MK65FN2M0VMI18R [NXP]

RISC MICROCONTROLLER;
MK65FN2M0VMI18R
型号: MK65FN2M0VMI18R
厂家: NXP    NXP
描述:

RISC MICROCONTROLLER

时钟 外围集成电路
文件: 总90页 (文件大小:1297K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Freescale Semiconductor, Inc.  
Data Sheet: Technical Data  
K65P169M180SF5V2  
Rev. 2, 05/2015  
Kinetis K65 Sub-Family  
MK65FN2M0VMI18  
MK65FX1M0VMI18  
180 MHz ARM® Cortex®-M4F Microcontroller.  
The K65 sub-family members provide greater performance,  
memory options up to 2 MB total flash and 256 KB of SRAM, as  
well as higher peripheral integration with features such as Dual  
USB and a 10/100 Mbit/s Ethernet MAC. These devices maintain  
hardware and software compatibility with the existing Kinetis  
family. This product also offers:  
• Integration of a High Speed USB Physical Transceiver  
• Greater performance flexibility with a High Speed Run  
mode  
169 MAPBGA (MI)  
• Smarter peripherals with operation in Stop modes  
9 mm x 9 mm Pitch 0.65 mm  
Performance  
• Up to 180 MHz ARM Cortex-M4 based core with DSP  
instructions and Single Precision Floating Point unit  
Memories and memory expansion  
• Up to 2 MB program flash memory on non-  
FlexMemory devices with 256 KB RAM  
• Up to 1 MB program flash memory and 256 KB of  
FlexNVM on FlexMemory devices  
• 4 KB FlexRAM on FlexMemory devices  
• FlexBus external bus interface and SDRAM controller  
System and Clocks  
• Multiple low-power modes to provide power  
optimization based on application requirements  
• Memory protection unit with multi-master protection  
• 3 to 32 MHz main crystal oscillator  
Analog modules  
• 32 kHz low power crystal oscillator  
• 48 MHz internal reference  
• Two 16-bit SAR ADCs and two 12-bit DAC  
• Four analog comparators (CMP) containing a 6-bit  
DAC and programmable reference input  
• Voltage reference 1.2V  
Security  
• Hardware random-number generator  
• Supports DES, AES, SHA accelerator (CAU)  
• Multiple levels of embedded flash security  
Communication interfaces  
• Ethernet controller with MII and RMII interface to  
external PHY and hardware IEEE 1588 capability  
• USB high-/full-/low-speed On-the-Go with on-chip  
high speed transceiver  
• USB full-/low-speed OTG with on-chip transceiver  
• Two CAN, three SPI and four I2C modules  
• Low Power Universal Asynchronous Receiver/  
Transmitter 0 (LPUART0) and five standard UARTs  
• Secure Digital Host Controller (SDHC)  
• I2S module  
Timers  
• Four Periodic interrupt timers  
• 16-bit low-power timer  
• Two 16-bit low-power timer PWM modules  
• Two 8-channel motor control/general purpose/PWM  
timers  
• Two 2-ch quad decoder/general purpose timers  
• Real-time clock  
Human-machine interface  
Operating Characteristics  
• Low-power hardware touch sensor interface (TSI)  
• General-purpose input/output  
• Voltage/Flash write voltage range:1.71 to 3.6 V  
• Temperature range (ambient): -40 to 105°C  
© 2013–2015 Freescale Semiconductor, Inc. All rights reserved.  
Ordering Information  
Memory  
Part Number  
Maximum number of I\O's  
Flash  
SRAM  
256 KB  
256 KB  
MK65FN2M0VMI18  
MK65FX1M0VMI18  
2 MB  
116  
116  
1.25 MB  
Related Resources  
Type  
Description  
Resource  
Selector  
Guide  
The Freescale Solution Advisor is a web-based tool that features  
interactive application wizards and a dynamic product selector.  
Solution Advisor  
Reference  
Manual  
The Reference Manual contains a comprehensive description of the  
structure and function (operation) of a device.  
K65P169M180SF5RMV2-1  
This document.  
Data Sheet  
The Data Sheet includes electrical characteristics and signal  
connections.  
Chip Errata  
The chip mask set Errata provides additional or corrective information for Kinetis_K_0N65N -1  
a particular device mask set.  
Package  
drawing  
Package dimensions are provided in package drawings.  
MAPBGA 169-pin :  
98ASA00628D-1  
2
Kinetis K65 Sub-Family, Rev. 2, 05/2015  
Freescale Semiconductor, Inc.  
Kinetis K65 Sub-Family  
ARM® Cortex®-M4  
Core  
System  
Memories and Memory Interfaces  
Clocks  
Internal  
and external  
watchdogs  
Program  
flash  
Phase-  
locked loop  
RAM  
Debug  
Memory  
protection  
Frequency-  
locked loop  
FlexMemory  
DSP  
Cache  
interfaces  
Serial  
Low/high  
frequency  
oscillators  
Interrupt  
Floating-  
point unit  
External  
bus  
programming  
DMA  
controller  
interface  
Internal  
reference  
clocks  
Low-leakage  
wakeup  
SDRAM  
controller  
Security  
and Integrity  
Communication Interfaces  
Human-Machine  
Interface (HMI)  
Analog  
Timers  
I2C  
x4  
16-bit ADC  
x2  
I2S  
x1  
Timers  
x4 (20ch)  
CRC  
GPIO  
Xtrinsic  
touch-sensing  
interface  
Random  
number  
generator  
Carrier  
modulator  
transmitter  
Analog  
comparator  
x4  
UART  
x5  
Secure  
Digital  
Hardware  
encryption  
Programmable  
delay block  
SPI  
x3  
USB LS/FS  
OTG  
controller  
with  
6-bit DAC  
x4  
Periodic  
interrupt  
timers  
CAN  
x2  
12-bit DAC  
x2  
transceiver  
Voltage  
reference  
USB LS/FS/HS  
OTG  
controller  
with  
Low power  
timer  
IEEE 1588  
Ethernet  
Independent  
real-time  
clock  
transceiver  
LPUART  
USB DCD/  
USBHSDCD  
IEEE 1588  
Timers  
USB voltage  
regulator  
Low power  
TPM x 2 (4ch)  
Figure 1. K65 Block Diagram  
Kinetis K65 Sub-Family, Rev. 2, 05/2015  
3
Freescale Semiconductor, Inc.  
4
Kinetis K65 Sub-Family, Rev. 2, 05/2015  
Freescale Semiconductor, Inc.  
Table of Contents  
1 Ratings..................................................................................6  
3.8.1  
3.8.2  
Ethernet switching specifications.....................56  
1.1 Thermal handling ratings............................................... 6  
1.2 Moisture handling ratings...............................................6  
1.3 ESD handling ratings..................................................... 6  
1.4 Voltage and current operating ratings............................6  
2 General................................................................................. 7  
2.1 AC electrical characteristics...........................................7  
2.2 Nonswitching electrical specifications............................8  
USB Voltage Regulator Electrical  
Specifications.................................................. 58  
USB Full Speed Transceiver and High Speed  
PHY specifications...........................................59  
USB DCD electrical specifications...................60  
CAN switching specifications...........................60  
DSPI switching specifications (limited voltage  
range).............................................................. 60  
DSPI switching specifications (full voltage  
3.8.3  
3.8.4  
3.8.5  
3.8.6  
2.2.1  
2.2.2  
2.2.3  
2.2.4  
2.2.5  
2.2.6  
2.2.7  
2.2.8  
Voltage and current operating requirements... 8  
LVD and POR operating requirements............9  
Voltage and current operating behaviors.........9  
Power mode transition operating behaviors.... 11  
Power consumption operating behaviors........ 12  
EMC radiated emissions operating behaviors. 17  
Designing with radiated emissions in mind......18  
Capacitance attributes.....................................18  
3.8.7  
range).............................................................. 62  
I2C switching specifications.............................63  
UART switching specifications........................ 64  
3.8.8  
3.8.9  
3.8.10 Low Power UART switching specifications......64  
3.8.11 SDHC specifications........................................64  
3.8.12 I2S switching specifications.............................65  
3.9 Human-machine interfaces (HMI)..................................71  
2.3 Switching specifications.................................................18  
2.3.1  
2.3.2  
Device clock specifications..............................18  
General switching specifications..................... 19  
3.9.1  
TSI electrical specifications............................. 71  
4 Dimensions........................................................................... 72  
4.1 Obtaining package dimensions......................................72  
5 Pinout....................................................................................72  
5.1 K65_169BGA Signal Multiplexing and Pin  
2.4 Thermal specifications................................................... 20  
2.4.1  
2.4.2  
Thermal operating requirements..................... 20  
Thermal attributes............................................20  
3 Peripheral operating requirements and behaviors................ 22  
3.1 Core modules................................................................ 22  
Assignments.................................................................. 72  
5.2 Recommended connection for unused analog and  
3.1.1  
3.1.2  
Debug trace timing specifications....................22  
JTAG electricals.............................................. 23  
digital pins......................................................................80  
5.3 K65 Pinouts................................................................... 81  
6 Ordering parts....................................................................... 82  
6.1 Determining valid orderable parts..................................82  
7 Part identification...................................................................83  
7.1 Description.....................................................................83  
7.2 Format........................................................................... 83  
7.3 Fields............................................................................. 83  
7.4 Example.........................................................................84  
8 Terminology and guidelines.................................................. 84  
8.1 Definition: Operating requirement..................................84  
8.2 Definition: Operating behavior....................................... 85  
8.3 Definition: Attribute........................................................ 85  
8.4 Definition: Rating........................................................... 86  
8.5 Result of exceeding a rating.......................................... 86  
8.6 Relationship between ratings and operating  
3.2 System modules............................................................ 26  
3.3 Clock modules............................................................... 26  
3.3.1  
3.3.2  
3.3.3  
3.3.4  
MCG specifications..........................................26  
IRC48M specifications.....................................29  
Oscillator electrical specifications....................30  
32 kHz oscillator electrical characteristics....... 32  
3.4 Memories and memory interfaces................................. 33  
3.4.1  
3.4.2  
3.4.3  
3.4.4  
Flash (FTFE) electrical specifications..............33  
EzPort switching specifications....................... 37  
Flexbus switching specifications......................38  
SDRAM controller specifications..................... 41  
3.5 Security and integrity modules.......................................44  
3.6 Analog............................................................................44  
3.6.1  
3.6.2  
3.6.3  
3.6.4  
ADC electrical specifications........................... 44  
CMP and 6-bit DAC electrical specifications... 49  
12-bit DAC electrical characteristics................51  
Voltage reference electrical specifications...... 54  
requirements..................................................................86  
8.7 Guidelines for ratings and operating requirements........87  
8.8 Definition: Typical value.................................................87  
8.9 Typical value conditions.................................................88  
9 Revision History.................................................................... 89  
3.7 Timers............................................................................55  
3.8 Communication interfaces............................................. 55  
Kinetis K65 Sub-Family, Rev. 2, 05/2015  
5
Freescale Semiconductor, Inc.  
Ratings  
1 Ratings  
1.1 Thermal handling ratings  
Symbol  
TSTG  
Description  
Min.  
–55  
Max.  
150  
Unit  
°C  
Notes  
Storage temperature  
Solder temperature, lead-free  
1
2
TSDR  
260  
°C  
1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.  
2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic  
Solid State Surface Mount Devices.  
1.2 Moisture handling ratings  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
MSL  
Moisture sensitivity level  
3
1
1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic  
Solid State Surface Mount Devices.  
1.3 ESD handling ratings  
Symbol  
VHBM  
Description  
Min.  
-2000  
-500  
Max.  
+2000  
+500  
Unit  
V
Notes  
Electrostatic discharge voltage, human body model  
1
2
VCDM  
Electrostatic discharge voltage, charged-device  
model  
V
ILAT  
Latch-up current at ambient temperature of 105°C  
-100  
+100  
mA  
3
1. Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human  
Body Model (HBM).  
2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for  
Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.  
3. Determined according to JEDEC Standard JESD78, IC Latch-Up Test.  
1.4 Voltage and current operating ratings  
6
Kinetis K65 Sub-Family, Rev. 2, 05/2015  
Freescale Semiconductor, Inc.  
General  
Symbol  
VDD  
Description  
Min.  
–0.3  
Max.  
3.8  
Unit  
Digital supply voltage  
V
mA  
V
IDD  
Digital supply current  
300  
VDIO  
Digital1 input voltage,including RESET_b  
Analog1 input voltage, including EXTAL32 and XTAL32  
Maximum current single pin limit (digital output pins)  
Analog supply voltage  
–0.3  
–0.3  
–25  
VDD + 0.3  
VDD + 0.3  
25  
VAIO  
V
ID  
mA  
V
VDDA  
VDD – 0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
VDD + 0.3  
3.63  
VUSB0_DP  
VUSB1_DP  
VUSB0_DM  
VUSB1_DM  
USB0_DP input voltage  
V
USB1_DP input voltage  
3.63  
V
USB0_DM input voltage  
3.63  
V
USB1_DM input voltage  
3.63  
V
VUSB1_VBUS USB1_VBUS detect voltage  
6.0  
V
VREG_IN0, USB regulator input  
VREG_IN1  
6.0  
V
VBAT  
RTC battery supply voltage  
–0.3  
3.8  
V
1. Digital pins have a general purpose I/O port assigned (e.g. PTA0). Analog pins do not have an associated general  
purpose I/O port.  
2 General  
2.1 AC electrical characteristics  
Unless otherwise specified, propagation delays are measured from the 50% to the 50%  
point, and rise and fall times are measured at the 20% and 80% points, as shown in the  
following figure.  
High  
Low  
VIH  
80%  
50%  
20%  
Input Signal  
Midpoint1  
VIL  
Fall Time  
Rise Time  
The midpoint is VIL + (VIH - VIL) / 2  
Figure 2. Input signal measurement reference  
All digital I/O switching characteristics assume:  
1. output pins  
• have CL=30pF loads,  
Kinetis K65 Sub-Family, Rev. 2, 05/2015  
7
Freescale Semiconductor, Inc.  
General  
• are slew rate disabled, and  
• are normal drive strength  
2. input pins  
• have their passive filter disabled (PORTx_PCRn[PFE]=0)  
2.2 Nonswitching electrical specifications  
2.2.1 Voltage and current operating requirements  
Table 1. Voltage and current operating requirements  
Symbol  
VDD  
Description  
Min.  
1.71  
1.71  
–0.1  
–0.1  
1.71  
Max.  
3.6  
3.6  
0.1  
0.1  
3.6  
Unit  
V
Notes  
Supply voltage  
VDDA  
Analog supply voltage  
V
VDD – VDDA VDD-to-VDDA differential voltage  
VSS – VSSA VSS-to-VSSA differential voltage  
V
V
VBAT  
VIH  
RTC battery supply voltage  
Input high voltage  
V
• 2.7 V ≤ VDD ≤ 3.6 V  
• 1.71 V ≤ VDD ≤ 2.7 V  
0.7 × VDD  
V
V
0.75 × VDD  
VIL  
Input low voltage  
• 2.7 V ≤ VDD ≤ 3.6 V  
• 1.71 V ≤ VDD ≤ 2.7 V  
0.35 × VDD  
0.3 × VDD  
V
V
VHYS  
IICDIO  
Input hysteresis  
Digital1 input pin negative DC injection current —  
single pin  
0.06 × VDD  
-5  
V
2
2
mA  
• VIN < VSS-0.3V  
IICAIO  
Analog1 input pin DC injection current — single pin  
• VIN < VSS-0.3V (Negative current injection)  
mA  
-5  
IICcont  
Contiguous pin DC injection current —regional limit,  
includes sum of negative injection currents of 16  
contiguous pin  
-25  
mA  
• Negative current injection  
VODPU  
VRAM  
Pseudo Open drain pullup voltage level  
VDD voltage required to retain RAM  
VDD  
1.2  
VDD  
V
V
V
3
VRFVBAT VBAT voltage required to retain the VBAT register file  
VPOR_VBAT  
1. Digital pins have a general purpose I/O port assigned (e.g. PTA0). Analog pins do not have an associated general  
purpose I/O port.  
8
Kinetis K65 Sub-Family, Rev. 2, 05/2015  
Freescale Semiconductor, Inc.  
General  
2. All digital and analog I/O pins are internally clamped to VSS through an ESD protection diode. There is no diode  
connection to VDD. If VIN is less than VSS-0.3V, a current limiting resistor is required. The minimum negative DC  
injection current limiting resistor value is calculated as R=(-0.3-VIN)/|IICDIO| or R=(-0.3-VIN)/|IICAIO|. The actual resistor  
should be an order of magnitude higher to tolerate transient voltages.  
3. Open drain outputs must be pulled to VDD.  
2.2.2 LVD and POR operating requirements  
Table 2. VDD supply LVD and POR operating requirements  
Symbol Description  
Min.  
0.8  
Typ.  
1.1  
Max.  
1.5  
Unit  
V
Notes  
VPOR  
Falling VDD POR detect voltage  
VLVDH  
Falling low-voltage detect threshold — high  
range (LVDV=01)  
2.48  
2.56  
2.64  
V
Low-voltage warning thresholds — high range  
• Level 1 falling (LVWV=00)  
1
VLVW1H  
VLVW2H  
VLVW3H  
VLVW4H  
2.62  
2.72  
2.82  
2.92  
2.70  
2.80  
2.90  
3.00  
2.78  
2.88  
2.98  
3.08  
V
V
V
V
• Level 2 falling (LVWV=01)  
• Level 3 falling (LVWV=10)  
• Level 4 falling (LVWV=11)  
VHYSH  
VLVDL  
Low-voltage inhibit reset/recover hysteresis —  
high range  
80  
mV  
V
Falling low-voltage detect threshold — low  
range (LVDV=00)  
1.54  
1.60  
1.66  
Low-voltage warning thresholds — low range  
• Level 1 falling (LVWV=00)  
1
VLVW1L  
VLVW2L  
VLVW3L  
VLVW4L  
1.74  
1.84  
1.94  
2.04  
1.80  
1.90  
2.00  
2.10  
1.86  
1.96  
2.06  
2.16  
V
V
V
V
• Level 2 falling (LVWV=01)  
• Level 3 falling (LVWV=10)  
• Level 4 falling (LVWV=11)  
VHYSL  
Low-voltage inhibit reset/recover hysteresis —  
low range  
60  
mV  
VBG  
tLPO  
Bandgap voltage reference  
0.97  
900  
1.00  
1.03  
V
Internal low power oscillator period — factory  
trimmed  
1000  
1100  
μs  
1. Rising threshold is the sum of falling threshold and hysteresis voltage  
Table 3. VBAT power operating requirements  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
VPOR_VBAT Falling VBAT supply POR detect voltage  
0.8  
1.1  
1.5  
V
Kinetis K65 Sub-Family, Rev. 2, 05/2015  
9
Freescale Semiconductor, Inc.  
General  
2.2.3 Voltage and current operating behaviors  
Table 4. Voltage and current operating behaviors  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
VOH  
Output high voltage — normal drive pad  
• 2.7 V ≤ VDD ≤ 3.6 V, IOH = -10mA  
• 1.71 V ≤VDD ≤ 2.7 V, IOH = -5mA  
VDD – 0.5  
VDD – 0.5  
V
V
Output high voltage — High drive pad  
• 2.7 V ≤ VDD ≤ 3.6 V, IOH = -20mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOH = -10mA  
VDD – 0.5  
VDD – 0.5  
V
V
IOHT  
Output high current total for all ports  
100  
mA  
V
VOH_RTC_WAKEUP Output high voltage— normal drive pad  
• 2.7 V ≤ VBAT ≤ 3.6 V, IOH = -5 mA  
VBAT – 0.5  
VBAT – 0.5  
V
• 1.71 V ≤ VBAT ≤ 2.7 V, IOH = -2.5  
mA  
IOH_RTC_WAKEUP Output high current total for  
