MRF6V4300NBR5 [NXP]

Lateral N-Channel Single-Ended Broadband RF Power MOSFET, 10-600 MHz, 300 W, 50 V;
MRF6V4300NBR5
型号: MRF6V4300NBR5
厂家: NXP    NXP
描述:

Lateral N-Channel Single-Ended Broadband RF Power MOSFET, 10-600 MHz, 300 W, 50 V

文件: 总15页 (文件大小:863K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number: MRF6V4300N  
Rev. 3, 4/2010  
Freescale Semiconductor  
Technical Data  
RF Power Field Effect Transistors  
N--Channel Enhancement--Mode Lateral MOSFETs  
MRF6V4300NR1  
MRF6V4300NBR1  
Designed primarily for CW large--signal output and driver applications with  
frequencies up to 600 MHz. Devices are unmatched and are suitable for use in  
industrial, medical and scientific applications.  
Typical CW Performance: VDD = 50 Volts, IDQ = 900 mA, Pout = 300 Watts,  
f = 450 MHz  
Power Gain — 22 dB  
Drain Efficiency — 60%  
10--600 MHz, 300 W, 50 V  
LATERAL N--CHANNEL  
SINGLE--ENDED  
BROADBAND  
RF POWER MOSFETs  
Capable of Handling 10:1 VSWR, @ 50 Vdc, 450 MHz, 300 Watts CW  
Output Power  
Features  
Characterized with Series Equivalent Large--Signal Impedance Parameters  
CASE 1486--03, STYLE 1  
T O -- 2 7 0 W B -- 4  
Qualified Up to a Maximum of 50 VDD Operation  
Integrated ESD Protection  
PLASTIC  
MRF6V4300NR1  
Greater Negative Gate--Source Voltage Range for Improved Class C  
Operation  
225°C Capable Plastic Package  
RoHS Compliant  
In Tape and Reel. R1 Suffix = 500 Units per 44 mm, 13 inch Reel.  
CASE 1484--04, STYLE 1  
T O -- 2 7 2 W B -- 4  
PLASTIC  
MRF6V4300NBR1  
PARTS ARE SINGLE--ENDED  
RF /V  
in GS  
RF /V  
out DS  
RF /V  
in GS  
RF /V  
out DS  
(Top View)  
Note: Exposed backside of the package is  
the source terminal for the transistor.  
Figure 1. Pin Connections  
Table 1. Maximum Ratings  
Rating  
Symbol  
Value  
--0.5, +110  
--6.0, +10  
-- 65 to +150  
150  
Unit  
Vdc  
Vdc  
°C  
Drain--Source Voltage  
V
DSS  
Gate--Source Voltage  
V
GS  
Storage Temperature Range  
Case Operating Temperature  
Operating Junction Temperature  
T
stg  
T
C
°C  
(1,2)  
T
J
225  
°C  
1. Continuous use at maximum temperature will affect MTTF.  
2. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access  
MTTF calculators by product.  
© Freescale Semiconductor, Inc., 2008--2010. All rights reserved.  
Table 2. Thermal Characteristics  
(1,2)  
Characteristic  
Symbol  
Value  
Unit  
Thermal Resistance, Junction to Case  
Case Temperature 83°C, 300 W CW  
R
θ
0.24  
°C/W  
JC  
Table 3. ESD Protection Characteristics  
Test Methodology  
Class  
Human Body Model (per JESD22--A114)  
Machine Model (per EIA/JESD22--A115)  
Charge Device Model (per JESD22--C101)  
1C (Minimum)  
A (Minimum)  
IV (Minimum)  
Table 4. Moisture Sensitivity Level  
Test Methodology  
Rating  
Package Peak Temperature  
Unit  
Per JESD22--A113, IPC/JEDEC J--STD--020  
3
260  
°C  
Table 5. Electrical Characteristics (T = 25°C unless otherwise noted)  
A
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
Off Characteristics  
Gate--Source Leakage Current  
I
110  
10  
μAdc  
Vdc  
GSS  
(V = 5 Vdc, V = 0 Vdc)  
GS  
DS  
Drain--Source Breakdown Voltage  
(I = 150 mA, V = 0 Vdc)  
V
(BR)DSS  
D
GS  
Zero Gate Voltage Drain Leakage Current  
(V = 50 Vdc, V = 0 Vdc)  
I
I
50  
