAGE (mV  
P-P  
AMPLIFIER BIAS CURRENT (I  
)
AMPLIFIER BIAS CURRENT (I  
)
ABC  
ABC  
Figure 14. Distortion vs. Differential  
Input Voltage  
Figure 12. Amplifier Bias Voltage vs.  
Amplifier Bias Current  
Figure 13. Input and Output  
Capacitance  
20  
600  
500  
400  
VS = 15V  
R
= 10kW  
L
0
-20  
VIN = 80mVP-P  
VIN = 40mVP-P  
-40  
300  
200  
100  
0
IABC = 1mA  
-60  
OUTPUT NOISE  
20kHz BW  
-80  
IABC = 100mA  
-100  
0.1mA 1mA  
10mA  
100mA  
1000mA  
10  
100  
1k  
10k  
100k  
I
AMPLIFIER BIAS CURRENT (mA)  
FREQUENCY (Hz)  
ABC  
Figure 15. Voltage vs. Amplifier Bias Current  
Figure 16. Noise vs. Frequency  
+36V  
+15V  
4V  
4, 13  
4, 13  
2, 15  
3, 14  
A
+
11  
A
+
11  
7, 10  
5, 12  
5, 12  
1, 10  
2, 15  
3, 14  
NE5517  
NE5517  
8, 9  
1, 15  
6
6
−15V  
Figure 17. Leakage Current Test Circuit  
Figure 18. Differential Input Current Test Circuit  
V+  
V
50kW  
V−  
Figure 19. Buffer VBE Test Circuit  
http://onsemi.com  
6
NE5517, NE5517A, AU5517  
APPLICATIONS  
+15V  
0.01mF  
3, 14  
10kW  
62kW  
INPUT  
+
11  
1, 16  
390pF  
2, 15  
4, 13  
7, 10  
5, 12  
51W  
NE5517  
8, 9  
OUTPUT  
1.3kW  
6
0.01mF  
5kW  
−15V  
10kW  
−15V  
0.001mF  
Figure 20. Unity Gain Follower  
CIRCUIT DESCRIPTION  
The circuit schematic diagram of one-half of the  
AU5517/NE5517, a dual operational transconductance  
amplifier with linearizing diodes and impedance buffers, is  
shown in Figure 21.  
If V is small, the ratio of I and I will approach unity and  
IN 5 4  
the Taylor series of In function can be approximated as  
I5  
I4  
I5 * I4  
I4  
KT  
q
KT  
q
(eq. 3)  
In  
[
and I4 ^ I5 ^ IB  
Transconductance Amplifier  
I5  
I4  
I5 * I4  
1ń2IB  
I5 * I  
IB  
4 + VIN  
KT  
q
KT  
q
2KT  
q
(eq. 4)  
In  
[
+
The transistor pair, Q and Q , forms a transconductance  
4
5
stage. The ratio of their collector currents (I and I ,  
respectively) is defined by the differential input voltage, V ,  
which is shown in Equation 1.  
4
5
q
ǒI Ǔ  
IN  
B
I5 * I4 + VIN  
2KT  
I5  
KT  
q
(eq. 1)  
The remaining transistors (Q to Q ) and diodes (D to D )  
6 11 4 6  
form three current mirrors that produce an output current equal  
to I minus I . Thus:  
VIN  
+
In  
I4  
Where V is the difference of the two input voltages  
IN  
5
4
KT 26 mV at room temperature (300°k).  
q
(eq. 5)  
ǒI Ǔ  
B 2KT  
VIN  
+ IO  
Transistors Q , Q and diode D form a current mirror which  
1
2
1
focuses the sum of current I and I to be equal to amplifier bias  
q
4
5
ǒI Ǔ  
2KT  
B
current I :  
B
The term  
is then the transconductance of the amplifier  
I4 ) I5 + IB  
(eq. 2)  
and is proportional to I .  
B
V+  
11  
D4  
D6  
Q12  
Q14  
Q13  
8,9  
7,10  
Q6  
Q10  
Q7  
Q11  
2,15  
V
D3  
+INPUT  
OUTPUT  
D2  
Q4  
5,12  
Q5  
−INPUT  
3,14  
4,13  
Q15  
Q16  
1,16  
AMP BIAS  
INPUT  
Q3  
Q2  
D7  
D8  
Q9  
R1  
Q1  
Q8  
D1  
D5  
V−  
6
Figure 21. Circuit Diagram of NE5517  
http://onsemi.com  
7
 
