MC33253DWR2 [NXP]

BRUSH DC MOTOR CONTROLLER, PDSO28, PLASTIC, SOIC-28;
MC33253DWR2
型号: MC33253DWR2
厂家: NXP    NXP
描述:

BRUSH DC MOTOR CONTROLLER, PDSO28, PLASTIC, SOIC-28

电动机控制 光电二极管
文件: 总15页 (文件大小:434K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Order Number: MC33253/D  
Rev 3, 03/2001  
MC33253  
Advance Information  
55 VOLTS  
Full Bridge Pre-Driver  
SEMICONDUCTOR  
TECHNICAL DATA  
The MC33253 is a full bridge driver including integrated charge  
pump, two independent high and low side driver channels.  
The high and low side drivers include a cross conduction suppression  
circuit, which, if enabled, prevents the external power FETs from being on  
at the same time.  
The drive outputs are capable to source and sink 1 A pulse peak  
current. The low side channel is referenced to ground, the high side  
channel is floating above ground.  
A linear regulator provides a maximum of 15.5V to supply the low  
side gate driver stages. The high side driver stages are supplied with a  
10V charge pump voltage. Such built-in feature, associated to external  
capacitor provides a full floating high side drive.  
An under- and over-voltage protection prevents erratic system  
operation at abnormal supply voltages. Under fault, these functions force  
the driver stages into off state.  
DW SUFFIX  
PLASTIC PACKAGE  
CASE 751F-05  
The logic inputs are compatible with standard CMOS or LSTTL  
outputs. The input hysteresis makes the output switching time  
independent of the input transition time.  
The global enable logic signal can be used to disable the charge  
pump and all the bias circuit. The net advantage is the reduction of the  
quiescent supply current to under 10µA. To wake up the circuit, 5 V has to  
be provided at G_EN. A built-in single supply operational amplifier could  
be used to feedback information from the output load to the external  
MCU.  
PIN CONNECTIONS  
(TOP VIEW)  
CASE 751F-05  
1
28  
27  
26  
25  
24  
23  
22  
21  
VCC  
C2  
ISOUT  
G_EN  
2
• VCC Operating Voltage Range from 5.5 V up to 55 V  
• VCC2 Operating Voltage Range from 5.5 V up to 28 V  
• Automotive Temperature Range -40°C to 125°C  
• 1A Pulse Current Output Driver  
/CCS  
3
4
5
6
7
8
9
CP_OUT  
SRC_HS1  
SRC_HS2  
GATE_HS1  
/IN_HS1  
GATE_HS2  
/IN_HS2  
IN_HS2  
• Fast PWM Capability  
IN_HS1  
• Built-In Charge Pump  
/IN_LS1  
IN_LS1  
/IN_LS2  
• Cross Conduction Suppression Circuit  
20 IN_LS2  
19  
18  
17  
GATE_LS2  
GND2  
10  
11  
GATE_LS1  
GND1  
LR_OUT 12  
VCC2  
GND_A 14  
IS-IN  
13  
16 IS+IN  
C1  
15  
ORDERING INFORMATION  
Temperature  
Device  
PC33253DW  
Package  
SOIC28  
Range  
-40oC to +125oC  
This document contains information on a new product. Specifications and information herein are  
subject to change without notice.  
© Motorola, Inc., 2001. All rights reserved.  