2.5  
μAdc  
mA  
DSS  
DSS  
DS  
GS  
Zero Gate Voltage Drain Leakage Current  
(V = 100 Vdc, V = 0 Vdc)  
DS  
GS  
On Characteristics  
Gate Threshold Voltage  
(V = 10 Vdc, I = 800 μAdc)  
V
0.9  
1.9  
1.65  
2.7  
2.4  
3.4  
Vdc  
Vdc  
Vdc  
GS(th)  
GS(Q)  
DS(on)  
DS  
D
Gate Quiescent Voltage  
(V = 50 Vdc, I = 900 mAdc, Measured in Functional Test)  
V
DD  
D
Drain--Source On--Voltage  
(V = 10 Vdc, I = 2 Adc)  
V
0.25  
GS  
D
Dynamic Characteristics  
Reverse Transfer Capacitance  
(V = 50 Vdc ± 30 mV(rms)ac @ 1 MHz, V = 0 Vdc)  
DS  
C
2.8  
105  
304  
pF  
pF  
pF  
rss  
GS  
Output Capacitance  
(V = 50 Vdc ± 30 mV(rms)ac @ 1 MHz, V = 0 Vdc)  
DS  
C
oss  
GS  
Input Capacitance  
C
iss  
(V = 50 Vdc, V = 0 Vdc ± 30 mV(rms)ac @ 1 MHz)  
DS  
GS  
Functional Tests (In Freescale Test Fixture, 50 ohm system) V = 50 Vdc, I = 900 mA, P = 300 W, f = 450 MHz, CW  
DD  
DQ  
out  
Power Gain  
G
20  
22  
60  
24  
-- 9  
dB  
%
ps  
D
Drain Efficiency  
Input Return Loss  
η
58  
IRL  
-- 1 6  
dB  
1. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF  
calculators by product.  
2. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf.  
Select Documentation/Application Notes -- AN1955.  
ATTENTION: The MRF6V4300N and MRF6V4300NB are high power devices and special considerations  
must be followed in board design and mounting. Incorrect mounting can lead to internal temperatures which  
exceed the maximum allowable operating junction temperature. Refer to Freescale Application Note AN3263  
(for bolt down mounting) or AN1907 (for solder reflow mounting) PRIOR TO STARTING SYSTEM DESIGN to  
ensure proper mounting of these devices.  
MRF6V4300NR1 MRF6V4300NBR1  
RF Device Data  
Freescale Semiconductor  
2
B3  
V
SUPPLY  
B1  
L2  
L4  
C9  
C5  
C2  
V
BIAS  
+
R1  
L1  
C1 C7  
C4  
C8  
C13  
RF  
C12  
OUTPUT  
C21 C22  
C23 C24  
C25 C26  
Z7  
Z8 Z9  
Z10  
Z11  
Z13  
C20  
C19  
Z12  
RF  
INPUT  
C15  
Z1  
Z2  
Z3  
Z4  
Z5  
Z6  
C27 C28  
C11  
DUT  
C16  
C17  
C18  
L5  
L3  
C14  
C10 C6  
B2  
C3  
V
SUPPLY  
Z1  
Z2  
Z3  
Z4  
Z5  
Z6  
Z7  
0.900x 0.082Microstrip  
0.115x 0.170Microstrip  
0.260x 0.170Microstrip  
0.380x 0.170Microstrip  
0.220x 0.220Microstrip  
0.290x 0.630Microstrip  
0.220x 0.630Microstrip  
Z8  
Z9  
0.380x 0.220Microstrip  
0.040x 0.170Microstrip  
0.315x 0.170Microstrip  
0.230x 0.170Microstrip  
0.390x 0.170Microstrip  
0.680x 0.082Microstrip  
Z10  
Z11  
Z12  
Z13  
PCB  
Arlon CuClad 250GX--0300--55--22, 0.030, ε = 2.55  
r
Figure 2. MRF6V4300NR1(NBR1) Test Circuit Schematic  
Table 6. MRF6V4300NR1(NBR1) Test Circuit Component Designations and Values  
Part  
Description  
Part Number  
Manufacturer  
Fair--Rite  
B1  
Short Ferrite Bead  
Long Ferrite Beads  
2743019447  
B2, B3  
C1  
2743021447  
Fair--Rite  
Kemet  
TDK  
47 μF, 25 V, Tantalum Capacitor  
22 μF, 50 V, Chip Capacitors  
1 μF, 100 V, Chip Capacitors  
15 nF, 100 V, Chip Capacitors  
240 pF, Chip Capacitors  
9.1 pF, Chip Capacitor  
T491B476M025AT  
C5750JF1H226ZT  
C3225JB2A105KT  
C3225CH2A153JT  
ATC100B241JT500XT  
ATC100B9R1JT500XT  
ATC100B150JT500XT  
ATC100B510JT500XT  
ATC100B5R6JT500XT  
ATC100B4R3JT500XT  
ATC100B4R7JT500XT  
1812SMS--27NJLC  
1812SMS--47NJLC  