NE5517, NE5517A, AU5517  
Linearizing Diodes  
Impedance Buffer  
For V greater than a few millivolts, Equation 3 becomes  
invalid and the transconductance increases non-linearly.  
Figure 22 shows how the internal diodes can linearize the  
The upper limit of transconductance is defined by the  
maximum value of I (2.0 mA). The lowest value of I for  
which the amplifier will function therefore determines the  
IN  
B
B
transfer function of the operational amplifier. Assume D  
overall dynamic range. At low values of I , a buffer with  
2
B
and D are biased with current sources and the input signal  
very low input bias current is desired. A Darlington  
3
current is I . Since I + I = I and I − I = I ,  
amplifier with constant-current source (Q , Q , Q , D ,  
S
4
5
B
5
4
0
14 15 16 7  
that is: I = (I − I ), I = (I + I )  
D , and R ) suits the need.  
8 1  
4
B
0
5
B
0
+VS  
APPLICATIONS  
I
Voltage-Controlled Amplifier  
D
In Figure 23, the voltage divider R , R divides the  
input-voltage into small values (mV range) so the amplifier  
operates in a linear manner.  
2
3
I
B
ǒ Ǔ  
I
+
2 I  
0
S
I
D
I
I
D
D
*
I
)
I
S
S
2
2
I
+
I
* I  
4
0
5
It is:  
I
I
5
4
R3  
D
D
IOUT + *VIN  
@
@ gM;  
3
2
R2 ) R3  
VOUT + IOUT @ RL;  
1/2I  
D
Q
I
5
4
I
S
I
S
VOUT  
R3  
R2 ) R3  
1/2I  
D
A +  
+
@ gM @ RL  
I
B
VIN  
(3) gM = 19.2 IABC  
(gM in mmhos for IABC in mA)  
−VS  
Figure 22. Linearizing Diode  
Since g is directly proportional to I  
, the amplification  
ABC  
M
is controlled by the voltage V in a simple way.  
C
For the diodes and the input transistors that have identical  
geometries and are subject to similar voltages and  
temperatures, the following equation is true:  
I
When V is taken relative to −V the following formula  
C
CC  
is valid:  
(VC * 1.2V)  
IABC  
+
D ) IS  
1ń2(IB ) IO)  
(eq. 6)  
1ń2(IB * IO)  
R1  
T
q
2
KT  
q
In  
+
In  
I
D * IS  
The 1.2 V is the voltage across two base-emitter baths in  
the current mirrors. This circuit is the base for many  
applications of the AU5517/NE5517.  
2
2IB  
ID  
ID  
2
IO + IS  
for |IS| t  
The only limitation is that the signal current should not  
exceed I .  
D
INT  
V
C
+V  
CC  
+V  
CC  
11  
R
I
ABC  
1
R
= R / /R  
2
3
4
4
3
+
1
5
7
NE5517  
6
R
2
8
V
IN  
V
OUT  
I
OUT  
R
L
R
R
S
3
INT  
−V  
CC  
TYPICAL VALUES:  
R
R
R
= 47kW  
= 10kW  
1
2
3
= 200W  
R
R
R
= 200W  
= 100kW  
= 47kW  
4
L
S
Figure 23.  
http://onsemi.com  
8
 