RTC_WAKEUP pins  
100  
mA  
VOL  
Output low voltage — normal drive pad  
• 2.7 V ≤ VDD ≤ 3.6 V, IOL = 10 mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOL = 5 mA  
0.5  
0.5  
V
V
Output low voltage — high drive pad  
• 2.7 V ≤ VDD ≤ 3.6 V, IOL = 20 mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOL = 10 mA  
0.5  
0.5  
V
V
IOLT  
Output low current total for all ports  
100  
mA  
V
VOL_RTC_WAKEUP Output low voltage— normal drive pad  
• 2.7 V ≤ VBAT ≤ 3.6 V, IOL = 5 mA  
0.5  
0.5  
V
• 1.71 V ≤ VBAT ≤ 2.7 V, IOL = 2.5mA  
IOL_RTC_WAKEUP Output low current total for  
RTC_WAKEUPpins  
100  
0.5  
mA  
µA  
IIN  
Input leakage current, analog and digital  
0.002  
1
pins  
• VSS ≤ VIN ≤ VDD  
IOZ_RTC_WAKEUP Hi-Z (off-state) leakage current (per  
RTC_WAKEUP pin)  
20  
20  
0.25  
50  
µA  
kΩ  
kΩ  
RPU  
Internal pullup resistors(except  
RTC_WAKEUP pins)  
2
3
RPD  
Internal pulldown resistors (except  
RTC_WAKEUP pins)  
50  
1. Measured at VDD=3.6V  
2. Measured at VDD supply voltage = VDD min and Vinput = VSS  
3. Measured at VDD supply voltage = VDD min and Vinput = VDD  
10  
Kinetis K65 Sub-Family, Rev. 2, 05/2015  
Freescale Semiconductor, Inc.  
General  
2.2.4 Power mode transition operating behaviors  
All specifications except tPOR, and VLLSx –> RUN recovery times in the following  
table assume this clock configuration:  
• CPU and system clocks = 100MHz  
• Bus clock = 50MHz  
• FlexBus clock = 50 MHz  
• Flash clock = 25 MHz  
• MCG mode=FEI  
Table 5. Power mode transition operating behaviors  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
tPOR  
After a POR event, amount of time from the point  
VDD reaches 1.71 V to execution of the first  
instruction across the operating temperature range  
of the chip.  
300  
µs  
172  
172  
94  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
• VLLS0 –> RUN  
• VLLS1 –> RUN  
• VLLS2 –> RUN  
• VLLS3 –> RUN  
• LLS2 –> RUN  
• LLS3 –> RUN  
• VLPS –> RUN  
• STOP –> RUN  
94  
5.8  
5.8  
5.4  
5.4  
Table 6. Low power mode peripheral adders — typical value  
Symbol  
Description  
Temperature (°C)  
Unit  
-40  
25  
50  
70  
85  
1
IIREFSTEN4MHz 4 MHz internal reference clock (IRC) adder.  
Measured by entering STOP or VLPS mode  
with 4 MHz IRC enabled.  
56  
56  
56  
56  
56  
56  
µA  
IIREFSTEN32KH 32 kHz internal reference clock (IRC) adder.  
52  
52  
52  
52  
52  
52  
µA  
Measured by entering STOP mode with the  
z
32 kHz IRC enabled.  
Table continues on the next page...  
Kinetis K65 Sub-Family, Rev. 2, 05/2015  
11  
Freescale Semiconductor, Inc.  
General  
Table 6. Low power mode peripheral adders — typical value (continued)  
Symbol  
Description  
Temperature (°C)  
Unit  
-40  
25  
50  
70  
85  
1
IEREFSTEN4MH External 4 MHz crystal clock adder.  
206  
228  
237  
245  
251  
258  
uA  
Measured by entering STOP or VLPS mode  
z
with the crystal enabled.  
IEREFSTEN32K External 32 kHz crystal clock adder by  
means of the OSC0_CR[EREFSTEN and  
Hz  
EREFSTEN] bits. Measured by entering all  
modes with the crystal enabled.  
nA  
440  
440  
490  
490  
510  
510  
511  
22  
490  
490  
490  
490  
560  
560  
520  
22  
540  
540  
540  
540  
560  
560  
545  
22  
560  
560  
560  
560  
560  
560  
556  
22  
570  
570  
570  
570  
610  
610  
563  
22  
580  
580  
680  
680  
680  
680  
576  
22  
VLLS1  
VLLS3  
LLS2  
LLS3  
VLPS  
STOP  
I48MIRC  
ICMP  
48MHz IRC  
µA  
µA  
CMP peripheral adder measured by placing  
the device in VLLS1 mode with CMP  
enabled using the 6-bit DAC and a single  
external input for compare. Includes 6-bit  
DAC power consumption.  
IRTC  
RTC peripheral adder measured by placing  
the device in VLLS1 mode with external 32  
kHz crystal enabled by means of the  
RTC_CR[OSCE] bit and the RTC ALARM  
set for 1 minute. Includes ERCLK32K (32  
kHz external crystal) power consumption.  
432  
357  
388  
475  
532  
810  
nA  
µA  
IUART  
UART peripheral adder measured by placing  
the device in STOP or VLPS mode with  
selected clock source waiting for RX data at  
115200 baud rate. Includes selected clock  
source power consumption.  
66  
66  
66  
66  
66  
66  
MCGIRCLK (4 MHz internal reference clock)  
OSCERCLK (4 MHz external crystal)  
214  
45  
234  
45  
246  
45  
254  
45  
260  
45  
268  
45  
IBG  
Bandgap adder when BGEN bit is set and  
device is placed in VLPx, LLS, or VLLSx  
mode.  
µA  
µA  
IADC  
ADC peripheral adder combining the  
366  
366  
366  
366  
366  
366  
measured values at VDD and VDDA by placing  
the device in STOP or VLPS mode. ADC is  
configured for low power mode using the  
internal clock and continuous conversions.  
1. Applicable to LQFP and BGA packages only  
12  
Kinetis K65 Sub-Family, Rev. 2, 05/2015  
Freescale Semiconductor, Inc.  
General  
2.2.5 Power consumption operating behaviors  
NOTE  
The maximum values represent characterized results  
equivalent to the mean plus three times the standard  
deviation (mean + 3 sigma)  
Table 7. Power consumption operating behaviors  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
IDDA  
Analog supply current  
See note  
mA  
1
2
IDD_RUN Run mode current — all peripheral clocks  
disabled, code executing from flash  
32.3  
32.4  
71.03  
71.81  
mA  
mA  
• @ 1.8V  
• @ 3.0V  
IDD_RUN Run mode current — all peripheral clocks  
enabled, code executing from flash  
3, 4  
50.5  
89.58  
mA  
• @ 1.8V  
• @ 3.0V  
50.6  
69.7  
55.95  
99.85  
mA  
mA  
• @ 25°C  
• @ 105°C  
IDD_RUNC Run mode current in compute operation - 120  
5
6
28.5  
67.74  
mA  
MHz core / 24 MHz flash / bus clock disabled,  
O
code of while(1) loop executing from flash  
• at 3.0 V  
IDD_HSRU Run mode current — all peripheral clocks  
disabled, code executing from flash  
N
47.2  
47.3  
91.25  
91.62  
mA  
mA  
• @ 1.8V  
• @ 3.0V  
IDD_HSRU Run mode current — all peripheral clocks  
7, -1  
enabled, code executing from flash  
N
71.4  
103.58  
mA  
• @ 1.8V  
• @ 3.0V  
71.5  
93.3  
79.13  
mA  
mA  
• @ 25°C  
• @ 105°C  
115.08  
IDD_HSRU HSRun mode current in compute operation –  
42.9  
91.97  
mA  
5
168 MHz core/ 28 MHz flash / bus clock  
NCO  
disabled, code of while(1) loop executing from  
flash at 3.0V  
IDD_WAIT Wait mode high frequency current at 3.0 V — all  
peripheral clocks disabled  
16.9  
35  
45.2  
mA  
mA  
8
8
IDD_WAIT Wait mode reduced frequency current at 3.0 V  
— all peripheral clocks enabled  
62.81  
Table continues on the next page...  
Kinetis K65 Sub-Family, Rev. 2, 05/2015  
13  
Freescale Semiconductor, Inc.  
General  
Table 7. Power consumption operating behaviors (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
IDD_VLPR Very-low-power run mode current at 3.0 V — all  
peripheral clocks disabled  
1.1  
9.56  
mA  
9
IDD_VLPR Very-low-power run mode current at 3.0 V — all  
peripheral clocks enabled  
2
9.88  
9.47  
mA  
μA  
10  
11  
IDD_VLPRC Very-low-power run mode current in compute  
986  
operation - 4 MHz core / 1 MHz flash / bus clock  
O
disabled, LPTMR running with 4 MHz internal  
reference clock  
• at 3.0 V  
IDD_VLPW Very-low-power wait mode current at 3.0 V — all  
peripheral clocks disabled  
0.690  
1.5  
9.25  
mA  
mA  
12  
IDD_VLPW Very-low-power wait mode current at 3.0 V — all  
peripheral clocks enabled  
10.00  
IDD_STOP Stop mode current at 3.0 V  
0.791  
3.8  
2.39  
6.91  
mA  
mA  
mA  
• @ –40 to 25°C  
• @ 70°C  
13.2  
18.91  
• @ 105°C  
IDD_VLPS Very-low-power stop mode current at 3.0 V  
202  
1400  
5100  
353.77  
2464.54  
8949.06  
μA  
μA  
μA  
• @ –40 to 25°C  
• @ 70°C  
• @ 105°C  
IDD_LLS3 Low leakage stop mode current at 3.0 V  
• @ –40 to 25°C  
9.0  
76.3  
402  
13.05  
88.63  
μA  
μA  
μA  
• @ 70°C  
• @ 105°C  
656.08  
IDD_LLS2 Low leakage stop mode current at 3.0 V  
5.7  
32.2  
μA  
μA  
• @ –40 to 25°C  
• @ 70°C  
41.3  
229  
55.80  
• @ 105°C  
276.81  
μA  
IDD_VLLS3 Very low-leakage stop mode 3 current at 3.0 V  
5.5  
46.3  
249  
7.31  
58.33  
380.77  
μA  
μA  
μA  
• @ –40 to 25°C  
• @ 70°C  
• @ 105°C  
IDD_VLLS2 Very low-leakage stop mode 2 current at 3.0 V  
2.7  
3.24  
18.72  
84.77  
μA  
μA  
μA  
• @ –40 to 25°C  
13.1  
76.6  
• @ 70°C  
• @ 105°C  
IDD_VLLS1 Very low-leakage stop mode 1 current at 3.0 V  
Table continues on the next page...  
14  
Kinetis K65 Sub-Family, Rev. 2, 05/2015  
Freescale Semiconductor, Inc.  
General  
Notes  
Table 7. Power consumption operating behaviors (continued)  
Symbol Description  
• @ –40 to 25°C  
Min.  
Typ.  
Max.  
Unit  
0.847  
1.48  
μA  
• @ 70°C  
6.5  
11.31  
81.78  
μA  
μA  
• @ 105°C  
46.7  
IDD_VLLS0 Very low-leakage stop mode 0 current at 3.0 V  
with POR detect circuit enabled  
0.551  
6.3  
.65  
7.12  
53.68  
μA  
μA  
μA  
• @ –40 to 25°C  
• @ 70°C  
49.6  
• @ 105°C  
IDD_VLLS0 Very low-leakage stop mode 0 current at 3.0 V  
with POR detect circuit disabled  
0.254  
6.3  
0.445  
10.99  
85.27  
μA  
μA  
μA  
• @ –40 to 25°C  
• @ 70°C  
48.7  
• @ 105°C  
IDD_VBAT Average current with RTC and 32kHz disabled  
at 3.0 V  
0.19  
0.49  
2.2  
0.22  
0.64  
3.2  
μA  
μA  
μA  
• @ –40 to 25°C  
• @ 70°C  
• @ 105°C  
IDD_VBAT Average current when CPU is not accessing  
RTC registers  
13  
• @ 1.8V  
0.68  
1.2  
0.8  
1.56  
5.3  
• @ –40 to 25°C  
• @ 70°C  
μA  
μA  
μA  
3.6  
• @ 105°C  
• @ 3.0V  
• @ –40 to 25°C  
• @ 70°C  
0.81  
1.45  
4.3  
0.96  
1.89  
6.33  
μA  
μA  
μA  
• @ 105°C  
1. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device.  
See each module's specification for its supply current.  
2. 120 MHz core and system clock, 60 MHz bus and FlexBus clock, and 24 MHz flash clock. MCG configured for PEE  
mode. All peripheral clocks disabled.  
3. 120 MHz core and system clock, 60 MHz bus and FlexBus clock, and 24 MHz flash clock. MCG configured for PEE  
mode. All peripheral clocks enabled.  
4. Max values are measured with CPU executing DSP instructions.  
5. MCG configured for PEE mode.  
6. 168 MHz core and system clock, 56 MHz bus and FlexBus clock, and 28 MHz flash clock. MCG configured for PEE  
mode. All peripheral clocks disabled.  
7. 168 MHz core and system clock, 56 MHz bus and FlexBus clock, and 28 MHz flash clock. MCG configured for PEE  
mode. All peripheral clocks enabled.  
8. 120 MHz core and system clock, 60MHz bus clock, and FlexBus. MCG configured for PEE mode.  
Kinetis K65 Sub-Family, Rev. 2, 05/2015  
15  
Freescale Semiconductor, Inc.  
General  
9. 4 MHz core, system, FlexBus, and bus clock and 1 MHz flash clock. MCG configured for BLPE mode. All peripheral  
clocks disabled. Code executing from flash.  
10. 4 MHz core, system, FlexBus, and bus clock and 1 MHz flash clock. MCG configured for BLPE mode. All peripheral  
clocks enabled but peripherals are not in active operation. Code executing from flash.  
11. MCG configured for BLPI mode. CoreMark benchmark compiled using IAR 6.40 with optimization level high, optimized  
for balanced.  
12. 4 MHz core, system, FlexBus, and bus clock and 1 MHz flash clock. MCG configured for BLPE mode. All peripheral  
clocks disabled.  
13. Includes 32kHz oscillator current and RTC operation.  
2.2.5.1 Diagram: Typical IDD_RUN operating behavior  
The following data was measured under these conditions:  
• USB regulator disabled  
• No GPIOs toggled  
• Code execution from flash with cache enabled  
• For the ALLOFF curve, all peripheral clocks are disabled except FTFE  
Figure 3. Run mode supply current vs. core frequency  
16  
Kinetis K65 Sub-Family, Rev. 2, 05/2015  
Freescale Semiconductor, Inc.  
General  
Figure 4. VLPR mode supply current vs. core frequency  
2.2.6 EMC radiated emissions operating behaviors  
Table 8. EMC radiated emissions operating behaviors  
Symbol  
Description  
Frequency  
band  
Typ.  
Unit  
Notes  
(MHz)  
VRE1  
VRE2  
Radiated emissions voltage, band 1  
Radiated emissions voltage, band 2  
Radiated emissions voltage, band 3  
Radiated emissions voltage, band 4  
IEC level  
0.15–50  
50–150  
23  
27  
28  
14  
K
dBμV  
dBμV  
dBμV  
dBμV  
1, 2  
VRE3  
150–500  
500–1000  
0.15–1000  
VRE4  
VRE_IEC  
2, 3  
1. Determined according to IEC Standard 61967-1, Integrated Circuits - Measurement of Electromagnetic Emissions,  
150 kHz to 1 GHz Part 1: General Conditions and Definitions and IEC Standard 61967-2, Integrated Circuits -  
Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions—TEM  
Cell and Wideband TEM Cell Method. Measurements were made while the microcontroller was running basic  
Kinetis K65 Sub-Family, Rev. 2, 05/2015  
17  
Freescale Semiconductor, Inc.  
General  
application code. The reported emission level is the value of the maximum measured emission, rounded up to the next  
whole number, from among the measured orientations in each frequency range.  
2. VDD = 3.3 V, TA = 25 °C, fOSC = 12 MHz (crystal), fSYS = MHz, fBUS = MHz  
3. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions—TEM Cell and  
Wideband TEM Cell Method  
2.2.7 Designing with radiated emissions in mind  
To find application notes that provide guidance on designing your system to minimize  
interference from radiated emissions:  
1. Go to www.freescale.com.  
2. Perform a keyword search for “EMC design.”  
2.2.8 Capacitance attributes  
Table 9. Capacitance attributes  
Symbol  
CIN_A  
Description  
Min.  
Max.  
Unit  
pF  
Input capacitance: analog pins  
Input capacitance: digital pins  
7
7
CIN_D  
pF  
2.3 Switching specifications  
2.3.1 Device clock specifications  
Table 10. Device clock specifications  
Symbol  
fSYS  
Description  
Min.  
Max.  
Unit  
Notes  
High Speed run mode  
System and core clock  
180  
MHz  
Normal run mode (and High Speed run mode unless otherwise specified above)  
fSYS  
System and core clock  
120  
MHz  
MHz  
System and core clock when Full Speed USB in  
operation  
20  
fSYS_USBHS System and core clock when High Speed USB in  
operation  
100  
MHz  
MHz  
fENET  
System and core clock when ethernet in operation  
• 10 Mbps  
• 100 Mbps  
5
50  
Table continues on the next page...  
18  
Freescale Semiconductor, Inc.  
Kinetis K65 Sub-Family, Rev. 2, 05/2015  
General  
Notes  
Table 10. Device clock specifications (continued)  
Symbol  
fBUS  
Description  
Bus clock  
Min.  
Max.  
60  
Unit  
MHz  
MHz  
MHz  
MHz  
FB_CLK  
fFLASH  
FlexBus clock  
Flash clock  
LPTMR clock  
60  
28  
fLPTMR  
25  
VLPR mode1  
fSYS  
fBUS  
System and core clock  
Bus clock  
4
4
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
FB_CLK  
fFLASH  
FlexBus clock  
4
Flash clock  
1
fERCLK  
fLPTMR_pin  
External reference clock  
LPTMR clock  
16  
25  
8
fFlexCAN_ERCLK FlexCAN external reference clock  
fI2S_MCLK  
fI2S_BCLK  
I2S master clock  
I2S bit clock  
12.5  
4
1. The frequency limitations in VLPR mode here override any frequency specification listed in the timing specification for  
any other module.  
2.3.2 General switching specifications  
These general purpose specifications apply to all signals configured for GPIO, UART,  
CAN, CMT, IEEE 1588 timer, timers, and I2C signals.  
Table 11. General switching specifications  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
GPIO pin interrupt pulse width (digital glitch filter  
disabled) — Synchronous path  
1.5  
Bus clock  
cycles  
1, 2  
GPIO pin interrupt pulse width (digital glitch filter  
disabled, analog filter enabled) — Asynchronous  
path  
100  
50  
ns  
ns  
ns  
3
3
3
GPIO pin interrupt pulse width (digital glitch filter  
disabled, analog filter disabled) — Asynchronous  
path  
External reset pulse width (digital glitch filter  
disabled)  
100  
2
Mode select (EZP_CS) hold time after reset  
deassertion  
Bus clock  
cycles  
Port rise and fall time (high drive strength)  
• Slew enabled  
4
Table continues on the next page...  
Kinetis K65 Sub-Family, Rev. 2, 05/2015  
19  
Freescale Semiconductor, Inc.  
General  
Table 11. General switching specifications (continued)  
Symbol  
Description  
• 1.71 ≤ VDD ≤ 2.7V  
• 2.7 ≤ VDD ≤ 3.6V  
• Slew disabled  
Min.  
Max.  
Unit  
Notes  
25  
ns  
15  
ns  
• 1.71 ≤ VDD ≤ 2.7V  
• 2.7 ≤ VDD ≤ 3.6V  
7
7
ns  
ns  
Port rise and fall time (low drive strength)  
• Slew enabled  
5
• 1.71 ≤ VDD ≤ 2.7V  
• 2.7 ≤ VDD ≤ 3.6V  
25  
15  
ns  
ns  
• Slew disabled  
• 1.71 ≤ VDD ≤ 2.7V  
• 2.7 ≤ VDD ≤ 3.6V  
7
7
ns  
ns  
1. This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may  
or may not be recognized. In Stop, VLPS, LLS, and VLLSx modes, the synchronizer is bypassed so shorter pulses can  
be recognized in that case.  
2. The greater synchronous and asynchronous timing must be met.  
3. This is the minimum pulse width that is guaranteed to be recognized as a pin interrupt request in Stop, VLPS, LLS, and  
VLLSx modes.  
4. 75 pF load  
5. 15 pF load  
2.4 Thermal specifications  
2.4.1 Thermal operating requirements  
Table 12. Thermal operating requirements  
Symbol  
TJ  
Description  
Min.  
–40  
–40  
Max.  
125  
Unit  
°C  
Notes  
Die junction temperature  
Ambient temperature  
TA  
105  
°C  
1
1. Maximum TA can be exceeded only if the user ensures that TJ does not exceed maximum TJ. The simplest method to  
determine TJ is: TJ= = TA + θJA x chip power dissipation.  
20  
Kinetis K65 Sub-Family, Rev. 2, 05/2015  
Freescale Semiconductor, Inc.  
General  
2.4.2 Thermal attributes  
Board type  
Symbol  
Description  
169 MAPBGA  
Unit  
Notes  
Single-layer (1s)  
RθJA  
Thermal  
resistance,  
junction to  
ambient (natural  
convection)  
38  
°C/W  
°C/W  
°C/W  
°C/W  
1
1
1
1
Four-layer (2s2p) RθJA  
Thermal  
resistance,  
junction to  
ambient (natural  
convection)  
21.9  
30  
Single-layer (1s)  
RθJMA  
Thermal  
resistance,  
junction to  
ambient (200 ft./  
min. air speed)  
Four-layer (2s2p) RθJMA  
Thermal  
18.6  
resistance,  
junction to  
ambient (200 ft./  
min. air speed)  
RθJB  
RθJC  
ΨJT  
Thermal  
resistance,  
junction to board  
14.4  
8.2  
°C/W  
°C/W  
°C/W  
2
3
4
Thermal  
resistance,  
junction to case  
Thermal  
0.2  
characterization  
parameter,  
junction to  
package top  
outside center  
(natural  
convection)  
1. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental  
Conditions—Natural Convection (Still Air), or EIA/JEDEC Standard JESD51-6, Integrated Circuit Thermal Test  
Method Environmental Conditions—Forced Convection (Moving Air).  
2. Determined according to JEDEC Standard JESD51-8, Integrated Circuit Thermal Test Method Environmental  
Conditions—Junction-to-Board.  
3. Determined according to Method 1012.1 of MIL-STD 883, Test Method Standard, Microcircuits, with the cold plate  
temperature used for the case temperature. The value includes the thermal resistance of the interface material  
between the top of the package and the cold plate.  
4. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental  
Conditions—Natural Convection (Still Air).  
NOTES:  
1. Determined according to JEDEC Standard JESD51-2, Integrated Circuits  
Thermal Test Method Environmental Conditions—Natural Convection (Still Air)  
with the single layer board horizontal. Board meets JESD51-9 specification.  
Kinetis K65 Sub-Family, Rev. 2, 05/2015  
21  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
2. Determined according to JEDEC Standard JESD51-8, Integrated Circuit Thermal  
Test Method Environmental Conditions—Junction-to-Board.  
3. Determined according to Method 1012.1 of MIL-STD 883, Test Method Standard,  