Copper Wire  
C2, C3  
C4, C5, C6, C7  
TDK  
C8, C9, C10  
TDK  
C11, C12, C13, C14, C15  
ATC  
C16  
ATC  
C17  
15 pF, Chip Capacitor  
ATC  
C18  
51 pF, Chip Capacitor  
ATC  
C19, C20  
5.6 pF, Chip Capacitors  
4.3 pF, Chip Capacitors  
4.7 pF, Chip Capacitors  
27 nH Inductor  
ATC  
C21, C22, C23, C24  
ATC  
C25, C26, C27, C28  
ATC  
L1  
Coilcraft  
Coilcraft  
L2, L3  
L4, L5  
R1  
47 nH Inductors  
5 Turn, #18 AWG Inductors, Hand Wound  
10 , 1/4 W, Chip Resistor  
CRCW120610R1FKEA  
Vishay  
MRF6V4300NR1 MRF6V4300NBR1  
RF Device Data  
Freescale Semiconductor  
3
B1  
B3  
C1  
C7  
C2  
C4  
C8  
C9 C5  
L2  
R1  
C12  
C13  
C15  
C20 C21C22 C25C26  
L1  
C11  
L4  
L5  
C16  
C17  
C19 C23C24 C27C28  
C14  
C18  
L3  
MRF6V4300N/NB  
Rev. 1  
C10 C6  
C3  
B2  
Figure 3. MRF6V4300NR1(NBR1) Test Circuit Component Layout  
MRF6V4300NR1 MRF6V4300NBR1  
RF Device Data  
Freescale Semiconductor  
4
TYPICAL CHARACTERISTICS  
1000  
100  
10  
100  
C
iss  
C
oss  
10  
Measured with ±30 mV(rms)ac @ 1 MHz  
= 0 Vdc  
V
GS  
C
rss  
T
= 25°C  
C
1
1
0
10  
V
20  
30  
40  
50  
1
10  
100  
, DRAIN--SOURCE VOLTAGE (VOLTS)  
V
, DRAIN--SOURCE VOLTAGE (VOLTS)  
DS  
DS  
Figure 4. Capacitance versus Drain--Source Voltage  
Figure 5. DC Safe Operating Area  
10  
9
8
7
6
5
4
3
2
1
23  
22  
21  
20  
19  
18  
V
= 3 V  
GS  
I
= 1350 mA  
DQ  
1125 mA  
2.75 V  
900 mA  
2.63 V  
2.5 V  
650 mA  
450 mA  
V
= 50 Vdc  
DD  
2.25 V  
120  
f = 450 MHz  
0
0
20  
40  
60  
80  
100  
10  
100  
, OUTPUT POWER (WATTS) CW  
600  
P
DRAIN VOLTAGE (VOLTS)  
out  
Figure 6. DC Drain Current versus Drain Voltage  
Figure 7. CW Power Gain versus Output Power  
0
60  
59  
58  
57  
56  
Ideal  
P3dB = 56.06 dBm (403 W)  
-- 5  
-- 10  
-- 15  
-- 20  
-- 25  
-- 30  
-- 35  
-- 40  
-- 45  
-- 5 0  
-- 5 5  
-- 6 0  
V
= 50 Vdc, f1 = 450 MHz, f2 = 450.1 MHz  
DD  
Two--Tone Measurements, 100 kHz Tone Spacing  
P1dB = 55.15 dBm (327 W)  
I
= 450 mA  
DQ  
Actual  
55  
54  
53  
52  
51  
50  
650 mA  
900 mA  
1350 mA  
V
= 50 Vdc, I = 900 mA  
DQ  
DD  
f = 450 MHz  
1125 mA  
10  
100  
, OUTPUT POWER (WATTS) PEP  
600  
28  
29  
30  
31  
32  
33  
34 35  
36  
37  
38  
P , INPUT POWER (dBm)  
P
in  
out  
Figure 8. Third Order Intermodulation Distortion  
versus Output Power  
Figure 9. CW Output Power versus Input Power  
MRF6V4300NR1 MRF6V4300NBR1  
RF Device Data  
Freescale Semiconductor  
5
TYPICAL CHARACTERISTICS  
23  
22  
21  
20  
19  
18  
17  
16  
60  
T
= --30_C  
85_C  
C
25_C  
55  
50  
50 V  
45  
45 V  
40 V  
35 V  
V
I
= 50 Vdc  
= 900 mA  
DD  
30 V  
40  
35  
I
= 900 mA  
f = 450 MHz  
25 V  
= 20 V  
DQ  
DQ  
f = 450 MHz  
V
DD  
0
50  
100  
P
150  
200  
250  
300 350  
400  
15  
20  
25  
30  
35  
40  
P , INPUT POWER (dBm)  
, OUTPUT POWER (WATTS) CW  
in  
out  
Figure 10. Power Gain versus Output Power  
Figure 11. Power Output versus Power Input  
8
7
6
5
10  
10  
10  
10  
25  
24  
23  
80  
70  
60  
25_C  
T
= --30_C  
C
G
ps  
85_C  
50  
40  
30  
20  
10  
22  
21  
25_C  
85_C  
-- 3 0 _C  
20  
19  
18  
V
= 50 Vdc  
= 900 mA  
f = 450 MHz  
η
DD  
D
I
DQ  
10  
100  
, OUTPUT POWER (WATTS) CW  
500  
90  
110  
130  
150  
170  
190  
210  
230  