Page 1/15  
MC33253  
Figure 1. Principal Building Blocks  
Ccp  
C1  
C2  
V
CC2  
V
V
CC  
CC  
V
CC2  
UV/OV  
Detect  
V
C1  
C2  
CC  
5.5 V...  
V
CC  
RDY  
28 V  
Charge  
Pump  
V
DD  
EN  
Vpos  
V
CC  
GND  
+13.5 V  
G_EN  
/CCS  
5.5 V...  
55 V  
C
CP_OUT  
V
CC2  
V
DD  
V
+13.5 V  
CP_OUT  
CC2  
Linear  
Reg  
EN  
+5.0 V  
C
LR_OUT  
GND  
+13.5 V  
LR_OUT  
HIGH AND LOW SIDE  
CONTROL WITH CHARGE PUMP  
CCS  
BRG_EN  
BRG_EN  
Vgs_ls  
Vgs_ls  
Vgs_hs  
OUT  
CCS  
V
CC  
IN_HS1  
Output  
Driver  
IN  
V
V
/V  
Pulse  
DD  
DD POS  
GATE_HS1  
SRC_HS1  
Generator  
Level Shift  
/IN_HS1  
IN_LS1  
G_LOW_H  
Input  
&
G_LOW_LS  
CCS  
LOGIC  
V
OUT  
DD  
IN  
Output  
Driver  
V
/V  
Pulse  
Generator  
DD CC  
GATE_LS1  
Level Shift  
/IN_LS1  
IN_HS2  
HIGH AND LOW SIDE CHANNEL  
WITH CROSS CONDUCTION SUPPRESSION  
Vgs_ls  
BRG_EN  
CCS  
V
CC  
OUT  
Output  
Driver  
IN  
V
V
/V  
Pulse  
Generator  
DD  
DD POS  
GATE_HS2  
SRC_HS2  
Level Shift  
/IN_HS2  
IN_LS2  
G_LOW_H  
Input  
&
G_LOW_LS  
CCS  
V
DD  
IN  
OUT  
Output  
Driver  
V
/V  
Pulse  
Generator  
DD CC  
GATE_LS2  
Level Shift  
/IN_LS2  
HIGH AND LOW SIDE CHANNEL WITH  
CROSS CONDUCTION SUPPRESSION  
CA-  
SENSE CURRENT AMPLIFIER  
CAO  
-
+
CA+  
GND  
IS  
IS  
IS  
-IN  
OUT  
+IN  
MC33253  
MOTOROLA  
rev3.0 - 2/15  
MC33253  
ABSOLUTE MAXIMUM RATINGS Absolute Maximum Ratings indicate sustained limits beyond which damage to the device may occur. All voltage  
parameters are absolute voltages referenced to GND.  
Rating  
Symbol  
Min  
Max  
Unit  
Supply Voltage1  
VCC  
-0.3  
65  
V
Supply Voltage2 (NOTE 1)  
VCC2  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
35  
18  
65  
65  
65  
20  
V
V
V
V
V
V
Linear Regulator Output Voltage  
High Side Floating Supply Absolute Voltage  
High Side Floating Source Voltage  
High Side Gate Voltage  
VLR_out  
VCP_OUT  
VSRC_HS  
VGATE_HS  
High Side Gate Source Voltage  
VGATE_HS  
- VSRC_HS  
High Side Source Current from Cpout in Switch On State  
High Side Floating Supply Gate Voltage  
IS  
250  
65  
mA  
V
VCP_OUT  
-0.3  
- VGATE_HS  
Low Side Output Voltage  
VGATE_LS  
VG_EN  
VIN  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
17  
V
V
V
V
V
V
V
Wake up Voltage  
35  
Logic Input Voltage  
10  
Charge Pump Capacitor Voltage  
Charge Pump Capacitor Voltage  
Operational Amplifier Output Voltage  
Operational Amplifier Inverting Input Voltage  
VC1  
VLR_OUT  
VC2  
65  
7
VCAO  
-
7
VCA  
+
Operational Amplifier Non Inverting Input Voltage  
ESD Voltage on any Pins (HBM, 100pF, 1.5kOhms)  
-0.3  
-2.0  
7
V
VCA  
VESD  
2.0  
kV  
Power Dissipation and Thermal Characteristics  
Maximum Power Dissipation@25°C  
Thermal Resistance Junction-to-Air  
Operating Junction Temperature  
Storage Temperature  
PD  
RθJA  
TJ  
2
W
°C/W  
°C  
60  
-40  
-65  
+150  
+150  
Tstg  
°C  
OPERATING CONDITIONS Typical values for TA = 25°C, Min/Max values for TA = -40°C to +125°C  
Rating  
Symbol  
Min  
Max  
Unit  
Supply Voltage1  
Supply Voltage2  
VCC  
5.5  
55  
V
VCC2  
5.5  
28  
V
V
High Side Floating Supply Absolute Voltage  
VCP_OUT  
VCC+4  
VCC+11but<65  
NOTE1: VCC can sustain load dump pulse 40V, 400ms, 2Ohms  
MC33253  
MOTOROLA  
rev3.0 - 3/15  
MC33253  
STATIC ELECTRICAL CHARACTERISTICS V = 12 V, V  
= 12 V, C = 33 nF, G_EN = 4.5 V unless otherwise specified.  