Microcircuits, with the cold plate temperature used for the case temperature. The  
value includes the thermal resistance of the interface material between the top of  
the package and the cold plate.  
4. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal  
Test Method Environmental Conditions—Natural Convection (Still Air).  
3 Peripheral operating requirements and behaviors  
3.1 Core modules  
3.1.1 Debug trace timing specifications  
Table 13. Debug trace operating behaviors  
Symbol  
Tcyc  
Twl  
Description  
Min.  
Max.  
Unit  
MHz  
ns  
Clock period  
Frequency dependent  
Low pulse width  
High pulse width  
Clock and data rise time  
Clock and data fall time  
Data setup  
2
2
3
Twh  
Tr  
ns  
1.5  
1.0  
ns  
Tf  
3
ns  
Ts  
ns  
Th  
Data hold  
ns  
TRACECLK  
T
r
T
f
T
wh  
T
wl  
T
cyc  
Figure 5. TRACE_CLKOUT specifications  
22  
Freescale Semiconductor, Inc.  
Kinetis K65 Sub-Family, Rev. 2, 05/2015  
Peripheral operating requirements and behaviors  
TRACE_CLKOUT  
TRACE_D[3:0]  
Ts  
Th  
Ts  
Th  
Figure 6. Trace data specifications  
3.1.2 JTAG electricals  
Table 14. JTAG limited voltage range electricals  
Symbol  
Description  
Min.  
Max.  
Unit  
V
Operating voltage  
2.7  
3.6  
J1  
TCLK frequency of operation  
• Boundary Scan  
MHz  
0
0
0
10  
25  
50  
• JTAG and CJTAG  
• Serial Wire Debug  
J2  
J3  
TCLK cycle period  
TCLK clock pulse width  
• Boundary Scan  
1/J1  
ns  
50  
20  
10  
ns  
ns  
ns  
• JTAG and CJTAG  
• Serial Wire Debug  
J4  
J5  
TCLK rise and fall times  
20  
2.0  
8
3
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Boundary scan input data setup time to TCLK rise  
Boundary scan input data hold time after TCLK rise  
TCLK low to boundary scan output data valid  
TCLK low to boundary scan output high-Z  
TMS, TDI input data setup time to TCLK rise  
TMS, TDI input data hold time after TCLK rise  
TCLK low to TDO data valid  
28  
25  
19  
17  
J6  
J7  
J8  
J9  
J10  
J11  
J12  
J13  
J14  
1
100  
8
TCLK low to TDO high-Z  
TRST assert time  
TRST setup time (negation) to TCLK high  
Table 15. JTAG full voltage range electricals  
Symbol  
Description  
Operating voltage  
Min.  
Max.  
Unit  
1.71  
3.6  
V
Table continues on the next page...  
Kinetis K65 Sub-Family, Rev. 2, 05/2015  
23  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
Table 15. JTAG full voltage range electricals (continued)  
Symbol  
Description  
Min.  
Max.  
Unit  
J1  
TCLK frequency of operation  
• Boundary Scan  
MHz  
0
0
0
10  
20  
40  
• JTAG and CJTAG  
• Serial Wire Debug  
J2  
J3  
TCLK cycle period  
TCLK clock pulse width  
• Boundary Scan  
1/J1  
ns  
50  
25  
ns  
ns  
ns  
• JTAG and CJTAG  
• Serial Wire Debug  
12.5  
J4  
J5  
TCLK rise and fall times  
20  
2.0  
8
3
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Boundary scan input data setup time to TCLK rise  
Boundary scan input data hold time after TCLK rise  
TCLK low to boundary scan output data valid  
TCLK low to boundary scan output high-Z  
TMS, TDI input data setup time to TCLK rise  
TMS, TDI input data hold time after TCLK rise  
TCLK low to TDO data valid  
J6  
J7  
30.6  
25  
J8  
J9  
J10  
J11  
J12  
J13  
J14  
1.0  
100  
8
19.0  
17.0  
TCLK low to TDO high-Z  
TRST assert time  
TRST setup time (negation) to TCLK high  
J2  
J4  
J3  
J3  
TCLK (input)  
J4  
Figure 7. Test clock input timing  
24  
Freescale Semiconductor, Inc.  
Kinetis K65 Sub-Family, Rev. 2, 05/2015  
Peripheral operating requirements and behaviors  
TCLK  
J5  
J6  
Input data valid  
Data inputs  
Data outputs  
Data outputs  
Data outputs  
J7  
Output data valid  
J8  
J7  
Output data valid  
Figure 8. Boundary scan (JTAG) timing  
TCLK  
TDI/TMS  
TDO  
J9  
J10  
Input data valid  
J11  
Output data valid  
J12  
J11  
TDO  
Output data valid  
TDO  
Figure 9. Test Access Port timing  
Kinetis K65 Sub-Family, Rev. 2, 05/2015  
25  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
TCLK  
J14  
J13  
TRST  
Figure 10. TRST timing  
3.2 System modules  
There are no specifications necessary for the device's system modules.  
3.3 Clock modules  
3.3.1 MCG specifications  
Table 16. MCG specifications  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
fints_ft  
fints_t  
Iints  
Internal reference frequency (slow clock) —  
factory trimmed at nominal VDD and 25 °C  
32.768  
kHz  
Internal reference frequency (slow clock) —  
user trimmed  
31.25  
39.0625  
kHz  
Internal reference (slow clock) current  
20  
µA  
Δfdco_res_t Resolution of trimmed average DCO output  
frequency at fixed voltage and temperature —  
using SCTRIM and SCFTRIM  
0.3  
0.6  
%fdco  
1
1
Δfdco_res_t Resolution of trimmed average DCO output  
frequency at fixed voltage and temperature —  
using SCTRIM only  
0.2  
0.5  
%fdco  
Δfdco_t  
Total deviation of trimmed average DCO output  
frequency over voltage and temperature  
0.5  
0.3  
2
%fdco  
%fdco  
1
1
Δfdco_t  
Total deviation of trimmed average DCO output  
frequency over fixed voltage and temperature  
range of 0–70°C  
1.5  
fintf_ft  
fintf_t  
Iintf  
Internal reference frequency (fast clock) —  
factory trimmed at nominal VDD and 25°C  
3
4
5
MHz  
MHz  
µA  
Internal reference frequency (fast clock) — user  
trimmed at nominal VDD and 25 °C  
25  
Internal reference (fast clock) current  
Table continues on the next page...  
26  
Freescale Semiconductor, Inc.  
Kinetis K65 Sub-Family, Rev. 2, 05/2015  
Peripheral operating requirements and behaviors  
Table 16. MCG specifications (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
floc_low Loss of external clock minimum frequency —  
(3/5) x  
fints_t  
kHz  
RANGE = 00  
ext clk freq: above (3/5)fint never reset  
ext clk freq: between (2/5)fint and (3/5)fint maybe  
reset (phase dependency)  
ext clk freq: below (2/5)fint always reset  
floc_high Loss of external clock minimum frequency —  
RANGE = 01, 10, or 11  
(16/5) x  
fints_t  
kHz  
ext clk freq: above (16/5)fint never reset  
ext clk freq: between (15/5)fint and (16/5)fint  
maybe reset (phase dependency)  
ext clk freq: below (15/5)fint always reset  
FLL  
ffll_ref  
FLL reference frequency range  
31.25  
16.0  
39.0625  
26.66  
kHz  
fdco_ut  
DCO output  
Low range  
23.04  
MHz  
2
frequency range  
— untrimmed  
(DRS=00, DMX32=0)  
640 × fints_ut  
Mid range  
32.0  
48.0  
46.08  
69.12  
92.16  
26.35  
52.70  
79.09  
105.44  
53.32  
79.99  
106.65  
30.50  
60.99  
91.53  
122.02  
(DRS=01, DMX32=0)  
1280 × fints_ut  
Mid-high range  
(DRS=10, DMX32=0)  
1920 × fints_ut  
High range  
64.0  
(DRS=11, DMX32=0)  
2560 × fints_ut  
Low range  
18.3  
(DRS=00, DMX32=1)  
732 × fints_ut  
Mid range  
36.6  
(DRS=01, DMX32=1)  
1464 × fints_ut  
Mid-high range  
(DRS=10, DMX32=1)  
2197 × fints_ut  
54.93  
73.23  
High range  
(DRS=11, DMX32=1)  
2929 × fints_ut  
Table continues on the next page...  
Kinetis K65 Sub-Family, Rev. 2, 05/2015  
27  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
Table 16. MCG specifications (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
fdco  
DCO output  
frequency range  
Low range (DRS=00)  
640 × ffll_ref  
20  
20.97  
25  
MHz  
3, 4  
Mid range (DRS=01)  
1280 × ffll_ref  
40  
60  
80  
41.94  
62.91  
83.89  
23.99  
47.97  
71.99  
95.98  
50  
75  
100  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
ps  
Mid-high range (DRS=10)  
1920 × ffll_ref  
High range (DRS=11)  
2560 × ffll_ref  
fdco_t_DMX3 DCO output  
Low range (DRS=00)  
732 × ffll_ref  
5, 6  
frequency  
2
Mid range (DRS=01)  
1464 × ffll_ref  
Mid-high range (DRS=10)  
2197 × ffll_ref  
High range (DRS=11)  
2929 × ffll_ref  
Jcyc_fll  
FLL period jitter  
180  
150  
• fDCO = 48 MHz  
• fDCO = 98 MHz  
tfll_acquire FLL target frequency acquisition time  
1
ms  
7
PLL  
fpll_ref  
PLL reference frequency range  
8
180  
90  
90  
16  
360  
180  
180  
MHz  
MHz  
fvcoclk_2x VCO output frequency  
fvcoclk  
PLL output frequency  
MHz  
MHz  
fvcoclk_90 PLL quadrature output frequency  
Ipll  
PLL operating current  
8
8
9
2.8  
3.6  
mA  
mA  
• VCO @ 176 MHz (fosc_hi_1 = 32 MHz,  
fpll_ref = 8 MHz, VDIV multiplier = 22)  
Ipll  
PLL operating current  
• VCO @ 360 MHz (fosc_hi_1 = 32 MHz,  
fpll_ref = 8 MHz, VDIV multiplier = 45)  
Jcyc_pll  
PLL period jitter (RMS)  
• fvco = 180 MHz  
100  
75  
ps  
ps  
• fvco = 360 MHz  
Jacc_pll  
PLL accumulated jitter over 1µs (RMS)  
• fvco = 180 MHz  
9
600  
300  
ps  
ps  
• fvco = 360 MHz  
Table continues on the next page...  
28  
Freescale Semiconductor, Inc.  
Kinetis K65 Sub-Family, Rev. 2, 05/2015  
Peripheral operating requirements and behaviors  
Table 16. MCG specifications (continued)  
Symbol Description  
Min.  
4.47  
Typ.  
Max.  
Unit  
%
Notes  
Dunl  
Lock exit frequency tolerance  
Lock detector detection time  
5.97  
150 × 10-6  
+ 1075(1/  
tpll_lock  
s
10  
fpll_ref  
)
1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock  
mode).  
2. This applies when SCTRIM at value (0x80) and SCFTRIM control bit at value (0x0).  
3. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=0.  
4. The resulting system clock frequencies should not exceed their maximum specified values. The DCO frequency  
deviation (Δfdco_t) over voltage and temperature should be considered.  
5. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=1.  
6. The resulting clock frequency must not exceed the maximum specified clock frequency of the device.  
7. This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed,  
DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE,  
FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.  
8. Excludes any oscillator currents that are also consuming power while PLL is in operation.  
9. This specification was obtained using a Freescale developed PCB. PLL jitter is dependent on the noise characteristics  
of each PCB and results will vary.  
10. This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL  
disabled (BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this  
specification assumes it is already running.  
3.3.2 IRC48M specifications  
Table 17. IRC48M specifications  
Symbol  
VDD  
Description  
Min.  
1.71  
Typ.  
Max.  
3.6  
Unit  
V
Notes  
Supply voltage  
IDD48M  
firc48m  
Supply current  
520  
48  
μA  
Internal reference frequency  
MHz  
Δfirc48m_ol_lv Open loop total deviation of IRC48M frequency at  
low voltage (VDD=1.71V-1.89V) over temperature  
• Regulator disable  
0.5  
0.5  
1.0  
1.5  
%firc48m  
(USB_CLK_RECOVER_IRC_EN[REG_EN]=0)  
• Regulator enable  
(USB_CLK_RECOVER_IRC_EN[REG_EN]=1)  
Δfirc48m_ol_hv Open loop total deviation of IRC48M frequency at  
high voltage (VDD=1.89V-3.6V) over temperature  
• Regulator enable  
0.5  
1.0  
0.1  
%firc48m  
(USB_CLK_RECOVER_IRC_EN[REG_EN]=1)  
Δfirc48m_cl Closed loop total deviation of IRC48M frequency  
%fhost  
1
2
over voltage and temperature  
Jcyc_irc48m Period Jitter (RMS)  
35  
2
150  
3
ps  
μs  
tirc48mst  
Startup time  
1. Closed loop operation of the IRC48M is only feasible for USB device operation; it is not usable for USB host operation.  
It is enabled by configuring for USB Device, selecting IRC48M as USB clock source, and enabling the clock recover  
Kinetis K65 Sub-Family, Rev. 2, 05/2015  
29  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
function (USB_CLK_RECOVER_IRC_CTRL[CLOCK_RECOVER_EN]=1,  
USB_CLK_RECOVER_IRC_EN[IRC_EN]=1).  
2. IRC48M startup time is defined as the time between clock enablement and clock availability for system use. Enable the  
clock by one of the following settings:  
• USB_CLK_RECOVER_IRC_EN[IRC_EN]=1, or  
• MCG_C7[OSCSEL]=10, or  
• SIM_SOPT2[PLLFLLSEL]=11  
3.3.3 Oscillator electrical specifications  
3.3.3.1 Oscillator DC electrical specifications  
Table 18. Oscillator DC electrical specifications  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
VDD  
Supply voltage  
1.71  
3.6  
V
IDDOSC  
Supply current — low-power mode (HGO=0)  
1
• 32 kHz  
600  
200  
300  
950  
1.2  
nA  
μA  
μA  
μA  
mA  
mA  
• 4 MHz  
• 8 MHz (RANGE=01)  
• 16 MHz  
• 24 MHz  
• 32 MHz  
1.5  
IDDOSC  
Supply current — high gain mode (HGO=1)  
1
• 32 kHz  
7.5  
500  
650  
2.5  
3.25  
4
μA  
μA  
• 4 MHz  
• 8 MHz (RANGE=01)  
• 16 MHz  
μA  
mA  
mA  
mA  
• 24 MHz  
• 32 MHz  
Cx  
Cy  
RF  
EXTAL load capacitance  
XTAL load capacitance  
2, 3  
2, 3  
2, 4  
Feedback resistor — low-frequency, low-power  
mode (HGO=0)  
MΩ  
MΩ  
MΩ  
MΩ  
kΩ  
Feedback resistor — low-frequency, high-gain  
mode (HGO=1)  
10  
1
Feedback resistor — high-frequency, low-power  
mode (HGO=0)  
Feedback resistor — high-frequency, high-gain  
mode (HGO=1)  
RS  
Series resistor — low-frequency, low-power  
mode (HGO=0)  
Table continues on the next page...  
30  
Freescale Semiconductor, Inc.  
Kinetis K65 Sub-Family, Rev. 2, 05/2015  
Peripheral operating requirements and behaviors  
Table 18. Oscillator DC electrical specifications (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
Series resistor — low-frequency, high-gain  
200  
kΩ  
mode (HGO=1)  
Series resistor — high-frequency, low-power  
mode (HGO=0)  
kΩ  
Series resistor — high-frequency, high-gain  
mode (HGO=1)  
0
kΩ  
V
5
Vpp  
Peak-to-peak amplitude of oscillation (oscillator  
mode) — low-frequency, low-power mode  
(HGO=0)  
0.6  
Peak-to-peak amplitude of oscillation (oscillator  
mode) — low-frequency, high-gain mode  
(HGO=1)  
VDD  
0.6  
V
V
V
Peak-to-peak amplitude of oscillation (oscillator  
mode) — high-frequency, low-power mode  
(HGO=0)  
Peak-to-peak amplitude of oscillation (oscillator  
mode) — high-frequency, high-gain mode  
(HGO=1)  
VDD  
1. VDD=3.3 V, Temperature =25 °C, Internal capacitance = 20 pf  
2. See crystal or resonator manufacturer's recommendation  
3. Cx,Cy can be provided by using either the integrated capacitors or by using external components.  
4. When low power mode is selected, RF is integrated and must not be attached externally.  
5. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to  
any other devices.  
3.3.3.2 Oscillator frequency specifications  
Table 19. Oscillator frequency specifications  
Symbol Description  
fosc_lo Oscillator crystal or resonator frequency — low-  
frequency mode (MCG_C2[RANGE]=00)  
Min.  
Typ.  
Max.  
Unit  
Notes  
32  
40  
kHz  
fosc_hi_1 Oscillator crystal or resonator frequency —  
high-frequency mode (low range)  
3
8
8
MHz  
MHz  
(MCG_C2[RANGE]=01)  
fosc_hi_2 Oscillator crystal or resonator frequency —  
high frequency mode (high range)  
(MCG_C2[RANGE]=1x)  
32  
fec_extal Input clock frequency (external clock mode)  
tdc_extal Input clock duty cycle (external clock mode)  
40  
50  
50  
60  
MHz  
%
1, 2  
3, 4  
tcst  
Crystal startup time — 32 kHz low-frequency,  
low-power mode (HGO=0)  
750  
ms  
Crystal startup time — 32 kHz low-frequency,  
high-gain mode (HGO=1)  
250  
ms  
Table continues on the next page...  
Kinetis K65 Sub-Family, Rev. 2, 05/2015  
31  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
Table 19. Oscillator frequency specifications (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
Crystal startup time — 8 MHz high-frequency  
0.6  
ms  
(MCG_C2[RANGE]=01), low-power mode  
(HGO=0)  
Crystal startup time — 8 MHz high-frequency  
(MCG_C2[RANGE]=01), high-gain mode  
(HGO=1)  
1
ms  
1. Other frequency limits may apply when external clock is being used as a reference for the FLL or PLL.  
2. When transitioning from FEI or FBI to FBE mode, restrict the frequency of the input clock so that, when it is divided by  
FRDIV, it remains within the limits of the DCO input clock frequency.  
3. Proper PC board layout procedures must be followed to achieve specifications.  
4. Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S  
register being set.  
NOTE  
The 32 kHz oscillator works in low power mode by default  
and cannot be moved into high power/gain mode.  
3.3.4 32 kHz oscillator electrical characteristics  
3.3.4.1 32 kHz oscillator DC electrical specifications  
Table 20. 32kHz oscillator DC electrical specifications  
Symbol  
VBAT  
RF  
Description  
Min.  
1.71  
Typ.  
Max.  
3.6  
Unit  
V
Supply voltage  
Internal feedback resistor  
100  
5
MΩ  
pF  
Cpara  
Parasitical capacitance of EXTAL32 and  
XTAL32  
7
1
Vpp  
Peak-to-peak amplitude of oscillation  
0.6  
V
1. When a crystal is being used with the 32 kHz oscillator, the EXTAL32 and XTAL32 pins should only be connected to  
required oscillator components and must not be connected to any other devices.  
3.3.4.2 32 kHz oscillator frequency specifications  
Table 21. 32 kHz oscillator frequency specifications  
Symbol Description  
Min.  
Typ.  
32.768  
1000  
32.768  
Max.  
Unit  
kHz  
ms  
Notes  
fosc_lo  
tstart  
Oscillator crystal  
Crystal start-up time  
1
2
fec_extal32 Externally provided input clock frequency  
vec_extal32 Externally provided input clock amplitude  
kHz  
mV  
700  
VBAT  
2, 3  
32  
Freescale Semiconductor, Inc.  
Kinetis K65 Sub-Family, Rev. 2, 05/2015  
Peripheral operating requirements and behaviors  
1. Proper PC board layout procedures must be followed to achieve specifications.  
2. This specification is for an externally supplied clock driven to EXTAL32 and does not apply to any other clock input.  
The oscillator remains enabled and XTAL32 must be left unconnected.  
3. The parameter specified is a peak-to-peak value and VIH and VIL specifications do not apply. The voltage of the  
applied clock must be within the range of VSS to VBAT  
.
3.4 Memories and memory interfaces  
3.4.1 Flash (FTFE) electrical specifications  
This section describes the electrical characteristics of the FTFE module.  
3.4.1.1 Flash timing specifications — program and erase  
The following specifications represent the amount of time the internal charge pumps  
are active and do not include command overhead.  
Table 22. NVM program/erase timing specifications  
Symbol Description  
Min.  
Typ.  
7.5  
Max.  
18  
Unit  
μs  
Notes  
thvpgm8 Program Phrase high-voltage time  
thversscr Erase Flash Sector high-voltage time  
thversblk256k Erase Flash Block high-voltage time for 256 KB  
thversblk512k Erase Flash Block high-voltage time for 512 KB  
13  
113  
ms  
ms  
ms  
1
1
1
208  
416  
1808  
3616  
1. Maximum time based on expectations at cycling end-of-life.  
3.4.1.2 Flash timing specifications — commands  
Table 23. Flash command timing specifications  
Symbol Description  
Read 1s Block execution time  
Min.  
Typ.  
Max.  
Unit  
Notes  
trd1blk256k  
trd1blk512k  
• 256 KB data flash  
1.0  
1.8  
ms  
ms  
• 512 KB program flash  
trd1sec4k Read 1s Section execution time (4 KB flash)  
tpgmchk Program Check execution time  
90  
100  
95  
μs  
μs  
μs  
μs  
1
1
1
trdrsrc  
tpgm8  
Read Resource execution time  
Program Phrase execution time  
Erase Flash Block execution time  
40  
150  
2
tersblk256k  
220  
1850  
ms  
Table continues on the next page...  
Kinetis K65 Sub-Family, Rev. 2, 05/2015  
33  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
Table 23. Flash command timing specifications (continued)  
Symbol Description  
tersblk512k • 256 KB data flash  
Min.  
Typ.  
Max.  
Unit  
Notes  
435  
3700  
ms  
• 512 KB program flash  
tersscr  
Erase Flash Sector execution time  
15  
5
115  
ms  
ms  
2
tpgmsec1k Program Section execution time (1KB flash)  
Read 1s All Blocks execution time  
trd1allx  