NE5517, NE5517A, AU5517  
Stereo Amplifier With Gain Control  
Modulators  
Figure 24 shows a stereo amplifier with variable gain via  
a control input. Excellent tracking of typical 0.3 dB is easy  
Because the transconductance of an OTA (Operational  
Transconductance Amplifier) is directly proportional to I  
,
ABC  
to achieve. With the potentiometer, R , the offset can be  
adjusted. For AC-coupled amplifiers, the potentiometer  
may be replaced with two 510 W resistors.  
the amplification of a signal can be controlled easily. The  
output current is the product from transconductance×input  
voltage. The circuit is effective up to approximately 200 kHz.  
Modulation of 99% is easy to achieve.  
P
+V  
CC  
11  
10kW  
3
+
V
IN1  
INT  
+V  
R
IN  
15kW  
CC  
NE5517/A  
I
R
P
+V  
R
1k  
D
CC  
ABC  
8
1
4
V
OUT1  
R
L
30kW  
10kW  
V
C
5.1kW  
R
C
10kW  
14  
16  
+
V
−V  
+V  
IN2  
CC  
I
ABC  
R
IN  
15kW  
15  
10  
CC  
NE5517/A  
R
P
+V  
1k  
12  
R
D
CC  
6
9
13  
V
OUT2  
R
10kW  
L
R
S
−V  
CC  
INT  
Figure 24. Gain-Controlled Stereo Amplifier  
R
C
30kW  
V
IN2  
1
SIGNAL  
I
ABC  
+V  
CC  
11  
INT  
+V  
I
D
3
4
CC  
+
15kW  
2
5
7
NE5517/A  
1kW  
V
OS  
V
IN1  
8
CARRIER  
R
10kW  
V
L
10kW  
OUT  
R
S
6
−V  
CC  
−V  
CC  
INT  
Figure 25. Amplitude Modulator  
http://onsemi.com  
9
 
NE5517, NE5517A, AU5517  
Voltage-Controlled Resistor (VCR)  
Voltage-Controlled Oscillators  
Because an OTA is capable of producing an output current  
proportional to the input voltage, a voltage variable resistor  
can be made. Figure 26 shows how this is done. A voltage  
Figure 32 shows a voltage-controlled triangle-square  
wave generator. With the indicated values a range from  
2.0 Hz to 200 kHz is possible by varying I  
from 1.0 mA  
ABC  
presented at the R terminals forces a voltage at the input.  
to 10 mA.  
X
This voltage is multiplied by g and thereby forces a current  
The output amplitude is determined by I  
Please notice the differential input voltage is not allowed  
to be above 5.0 V.  
× R  
.
M
OUT  
OUT  
through the R terminals:  
X
With a slight modification of this circuit you can get the  
sawtooth pulse generator, as shown in Figure 33.  
R ) RA  
gM ) RA  
Rx +  
where g is approximately 19.21 mMHOs at room  
APPLICATION HINTS  
M
To hold the transconductance g within the linear range,  
temperature. Figure 27 shows a Voltage Controlled Resistor  
using linearizing diodes. This improves the noise  
performance of the resistor.  
M
I
should be chosen not greater than 1.0 mA. The current  
ABC  
mirror ratio should be as accurate as possible over the entire  
current range. A current mirror with only two transistors is  
not recommended. A suitable current mirror can be built  
with a PNP transistor array which causes excellent matching  
and thermal coupling among the transistors. The output  
current range of the DAC normally reaches from 0 to  
−2.0 mA. In this application, however, the current range is  
Voltage-Controlled Filters  
Figure 28 shows a Voltage Controlled Low-Pass Filter.  
The circuit is a unity gain buffer until X /g is equal to  
C
M
R/R . Then, the frequency response rolls off at a 6dB per  
A
octave with the −3 dB point being defined by the given  
equations. Operating in the same manner, a Voltage  
Controlled High-Pass Filter is shown in Figure 29. Higher  
order filters can be made using additional amplifiers as  
shown in Figures 30 and 31.  
set through R  
(10 kW) to 0 to −1.0 mA.  
REF  
VREF  
RREF  
5V  
10kW  
IDACMAX + 2 @  
+ 2 @  
+ 1mA  
R
g
)
R
A
R
X
+
@ R  
M
A
30kW  
+V  
V
CC  
C
INT  
+V  
3
11  
CC  
+
I
O
2
NE5517/A  
5
7
4
C
8
V
OUT  
R
X
R
200W  
200W  
−V  
CC  
10kW  
100kW  
−V  
CC  
INT  
Figure 26. VCR  
+V  
30kW  
CC  
1
V
C
+V  
CC  
11  
I
D
INT  
+V  
3
CC  
R
P
2
V
OS  
NE5517/A  
6
1kW  
5
7
C
4
8
R
X
R
−V  
CC  
10kW  
100kW  
−V  
CC  
INT  
Figure 27. VCR with Linearizing Diodes  
http://onsemi.com  
10  
 