250  
T , JUNCTION TEMPERATURE (°C)  
J
P
out  
This above graph displays calculated MTTF in hours when the device  
Figure 12. Power Gain and Drain Efficiency  
versus CW Output Power  
is operated at V = 50 Vdc, P = 300 W, and η = 60%.  
DD  
out  
D
MTTF calculator available at http://www.freescale.com/rf. Select  
Software & Tools/Development Tools/Calculators to access MTTF  
calculators by product.  
Figure 13. MTTF versus Junction Temperature  
MRF6V4300NR1 MRF6V4300NBR1  
RF Device Data  
Freescale Semiconductor  
6
Z = 2 Ω  
o
f = 450 MHz  
Z
source  
f = 450 MHz  
Z
load  
V
= 50 Vdc, I = 900 mA, P = 300 W CW  
DQ out  
DD  
f
Z
Z
load  
source  
MHz  
450  
0.39 + j1.26  
1.27 + j0.96  
Z
Z
=
Test circuit impedance as measured from  
gate to ground.  
source  
=
Test circuit impedance as measured from  
drain to ground.  
load  
Output  
Matching  
Network  
Device  
Under  
Test  
Input  
Matching  
Network  
Z
Z
source  
load  
Figure 14. Series Equivalent Source and Load Impedance  
MRF6V4300NR1 MRF6V4300NBR1  
RF Device Data  
Freescale Semiconductor  
7
PACKAGE DIMENSIONS  
MRF6V4300NR1 MRF6V4300NBR1  
RF Device Data  
Freescale Semiconductor  
8
MRF6V4300NR1 MRF6V4300NBR1  
RF Device Data  
Freescale Semiconductor  
9
MRF6V4300NR1 MRF6V4300NBR1  
RF Device Data  
Freescale Semiconductor  
10  
MRF6V4300NR1 MRF6V4300NBR1  
RF Device Data  
Freescale Semiconductor  
11  
MRF6V4300NR1 MRF6V4300NBR1  
RF Device Data  
Freescale Semiconductor  
12  
MRF6V4300NR1 MRF6V4300NBR1  
RF Device Data  
Freescale Semiconductor  
13  
PRODUCT DOCUMENTATION AND SOFTWARE  
Refer to the following documents to aid your design process.  
Application Notes  
AN1907: Solder Reflow Attach Method for High Power RF Devices in Plastic Packages  
AN1955: Thermal Measurement Methodology of RF Power Amplifiers  
AN3263: Bolt Down Mounting Method for High Power RF Transistors and RFICs in Over--Molded Plastic Packages  
AN3789: Clamping of High Power RF Transistors and RFICs in Over--Molded Plastic Packages  
Engineering Bulletins  
EB212: Using Data Sheet Impedances for RF LDMOS Devices  
Software  
Electromigration MTTF Calculator  
RF High Power Model  
For Software, do a Part Number search at http://www.freescale.com, and select the “Part Number” link. Go to the Software &  
Tools tab on the part’s Product Summary page to download the respective tool.  
REVISION HISTORY  
The following table summarizes revisions to this document.  
Revision  
Date  
Description  
0
1
2
July 2008  
Oct. 2008  
Mar. 2009  
Initial Release of Data Sheet  
Added Fig. 13, MTTF versus Junction Temperature, p. 6  
Corrected Z , “0.40 + j5.93” to “0.39 + j1.26” and Z  
, “1.42 + j5.5” to “1.27 + j0.96” in Fig. 14, Series  
load  
source  
Equivalent Source and Load Impedance data table and replotted data, p. 7  
3
Apr. 2010  
Operating Junction Temperature increased from 200°C to 225°C in Maximum Ratings table, related  
“Continuous use at maximum temperature will affect MTTF” footnote added and changed 200°C to 225°C  
in Capable Plastic Package bullet, p. 1  
Added Electromigration MTTF Calculator and RF High Power Model availability to Product Software,  
p. 14  
MRF6V4300NR1 MRF6V4300NBR1  
RF Device Data  
Freescale Semiconductor  