trd1alln  
• FlexNVM devices  
5.9  
6.7  
ms  
ms  
• Program flash only devices  
trdonce  
Read Once execution time  
90  
30  
μs  
μs  
ms  
μs  
1
tpgmonce Program Once execution time  
tersall  
Erase All Blocks execution time  
Verify Backdoor Access Key execution time  
Swap Control execution time  
• control code 0x01  
1750  
14,800  
30  
2
1
tvfykey  
tswapx01  
tswapx02  
tswapx04  
tswapx08  
tswapx10  
200  
90  
90  
μs  
μs  
μs  
μs  
μs  
• control code 0x02  
150  
150  
30  
• control code 0x04  
• control code 0x08  
• control code 0x10  
90  
150  
Program Partition for EEPROM execution time  
• 32 KB EEPROM backup  
tpgmpart32k  
tpgmpart256k  
70  
78  
ms  
ms  
• 256 KB EEPROM backup  
Set FlexRAM Function execution time:  
• Control Code 0xFF  
tsetramff  
tsetram32k  
tsetram64k  
tsetram128k  
tsetram256k  
70  
0.8  
1.3  
2.4  
4.5  
μs  
ms  
ms  
ms  
ms  
• 32 KB EEPROM backup  
• 64 KB EEPROM backup  
• 128 KB EEPROM backup  
• 256 KB EEPROM backup  
1.2  
1.9  
3.1  
5.5  
teewr8bers Byte-write to erased FlexRAM location  
execution time  
175  
275  
μs  
3
Byte-write to FlexRAM execution time:  
teewr8b32k  
teewr8b64k  
teewr8b128k  
teewr8b256k  
• 32 KB EEPROM backup  
• 64 KB EEPROM backup  
• 128 KB EEPROM backup  
• 256 KB EEPROM backup  
385  
475  
1700  
2000  
2350  
3250  
μs  
μs  
μs  
μs  
650  
1000  
teewr16bers 16-bit write to erased FlexRAM location  
execution time  
175  
275  
μs  
16-bit write to FlexRAM execution time:  
Table continues on the next page...  
34  
Kinetis K65 Sub-Family, Rev. 2, 05/2015  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
Table 23. Flash command timing specifications (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
teewr16b32k  
teewr16b64k  
teewr16b128k  
teewr16b256k  
• 32 KB EEPROM backup  
385  
1700  
μs  
• 64 KB EEPROM backup  
• 128 KB EEPROM backup  
• 256 KB EEPROM backup  
475  
650  
2000  
2350  
3250  
μs  
μs  
μs  
1000  
teewr32bers 32-bit write to erased FlexRAM location  
execution time  
360  
550  
μs  
32-bit write to FlexRAM execution time:  
teewr32b32k  
teewr32b64k  
teewr32b128k  
teewr32b256k  
• 32 KB EEPROM backup  
• 64 KB EEPROM backup  
• 128 KB EEPROM backup  
• 256 KB EEPROM backup  
630  
810  
2000  
2250  
2650  
3500  
μs  
μs  
μs  
μs  
1200  
1900  
1. Assumes 25MHz or greater flash clock frequency.  
2. Maximum times for erase parameters based on expectations at cycling end-of-life.  
3. For byte-writes to an erased FlexRAM location, the aligned word containing the byte must be erased.  
3.4.1.3 Flash high voltage current behaviors  
Table 24. Flash high voltage current behaviors  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
IDD_PGM  
Average current  
adder during high  
voltage flash  
programming  
operation  
3.5  
7.5  
mA  
IDD_ERS  
Average current  
adder during high  
voltage flash erase  
operation  
1.5  
4.0  
mA  
3.4.1.4 Reliability specifications  
Table 25. NVM reliability specifications  
Symbol Description  
Min.  
Program Flash  
Typ.1  
Max.  
Unit  
Notes  
tnvmretp10k Data retention after up to 10 K cycles  
tnvmretp1k Data retention after up to 1 K cycles  
nnvmcycp Cycling endurance  
5
50  
years  
years  
cycles  
20  
100  
50 K  
10 K  
2
Data Flash  
Table continues on the next page...  
Kinetis K65 Sub-Family, Rev. 2, 05/2015  
35  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
Table 25. NVM reliability specifications (continued)  
Symbol Description  
Min.  
Typ.1  
Max.  
Unit  
years  
years  
cycles  
Notes  
tnvmretd10k Data retention after up to 10 K cycles  
tnvmretd1k Data retention after up to 1 K cycles  
nnvmcycd Cycling endurance  
5
50  
20  
10 K  
100  
50 K  
2
FlexRAM as EEPROM  
tnvmretee100 Data retention up to 100% of write endurance  
tnvmretee10 Data retention up to 10% of write endurance  
nnvmcycee Cycling endurance for EEPROM backup  
Write endurance  
5
50  
years  
years  
cycles  
20  
100  
50 K  
20 K  
2
3
nnvmwree16  
nnvmwree128  
nnvmwree512  
nnvmwree2k  
nnvmwree8k  
• EEPROM backup to FlexRAM ratio = 16  
• EEPROM backup to FlexRAM ratio = 128  
• EEPROM backup to FlexRAM ratio = 512  
• EEPROM backup to FlexRAM ratio = 2,048  
• EEPROM backup to FlexRAM ratio = 8,192  
70 K  
630 K  
2.5 M  
10 M  
40 M  
175 K  
1.6 M  
6.4 M  
25 M  
writes  
writes  
writes  
writes  
writes  
100 M  
1. Typical data retention values are based on measured response accelerated at high temperature and derated to a  
constant 25°C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in  
Engineering Bulletin EB619.  
2. Cycling endurance represents number of program/erase cycles at -40°C ≤ Tj ≤ 125°C.  
3. Write endurance represents the number of writes to each FlexRAM location at -40°C ≤Tj ≤ 125°C influenced by the  
cycling endurance of the FlexNVM (same value as data flash) and the allocated EEPROM backup per subsystem.  
Minimum and typical values assume all byte-writes to FlexRAM.  
3.4.1.5 Write endurance to FlexRAM for EEPROM  
When the FlexNVM partition code is not set to full data flash, the EEPROM data set  
size can be set to any of several non-zero values.  
The bytes not assigned to data flash via the FlexNVM partition code are used by the  
FTFE to obtain an effective endurance increase for the EEPROM data. The built-in  
EEPROM record management system raises the number of program/erase cycles that  
can be attained prior to device wear-out by cycling the EEPROM data through a larger  
EEPROM NVM storage space.  
While different partitions of the FlexNVM are available, the intention is that a single  
choice for the FlexNVM partition code and EEPROM data set size is used throughout  
the entire lifetime of a given application. The EEPROM endurance equation and graph  
shown below assume that only one configuration is ever used.  
EEPROM – 2 × EEESPLIT × EEESIZE  
Writes_subsystem =  
× Write_efficiency × nnvmcycee  
EEESPLIT × EEESIZE  
36  
Kinetis K65 Sub-Family, Rev. 2, 05/2015  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
where  
• Writes_subsystem — minimum number of writes to each FlexRAM location for  
subsystem (each subsystem can have different endurance)  
• EEPROM — allocated FlexNVM for each EEPROM subsystem based on  
DEPART; entered with the Program Partition command  
• EEESPLIT — FlexRAM split factor for subsystem; entered with the Program  
Partition command  
• EEESIZE — allocated FlexRAM based on DEPART; entered with the Program  
Partition command  
• Write_efficiency —  
• 0.25 for 8-bit writes to FlexRAM  
• 0.50 for 16-bit or 32-bit writes to FlexRAM  
• nnvmcycee — EEPROM-backup cycling endurance  
Figure 11. EEPROM backup writes to FlexRAM  
Kinetis K65 Sub-Family, Rev. 2, 05/2015  
37  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
3.4.2 EzPort switching specifications  
Table 26. EzPort full voltage range switching specifications  
Num  
Description  
Min.  
1.71  
Max.  
3.6  
Unit  
V
Operating voltage  
EP1  
EZP_CK frequency of operation (all commands except  
READ)  
fSYS/2  
MHz  
EP1a  
EP2  
EP3  
EP4  
EP5  
EP6  
EP7  
EP8  
EP9  
EZP_CK frequency of operation (READ command)  
EZP_CS negation to next EZP_CS assertion  
EZP_CS input valid to EZP_CK high (setup)  
EZP_CK high to EZP_CS input invalid (hold)  
EZP_D input valid to EZP_CK high (setup)  
EZP_CK high to EZP_D input invalid (hold)  
EZP_CK low to EZP_Q output valid  
fSYS/8  
MHz  
ns  
2 x tEZP_CK  
5
5
ns  
ns  
2
ns  
5
ns  
0
14  
ns  
EZP_CK low to EZP_Q output invalid (hold)  
EZP_CS negation to EZP_Q tri-state  
ns  
12  
ns  
EZP_CK  
EP2  
EP3  
EP4  
EZP_CS  
EP9  
EP8  
EP7  
EZP_Q (output)  
EZP_D (input)  
EP5  
EP6  
Figure 12. EzPort Timing Diagram  
3.4.3 Flexbus switching specifications  
All processor bus timings are synchronous; input setup/hold and output delay are given  
in respect to the rising edge of a reference clock, FB_CLK. The FB_CLK frequency  
may be the same as the internal system bus frequency or an integer divider of that  
frequency.  
38  
Kinetis K65 Sub-Family, Rev. 2, 05/2015  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
The following timing numbers indicate when data is latched or driven onto the  
external bus, relative to the Flexbus output clock (FB_CLK). All other timing  
relationships can be derived from these values.  
Table 27. Flexbus limited voltage range switching specifications  
Num  
Description  
Min.  
2.7  
Max.  
3.6  
Unit  
V
Notes  
Operating voltage  
Frequency of operation  
Clock period  
FB_CLK  
MHz  
ns  
FB1  
FB2  
FB3  
FB4  
FB5  
1/FB_CLK  
Address, data, and control output valid  
Address, data, and control output hold  
Data and FB_TA input setup  
Data and FB_TA input hold  
11.8  
ns  
1.0  
ns  
1
2
11.9  
0.0  
ns  
ns  
1. Specification is valid for all FB_AD[31:0], FB_BE/BWEn, FB_CSn, FB_OE, FB_R/W,FB_TBST, FB_TSIZ[1:0],  
FB_ALE, and FB_TS.  
2. Specification is valid for all FB_AD[31:0] and FB_TA.  
Table 28. Flexbus full voltage range switching specifications  
Num  
Description  
Min.  
1.71  
Max.  
3.6  
Unit  
V
Notes  
Operating voltage  
Frequency of operation  
Clock period  
FB_CLK  
MHz  
ns  
FB1  
FB2  
FB3  
FB4  
FB5  
1/FB_CLK  
Address, data, and control output valid  
Address, data, and control output hold  
Data and FB_TA input setup  
Data and FB_TA input hold  
12.6  
ns  
1.0  
ns  
1
2
12.5  
0
ns  
ns  
1. Specification is valid for all FB_AD[31:0], FB_BE/BWEn, FB_CSn, FB_OE, FB_R/W,FB_TBST, FB_TSIZ[1:0],  
FB_ALE, and FB_TS.  
2. Specification is valid for all FB_AD[31:0] and FB_TA.  
Kinetis K65 Sub-Family, Rev. 2, 05/2015  
39  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
FB1  
FB_CLK  
FB3  
FB5  
FB_A[Y]  
FB_D[X]  
FB_RW  
FB_TS  
Address  
FB4  
FB2  
Address  
Data  
FB_ALE  
FB_CSn  
FB_OEn  
FB_BEn  
FB_TA  
AA=1  
AA=0  
FB4  
FB5  
AA=1  
AA=0  
FB_TSIZ[1:0]  
TSIZ  
Figure 13. FlexBus read timing diagram  
40  
Freescale Semiconductor, Inc.  
Kinetis K65 Sub-Family, Rev. 2, 05/2015  
Peripheral operating requirements and behaviors  
FB1  
FB_CLK  
FB_A[Y]  
FB_D[X]  
FB_RW  
FB_TS  
FB2  
FB3  
Address  
Address  
Data  
FB_ALE  
FB_CSn  
FB_OEn  
FB_BEn  
FB_TA  
AA=1  
AA=0  
FB4  
FB5  
AA=1  
AA=0  
FB_TSIZ[1:0]  
TSIZ  
Figure 14. FlexBus write timing diagram  
3.4.4 SDRAM controller specifications  
Following figure shows SDRAM read cycle.  
Kinetis K65 Sub-Family, Rev. 2, 05/2015  
41  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
D0  
CLKOUT  
D3  
D1  
Row  
Column  
A[23:0]  
D4  
SRAS  
SCAS  
D2  
1
D4  
DRAMW  
D[31:0]  
D5  
D6  
D4  
SDRAM_CS[1:0]  
BS[3:0]  
NOP  
ACTV  
NOP  
READ  
PRE  
1
DACR[CASL] = 2  
Figure 15. SDRAM read timing diagram  
Table 29. SDRAM Timing (Full voltage range)  
NUM  
Characteristic 1  
Symbol  
1.71  
MIn  
Max  
Unit  
Operating voltage  
3.6  
V
Frequency of operation  
CLKOUT  
MHz  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D73  
D83  
Clock period  
1/CLKOUT  
tCHDAV  
tCHDCV  
tCHDAI  
-
ns  
2
CLKOUT high to SDRAM address valid  
CLKOUT high to SDRAM control valid  
CLKOUT high to SDRAM address invalid  
CLKOUT high to SDRAM control invalid  
SDRAM data valid to CLKOUT high  
CLKOUT high to SDRAM data invalid  
CLKOUT high to SDRAM data valid  
CLKOUT high to SDRAM data invalid  
11.2  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
11.1  
1.0  
1.0  
12.0  
1.0  
-
-
tCHDCI  
-
tDDVCH  
tCHDDI  
tCHDDVW  
tCHDDIW  
-
-
12.0  
-
1.0  
1. All timing specifications are based on taking into account, a 25pF load on the SDRAM output pins.  
2. CLKOUT is same as FB_CLK, maximum frequency can be 60 MHz  
42  
Kinetis K65 Sub-Family, Rev. 2, 05/2015  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
3. D7 and D8 are for write cycles only.  
Table 30. SDRAM Timing (Limited voltage range)  
NUM  
Characteristic -1  
Symbol  
2.7  
MIn  
3.6  
Max  
Unit  
Operating voltage  
V
Frequency of operation  
1/CLKOUT  
tCHDAV  
tCHDCV  
tCHDAI  
CLKOUT  
MHz  
D0  
D1  
Clock period  
-
ns  
-1  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CLKOUT high to SDRAM address valid  
CLKOUT high to SDRAM control valid  
CLKOUT high to SDRAM address invalid  
CLKOUT high to SDRAM control invalid  
SDRAM data valid to CLKOUT high  
CLKOUT high to SDRAM data invalid  
CLKOUT high to SDRAM data valid  
CLKOUT high to SDRAM data invalid  
11.1  
D2  
11.1  
D3  
1.0  
1.0  
11.3  
1.0  
-
-
D4  
tCHDCI  
-
D5  
tDDVCH  
tCHDDI  
tCHDDVW  
tCHDDIW  
-
D6  
-
11.1  
-
D7-1  
D8-1  
1.0  
Following figure shows an SDRAM write cycle.  
Kinetis K65 Sub-Family, Rev. 2, 05/2015  
43  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
D0  
CLKOUT  
D3  
D1  
Row  
Column  
A[23:0]  
SRAS  
D2  
1
SCAS  
D4  
DRAMW  
D[31:0]  
D7  
D8  
D4  
SDRAM_CS[1:0]  
D4  
D2  
BS[3:0]  
D4  
ACTV  
NOP  
WRITE  
NOP  
PALL  
1
DACR[CASL] = 2  
Figure 16. SDRAM write timing diagram  
3.5 Security and integrity modules  
There are no specifications necessary for the device's security and integrity modules.  
3.6 Analog  
3.6.1 ADC electrical specifications  
The 16-bit accuracy specifications listed in Table 1 and Table 32 are achievable on the  
differential pins ADCx_DP0, ADCx_DM0.  
44  
Kinetis K65 Sub-Family, Rev. 2, 05/2015  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
All other ADC channels meet the 13-bit differential/12-bit single-ended accuracy  
specifications.  
3.6.1.1 16-bit ADC operating conditions  
Table 31. 16-bit ADC operating conditions  
Symbol Description  
VDDA Supply voltage  
ΔVDDA Supply voltage  
Conditions  
Min.  
1.71  
-100  
-100  
1.13  
Typ.1  
Max.  
3.6  
Unit  
V
Notes  
Absolute  
2
Delta to VDD (VDD – VDDA  
)
0
+100  
+100  
VDDA  
mV  
mV  
V
ΔVSSA  
Ground voltage Delta to VSS (VSS – VSSA  
)
0
2
VREFH  
ADC reference  
voltage high  
VDDA  
VREFL  
VADIN  
ADC reference  
voltage low  
VSSA  
VSSA  
VSSA  
V
V
Input voltage  
• 16-bit differential mode  
• All other modes  
• 16-bit mode  
VREFL  
VREFL  
31/32 *  
VREFH  
VREFH  
CADIN  
Input  
capacitance  
8
4
10  
5
pF  
• 8-bit / 10-bit / 12-bit  
modes  
RADIN  
RAS  
Input series  
resistance  
2
5
5
kΩ  
kΩ  
3
Analog source  
resistance  
(external)  
13-bit / 12-bit modes  
fADCK < 4 MHz  
fADCK  
fADCK  
Crate  
ADC conversion ≤ 13-bit mode  
clock frequency  
1.0  
2.0  
24  
MHz  
MHz  
4
4
5
ADC conversion 16-bit mode  
clock frequency  
12.0  
ADC conversion ≤ 13-bit modes  
rate  
20.000  
1200  
Kbps  
No ADC hardware averaging  
Continuous conversions  
enabled, subsequent  
conversion time  
Crate  
ADC conversion 16-bit mode  
5
37.037  
461.467  
Kbps  
rate  
No ADC hardware averaging  
Continuous conversions  
enabled, subsequent  
conversion time  
1. Typical values assume VDDA = 3.0 V, Temp = 25 °C, fADCK = 1.0 MHz, unless otherwise stated. Typical values are for  
reference only, and are not tested in production.  
2. DC potential difference.  
3. This resistance is external to MCU. To achieve the best results, the analog source resistance must be kept as low as  
possible. The results in this data sheet were derived from a system that had < 8 Ω analog source resistance. The  
RAS/CAS time constant should be kept to < 1 ns.  
Kinetis K65 Sub-Family, Rev. 2, 05/2015  
45  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
4. To use the maximum ADC conversion clock frequency, CFG2[ADHSC] must be set and CFG1[ADLPC] must be clear.  
5. For guidelines and examples of conversion rate calculation, download the ADC calculator tool.  
SIMPLIFIED  
INPUT PIN EQUIVALENT  
ZADIN  
CIRCUIT  
SIMPLIFIED  
CHANNEL SELECT  
CIRCUIT  
Pad  
ZAS  
leakage  
due to  
input  
ADC SAR  
ENGINE  
RAS  
RADIN  
protection  
VADIN  
CAS  
VAS  
RADIN  
RADIN  
RADIN  
INPUT PIN  
INPUT PIN  
INPUT PIN  
CADIN  
Figure 17. ADC input impedance equivalency diagram  
3.6.1.2 16-bit ADC electrical characteristics  
Table 32. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA  
)
Symbol Description  
Conditions1  
Min.  
0.215  
1.2  
Typ.2  
Max.  
1.7  
3.9  
6.1  
7.3  
9.5  
Unit  
mA  
Notes  
IDDA_ADC Supply current  
3
ADC  
asynchronous  
• ADLPC = 1, ADHSC = 0  
• ADLPC = 1, ADHSC = 1  
• ADLPC = 0, ADHSC = 0  
• ADLPC = 0, ADHSC = 1  
2.4  
4.0  
5.2  
6.2  
MHz  
MHz  
MHz  
MHz  
tADACK =  
1/fADACK  
2.4  
clock source  
fADACK  
3.0  
4.4  
Sample Time  
See Reference Manual chapter for sample times  
TUE  
DNL  
Total  
unadjusted error  
• 12-bit modes  
• <12-bit modes  
4
6.8  
2.1  
LSB4  
LSB4  
5
5
1.4  
Differential non-  
linearity  
• 12-bit modes  
• <12-bit modes  
0.7  
0.2  
–1.1 to  
+1.9  
–0.3 to 0.5  
Table continues on the next page...  
46  
Freescale Semiconductor, Inc.  
Kinetis K65 Sub-Family, Rev. 2, 05/2015  
Peripheral operating requirements and behaviors  
Table 32. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) (continued)  
Symbol Description  
Conditions1  
Min.  
Typ.2  
Max.  
Unit  
Notes  
INL  
Integral non-  
linearity  
• 12-bit modes  
1.0  
–2.7 to  
+1.9  
LSB4  
5
• <12-bit modes  
0.5  
–0.7 to  
+0.5  
EFS  
EQ  
Full-scale error  
• 12-bit modes  
• <12-bit modes  
• 16-bit modes  
• ≤13-bit modes  
–4  
–1.4  
–1 to 0  
–5.4  
–1.8  
LSB4  
LSB4  
VADIN  
VDDA  
=
5
Quantization  
error  
0.5  
ENOB Effective  
number of bits  
16-bit differential mode  
• Avg = 32  
6
bits  
bits  
12.8  
11.9  
14.5  
13.8  
• Avg = 4  
bits  
bits  
16-bit single-ended mode  
• Avg = 32  
12.2  
11.4  
13.9  
13.1  
• Avg = 4  
Signal-to-noise See ENOB  
plus distortion  
SINAD  
THD  
6.02 × ENOB + 1.76  
dB  
Total harmonic 16-bit differential mode  
7
7
dB  
dB  
distortion  
-94  
-85  
• Avg = 32  
16-bit single-ended mode  
• Avg = 32  
SFDR  
Spurious free  
dynamic range  
16-bit differential mode  
• Avg = 32  
dB  
dB  
82  
78  
95  
90  
16-bit single-ended mode  
• Avg = 32  
EIL  
Input leakage  
error  
IIn × RAS  
mV  
IIn =  
leakage  
current  
(refer to  
the MCU's  
voltage  
and  
current  
operating  
ratings)  
Temp sensor  
slope  
Across the full temperature range  
of the device  
1.55  
706  
1.62  
716  
1.69  
726  
mV/°C  
mV  
8
VTEMP25 Temp sensor  
voltage  
25 °C  
8
Kinetis K65 Sub-Family, Rev. 2, 05/2015  
47  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
1. All accuracy numbers assume the ADC is calibrated with VREFH = VDDA  
2. Typical values assume VDDA = 3.0 V, Temp = 25 °C, fADCK = 2.0 MHz unless otherwise stated. Typical values are for  
reference only and are not tested in production.  
3. The ADC supply current depends on the ADC conversion clock speed, conversion rate and ADC_CFG1[ADLPC] (low  
power). For lowest power operation, ADC_CFG1[ADLPC] must be set, the ADC_CFG2[ADHSC] bit must be clear with 1  
MHz ADC conversion clock speed.  
4. 1 LSB = (VREFH - VREFL)/2N  
5. ADC conversion clock < 16 MHz, Max hardware averaging (AVGE = %1, AVGS = %11)  
6. Input data is 100 Hz sine wave. ADC conversion clock < 12 MHz.  
7. Input data is 1 kHz sine wave. ADC conversion clock < 12 MHz.  
8. ADC conversion clock < 3 MHz  
Typical ADC 16-bit Differential ENOB vs ADC Clock  
100Hz, 90% FS Sine Input  
15.00  
14.70  
14.40  
14.10  
13.80  
13.50  
13.20  
12.90  
12.60  
Hardware Averaging Disabled  
Averaging of 4 samples  
12.30  
12.00  
Averaging of 8 samples  
Averaging of 32 samples  
1
2
3
4
5
6
7
8
9
10  
11  
12  
ADC Clock Frequency (MHz)  
Figure 18. Typical ENOB vs. ADC_CLK for 16-bit differential mode  
Typical ADC 16-bit Single-Ended ENOB vs ADC Clock  