NE5517, NE5517A, AU5517  
30kW  
1
V
C
+V  
CC  
11  
I
ABC  
INT  
100kW  
3
+V  
CC  
V
+
IN  
2
NE5517/A  
5
150pF  
7
C
6
8
4
V
OUT  
R
200W  
−V  
200W  
R
CC  
A
100kW  
10kW  
−V  
CC  
INT  
NOTE:  
R
g
M
A
f
+
g(R  
O
)
RA) 2pC  
Figure 28. Voltage-Controlled Low-Pass Filter  
30kW  
1
V
C
+V  
CC  
+V  
CC  
11  
I
ABC  
INT  
+V  
100kW  
V
3
OS  
NULL  
CC  
+
2
NE5517/A  
5
0.005mF  
7
C
-V  
CC  
6
8
4
V
OUT  
R
1kW  
A
R
1kW  
−V  
CC  
100kW  
10kW  
−V  
CC  
INT  
NOTE:  
R
g
M
A
f
+
g(R  
O
) RA) 2pC  
Figure 29. Voltage-Controlled High-Pass Filter  
15kW  
V
C
+V  
CC  
+V  
INT  
CC  
+V  
CC  
+
+
V
IN  
NE5517/A  
NE5517/A  
100kW  
200pF  
C
C
2
100pF  
V
R
OUT  
A
200W  
10kW  
R
200W  
100  
kW  
A
R
−V  
200W  
R
10kW  
CC  
A
100kW  
200  
−V  
CC  
-V  
INT  
CC  
NOTE:  
R
g
A
M
f
+
(R  
O
)
R
) 2p C  
A
Figure 30. Butterworth Filter − 2nd Order  
http://onsemi.com  
11  
NE5517, NE5517A, AU5517  
15kW  
1
16  
V
C
+V  
CC  
11  
+V  
INT  
CC  
10kW  
14  
+
+V  
CC  
3
+
5
7
12  
10  
2
NE5517/A  
NE5517/A  
15  
LOW  
PASS  
20kW  
6
V
800pF  
OUT  
800pF  
13  
9
1kW  
1kW  
−V  
20kW  
5.1kW  
CC  
5.1kW  
20kW  
−V  
CC  
−V  
CC  
INT  
BANDPASS OUT  
Figure 31. State Variable Filter  
30kW  
+V  
CC  
V
C
+V  
INT  
+V  
CC  
INT  
+V  
CC  
47kW  
13  
14  
4
CC  
11  
1
5
7
12  
10  
NE5517/A  
+
NE5517/A  
16  
3
C
0.1mF  
+
6
8
V
9
OUT2  
−V  
20kW  
CC  
10kW  
−V  
INT  
CC  
−V  
V
CC OUT1  
GAIN  
CONTROL  
Figure 32. Triangle−Square Wave Generator (VCO)  
I
B
I
C
470kW  
1
+V  
CC  
V
C
16  
+V  
INT  
+V  
CC  
INT  
+V  
CC  
CC  
47kW  
12  
13  
14  
30kW  
4
+
11  
5
7
10  
2
NE5517/A  
+
NE5517/A  
3
C
0.1mF  
6
8
R
30kW  
R
2
30kW  
1
−V  
20kW  
CC  
−V  
CC  
−V  
V
CC OUT1  
V
NOTE:  
OUT2  
INT  
(V * 0.8) R  
I
2V  
x C  
2V xC  
PK  
1
C
PK  
C
V
+
T
+
T
+
f
I
t t I  
C
B
PK  
H
L
OSC  
R
)
R
I
I
2V xC  
1
2
B
C
PK  
Figure 33. Sawtooth Pulse VCO  
http://onsemi.com  
12  
NE5517, NE5517A, AU5517  
ORDERING INFORMATION  
Device  
Temperature Range  
Package  
Shipping  
AU5517DR2  
SOIC−16  
AU5517DR2G  
−40 to +125 °C  
2500 Tape & Reel  
48 Units/Rail  
SOIC−16  
(Pb−Free)  
NE5517D  
SOIC−16  
NE5517DG  
SOIC−16  
(Pb−Free)  
NE5517DR2  
SOIC−16  
NE5517DR2G  
2500 Tape & Reel  
SOIC−16  
(Pb−Free)  
0 to +70 °C  
NE5517N  
PDIP−16  
NE5517NG  
PDIP−16  
(Pb−Free)  
25 Units/Rail  
NE5517AN  
PDIP−16  
NE5517ANG  
PDIP−16  
(Pb−Free)  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
http://onsemi.com  
13  
NE5517, NE5517A, AU5517  
PACKAGE DIMENSIONS  
SOIC−16  
CASE 751B−05  
ISSUE J  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
−A−  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 (0.005) TOTAL  