14  
How to Reach Us:  
Home Page:  
www.freescale.com  
Web Support:  
http://www.freescale.com/support  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor, Inc.  
Technical Information Center, EL516  
2100 East Elliot Road  
Tempe, Arizona 85284  
1--800--521--6274 or +1--480--768--2130  
www.freescale.com/support  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
www.freescale.com/support  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductor products. There are no express or  
implied copyright licenses granted hereunder to design or fabricate any integrated  
circuits or integrated circuits based on the information in this document.  
Freescale Semiconductor reserves the right to make changes without further notice to  
any products herein. Freescale Semiconductor makes no warranty, representation or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of  
any product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters that may be  
provided in Freescale Semiconductor data sheets and/or specifications can and do  
vary in different applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer application by  
customer’s technical experts. Freescale Semiconductor does not convey any license  
under its patent rights nor the rights of others. Freescale Semiconductor products are  
not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,  
directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
ARCO Tower 15F  
1--8--1, Shimo--Meguro, Meguro--ku,  
Tokyo 153--0064  
Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Asia/Pacific:  
Freescale Semiconductor China Ltd.  
Exchange Building 23F  
No. 118 Jianguo Road  
Chaoyang District  
Beijing 100022  
China  
+86 10 5879 8000  
support.asia@freescale.com  
Semiconductor was negligent regarding the design or manufacture of the part.  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution Center  
1--800--441--2447 or +1--303--675--2140  
Fax: +1--303--675--2150  
Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc.  
All other product or service names are the property of their respective owners.  
Freescale Semiconductor, Inc. 2008--2010. All rights reserved.  
LDCForFreescaleSemiconductor@hibbertgroup.com  
Document Number: MRF6V4300N  
Rev. 3,4/2010

相关型号:

MRF6V4300NR1

RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs
FREESCALE

MRF6V4300NR1_10

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs
FREESCALE

MRF6V4300NR5

Lateral N-Channel Single-Ended Broadband RF Power MOSFET, 10-600 MHz, 300 W, 50 V
NXP

MRF6VP11KGSR5

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs
FREESCALE

MRF6VP11KHR5

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs
FREESCALE

MRF6VP11KHR6

RF Power Field Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET
FREESCALE

MRF6VP11KHR6_09

RF Power Field Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET
FREESCALE

MRF6VP11KHR6_10

RF Power Field Effect Transistor
FREESCALE

MRF6VP121KHR6

RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs
FREESCALE

MRF6VP121KHSR5

RF POWER, FET
NXP

MRF6VP121KHSR6

RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs
FREESCALE

MRF6VP21KHR6

RF Power Field Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET
FREESCALE