100Hz, 90% FS Sine Input  
14.00  
13.75  
13.50  
13.25  
13.00  
12.75  
12.50  
12.25  
12.00  
11.75  
11.50  
11.25  
Averaging of 4 samples  
Averaging of 32 samples  
11.00  
1
2
3
4
5
6
7
8
9
10  
11  
12  
ADC Clock Frequency (MHz)  
Figure 19. Typical ENOB vs. ADC_CLK for 16-bit single-ended mode  
48  
Freescale Semiconductor, Inc.  
Kinetis K65 Sub-Family, Rev. 2, 05/2015  
Peripheral operating requirements and behaviors  
3.6.2 CMP and 6-bit DAC electrical specifications  
Table 33. Comparator and 6-bit DAC electrical specifications  
Symbol  
VDD  
Description  
Min.  
1.71  
Typ.  
Max.  
3.6  
Unit  
V
Supply voltage  
IDDHS  
IDDLS  
VAIN  
Supply current, High-speed mode (EN=1, PMODE=1)  
Supply current, low-speed mode (EN=1, PMODE=0)  
Analog input voltage  
200  
20  
μA  
μA  
V
VSS – 0.3  
VDD  
20  
VAIO  
Analog input offset voltage  
Analog comparator hysteresis1  
• CR0[HYSTCTR] = 00  
mV  
VH  
5
mV  
mV  
mV  
mV  
10  
20  
30  
• CR0[HYSTCTR] = 01  
• CR0[HYSTCTR] = 10  
• CR0[HYSTCTR] = 11  
VCMPOh  
VCMPOl  
tDHS  
Output high  
VDD – 0.5  
50  
250  
7
0.5  
200  
600  
40  
V
V
Output low  
Propagation delay, high-speed mode (EN=1, PMODE=1)  
Propagation delay, low-speed mode (EN=1, PMODE=0)  
Analog comparator initialization delay2  
6-bit DAC current adder (enabled)  
6-bit DAC integral non-linearity  
20  
ns  
tDLS  
80  
ns  
μs  
IDAC6b  
INL  
μA  
LSB3  
LSB  
–0.5  
–0.3  
0.5  
0.3  
DNL  
6-bit DAC differential non-linearity  
1. Typical hysteresis is measured with input voltage range limited to 0.6 to VDD–0.6 V.  
2. Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to  
CMP_DACCR[DACEN], CMP_DACCR[VRSEL], CMP_DACCR[VOSEL], CMP_MUXCR[PSEL], and  
CMP_MUXCR[MSEL]) and the comparator output settling to a stable level.  
3. 1 LSB = Vreference/64  
Kinetis K65 Sub-Family, Rev. 2, 05/2015  
49  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
HYSTCTR  
Setting  
00  
01  
10  
11  
0.02  
0.01  
0
0.1  
0.4  
0.7  
1
1.3  
1.6  
1.9  
2.2  
2.5  
2.8  
3.1  
Vin level (V)  
Figure 20. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 0)  
50  
Kinetis K65 Sub-Family, Rev. 2, 05/2015  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
0.18  
0.16  
0.14  
0.12  
HYSTCTR  
Setting  
0.1  
00  
01  
10  
11  
0.08  
0.06  
0.04  
0.02  
0
0.1  
0.4  
0.7  
1
1.3  
1.6  
1.9  
2.2  
2.5  
2.8  
3.1  
Vin level (V)  
Figure 21. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 1)  
3.6.3 12-bit DAC electrical characteristics  
3.6.3.1 12-bit DAC operating requirements  
Table 34. 12-bit DAC operating requirements  
Symbol  
VDDA  
VDACR  
CL  
Desciption  
Min.  
Max.  
3.6  
3.6  
100  
1
Unit  
V
Notes  
Supply voltage  
Reference voltage  
Output load capacitance  
Output load current  
1.13  
V
1
2
pF  
mA  
IL  
1. The DAC reference can be selected to be VDDA or VREFH  
.
2. A small load capacitance (47 pF) can improve the bandwidth performance of the DAC.  
Kinetis K65 Sub-Family, Rev. 2, 05/2015  
51  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
3.6.3.2 12-bit DAC operating behaviors  
Table 35. 12-bit DAC operating behaviors  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
IDDA_DACL Supply current — low-power mode  
150  
μA  
P
IDDA_DACH Supply current — high-speed mode  
100  
15  
700  
200  
30  
μA  
μs  
μs  
μs  
P
tDACLP Full-scale settling time (0x080 to 0xF7F) —  
low-power mode  
1
1
1
tDACHP Full-scale settling time (0x080 to 0xF7F) —  
high-power mode  
tCCDACLP Code-to-code settling time (0xBF8 to  
0xC08) — low-power mode and high-speed  
mode  
0.7  
1
Vdacoutl DAC output voltage range low — high-  
speed mode, no load, DAC set to 0x000  
100  
mV  
mV  
Vdacouth DAC output voltage range high — high-  
speed mode, no load, DAC set to 0xFFF  
VDACR  
−100  
VDACR  
INL  
DNL  
DNL  
Integral non-linearity error — high speed  
mode  
8
1
1
LSB  
LSB  
LSB  
2
3
4
Differential non-linearity error — VDACR > 2  
V
Differential non-linearity error — VDACR  
VREF_OUT  
=
VOFFSET Offset error  
EG Gain error  
PSRR Power supply rejection ratio, VDDA ≥ 2.4 V  
60  
0.4  
0.1  
0.8  
0.6  
90  
%FSR  
%FSR  
dB  
5
5
TCO  
TGE  
AC  
Temperature coefficient offset voltage  
Temperature coefficient gain error  
Offset aging coefficient  
3.7  
μV/C  
%FSR/C  
μV/yr  
Ω
6
0.000421  
100  
250  
Rop  
SR  
Output resistance (load = 3 kΩ)  
Slew rate -80hF7Fh80h  
V/μs  
• High power (SPHP  
• Low power (SPLP  
)
1.2  
1.7  
)
0.05  
0.12  
CT  
Channel to channel cross talk  
3dB bandwidth  
-80  
dB  
BW  
kHz  
• High power (SPHP  
• Low power (SPLP  
)
550  
40  
)
1. Settling within 1 LSB  
2. The INL is measured for 0 + 100 mV to VDACR −100 mV  
3. The DNL is measured for 0 + 100 mV to VDACR −100 mV  
4. The DNL is measured for 0 + 100 mV to VDACR −100 mV with VDDA > 2.4 V  
5. Calculated by a best fit curve from VSS + 100 mV to VDACR − 100 mV  
52  
Kinetis K65 Sub-Family, Rev. 2, 05/2015  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
6. VDDA = 3.0 V, reference select set for VDDA (DACx_CO:DACRFS = 1), high power mode (DACx_C0:LPEN = 0), DAC  
set to 0x800, temperature range is across the full range of the device  
8
6
4
2
0
-2  
-4  
-6  
-8  
0
500  
1000  
1500  
2000  
2500  
3000  
3500  
4000  
Digital Code  
Figure 22. Typical INL error vs. digital code  
Kinetis K65 Sub-Family, Rev. 2, 05/2015  
53  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
1.499  
1.4985  
1.498  
1.4975  
1.497  
1.4965  
1.496  
55  
85  
25  
105  
125  
-40  
Temperature °C  
Figure 23. Offset at half scale vs. temperature  
3.6.4 Voltage reference electrical specifications  
Table 36. VREF full-range operating requirements  
Symbol  
VDDA  
TA  
Description  
Supply voltage  
Temperature  
Min.  
Max.  
Unit  
Notes  
3.6  
V
Operating temperature  
range of the device  
°C  
CL  
Output load capacitance  
100  
nF  
1, 2  
1. CL must be connected to VREF_OUT if the VREF_OUT functionality is being used for either an internal or external  
reference.  
2. The load capacitance should not exceed +/-25% of the nominal specified CL value over the operating temperature range  
of the device.  
54  
Kinetis K65 Sub-Family, Rev. 2, 05/2015  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
Table 37. VREF full-range operating behaviors  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
Vout  
Voltage reference output with factory trim at  
1.1915  
1.195  
1.1977  
V
1
nominal VDDA and temperature=25C  
Voltage reference output — factory trim  
Voltage reference output — user trim  
Voltage reference trim step  
Vout  
Vout  
1.1584  
1.193  
1.2376  
1.197  
V
V
1
1
1
1
Vstep  
Vtdrift  
0.5  
mV  
mV  
Temperature drift (Vmax -Vmin across the full  
temperature range)  
80  
Ac  
Ibg  
Aging coefficient  
400  
80  
uV/yr  
µA  
1
Bandgap only current  
ΔVLOAD Load regulation  
• current = 1.0 mA  
µV  
1, 2  
200  
Tstup  
Buffer startup time  
100  
35  
µs  
Tchop_osc_st Internal bandgap start-up delay with chop  
ms  
oscillator enabled  
up  
Vvdrift  
Voltage drift (Vmax -Vmin across the full  
voltage range)  
2
mV  
1
1. See the chip's Reference Manual for the appropriate settings of the VREF Status and Control register.  
2. Load regulation voltage is the difference between the VREF_OUT voltage with no load vs. voltage with defined load  
Table 38. VREF limited-range operating requirements  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
TA  
Temperature  
0
50  
°C  
Table 39. VREF limited-range operating behaviors  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
Vout  
Voltage reference output with factory trim  
1.173  
1.225  
V
3.7 Timers  
See General switching specifications.  
3.8 Communication interfaces  
Kinetis K65 Sub-Family, Rev. 2, 05/2015  
55  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
3.8.1 Ethernet switching specifications  
The following timing specs are defined at the chip I/O pin and must be translated  
appropriately to arrive at timing specs/constraints for the physical interface.  
3.8.1.1 MII signal switching specifications  
The following timing specs meet the requirements for MII style interfaces for a range of  
transceiver devices.  
Table 40. MII signal switching specifications  
Symbol  
Description  
Min.  
2.7  
Max.  
3.6  
Unit  
V
Operating Voltage  
RXCLK frequency  
RXCLK pulse width high  
25  
MHz  
RXCLK  
period  
RXCLK  
period  
ns  
MII1  
35%  
65%  
MII2  
RXCLK pulse width low  
35%  
65%  
MII3  
MII4  
RXD[3:0], RXDV, RXER to RXCLK setup  
RXCLK to RXD[3:0], RXDV, RXER hold  
TXCLK frequency  
5
5
ns  
25  
MHz  
TXCLK  
period  
TXCLK  
period  
ns  
MII5  
TXCLK pulse width high  
35%  
65%  
MII6  
TXCLK pulse width low  
35%  
65%  
MII7  
MII8  
TXCLK to TXD[3:0], TXEN, TXER invalid  
TXCLK to TXD[3:0], TXEN, TXER valid  
2
25  
ns  
56  
Freescale Semiconductor, Inc.  
Kinetis K65 Sub-Family, Rev. 2, 05/2015  
Peripheral operating requirements and behaviors  
MII6  
MII5  
TXCLK (input)  
TXD[n:0]  
TXEN  
MII8  
MII7  
Valid data  
Valid data  
Valid data  
TXER  
Figure 24. RMII/MII transmit signal timing diagram  
MII2  
MII1  
RXCLK (input)  
RXD[n:0]  
RXDV  
MII3  
MII4  
Valid data  
Valid data  
Valid data  
RXER  
Figure 25. RMII/MII receive signal timing diagram  
3.8.1.2 RMII signal switching specifications  
The following timing specs meet the requirements for RMII style interfaces for a  
range of transceiver devices.  
Table 41. RMII signal switching specifications  
Num  
Description  
Min.  
2.7  
Max.  
3.6  
Unit  
Operating Voltage  
EXTAL frequency (RMII input clock RMII_CLK)  
RMII_CLK pulse width high  
50  
MHz  
RMII1  
35%  
65%  
RMII_CLK  
period  
RMII2  
RMII_CLK pulse width low  
35%  
65%  
RMII_CLK  
period  
RMII3  
RMII4  
RXD[1:0], CRS_DV, RXER to RMII_CLK setup  
RMII_CLK to RXD[1:0], CRS_DV, RXER hold  
4
2
ns  
ns  
Table continues on the next page...  
Kinetis K65 Sub-Family, Rev. 2, 05/2015  
57  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
Table 41. RMII signal switching specifications  
(continued)  
Num  
RMII7  
RMII8  
Description  
Min.  
4
Max.  
Unit  
ns  
RMII_CLK to TXD[1:0], TXEN invalid  
RMII_CLK to TXD[1:0], TXEN valid  
15.4  
ns  
3.8.2 USB Voltage Regulator Electrical Specifications  
Table 42. USB VREG electrical specifications  
Symbol  
Description  
Min.  
Typ.1  
Max.  
Unit  
Notes  
VREG_IN0 Regulator selectable input supply voltages  
VREG_IN1  
2.7  
5.5  
V
2
IDDon  
Quiescent current — Run mode, load current  
equal zero, input supply (VREG_IN*) > 3.6 V  
μA  
μA  
VREG_IN0  
VREG_IN1  
157  
157  
2
IDDstby  
Quiescent current — Standby mode, load  
current equal zero  
VREG_IN0  
VREG_IN1  
IDDoff  
2
Quiescent current — Shutdown mode  
VREG_IN0  
VREG_IN1  
• VREG_IN*= 5.0 V and temperature=25 °C  
680  
920  
nA  
ILOADrun  
ILOADstby  
Maximum load current — Run mode  
150  
1
mA  
mA  
mV  
3
4
Maximum load current — Standby mode  
VDROPOUT Regulator drop-out voltage — Run mode at  
maximum load current with inrush current limit  
disabled  
300  
VREG_OUT Regulator programmable output target voltage  
— Selected input supply > programmed output  
target voltage + VDROPOUT  
3
3.3  
2.8  
3.6  
3.6  
V
V
2.1  
• Run mode  
• Standby mode  
COUT  
ESR  
External output capacitor  
1.76  
1
2.2  
8.16  
100  
μF  
External output capacitor equivalent series  
resistance  
mΩ  
ILIM  
Short circuit current  
Inrush current limit  
350  
mA  
mA  
5
IINRUSH  
40  
100  
6, 7, 8,  
9, 10  
1. Typical values assume the selected input supply is 5.0 V, Temp = 25 °C unless otherwise stated.  
58  
Kinetis K65 Sub-Family, Rev. 2, 05/2015  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
2. Operation range is 2.7 V to 5.5 V; tolerance voltage is up to 6 V.  
3. 150mA is inclusive of the run mode current of the on-chip USB modules. Available load outside of the chip depends on  
USB operation and device power dissipation limits.  
4. The target voltage for the regulator is programmable, accounting for the range of the max and min values  
5. Current limit disabled.  
6. Current limit should be disabled after the powers have stabilized to allow full functionality of the regulator.  
7. Limited Characterization  
8. IINRUSH with VREGINx=4.0 V to 5.5 V  
9. The minimum value of IINRUSH is stated for operation when only one of VREG_IN0 / VREG_IN1 is powered, or when  
VREG_IN0 and VREG_IN1 both have the same voltage level. When VREG_IN0 and VREG_IN1 are operated at  
different voltage levels with the selected VREG_IN lower than the non-selected VREG_IN, the minumum value of  
IINRUSH may decrease to a lower value.  
10. Total current load on startup should be less than IINRUSH min over full input voltage range of the regulator.  
3.8.3 USB Full Speed Transceiver and High Speed PHY  
specifications  
This section describes the USB0 port Full Speed/Low Speed transceiver and USB1  
port USB-PHY High Speed Phy parameters. The high speed phy is capable of full and  
low speed signalling as well.  
The USB0 (FS/LS Transceiver) and USB1 ((USB HS/FS/LS) meet the electrical  
compliance requirements defined in the Universal Serial Bus Revision 2.0  
Specification with the amendments below.  
• USB ENGINEERING CHANGE NOTICE  
• Title: 5V Short Circuit Withstand Requirement Change  
• Applies to: Universal Serial Bus Specification, Revision 2.0  
• Errata for USB Revision 2.0 April 27, 2000 as of 12/7/2000  
• USB ENGINEERING CHANGE NOTICE  
• Title: Pull-up/Pull-down resistors  
• Applies to: Universal Serial Bus Specification, Revision 2.0  
• USB ENGINEERING CHANGE NOTICE  
• Title: Suspend Current Limit Changes  
• Applies to: Universal Serial Bus Specification, Revision 2.0  
• On-The-Go and Embedded Host Supplement to the USB Revision 2.0  
Specification  
• Revision 2.0 version 1.1a July 27, 2012  
• Battery Charging Specification (available from USB-IF)  
• Revision 1.2 (including errata and ECNs through March 15, 2012), March 15,  
2012  
USB1_VBUS pin is a detector function which is 5v tolerant and complies with the  
above specifications without needing any external voltage division components.  
Kinetis K65 Sub-Family, Rev. 2, 05/2015  
59  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
3.8.4 USB DCD electrical specifications  
Table 43. USB DCD electrical specifications  
Symbol  
VDP_SRC  
Description  
Min.  
Typ.  
Max.  
Unit  
,
USB_DP and USB_DM source voltages (up to 250  
0.5  
0.7  
V
VDM_SRC μA)  
VLGC  
IDP_SRC  
IDM_SINK  
Threshold voltage for logic high  
0.8  
7
10  
2.0  
13  
V
USB_DP source current  
μA  
μA  
,
USB_DM and USB_DP sink currents  
50  
100  
150  
IDP_SINK  
RDM_DWN D- pulldown resistance for data pin contact detect  
VDAT_REF Data detect voltage  
14.25  
0.25  
24.8  
0.4  
kΩ  
V
0.33  
3.8.5 CAN switching specifications  
See General switching specifications.  
3.8.6 DSPI switching specifications (limited voltage range)  
The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with  
master and slave operations. Many of the transfer attributes are programmable. The  
tables below provide DSPI timing characteristics for classic SPI timing modes. Refer to  
the DSPI chapter of the Reference Manual for information on the modified transfer  
formats used for communicating with slower peripheral devices.  
Table 44. Master mode DSPI timing (limited voltage range)  
Num  
Description  
Min.  
2.7  
Max.  
3.6  
30  
Unit  
V
Notes  
Operating voltage  
Frequency of operation  
MHz  
ns  
DS1  
DS2  
DS3  
DSPI_SCK output cycle time  
DSPI_SCK output high/low time  
DSPI_PCSn valid to DSPI_SCK delay  
2 x tBUS  
(tSCK/2) − 2 (tSCK/2) + 2  
ns  
(tBUS x 2) −  
2
ns  
1
2
DS4  
DSPI_SCK to DSPI_PCSn invalid delay  
(tBUS x 2) −  
2
ns  
DS5  
DS6  
DSPI_SCK to DSPI_SOUT valid  
DSPI_SCK to DSPI_SOUT invalid  
15.0  
ns  
ns  
1.0  
Table continues on the next page...  
60  
Freescale Semiconductor, Inc.  
Kinetis K65 Sub-Family, Rev. 2, 05/2015  
Peripheral operating requirements and behaviors  
Table 44. Master mode DSPI timing (limited voltage range) (continued)  
Num  
DS7  
DS8  
Description  
DSPI_SIN to DSPI_SCK input setup  
DSPI_SCK to DSPI_SIN input hold  
Min.  
15.8  
0
Max.  
Unit  
ns  
Notes  
ns  
1. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK].  
2. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC].  
DSPI_PCSn  
DS1  
DS3  
DS2  
DS4  
DSPI_SCK  
(CPOL=0)  
DS8  
DS7  
Data  
Last data  
First data  
DSPI_SIN  
DS5  
DS6  
First data  
Data  
Last data  
DSPI_SOUT  
Figure 26. DSPI classic SPI timing — master mode  
Table 45. Slave mode DSPI timing (limited voltage range)  
Num  
Description  
Min.  
Max.  
Unit  
Operating voltage  
2.7  
3.6  
15 1  
V
MHz  
ns  
Frequency of operation  
DS9  
DSPI_SCK input cycle time  
4 x tBUS  
DS10  
DS11  
DS12  
DS13  
DS14  
DS15  
DS16  
DSPI_SCK input high/low time  
(tSCK/2) − 2  
(tSCK/2) + 2  
ns  
DSPI_SCK to DSPI_SOUT valid  
DSPI_SCK to DSPI_SOUT invalid  
DSPI_SIN to DSPI_SCK input setup  
DSPI_SCK to DSPI_SIN input hold  
DSPI_SS active to DSPI_SOUT driven  
DSPI_SS inactive to DSPI_SOUT not driven  
0
23.0  
ns  
ns  
2.7  
7.0  
ns  
ns  
13  
13  
ns  
ns  
1. The maximum operating frequency is measured with non-continuous CS and SCK. When DSPI is configured with  
continuous CS and SCK, there is a constraint that SPI clock should not be greater than 1/6 of bus clock, for example,  
when bus clock is 60MHz, SPI clock should not be greater than 10MHz.  
Kinetis K65 Sub-Family, Rev. 2, 05/2015  
61  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
DSPI_SS  
DS10  
DS9  
DSPI_SCK  
DS15  
DS12  
DS16  
DS11  
(CPOL=0)  
First data  
Last data  
DSPI_SOUT  
Data  
Data  
DS13  
DS14  
First data  
Last data  
DSPI_SIN  
Figure 27. DSPI classic SPI timing — slave mode  
3.8.7 DSPI switching specifications (full voltage range)  
The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with  
master and slave operations. Many of the transfer attributes are programmable. The  
tables below provides DSPI timing characteristics for classic SPI timing modes. Refer  
to the DSPI chapter of the Reference Manual for information on the modified transfer  
formats used for communicating with slower peripheral devices.  
Table 46. Master mode DSPI timing (full voltage range)  
Num  
Description  
Min.  
1.71  
Max.  
3.6  
15  
Unit  
V
Notes  
Operating voltage  
1
Frequency of operation  
MHz  
ns  
DS1  
DS2  
DS3  
DSPI_SCK output cycle time  
DSPI_SCK output high/low time  
DSPI_PCSn valid to DSPI_SCK delay  
4 x tBUS  
(tSCK/2) - 4 (tSCK/2) + 4  
ns  
(tBUS x 2) −  
4
ns  
2
3
DS4  
DSPI_SCK to DSPI_PCSn invalid delay  
(tBUS x 2) −  
4
ns  
DS5  
DS6  
DS7  
DS8  
DSPI_SCK to DSPI_SOUT valid  
DSPI_SCK to DSPI_SOUT invalid  
DSPI_SIN to DSPI_SCK input setup  
DSPI_SCK to DSPI_SIN input hold  
1.0  
15.8  
0
15  
ns  
ns  
ns  
ns  
1. The DSPI module can operate across the entire operating voltage for the processor, but to run across the full voltage  
range the maximum frequency of operation is reduced.  
2. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK].  
3. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC].  
62  
Kinetis K65 Sub-Family, Rev. 2, 05/2015  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
DSPI_PCSn  
DS1  
DS3  
DS2  
DS4  
DSPI_SCK  
(CPOL=0)  
DS8  
DS7  
Data  
Last data  
First data  
DSPI_SIN  
DS5  
DS6  
First data  
Data  
Last data  