IN EXCESS OF THE D DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
16  
9
8
−B−  
P 8 PL  
M
S
B
0.25 (0.010)  
1
MILLIMETERS  
INCHES  
MIN  
G
DIM MIN  
MAX  
10.00  
4.00  
1.75  
0.49  
1.25  
MAX  
0.393  
0.157  
0.068  
0.019  
0.049  
A
B
C
D
F
9.80  
3.80  
1.35  
0.35  
0.40  
0.386  
0.150  
0.054  
0.014  
0.016  
F
R X 45  
K
_
G
J
1.27 BSC  
0.050 BSC  
C
0.19  
0.10  
0
0.25  
0.25  
7
0.008  
0.004  
0
0.009  
0.009  
7
−T−  
SEATING  
PLANE  
K
M
P
R
J
_
_
_
_
M
5.80  
0.25  
6.20  
0.50  
0.229  
0.010  
0.244  
0.019  
D
16 PL  
M
S
S
0.25 (0.010)  
T B  
A
PDIP−16  
CASE 648−08  
ISSUE T  
NOTES:  
−A−  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
3. DIMENSION L TO CENTER OF LEADS  
WHEN FORMED PARALLEL.  
4. DIMENSION B DOES NOT INCLUDE  
MOLD FLASH.  
16  
9
B
1
8
5. ROUNDED CORNERS OPTIONAL.  
INCHES  
DIM MIN MAX  
0.740 0.770 18.80 19.55  
MILLIMETERS  
MIN MAX  
F
C
L
A
B
C
D
F
S
0.250 0.270  
0.145 0.175  
0.015 0.021  
6.35  
3.69  
0.39  
1.02  
6.85  
4.44  
0.53  
1.77  
SEATING  
PLANE  
−T−  
0.040  
0.70  
G
H
J
K
L
0.100 BSC  
2.54 BSC  
1.27 BSC  
K
M
0.050 BSC  
0.008 0.015  
0.110 0.130  
0.295 0.305  
H
J
0.21  
0.38  
3.30  
7.74  
10  
G
2.80  
7.50  
0
D 16 PL  
M
M
0.25 (0.010)  
T A  
M
S
0
10  
_
_
_
_
0.020 0.040  
0.51  
1.01  
Dolby is a registered trademark of Dolby Laboratories Inc., San Francisco, Calif.  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 800−282−9855 Toll Free  
USA/Canada  
ON Semiconductor Website: http://onsemi.com  
Order Literature: http://www.onsemi.com/litorder  
Literature Distribution Center for ON Semiconductor  
P.O. Box 61312, Phoenix, Arizona 85082−1312 USA  
Phone: 480−829−7710 or 800−344−3860 Toll Free USA/Canada  
Fax: 480−829−7709 or 800−344−3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
Japan: ON Semiconductor, Japan Customer Focus Center  
2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051  
Phone: 81−3−5773−3850  
For additional information, please contact your  
local Sales Representative.  
NE5517/D  

相关型号:

AU5517D

Dual operational transconductance amplifier
NXP

AU5517DR2

Dual Operational Transconductance Amplifier
ONSEMI

AU5517DR2G

Dual Operational Transconductance Amplifier
ONSEMI

AU5780

SAE/J1850/VPW transceiver
NXP

AU5780A

SAE/J1850/VPW transceiver
NXP

AU5780AD

SAE/J1850/VPW transceiver
NXP

AU5780AD,112

IC SPECIALTY INTERFACE CIRCUIT, PDSO8, 3.90 MM, PLASTIC, SOIC-8, Interface IC:Other
NXP

AU5780AD-T

Automotive Analog Circuit, PDSO8,
PHILIPS

AU5780AD/N,118

IC SPECIALTY INTERFACE CIRCUIT, PDSO8, 3.90 MM, PLASTIC, SOIC-8, Interface IC:Other
NXP

AU5780D

SAE/J1850/VPW transceiver
NXP

AU5780D-T

SAE/J1850/VPW transceiver
NXP

AU5783

J1850/VPW transceiver with supply control function
NXP