DSPI_SOUT  
Figure 28. DSPI classic SPI timing — master mode  
Table 47. Slave mode DSPI timing (full voltage range)  
Num  
Description  
Min.  
Max.  
3.6  
Unit  
V
Operating voltage  
1.71  
Frequency of operation  
7.5  
MHz  
ns  
DS9  
DSPI_SCK input cycle time  
8 x tBUS  
DS10  
DS11  
DS12  
DS13  
DS14  
DS15  
DS16  
DSPI_SCK input high/low time  
(tSCK/2) - 4  
(tSCK/2) + 4  
23.1  
ns  
DSPI_SCK to DSPI_SOUT valid  
DSPI_SCK to DSPI_SOUT invalid  
DSPI_SIN to DSPI_SCK input setup  
DSPI_SCK to DSPI_SIN input hold  
DSPI_SS active to DSPI_SOUT driven  
DSPI_SS inactive to DSPI_SOUT not driven  
0
ns  
ns  
2.6  
7.0  
ns  
ns  
13.0  
13.0  
ns  
ns  
DSPI_SS  
DS10  
DS9  
DSPI_SCK  
(CPOL=0)  
DS15  
DS12  
DS16  
DS11  
First data  
DS14  
Last data  
DSPI_SOUT  
Data  
Data  
DS13  
First data  
Last data  
DSPI_SIN  
Figure 29. DSPI classic SPI timing — slave mode  
Kinetis K65 Sub-Family, Rev. 2, 05/2015  
63  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
3.8.8 I2C switching specifications  
See General switching specifications.  
3.8.9 UART switching specifications  
See General switching specifications.  
3.8.10 Low Power UART switching specifications  
See General switching specifications.  
3.8.11 SDHC specifications  
The following timing specs are defined at the chip I/O pin and must be translated  
appropriately to arrive at timing specs/constraints for the physical interface.  
Table 48. SDHC full voltage range switching specifications  
Num  
Symbol  
Description  
Min.  
Max.  
Unit  
Operating voltage  
1.71  
3.6  
V
Card input clock  
SD1  
fpp  
fpp  
fpp  
fOD  
tWL  
tWH  
tTLH  
tTHL  
Clock frequency (low speed)  
0
0
400  
25\50  
20\50  
400  
kHz  
MHz  
MHz  
kHz  
ns  
Clock frequency (SD\SDIO full speed\high speed)  
Clock frequency (MMC full speed\high speed)  
Clock frequency (identification mode)  
Clock low time  
0
0
SD2  
SD3  
SD4  
SD5  
7
Clock high time  
7
ns  
Clock rise time  
3
ns  
Clock fall time  
3
ns  
SDHC output / card inputs SDHC_CMD, SDHC_DAT (reference to SDHC_CLK)  
SDHC output delay (output valid) -5 8.6 8.3  
SDHC input / card inputs SDHC_CMD, SDHC_DAT (reference to SDHC_CLK)  
SD6  
tOD  
ns  
SD7  
SD8  
tISU  
tIH  
SDHC input setup time  
SDHC input hold time  
5
0
ns  
ns  
64  
Freescale Semiconductor, Inc.  
Kinetis K65 Sub-Family, Rev. 2, 05/2015  
Peripheral operating requirements and behaviors  
Table 49. SDHC limited voltage range switching specifications  
Num  
Symbol  
Description  
Min.  
Max.  
Unit  
Operating voltage  
2.7  
3.6  
V
Card input clock  
SD1  
fpp  
fpp  
fpp  
fOD  
tWL  
tWH  
tTLH  
tTHL  
Clock frequency (low speed)  
0
0
400  
25\50  
20\50  
400  
kHz  
MHz  
MHz  
kHz  
ns  
Clock frequency (SD\SDIO full speed\high speed)  
Clock frequency (MMC full speed\high speed)  
Clock frequency (identification mode)  
Clock low time  
0
0
SD2  
SD3  
SD4  
SD5  
7
Clock high time  
7
ns  
Clock rise time  
3
ns  
Clock fall time  
3
ns  
SDHC output / card inputs SDHC_CMD, SDHC_DAT (reference to SDHC_CLK)  
SDHC output delay (output valid) -5 7.6 8.3  
SDHC input / card inputs SDHC_CMD, SDHC_DAT (reference to SDHC_CLK)  
SD6  
tOD  
ns  
SD7  
SD8  
tISU  
tIH  
SDHC input setup time  
SDHC input hold time  
5
0
ns  
ns  
SD3  
SD6  
SD2  
SD1  
SDHC_CLK  
Output SDHC_CMD  
Output SDHC_DAT[3:0]  
Input SDHC_CMD  
SD7  
SD8  
Input SDHC_DAT[3:0]  
Figure 30. SDHC timing  
3.8.12 I2S switching specifications  
This section provides the AC timings for the I2S in master (clocks driven) and slave  
modes (clocks input). All timings are given for non-inverted serial clock polarity  
(TCR[TSCKP] = 0, RCR[RSCKP] = 0) and a non-inverted frame sync (TCR[TFSI] =  
Kinetis K65 Sub-Family, Rev. 2, 05/2015  
65  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
0, RCR[RFSI] = 0). If the polarity of the clock and/or the frame sync have been  
inverted, all the timings remain valid by inverting the clock signal (I2S_BCLK) and/or  
the frame sync (I2S_FS) shown in the figures below.  
Table 50. I2S master mode timing (limited voltage range)  
Num  
Description  
Min.  
2.7  
40  
45%  
80  
45%  
Max.  
3.6  
Unit  
Operating voltage  
V
S1  
S2  
S3  
S4  
S5  
S6  
S7  
S8  
S9  
S10  
I2S_MCLK cycle time  
ns  
I2S_MCLK pulse width high/low  
I2S_BCLK cycle time  
55%  
MCLK period  
ns  
I2S_BCLK pulse width high/low  
I2S_BCLK to I2S_FS output valid  
I2S_BCLK to I2S_FS output invalid  
I2S_BCLK to I2S_TXD valid  
I2S_BCLK to I2S_TXD invalid  
I2S_RXD/I2S_FS input setup before I2S_BCLK  
I2S_RXD/I2S_FS input hold after I2S_BCLK  
55%  
15  
BCLK period  
ns  
ns  
ns  
ns  
ns  
ns  
0
15  
0
15  
0
S1  
S2  
S2  
I2S_MCLK (output)  
I2S_BCLK (output)  
I2S_FS (output)  
I2S_FS (input)  
I2S_TXD  
S3  
S4  
S4  
S5  
S6  
S10  
S9  
S7  
S8  
S7  
S8  
S9  
S10  
I2S_RXD  
Figure 31. I2S timing — master mode  
Table 51. I2S slave mode timing (limited voltage range)  
Num  
Description  
Operating voltage  
Min.  
2.7  
Max.  
Unit  
3.6  
V
ns  
S11  
S12  
I2S_BCLK cycle time (input)  
80  
I2S_BCLK pulse width high/low (input)  
45%  
55%  
MCLK period  
Table continues on the next page...  
66  
Freescale Semiconductor, Inc.  
Kinetis K65 Sub-Family, Rev. 2, 05/2015  
Peripheral operating requirements and behaviors  
Table 51. I2S slave mode timing (limited voltage range) (continued)  
Num  
S13  
S14  
S15  
S16  
S17  
S18  
S19  
Description  
Min.  
4.5  
2
Max.  
Unit  
ns  
I2S_FS input setup before I2S_BCLK  
I2S_FS input hold after I2S_BCLK  
I2S_BCLK to I2S_TXD/I2S_FS output valid  
I2S_BCLK to I2S_TXD/I2S_FS output invalid  
I2S_RXD setup before I2S_BCLK  
I2S_RXD hold after I2S_BCLK  
ns  
0
20  
ns  
ns  
4.5  
2
ns  
ns  
I2S_TX_FS input assertion to I2S_TXD output valid1  
25  
ns  
1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear  
S11  
S12  
I2S_BCLK (input)  
I2S_FS (output)  
I2S_FS (input)  
I2S_TXD  
S12  
S15  
S16  
S13  
S14  
S19  
S15  
S16  
S15  
S16  
S17  
S18  
I2S_RXD  
Figure 32. I2S timing — slave modes  
3.8.12.1 Normal Run, Wait and Stop mode performance over the full  
operating voltage range  
This section provides the operating performance over the full operating voltage for the  
device in Normal Run, Wait and Stop modes.  
Table 52. I2S/SAI master mode timing  
Num.  
Characteristic  
Min.  
Max.  
Unit  
Operating voltage  
1.71  
40  
3.6  
V
S1  
S2  
S3  
S4  
I2S_MCLK cycle time  
ns  
I2S_MCLK (as an input) pulse width high/low  
I2S_TX_BCLK/I2S_RX_BCLK cycle time (output)  
45%  
80  
55%  
MCLK period  
ns  
I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low 45%  
55%  
BCLK period  
Table continues on the next page...  
Kinetis K65 Sub-Family, Rev. 2, 05/2015  
67  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
Table 52. I2S/SAI master mode timing (continued)  
Num.  
Characteristic  
Min.  
Max.  
Unit  
S5  
S6  
I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/  
I2S_RX_FS output valid  
0
15  
ns  
ns  
I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/  
I2S_RX_FS output invalid  
S7  
S8  
S9  
I2S_TX_BCLK to I2S_TXD valid  
I2S_TX_BCLK to I2S_TXD invalid  
0
15  
ns  
ns  
ns  
I2S_RXD/I2S_RX_FS input setup before  
I2S_RX_BCLK  
15  
S10  
I2S_RXD/I2S_RX_FS input hold after  
I2S_RX_BCLK  
0
ns  
S1  
S2  
S2  
I2S_MCLK (output)  
S3  
S4  
I2S_TX_BCLK/  
I2S_RX_BCLK (output)  
S4  
S5  
S7  
S6  
I2S_TX_FS/  
I2S_RX_FS (output)  
S10  
S9  
I2S_TX_FS/  
I2S_RX_FS (input)  
S7  
S8  
S8  
I2S_TXD  
I2S_RXD  
S9  
S10  
Figure 33. I2S/SAI timing — master modes  
Table 53. I2S/SAI slave mode timing  
Num.  
Characteristic  
Min.  
Max.  
Unit  
Operating voltage  
1.71  
80  
3.6  
V
S11  
S12  
I2S_TX_BCLK/I2S_RX_BCLK cycle time (input)  
ns  
I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low  
(input)  
45%  
55%  
MCLK period  
S13  
S14  
S15  
I2S_TX_FS/I2S_RX_FS input setup before  
I2S_TX_BCLK/I2S_RX_BCLK  
4.5  
2
ns  
ns  
ns  
I2S_TX_FS/I2S_RX_FS input hold after  
I2S_TX_BCLK/I2S_RX_BCLK  
I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid  
23.1  
Table continues on the next page...  
68  
Kinetis K65 Sub-Family, Rev. 2, 05/2015  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
Table 53. I2S/SAI slave mode timing (continued)  
Num.  
S16  
Characteristic  
Min.  
Max.  
Unit  
I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid  
I2S_RXD setup before I2S_RX_BCLK  
0
25  
ns  
ns  
ns  
ns  
S17  
S18  
S19  
4.5  
2
I2S_RXD hold after I2S_RX_BCLK  
I2S_TX_FS input assertion to I2S_TXD output valid1  
1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear  
S11  
S12  
I2S_TX_BCLK/  
I2S_RX_BCLK (input)  
S12  
S15  
S15  
S16  
I2S_TX_FS/  
I2S_RX_FS (output)  
S13  
S14  
I2S_TX_FS/  
I2S_RX_FS (input)  
S15  
S19  
S16  
S16  
I2S_TXD  
I2S_RXD  
S17  
S18  
Figure 34. I2S/SAI timing — slave modes  
3.8.12.2 VLPR, VLPW, and VLPS mode performance over the full  
operating voltage range  
This section provides the operating performance over the full operating voltage for the  
device in VLPR, VLPW, and VLPS modes.  
Table 54. I2S/SAI master mode timing in VLPR, VLPW, and VLPS modes  
(full voltage range)  
Num.  
Characteristic  
Min.  
Max.  
Unit  
Operating voltage  
1.71  
62.5  
3.6  
V
S1  
S2  
S3  
S4  
S5  
I2S_MCLK cycle time  
ns  
I2S_MCLK pulse width high/low  
I2S_TX_BCLK/I2S_RX_BCLK cycle time (output)  
45%  
250  
55%  
MCLK period  
ns  
I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low 45%  
55%  
45  
BCLK period  
ns  
I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/  
I2S_RX_FS output valid  
S6  
I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/  
I2S_RX_FS output invalid  
0
ns  
Table continues on the next page...  
Kinetis K65 Sub-Family, Rev. 2, 05/2015  
69  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
Table 54. I2S/SAI master mode timing in VLPR, VLPW, and VLPS modes (full voltage range)  
(continued)  
Num.  
Characteristic  
I2S_TX_BCLK to I2S_TXD valid  
I2S_TX_BCLK to I2S_TXD invalid  
Min.  
Max.  
Unit  
S7  
S8  
S9  
0
45  
ns  
ns  
ns  
I2S_RXD/I2S_RX_FS input setup before  
I2S_RX_BCLK  
45  
S10  
I2S_RXD/I2S_RX_FS input hold after  
I2S_RX_BCLK  
0
ns  
S1  
S2  
S2  
I2S_MCLK (output)  
S3  
S4  
I2S_TX_BCLK/  
I2S_RX_BCLK (output)  
S4  
S5  
S7  
S6  
I2S_TX_FS/  
I2S_RX_FS (output)  
S10  
S9  
I2S_TX_FS/  
I2S_RX_FS (input)  
S7  
S8  
S8  
I2S_TXD  
I2S_RXD  
S9  
S10  
Figure 35. I2S/SAI timing — master modes  
Table 55. I2S/SAI slave mode timing in VLPR, VLPW, and VLPS modes (full  
voltage range)  
Num.  
Characteristic  
Min.  
Max.  
Unit  
Operating voltage  
1.71  
250  
3.6  
V
S11  
I2S_TX_BCLK/I2S_RX_BCLK cycle time (input)  
ns  
S12  
S13  
S14  
I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low  
(input)  
45%  
55%  
MCLK period  
I2S_TX_FS/I2S_RX_FS input setup before  
I2S_TX_BCLK/I2S_RX_BCLK  
30  
5
ns  
ns  
I2S_TX_FS/I2S_RX_FS input hold after  
I2S_TX_BCLK/I2S_RX_BCLK  
S15  
S16  
S17  
I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid  
I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid  
I2S_RXD setup before I2S_RX_BCLK  
0
56.5  
ns  
ns  
ns  
30  
Table continues on the next page...  
70  
Kinetis K65 Sub-Family, Rev. 2, 05/2015  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
Table 55. I2S/SAI slave mode timing in VLPR, VLPW, and VLPS modes (full voltage range)  
(continued)  
Num.  
S18  
S19  
Characteristic  
Min.  
Max.  
Unit  
I2S_RXD hold after I2S_RX_BCLK  
I2S_TX_FS input assertion to I2S_TXD output valid1  
5
ns  
ns  
72  
1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear  
S11  
S12  
I2S_TX_BCLK/  
I2S_RX_BCLK (input)  
S12  
S15  
S15  
S16  
I2S_TX_FS/  
I2S_RX_FS (output)  
S13  
S14  
I2S_TX_FS/  
I2S_RX_FS (input)  
S15  
S19  
S16  
S16  
I2S_TXD  
I2S_RXD  
S17  
S18  
Figure 36. I2S/SAI timing — slave modes  
3.9 Human-machine interfaces (HMI)  
3.9.1 TSI electrical specifications  
Table 56. TSI electrical specifications  
Symbol  
TSI_RUNF  
TSI_RUNV  
Description  
Min.  
Typ.  
100  
Max.  
Unit  
µA  
Fixed power consumption in run mode  
Variable power consumption in run mode  
(depends on oscillator's current selection)  
1.0  
128  
µA  
TSI_EN  
TSI_DIS  
Power consumption in enable mode  
Power consumption in disable mode  
TSI analog enable time  
100  
1.2  
66  
µA  
µA  
µs  
pF  
V
TSI_TEN  
TSI_CREF  
TSI_DVOLT  
TSI reference capacitor  
1.0  
Voltage variation of VP & VM around nominal  
values  
0.19  
1.03  
Kinetis K65 Sub-Family, Rev. 2, 05/2015  
71  
Freescale Semiconductor, Inc.  
Dimensions  
4 Dimensions  
4.1 Obtaining package dimensions  
Package dimensions are provided in package drawings.  
To find a package drawing, go to freescale.com and perform a keyword search for the  
drawing’s document number:  
If you want the drawing for this package  
169-pin MAPBGA  
Then use this document number  
98ASA00628D  
5 Pinout  
5.1 K65_169BGA Signal Multiplexing and Pin Assignments  
The following table shows the signals available on each pin and the locations of these  
pins on the devices supported by this document. The Port Control Module is responsible  
for selecting which ALT functionality is available on each pin.  
169  
MAP  
BGA  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
EzPort  
A1  
B1  
C1  
D1  
PTE0  
ADC1_SE4a  
ADC1_SE5a  
ADC1_SE6a  
ADC1_SE7a  
ADC1_SE4a  
ADC1_SE5a  
ADC1_SE6a  
ADC1_SE7a  
PTE0  
SPI1_PCS1  
SPI1_SOUT  
SPI1_SCK  
SPI1_SIN  
UART1_TX  
UART1_RX  
SDHC0_D1  
SDHC0_D0  
TRACE_  
CLKOUT  
I2C1_SDA  
I2C1_SCL  
RTC_  
CLKOUT  
PTE1/  
LLWU_P0  
PTE1/  
LLWU_P0  
TRACE_D3  
SPI1_SIN  
PTE2/  
LLWU_P1  
PTE2/  
LLWU_P1  
UART1_CTS_ SDHC0_  
b DCLK  
TRACE_D2  
PTE3  
PTE3  
UART1_RTS_ SDHC0_CMD TRACE_D1  
b
SPI1_SOUT  
G5  
C3  
E1  
VDD  
VSS  
VDD  
VDD  
VSS  
VSS  
PTE4/  
LLWU_P2  
DISABLED  
PTE4/  
LLWU_P2  
SPI1_PCS0  
UART3_TX  
UART3_RX  
SDHC0_D3  
SDHC0_D2  
TRACE_D0  
D2  
E2  
PTE5  
DISABLED  
DISABLED  
PTE5  
SPI1_PCS2  
SPI1_PCS3  
FTM3_CH0  
FTM3_CH1  
PTE6/  
LLWU_P16  
PTE6/  
LLWU_P16  
UART3_CTS_ I2S0_MCLK  
b
USB0_SOF_  
OUT  
72  
Freescale Semiconductor, Inc.  
Kinetis K65 Sub-Family, Rev. 2, 05/2015  
Pinout  
169  
MAP  
BGA  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
EzPort  
E3  
PTE7  
DISABLED  
PTE7  
UART3_RTS_ I2S0_RXD0  
b
FTM3_CH2  
E4  
F3  
PTE8  
DISABLED  
DISABLED  
PTE8  
I2S0_RXD1  
I2S0_TXD1  
I2S0_RX_FS  
LPUART0_TX FTM3_CH3  
LPUART0_RX FTM3_CH4  
PTE9/  
LLWU_P17  
PTE9/  
LLWU_P17  
I2S0_RX_  
BCLK  
F4  
G4  
H4  
PTE10/  
LLWU_P18  
DISABLED  
DISABLED  
DISABLED  
PTE10/  
LLWU_P18  
I2C3_SDA  
I2C3_SCL  
I2S0_TXD0  
LPUART0_  
CTS_b  
FTM3_CH5  
FTM3_CH6  
FTM3_CH7  
USB1_ID  
PTE11  
PTE11  
I2S0_TX_FS  
LPUART0_  
RTS_b  
PTE12  
PTE12  
I2S0_TX_  
BCLK  
G6  
G8  
H3  
F5  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
PTE16  
ADC0_SE4a  
ADC0_SE5a  
ADC0_SE4a  
ADC0_SE5a  
PTE16  
SPI0_PCS0  
SPI0_SCK  
UART2_TX  
UART2_RX  
FTM_CLKIN0  
FTM_CLKIN1  
FTM0_FLT3  
TPM_CLKIN0  
TPM_CLKIN1  
PTE17/  
LLWU_P19  
PTE17/  
LLWU_P19  
LPTMR0_  
ALT3  
F6  
F7  
PTE18/  
LLWU_P20  
ADC0_SE6a  
ADC0_SE7a  
ADC0_SE6a  
ADC0_SE7a  
PTE18/  
LLWU_P20  
SPI0_SOUT  
SPI0_SIN  
UART2_CTS_ I2C0_SDA  
b
PTE19  
PTE19  
UART2_RTS_ I2C0_SCL  
b
CMP3_OUT  
G3  
G1  
F1  
G2  
F2  
H2  
K1  
J1  
VSS  
VSS  
VSS  
USB0_DP  
USB0_DM  
VREG_OUT  
VREG_IN0  
VREG_IN1  
USB1_VSS  
USB1_DP  
USB1_DM  
USB1_VBUS  
ADC1_DP1  
ADC1_DM1  
USB0_DP  
USB0_DM  
VREG_OUT  
VREG_IN0  
DISABLED  
DISABLED  
DISABLED  
DISABLED  
DISABLED  
ADC1_DP1  
ADC1_DM1  
USB0_DP  
USB0_DM  
VREG_OUT  
VREG_IN0  
VREG_IN1  
USB1_VSS  
USB1_DP  
USB1_DM  
USB1_VBUS  
ADC1_DP1  
ADC1_DM1  
H1  
J2  
L1  
M1  
M2  
ADC0_DP0/  
ADC1_DP3  
ADC0_DP0/  
ADC1_DP3  
ADC0_DP0/  
ADC1_DP3  
L2  
N1  
N2  
ADC0_DM0/  
ADC1_DM3  
ADC0_DM0/  
ADC1_DM3  
ADC0_DM0/  
ADC1_DM3  
ADC1_DP0/  
ADC0_DP3  
ADC1_DP0/  
ADC0_DP3  
ADC1_DP0/  
ADC0_DP3  
ADC1_DM0/  
ADC0_DM3  
ADC1_DM0/  
ADC0_DM3  
ADC1_DM0/  
ADC0_DM3  
J3  
VDDA  
VDDA  
VDDA  
K3  
VREFH  
VREFH  
VREFH  
Kinetis K65 Sub-Family, Rev. 2, 05/2015  
73  
Freescale Semiconductor, Inc.  
Pinout  
169  
MAP  
BGA  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
EzPort  
K4  
J4  
VREFL  
VSSA  
VREFL  
VREFL  
VSSA  
VSSA  
M3  
ADC1_SE16/  
CMP2_IN2/  
ADC0_SE22  
ADC1_SE16/  
CMP2_IN2/  
ADC0_SE22  
ADC1_SE16/  
CMP2_IN2/  
ADC0_SE22  
L3  
ADC0_SE16/  
CMP1_IN2/  
ADC0_SE21  
ADC0_SE16/  
CMP1_IN2/  
ADC0_SE21  
ADC0_SE16/  
CMP1_IN2/  
ADC0_SE21  
N3  
VREF_OUT/  
CMP1_IN5/  
CMP0_IN5/  
ADC1_SE18  
VREF_OUT/  
CMP1_IN5/  
CMP0_IN5/  
ADC1_SE18  
VREF_OUT/  
CMP1_IN5/  
CMP0_IN5/  
ADC1_SE18  
M4  
N4  
DAC0_OUT/  
CMP1_IN3/  
ADC0_SE23  
DAC0_OUT/  
CMP1_IN3/  
ADC0_SE23  
DAC0_OUT/  
CMP1_IN3/  
ADC0_SE23  
DAC1_OUT/  
CMP0_IN4/  
CMP2_IN3/  
ADC1_SE23  
DAC1_OUT/  
CMP0_IN4/  
CMP2_IN3/  
ADC1_SE23  
DAC1_OUT/  
CMP0_IN4/  
CMP2_IN3/  
ADC1_SE23  
M5  
TAMPER0/  
RTC_  
TAMPER0/  
RTC_  
TAMPER0/  
RTC_  
WAKEUP_B  
WAKEUP_B  
WAKEUP_B  
L4  
L5  
K5  
L6  
K6  
N5  
N6  
M6  
J6  
TAMPER1  
TAMPER2  
TAMPER3  
TAMPER4  
TAMPER5  
XTAL32  
EXTAL32  
VBAT  
TAMPER1  
TAMPER2  
TAMPER3  
TAMPER4  
TAMPER5  
XTAL32  
TAMPER1  
TAMPER2  
TAMPER3  
TAMPER4  
TAMPER5  
XTAL32  
EXTAL32  
VBAT  
EXTAL32  
VBAT  
TAMPER6  
TAMPER7  
VDD  
TAMPER6  
TAMPER7  
VDD  
TAMPER6  
TAMPER7  
VDD  
J5  
G7  
N7  
L7  
K7  
VSS  
VSS  
VSS  
PTE24  
ADC0_SE17  
ADC0_SE18  
ADC0_SE17  
ADC0_SE18  
PTE24  
CAN1_TX  
CAN1_RX  
UART4_TX  
UART4_RX  
I2C0_SCL  
I2C0_SDA  
EWM_OUT_b  
EWM_IN  
PTE25/  
PTE25/  
LLWU_P21  
LLWU_P21  
K8  
L8  
PTE26  
PTE27  
PTE28  
DISABLED  
DISABLED  
DISABLED  
PTE26  
PTE27  
PTE28  
ENET_1588_  
CLKIN  
UART4_CTS_  
b
RTC_  
CLKOUT  
USB0_CLKIN  
UART4_RTS_  
b
M7  
74  
Freescale Semiconductor, Inc.  
Kinetis K65 Sub-Family, Rev. 2, 05/2015  
Pinout  
169  
MAP  
BGA  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
EzPort  
N8  
PTA0  
JTAG_TCLK/  
SWD_CLK/  
EZP_CLK  
TSI0_CH1  
PTA0  
UART0_CTS_ FTM0_CH5  
b/  
UART0_COL_  
b
LPUART0_  
CTS_b  
JTAG_TCLK/  
SWD_CLK  
EZP_CLK  
N9  
M9  
PTA1  
PTA2  
JTAG_TDI/  
EZP_DI  
TSI0_CH2  
TSI0_CH3  
PTA1  
PTA2  
UART0_RX  
FTM0_CH6  
FTM0_CH7  
I2C3_SDA  
I2C3_SCL  
LPUART0_RX  
LPUART0_TX  
JTAG_TDI  
EZP_DI  
JTAG_TDO/  
TRACE_  
SWO/  
UART0_TX  
JTAG_TDO/  
TRACE_SWO  
EZP_DO  
EZP_DO  
M8  
L9  
PTA3  
JTAG_TMS/  
SWD_DIO  
TSI0_CH4  
TSI0_CH5  
PTA3  
UART0_RTS_ FTM0_CH0  
b
LPUART0_  
RTS_b  
JTAG_TMS/  
SWD_DIO  
PTA4/  
NMI_b/  
PTA4/  
FTM0_CH1  
NMI_b  
EZP_CS_b  
LLWU_P3  
EZP_CS_b  
LLWU_P3  
N10  
PTA5  
DISABLED  
PTA5  
USB0_CLKIN  
FTM0_CH2  
RMII0_RXER/ CMP2_OUT  
MII0_RXER  
I2S0_TX_  
BCLK  
JTAG_TRST_  
b
H5  
H8  
VDD  
VSS  
VDD  
VDD  
VSS  
VSS  
M10  
PTA6  
DISABLED  
PTA6  
PTA7  
PTA8  
FTM0_CH3  
FTM0_CH4  
FTM1_CH0  
CLKOUT  
TRACE_  
CLKOUT  
L10  
K9  
PTA7  
PTA8  
ADC0_SE10  
ADC0_SE11  
ADC0_SE10  
ADC0_SE11  
RMII0_MDIO/  
MII0_MDIO  
TRACE_D3  
RMII0_MDC/  
MII0_MDC  
FTM1_QD_  
PHA/  
TRACE_D2  
TPM1_CH0  
K10  
N11  
M11  
L12  
L11  
K13  
PTA9  
DISABLED  
DISABLED  
DISABLED  
CMP2_IN0  
CMP2_IN1  
DISABLED  
PTA9  
FTM1_CH1  
FTM2_CH0  
FTM2_CH1  
FTM1_CH0  
FTM1_CH1  
UART0_TX  
UART0_RX  
MII0_RXD3  
MII0_RXD2  
FTM1_QD_  
PHB/  
TPM1_CH1  
TRACE_D1  
TRACE_D0  
PTA10/  
LLWU_P22  
PTA10/  
LLWU_P22  
FTM2_QD_  
PHA/  
TPM2_CH0  
PTA11/  
LLWU_P23  
PTA11/  
LLWU_P23  
MII0_RXCLK  
I2C2_SDA  
FTM2_QD_  
PHB/  
TPM2_CH1  
PTA12  
CMP2_IN0  
CMP2_IN1  
PTA12  
CAN0_TX  
CAN0_RX  
SPI0_PCS0  
RMII0_RXD1/ I2C2_SCL  
MII0_RXD1  
I2S0_TXD0  
FTM1_QD_  
PHA/  
TPM1_CH0  
PTA13/  
LLWU_P4  
PTA13/  
LLWU_P4  
RMII0_RXD0/ I2C2_SDA  
MII0_RXD0  
I2S0_TX_FS  
FTM1_QD_  
PHB/  
TPM1_CH1  
PTA14  
PTA14  
RMII0_CRS_  
DV/  
MII0_RXDV  
I2C2_SCL  
I2S0_RX_  
BCLK  
I2S0_TXD1  
K12  
J13  
PTA15  
PTA16  
CMP3_IN1  
CMP3_IN2  
CMP3_IN1  
CMP3_IN2  
PTA15  
PTA16  
SPI0_SCK  
RMII0_TXEN/  
MII0_TXEN  
I2S0_RXD0  
SPI0_SOUT  
UART0_CTS_ RMII0_TXD0/  
b/ MII0_TXD0  
I2S0_RX_FS  
I2S0_RXD1  
Kinetis K65 Sub-Family, Rev. 2, 05/2015  
75  
Freescale Semiconductor, Inc.  
Pinout  
169  
MAP  
BGA  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
EzPort  
UART0_COL_  
b
J12  
PTA17  
ADC1_SE17  
ADC1_SE17  
PTA17  
SPI0_SIN  
UART0_RTS_ RMII0_TXD1/  
I2S0_MCLK  
b
MII0_TXD1  
N12  
M12  
N13  
M13  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
PTA18  
PTA19  
EXTAL0  
XTAL0  
EXTAL0  
XTAL0  
PTA18  
PTA19  
FTM0_FLT2  
FTM1_FLT0  
FTM_CLKIN0  
FTM_CLKIN1  
TPM_CLKIN0  
TPM_CLKIN1  
LPTMR0_  
ALT1  
L13  
K11  
RESET_b  
PTA24  
RESET_b  
CMP3_IN4  
RESET_b  
CMP3_IN4  
PTA24  
PTA25  
PTA26  
PTA27  
MII0_TXD2  
MII0_TXCLK  
MII0_TXD3  
MII0_CRS  
FB_A15/  
SDRAM_D15  
FB_A29  
FB_A28  
FB_A27  
FB_A26  
J11  
J10  
H13  
PTA25  
PTA26  
PTA27  
CMP3_IN5  
DISABLED  
DISABLED  
CMP3_IN5  
FB_A14/  
SDRAM_D14  
FB_A13/  
SDRAM_D13  
FB_A12/  
SDRAM_D12  
H12  
H11  
H10  
PTA28  
PTA29  
PTA30  
DISABLED  
DISABLED  
DISABLED  
PTA28  
PTA29  
PTA30  
MII0_TXER  
MII0_COL  
FB_A25  
FB_A24  
CAN0_TX  
CAN0_RX  
I2C0_SCL  
FB_A11/  
SDRAM_D11  
J9  
PTA31  
DISABLED  
PTA31  
FB_A10/  
SDRAM_D10  
G13  
PTB0/  
LLWU_P5  
ADC0_SE8/  
ADC1_SE8/  
TSI0_CH0  
ADC0_SE8/  
ADC1_SE8/  
TSI0_CH0  
PTB0/  
LLWU_P5  
FTM1_CH0  
FTM1_CH1  
RMII0_MDIO/  
MII0_MDIO  
SDRAM_  
CAS_b  
FTM1_QD_  
PHA/  
TPM1_CH0  
G12  
PTB1  
ADC0_SE9/  
ADC1_SE9/  
TSI0_CH6  
ADC0_SE9/  
ADC1_SE9/  
TSI0_CH6  
PTB1  
I2C0_SDA  
RMII0_MDC/  
MII0_MDC  
SDRAM_  
RAS_b  
FTM1_QD_  
PHB/  
TPM1_CH1  
G11  
G10  
PTB2  
PTB3  
ADC0_SE12/  
TSI0_CH7  
ADC0_SE12/  
TSI0_CH7  
PTB2  
PTB3  
I2C0_SCL  
I2C0_SDA  
UART0_RTS_ ENET0_  
SDRAM_WE  
FTM0_FLT3  
FTM0_FLT0  
b
1588_TMR0  
ADC0_SE13/  
TSI0_CH8  
ADC0_SE13/  
TSI0_CH8  
UART0_CTS_ ENET0_  
SDRAM_  
CS0_b  
b/  
1588_TMR1  
UART0_COL_  
b
H9  
PTB4  
PTB5  
PTB6  
PTB7  
ADC1_SE10  
ADC1_SE11  
ADC1_SE12  
ADC1_SE13  
ADC1_SE10  
ADC1_SE11  
ADC1_SE12  
ADC1_SE13  
PTB4  
PTB5  
PTB6  
PTB7  
ENET0_  
1588_TMR2  
SDRAM_  
CS1_b  
FTM1_FLT0  
FTM2_FLT0  
F13  
F12  
F11  
ENET0_  
1588_TMR3  
FB_AD23/  
SDRAM_D23  
FB_AD22/  
SDRAM_D22  
76  
Freescale Semiconductor, Inc.  
Kinetis K65 Sub-Family, Rev. 2, 05/2015  
Pinout  
169  
MAP  
BGA  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
EzPort  
F10  
PTB8  
DISABLED  
DISABLED  
ADC1_SE14  
ADC1_SE15  
DISABLED  
PTB8  
UART3_RTS_  
b
FB_AD21/  
SDRAM_D21  
F9  
PTB9  
PTB9  
SPI1_PCS1  
SPI1_PCS0  
SPI1_SCK  
UART3_CTS_  
b
FB_AD20/  
SDRAM_D20  
G9  
PTB10  
PTB11  
PTB12  
ADC1_SE14  
ADC1_SE15  
PTB10  
PTB11  
PTB12  
UART3_RX  
FB_AD19/  
SDRAM_D19  
FTM0_FLT1  
FTM0_FLT2  
E13  
E12  
UART3_TX  
FB_AD18/  
SDRAM_D18  
UART3_RTS_ FTM1_CH0  
b
FTM0_CH4  
FTM0_CH5  
FB_A9/  
SDRAM_D9  
FTM1_QD_  
PHA/  
TPM1_CH0  
E11  
PTB13  
DISABLED  
PTB13  
UART3_CTS_ FTM1_CH1  
b
FB_A8/  
SDRAM_D8  
FTM1_QD_  
PHB/  
TPM1_CH1  
E10  
E9  
PTB14  
PTB15  
PTB16  
PTB17  
PTB18  
DISABLED  
DISABLED  
TSI0_CH9  
TSI0_CH10  
TSI0_CH11  
PTB14  
PTB15  
PTB16  
PTB17  
PTB18  
CAN1_TX  
CAN1_RX  
FB_A7/  
SDRAM_D7  
FB_A6/  
SDRAM_D6  
F8  
TSI0_CH9  
TSI0_CH10  
TSI0_CH11  
SPI1_SOUT  
SPI1_SIN  
CAN0_TX  
UART0_RX  
UART0_TX  
FTM2_CH0  
FTM_CLKIN0  
FTM_CLKIN1  
FB_AD17/  
SDRAM_D17  
EWM_IN  
TPM_CLKIN0  
D13  
D12  
FB_AD16/  
SDRAM_D16  
EWM_OUT_b TPM_CLKIN1  
I2S0_TX_  
BCLK  
FB_AD15/  
SDRAM_A23  
FTM2_QD_  
PHA/  
TPM2_CH0  
D11  
PTB19  
TSI0_CH12  
TSI0_CH12  
PTB19  
CAN0_RX  
FTM2_CH1  
I2S0_TX_FS  
FB_OE_b  
FTM2_QD_  
PHB/  
TPM2_CH1  
D10  
D9  
PTB20  
PTB21  
PTB22  
PTB23  
PTC0  
DISABLED  
DISABLED  
DISABLED  
DISABLED  
PTB20  
PTB21  
PTB22  
PTB23  
PTC0  
SPI2_PCS0  
SPI2_SCK  
SPI2_SOUT  
SPI2_SIN  
FB_AD31/  
SDRAM_D31  
CMP0_OUT  
CMP1_OUT  
CMP2_OUT  
CMP3_OUT  
I2S0_TXD1  
I2S0_TXD0  
I2S0_TX_FS  
FB_AD30/  
SDRAM_D30  
C13  
C12  
B13  
B12  
A13  
FB_AD29/  
SDRAM_D29  
SPI0_PCS5  
FB_AD28/  
SDRAM_D28  
ADC0_SE14/  
TSI0_CH13  
ADC0_SE14/  
TSI0_CH13  
SPI0_PCS4  
SPI0_PCS3  
SPI0_PCS2  
PDB0_  
EXTRG  
USB0_SOF_  
OUT  
FB_AD14/  
SDRAM_A22  
PTC1/  
LLWU_P6  
ADC0_SE15/  
TSI0_CH14  
ADC0_SE15/  
TSI0_CH14  
PTC1/  
LLWU_P6  
UART1_RTS_ FTM0_CH0  
b
FB_AD13/  
SDRAM_A21  
PTC2  
ADC0_SE4b/  
CMP1_IN0/  
TSI0_CH15  
ADC0_SE4b/  
CMP1_IN0/  
TSI0_CH15  
PTC2  
UART1_CTS_ FTM0_CH1  
b
FB_AD12/  
SDRAM_A20  
A12  
C11  
PTC3/  
LLWU_P7  
CMP1_IN1  
CMP1_IN1  
PTC3/  
LLWU_P7  
SPI0_PCS1  
UART1_RX  
FTM0_CH2  
CLKOUT  
I2S0_TX_  
BCLK  
VSS  
VSS  
VSS  
Kinetis K65 Sub-Family, Rev. 2, 05/2015  
77  
Freescale Semiconductor, Inc.  
Pinout  
169  
MAP  
BGA  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
EzPort  
H6  
VDD  
PTC4/  
LLWU_P8  
VDD  
VDD  
B11  
DISABLED  
DISABLED  
CMP0_IN0  
CMP0_IN1  
PTC4/  
LLWU_P8  
SPI0_PCS0  
SPI0_SCK  
SPI0_SOUT  
SPI0_SIN  
UART1_TX  
FTM0_CH3  
I2S0_RXD0  
FB_AD11/  
SDRAM_A19  
CMP1_OUT  
CMP0_OUT  
I2S0_MCLK  
A11  
A10  
B10  
C10  
C9  
PTC5/  
LLWU_P9  
PTC5/  
LLWU_P9  
LPTMR0_  
ALT2  
FB_AD10/  
SDRAM_A18  
FTM0_CH2  
PTC6/  
LLWU_P10  
CMP0_IN0  
CMP0_IN1  
PTC6/  
LLWU_P10  
PDB0_  
EXTRG  
I2S0_RX_  
BCLK  
FB_AD9/  
SDRAM_A17  
PTC7  
PTC8  
PTC9  
PTC10  
PTC7  
PTC8  
PTC9  
PTC10  
USB0_SOF_  
OUT  
I2S0_RX_FS  
FB_AD8/  
SDRAM_A16  
ADC1_SE4b/  
CMP0_IN2  
ADC1_SE4b/  
CMP0_IN2  
FTM3_CH4  
FTM3_CH5  
FTM3_CH6  
FTM3_CH7  
I2S0_MCLK  
FB_AD7/  
SDRAM_A15  
ADC1_SE5b/  
CMP0_IN3  
ADC1_SE5b/  
CMP0_IN3  
I2S0_RX_  
BCLK  
FB_AD6/  
SDRAM_A14  
FTM2_FLT0  
FTM3_FLT0  
A8  
ADC1_SE6b  
ADC1_SE7b  
DISABLED  
DISABLED  
DISABLED  
DISABLED  
DISABLED  
ADC1_SE6b  
I2C1_SCL  
I2C1_SDA  
I2S0_RX_FS  
FB_AD5/  
SDRAM_A13  
A9  
PTC11/  
LLWU_P11  
ADC1_SE7b  
PTC11/  
LLWU_P11  
I2S0_RXD1  
FB_RW_b  
B9  
PTC12  
PTC13  
PTC14  
PTC15  
PTC16  
PTC12  
PTC13  
PTC14  
PTC15  
PTC16  
UART4_RTS_ FTM_CLKIN0  
b
FB_AD27/  
SDRAM_D27  
TPM_CLKIN0  
TPM_CLKIN1  
B8  
UART4_CTS_ FTM_CLKIN1  
b
FB_AD26/  
SDRAM_D26  
C8  
UART4_RX  
FB_AD25/  
SDRAM_D25  
D8  
UART4_TX  
FB_AD24/  
SDRAM_D24  
E8  
CAN1_RX  
CAN1_TX  
UART3_RX  
UART3_TX  
ENET0_  
1588_TMR0  
FB_CS5_b/  
FB_TSIZ1/  
FB_BE23_  
16_BLS15_8_  
b/  
SDRAM_  
DQM2  
E7  
PTC17  
DISABLED  
PTC17  
ENET0_  
1588_TMR1  
FB_CS4_b/  
FB_TSIZ0/  
FB_BE31_  
24_BLS7_0_  
b/  
SDRAM_  
DQM3  
D7  
C7  
PTC18  
PTC19  
DISABLED  
DISABLED  
PTC18  
PTC19  
UART3_RTS_ ENET0_  
FB_TBST_b/  
FB_CS2_b/  
FB_BE15_8_  
BLS23_16_b/  
SDRAM_  
b
1588_TMR2  
DQM1  
UART3_CTS_ ENET0_  
FB_CS3_b/  
FB_BE7_0_  
BLS31_24_b/  
FB_TA_b  
b
1588_TMR3  
78  
Freescale Semiconductor, Inc.  
Kinetis K65 Sub-Family, Rev. 2, 05/2015  
Pinout  
169  
MAP  
BGA  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
EzPort  
SDRAM_  
DQM0  
B7  
A7  
E6  
D6  
C6  
B6  
A6  
PTC24  
DISABLED  
DISABLED  
DISABLED  
DISABLED  
DISABLED  
DISABLED  
DISABLED  
PTC24  
LPUART0_TX  
LPUART0_RX  
FB_A5/  
SDRAM_D5  
PTC25  
PTC26  
PTC27  
PTC28  
PTC29  
PTC25  
PTC26  
PTC27  
PTC28  
PTC29  
FB_A4/  
SDRAM_D4  
LPUART0_  
CTS_b  
ENET0_  
1588_TMR0  
FB_A3/  
SDRAM_D3  
LPUART0_  
RTS_b  
ENET0_  
1588_TMR1  
FB_A2/  
SDRAM_D2  
I2C3_SDA  
I2C3_SCL  
SPI0_PCS0  
ENET0_  
1588_TMR2  
FB_A1/  
SDRAM_D1  
ENET0_  
1588_TMR3  
FB_A0/  
SDRAM_D0  
PTD0/  
LLWU_P12  
PTD0/  
LLWU_P12  
UART2_RTS_ FTM3_CH0  
b
FB_ALE/  
FB_CS1_b/  
FB_TS_b  
A5  
A4  
B4  
B5  
C4  
PTD1  
ADC0_SE5b  
DISABLED  
DISABLED  
DISABLED  
ADC0_SE6b  
ADC0_SE5b  
PTD1  
SPI0_SCK  
SPI0_SOUT  
SPI0_SIN  
UART2_CTS_ FTM3_CH1  
b
FB_CS0_b  
PTD2/  
LLWU_P13  
PTD2/  
LLWU_P13  
UART2_RX  
FTM3_CH2  
FB_AD4/  
SDRAM_A12  
I2C0_SCL  
I2C0_SDA  
SPI1_PCS0  
PTD3  
PTD3  
UART2_TX  
FTM3_CH3  
FB_AD3/  
SDRAM_A11  
PTD4/  
LLWU_P14  
PTD4/  
LLWU_P14  
SPI0_PCS1  
SPI0_PCS2  
UART0_RTS_ FTM0_CH4  
b
FB_AD2/  
SDRAM_A10  
EWM_IN  
PTD5  
ADC0_SE6b  
ADC0_SE7b  
PTD5  
UART0_CTS_ FTM0_CH5  
b/  
UART0_COL_  
b
FB_AD1/  
SDRAM_A9  
EWM_OUT_b SPI1_SCK  
C5  
PTD6/  
LLWU_P15  
ADC0_SE7b  
PTD6/  
LLWU_P15  
SPI0_PCS3  
UART0_RX  
FTM0_CH6  
FTM0_CH7  
FB_AD0  
FTM0_FLT0  
SPI1_SOUT  
SPI1_SIN  
J8  
H7  
E5  
D5  
VSS  
VSS  
VSS  
VDD  
VDD  
PTD7  
VDD  
DISABLED  
DISABLED  
PTD7  
CMT_IRO  
I2C0_SCL  
UART0_TX  
SDRAM_CKE FTM0_FLT1  
LPUART0_RX FB_A16  
PTD8/  
PTD8/  
LLWU_P24  
LLWU_P24  
D4  
D3  
PTD9  
DISABLED  
DISABLED  
PTD9  
I2C0_SDA  
LPUART0_TX FB_A17  
PTD10  
PTD10  
LPUART0_  
RTS_b  
FB_A18  
C2  
PTD11/  
LLWU_P25  
DISABLED  
PTD11/  
LLWU_P25  
SPI2_PCS0  
SDHC0_  
CLKIN  
LPUART0_  
CTS_b  
FB_A19  
B2  
B3  
A2  
A3  
PTD12  
PTD13  
PTD14  
PTD15  
DISABLED  
DISABLED  
DISABLED  
DISABLED  
PTD12  
PTD13  
PTD14  
PTD15  
SPI2_SCK  
SPI2_SOUT  
SPI2_SIN  
FTM3_FLT0  
SDHC0_D4  
SDHC0_D5  
SDHC0_D6  
SDHC0_D7  
FB_A20  
FB_A21  
FB_A22  
FB_A23  
SPI2_PCS1  
Kinetis K65 Sub-Family, Rev. 2, 05/2015  
79  
Freescale Semiconductor, Inc.  
Pinout  
169  
MAP  
BGA  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
EzPort  
J7  
NC  
NC  
NC  
NC  
NC  
NC  
K2  
5.2 Recommended connection for unused analog and digital  
pins  
Table 57 shows the recommended connections for analog interface pins if those analog  
interfaces are not used in the customer's application  
Table 57. Recommended connection for unused analog interfaces  
Pin Type  
Analog/non GPIO  
Analog/non GPIO  
Analog/non GPIO  
Analog/non GPIO  
Analog/non GPIO  
Analog/non GPIO  
GPIO/Analog  
K65  
Short recommendation  
Float  
Detailed recommendation  
Analog input - Float  
ADCx/CMPx  
VREF_OUT  
Float  
Float  
Float  
Float  
Float  
Float  
Float  
Float  
Float  
Float  
Float  
Analog output - Float  
DAC0_OUT, DAC1_OUT  
RTC_WAKEUP_B  
XTAL32  
Analog output - Float  
Analog output - Float  
Analog output - Float  
EXTAL32  
Analog input - Float  
PTA18/EXTAL0  
PTA19/XTAL0  
PTx/ADCx  
Analog input - Float  
GPIO/Analog  
Analog output - Float  
GPIO/Analog  
Float (default is analog input)  
Float (default is analog input)  
Float (default is analog input)  
GPIO/Analog  
PTx/CMPx  
GPIO/Analog  
PTx/TSIOx  
GPIO/Digital  
PTA0/JTAG_TCLK  
Float (default is JTAG with  
pulldown)  
GPIO/Digital  
GPIO/Digital  
GPIO/Digital  
GPIO/Digital  
PTA1/JTAG_TDI  
PTA2/JTAG_TDO  
PTA3/JTAG_TMS  
PTA4/NMI_b  
Float  
Float  
Float  
Float (default is JTAG with  
pullup)  
Float (default is JTAG with  
pullup)  
Float (default is JTAG with  
pullup)  
10kΩ pullup or disable and  
float  
Pull high or disable in PCR &  
FOPT and float  
GPIO/Digital  
USB  
PTx  
Float  
Float  
Float  
Float (default is disabled)  
USB0_DP  
USB0_DM  
VREG_OUT  
Float  
Float  
USB  
USB  
Tie to input and ground  
through 10kΩ  
Tie to input and ground  
through 10kΩ  
USB  
VREG_IN0  
Tie to output and ground  
through 10kΩ  
Tie to output and ground  
through 10kΩ  
Table continues on the next page...  
80  
Kinetis K65 Sub-Family, Rev. 2, 05/2015  
Freescale Semiconductor, Inc.  
Pinout  
Table 57. Recommended connection for unused analog interfaces (continued)  
Pin Type  
K65  
Short recommendation  
Detailed recommendation  
USB  
VREG_IN1  
Tie to output and ground  
through 10kΩ  
Tie to output and ground  
through 10kΩ  
USB  
USB1_VSS  
USB1_DP  
USB1_DM  
USB1_VBUS  
VBAT  
Always connect to VSS  
Always connect to VSS  
USB  
Float  
Float  
Float  
Float  
Float  
Float  
Float  
Float  
USB  
USB  
VBAT  
VDDA  
VDDA  
Always connect to VDD  
potential  
Always connect to VDD  
potential  
VREFH  
VREFL  
VSSA  
VREFH  
VREFL  
VSSA  
Always connect to VDD  
potential  
Always connect to VDD  
potential  
Always connect to VSS  
potential  
Always connect to VSS  
potential  
Always connect to VSS  
potential  
Always connect to VSS  
potential  
5.3 K65 Pinouts  
The below figure shows the pinout diagram for the devices supported by this  
document. Many signals may be multiplexed onto a single pin. To determine what  
signals can be used on which pin, see the previous section.  
Kinetis K65 Sub-Family, Rev. 2, 05/2015  
81  
Freescale Semiconductor, Inc.  
Ordering parts  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
PTD2/  
LLWU_P13  
PTC3/  
LLWU_P7  
A
B
C
D
E
F
PTE0  
PTD14  
PTD15  
PTD1  
PTD0/  
LLWU_P12  
PTC25  
PTC10  
PTC11/  
PTC6/  
PTC5/  
PTC2  
A
B
C
D
E
F
LLWU_P11 LLWU_P10 LLWU_P9  
PTE1/  
LLWU_P0  
PTD12  
PTD11/  
PTD13  
VSS  
PTD3  
PTD5  
PTD9  
PTE8  
PTD4/  
LLWU_P14  
PTC29  
PTC28  
PTC27  
PTC26  
PTE18/  
PTC24  
PTC19  
PTC18  
PTC17  
PTE19  
VDD  
PTC13  
PTC14  
PTC15  
PTC16  
PTB16  
VSS  
PTC12  
PTC9  
PTB21  
PTB15  
PTB9  
PTC7  
PTC8  
PTB20  
PTB14  
PTB8  
PTB3  
PTA30  
PTA26  
PTA9  
PTC4/  
PTC1/  
LLWU_P8 LLWU_P6  
PTC0  
PTB22  
PTB17  
PTB11  
PTB5  
PTE2/  
LLWU_P1 LLWU_P25  
PTD6/  
LLWU_P15  
VSS  
PTB23  
PTB18  
PTB12  
PTB6  
PTE3  
PTE5  
PTD10  
PTE7  
PTE9/  
PTD8/  
LLWU_P24  
PTB19  
PTB13  
PTB7  
PTE4/  
LLWU_P2 LLWU_P16  
PTE6/  
PTD7  
USB0_DM VREG_IN0  
PTE10/  
PTE17/  
LLWU_P17 LLWU_P18 LLWU_P19 LLWU_P20  
G
H
J
USB0_DP VREG_OUT  
USB1_DM VREG_IN1  
VSS  
PTE11  
PTE12  
VSSA  
VDD  
VDD  
VDD  
VDD  
PTB10  
PTB4  
PTB2  
PTB1  
PTB0/  
LLWU_P5  
G
H
J
PTE16  
VDD  
VSS  
PTA29  
PTA25  
PTA24  
PTA28  
PTA17  
PTA15  
PTA12  
VSS  
PTA27  
PTA16  
USB1_DP USB1_VBUS VDDA  
TAMPER7 TAMPER6  
TAMPER3 TAMPER5  
NC  
VSS  
PTA31  
PTA8  
K
L
USB1_VSS  
ADC1_DP1  
ADC1_DM1  
NC  
VREFH  
VREFL  
PTE25/  
LLWU_P21  
PTE26  
PTE27  
PTA3  
PTA14  
K
L
ADC0_SE16/  
CMP1_IN2/  
ADC0_SE21  
ADC0_DM0/  
ADC1_DM3  
TAMPER1 TAMPER2 TAMPER4  
PTE24  
PTE28  
PTA4/  
LLWU_P3  
PTA7  
PTA13/  
LLWU_P4  
RESET_b  
PTA19  
ADC1_SE16/  
CMP2_IN2/  
DAC0_OUT/ TAMPER0/  
VBAT  
ADC0_DP0/  
ADC1_DP3  
M
N
PTA2  
PTA6  
PTA11/  
LLWU_P23  
M
N
CMP1_IN3/  
RTC_  
WAKEUP_B  
ADC0_SE22 ADC0_SE23  
DAC1_OUT/  
CMP0_IN4/  
CMP2_IN3/  
ADC1_SE23  
VREF_OUT/  
CMP1_IN5/  
CMP0_IN5/  
ADC1_SE18  
ADC1_DM0/  
ADC0_DM3  
ADC1_DP0/  
ADC0_DP3  
XTAL32  
5
EXTAL32  
6
VSS  
7
PTA0  
8
PTA1  
9
PTA5  
10  
PTA10/  
LLWU_P22  
VDD  
12  
PTA18  
13  
1
2
3
4
11  
Figure 37. K65 169 MAPBGA Pinout Diagram  
6 Ordering parts  
82  
Kinetis K65 Sub-Family, Rev. 2, 05/2015  
Freescale Semiconductor, Inc.  
Part identification  
6.1 Determining valid orderable parts  
Valid orderable part numbers are provided on the web. To determine the orderable  
part numbers for this device, go to freescale.com and perform a part number search for  
the following device numbers: PK65 and MK65  
7 Part identification  
7.1 Description  
Part numbers for the chip have fields that identify the specific part. You can use the  
values of these fields to determine the specific part you have received.  
7.2 Format  
Part numbers for this device have the following format:  
Q K## A M FFF R T PP CC N  
7.3 Fields  
This table lists the possible values for each field in the part number (not all  
combinations are valid):  
Field  
Description  
Values  
Q
Qualification status  
Kinetis family  
• M = Fully qualified, general market flow  
• P = Prequalification  
K##  
A
• K65  
• K66  
Key attribute  
• D = Cortex-M4 w/ DSP  
• F = Cortex-M4 w/ DSP and FPU  
M
Flash memory type  
• N = Program flash only  
• X = Program flash and FlexMemory  
FFF  
Program flash memory size  
• 32 = 32 KB  
• 64 = 64 KB  
• 128 = 128 KB  
• 256 = 256 KB  
• 512 = 512 KB  
• 768 = 768 KB  
Table continues on the next page...  
Kinetis K65 Sub-Family, Rev. 2, 05/2015  
83  
Freescale Semiconductor, Inc.  
Terminology and guidelines  
Field  
Description  
Values  
• 1M0 = 1 MB  
• 2M0 = 2 MB  
R
Silicon revision  
• Z = Initial  
• (Blank) = Main  
• A = Revision after main  
T
Temperature range (°C)  
Package identifier  
• V = –40 to 105  
• C = –40 to 85  
PP  
• FM = 32 QFN (5 mm x 5 mm)  
• FT = 48 QFN (7 mm x 7 mm)  
• LF = 48 LQFP (7 mm x 7 mm)  
• LH = 64 LQFP (10 mm x 10 mm)  
• MP = 64 MAPBGA (5 mm x 5 mm)  
• LK = 80 LQFP (12 mm x 12 mm)  
• LL = 100 LQFP (14 mm x 14 mm)  
• MC = 121 MAPBGA (8 mm x 8 mm)  
• LQ = 144 LQFP (20 mm x 20 mm)  
• MD = 144 MAPBGA (13 mm x 13 mm)  
• MI= 169 MAPBGA (9 mm x 9 mm)  
• AC= 169 WLCSP (5.6 mm x 5.5 mm)  
CC  
Maximum CPU frequency (MHz)  
• 5 = 50 MHz  
• 7 = 72 MHz  
• 10 = 100 MHz  
• 12 = 120 MHz  
• 15 = 150 MHz  
• 16 = 168 MHz  
• 18 = 180 MHz  
N
Packaging type  
• R = Tape and reel  
• (Blank) = Trays  
7.4 Example  
This is an example part number:  
MK65FN2M0VMI18  
8 Terminology and guidelines  
8.1 Definition: Operating requirement  
An operating requirement is a specified value or range of values for a technical  
characteristic that you must guarantee during operation to avoid incorrect operation and  
possibly decreasing the useful life of the chip.  
84  
Kinetis K65 Sub-Family, Rev. 2, 05/2015  
Freescale Semiconductor, Inc.  
Terminology and guidelines  
8.1.1 Example  
This is an example of an operating requirement:  
Symbol  
Description  
Min.  
Max.  
Unit  
VDD  
1.0 V core supply  
voltage  
0.9  
1.1  
V
8.2 Definition: Operating behavior  
Unless otherwise specified, an operating behavior is a specified value or range of  
values for a technical characteristic that are guaranteed during operation if you meet  
the operating requirements and any other specified conditions.  
8.2.1 Example  
This is an example of an operating behavior:  
Symbol  
Description  
Min.  
Max.  
Unit  
IWP  
Digital I/O weak pullup/ 10  
pulldown current  
130  
µA  
8.3 Definition: Attribute  
An attribute is a specified value or range of values for a technical characteristic that  
are guaranteed, regardless of whether you meet the operating requirements.  
8.3.1 Example  
This is an example of an attribute:  
Symbol  
Description  
Min.  
Max.  
Unit  
CIN_D  
Input capacitance:  
digital pins  
7
pF  
Kinetis K65 Sub-Family, Rev. 2, 05/2015  
85  
Freescale Semiconductor, Inc.  
Terminology and guidelines  
8.4 Definition: Rating  
A rating is a minimum or maximum value of a technical characteristic that, if exceeded,  
may cause permanent chip failure:  
Operating ratings apply during operation of the chip.  
Handling ratings apply when the chip is not powered.  
8.4.1 Example  
This is an example of an operating rating:  
Symbol  
Description  
Min.  
Max.  
Unit  
VDD  
1.0 V core supply  
voltage  
–0.3  
1.2  
V
8.5 Result of exceeding a rating  
40  
30  
The likelihood of permanent chip failure increases rapidly as  
soon as a characteristic begins to exceed one of its operating ratings.  
20  
10  
0
Operating rating  
Measured characteristic  
86  
Freescale Semiconductor, Inc.  
Kinetis K65 Sub-Family, Rev. 2, 05/2015  
Terminology and guidelines  
8.6 Relationship between ratings and operating requirements  
Fatal range  
Degraded operating range  
Normal operating range  
Degraded operating range  
Fatal range  
Expected permanent failure  
- No permanent failure  
- No permanent failure  
- Correct operation  
- No permanent failure  
Expected permanent failure  
- Possible decreased life  
- Possible incorrect operation  
- Possible decreased life  
- Possible incorrect operation  
 
Operating (power on)  
Fatal range  
Handling range  
Fatal range  
Expected permanent failure  
No permanent failure  
Expected permanent failure  
∞  
Handling (power off)  
8.7 Guidelines for ratings and operating requirements  
Follow these guidelines for ratings and operating requirements:  
• Never exceed any of the chip’s ratings.  
• During normal operation, don’t exceed any of the chip’s operating requirements.  
• If you must exceed an operating requirement at times other than during normal  
operation (for example, during power sequencing), limit the duration as much as  
possible.  
8.8 Definition: Typical value  
A typical value is a specified value for a technical characteristic that:  
• Lies within the range of values specified by the operating behavior  
• Given the typical manufacturing process, is representative of that characteristic  
during operation when you meet the typical-value conditions or other specified  
conditions  
Typical values are provided as design guidelines and are neither tested nor guaranteed.  
Kinetis K65 Sub-Family, Rev. 2, 05/2015  
87  
Freescale Semiconductor, Inc.  
Terminology and guidelines  
8.8.1 Example 1  
This is an example of an operating behavior that includes a typical value:  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
IWP  
Digital I/O weak  
pullup/pulldown  
current  
10  
70  
130  
µA  
8.8.2 Example 2  
This is an example of a chart that shows typical values for various voltage and  
temperature conditions:  
5000  
4500  
4000  
TJ  
3500  
150 °C  
3000  
105 °C  
2500  
25 °C  
2000  
–40 °C  
1500  
1000  
500  
0
0.90  
0.95  
1.00  
1.05  
1.10  
VDD (V)  
8.9 Typical value conditions  
Typical values assume you meet the following conditions (or other conditions as  
specified):  
88  
Kinetis K65 Sub-Family, Rev. 2, 05/2015  
Freescale Semiconductor, Inc.  
Revision History  
Unit  
Symbol  
Description  
Ambient temperature  
3.3 V supply voltage  
Value  
TA  
25  
°C  
V
VDD  
3.3  
9 Revision History  
The following table provides a revision history for this document.  
Table 58. Revision History  
Rev. No.  
Date  
Substantial Changes  
Initial Release  
0
1
02/2015  
04/2015  
• Editorial change  
• Updated OTG/EH and BC rev. 1.2 specification references in USB Full Speed  
Transceiver and High Speed PHY specifications section  
• Updated USBDCD electrical specifications table  
• Updated the typical values and maximum values of specs in Power consumption  
operating behaviors table  
• Removed PSTOP2 current from Power consumption operating behaviors table  
• Updated the values of DS5 and DS7 in Master mode DSPI timing (full voltage  
range) table  
• Updated the footnote and description of VDIO, VAIO and ID in Voltage and current  
operating ratings table  
• Updated the values and description of specs in Voltage and current operating  
requirements table  
• Updated the leakage current specs in Voltage and current operating behaviors table  
• Added Notes column in Thermal operating requirements  
• Updated the values of 48MHz IRC in Low power mode peripheral adders table  
• Added new footnotes for IINRUSH in USB VREG electrical specifications table to  
better document operation.  
• Updated the figures "SDRAM write timing diagram" and SDRAM read timing  
diagram" in the section "SDRAM controller specifications."  
• Updated the pinout table, and pinout diagrams in the section "Pinouts."  
2
05/2015  
• Added new footnotes for IINRUSH in USB VREG electrical specifications table to  
better document operation.  
Kinetis K65 Sub-Family, Rev. 2, 05/2015  
89  
Freescale Semiconductor, Inc.  
Information in this document is provided solely to enable system and  
software implementers to use Freescale products. There are no express  
or implied copyright licenses granted hereunder to design or fabricate  
any integrated circuits based on the information in this document.  
Freescale reserves the right to make changes without further notice to  
any products herein.  
How to Reach Us:  
Home Page:  
freescale.com  
Web Support:  
freescale.com/support  
Freescale makes no warranty, representation, or guarantee regarding  
the suitability of its products for any particular purpose, nor does  
Freescale assume any liability arising out of the application or use of  
any product or circuit, and specifically disclaims any and all liability,  
including without limitation consequential or incidental damages.  
“Typical” parameters that may be provided in Freescale data sheets  
and/or specifications can and do vary in different applications, and  
actual performance may vary over time. All operating parameters,  
including “typicals,” must be validated for each customer application by  
customer's technical experts. Freescale does not convey any license  
under its patent rights nor the rights of others. Freescale sells products  
pursuant to standard terms and conditions of sale, which can be found  
at the following address: freescale.com/SalesTermsandConditions.  
Freescale, Freescale logo, and Kinetis are trademarks of Freescale  
Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or  
service names are the property of their respective owners. ARM and  
Cortex are registered trademarks of ARM Limited. All rights reserved.  
© 2013–2015 Freescale Semiconductor, Inc.  
Document Number K65P169M180SF5V2  
Revision 2, 05/2015  

相关型号:

MK65FX1M0CAC18R

Kinetis K 32-bit MCU, ARM Cortex-M4 core, 1 MB Flash, 180MHz, Ethernet, WLCSP 169
NXP

MK65FX1M0VMI18

Kinetis K65 Sub-Family
NXP

MK65FX1M0VMI18R

RISC MICROCONTROLLER
NXP

MK66FN2M0VLQ18

Kinetis K66 Sub-Family
NXP

MK66FN2M0VMD18

Kinetis K66 Sub-Family
NXP

MK66FX1M0VLQ18

Kinetis K66 Sub-Family
NXP

MK66FX1M0VMD18

Kinetis K66 Sub-Family
NXP

MK68564

SERIAL INPUT OUTPUT
STMICROELECTR

MK68564N-04

SERIAL INPUT OUTPUT
STMICROELECTR

MK68564N-05

SERIAL INPUT OUTPUT
STMICROELECTR

MK68564Q-04

SERIAL INPUT OUTPUT
STMICROELECTR

MK68564Q-05

SERIAL INPUT OUTPUT
STMICROELECTR