CC  
CC2  
CP  
Typical values for TA = 25°C, Min/Max values for TA = -40°C to +125°C, unless otherwise specified.  
Characteristics  
LOGIC SECTION  
Pin #  
Symbol  
Min  
Typ  
Max  
Unit  
Logic 1Input Voltage (IN_LS & IN_HS)  
Logic 0Input Voltage (IN_LS & IN_HS)  
Logic 1Input Current Vin=5V  
7, 9, 20, 22  
7, 9, 20, 22  
VIH  
VIL  
2.0  
10  
0.8  
V
V
Iin+  
200  
200  
2.0  
1000  
1000  
10  
uA  
uA  
V
Logic 0Input Current Vin=0V  
Iin-  
Logic 0Input Voltage (/IN_LS & /IN_HS&/CCS)  
Logic 1Input Voltage (/IN_LS & /IN_HS&/CCS)  
Logic 0Input Current Vin=5V  
6, 8, 21, 23,  
26  
VIH  
VIL  
0.8  
V
6, 8, 21, 23,  
26  
Iin+  
TBD  
TBD  
4.5  
TBD  
TBD  
VCC2  
500  
uA  
uA  
V
Logic 1Input Current Vin=0V  
Iin-  
Wake Up Input Voltage (G_EN)  
27  
27  
VG_EN  
IG_EN  
5.0  
Wake Up Current (G_EN) VG_EN = 14 V  
LINEAR REGULATOR SECTION  
200  
uA  
Linear Regulator  
VLR_OUT @ VCC2 from 16.5 to 28 V, ILOAD from  
0mA to 20mA  
12  
12  
12  
VLR_OUT  
13.5  
16.5  
V
V
V
Linear Regulator  
VLR_OUT @ VCC2 =12 V, ILOAD = 20mA  
VLR_OUT  
VCC2  
1.5  
-
VLR_OUT @ VCC2 =5.5V, ILOAD =TBD, VCC = 5.5V  
TBD  
CHARGE PUMP SECTION  
Charge Pump Output Voltage, referenced to VCC  
ILOAD = 0mA, CCpout=1uF  
3
3
3
VCP_OUT  
VCP_OUT  
VCP_OUT  
VLR_OUT  
- 2  
V
V
V
Charge Pump Output Voltage, referenced to VCC  
ILOAD = 7mA, CCpout=1uF  
VLR_OUT  
-3  
Charge Pump Output Voltage, referenced to VCC  
VCC2 = VCC=5.5V  
VLR_OUT  
- TBD  
ILOAD = 0mA, CCpout=1uF  
Charge Pump Output Voltage, referenced to VCC  
3
VCP_OUT  
VLR_OUT-  
-TBD  
V
VCC2 = VCC=5.5V  
I
LOAD = 7mA, CCpout=1uF  
Peak current through pin 15under rapid changing  
Vcc voltages (see Figure 6)  
15  
15  
IC1  
-2.0  
-1.5  
2.0  
A
V
Minimum peak voltage at pin 15under rapid  
changing Vcc voltages (see Figure 6)  
VC1min  
SUPPLY VOLTAGE SECTION  
Quiescent Vcc Supply Current VG_EN=0V  
1
TBD  
uA  
Operating Vcc Supply Current  
(@VCC=55V and VCC2=28V)  
(@VCC=12V and VCC2=12V)  
1
1
TBD  
TBD  
mA  
mA  
Quiescent Vcc2 Supply Current VG_EN=0V  
13  
TBD  
uA  
MC33253  
MOTOROLA  
rev3.0 - 4/15  
MC33253  
Pin #  
Characteristics  
Symbol  
Min  
Typ  
Max  
Unit  
Operating Vcc2 Supply Current  
(@VCC=55V and VCC2=28V)  
(@VCC=12V and VCC2=12V)  
Logic pin inactive (high impedance)  
13  
13  
10  
8
mA  
Under Voltage Shutdown VCC2 (Note2)  
Under Voltage Shutdown VCC  
Over Voltage Shutdown VCC  
Over Voltage Shutdown VCC2  
OUTPUT SECTION  
13  
1
UV2  
UV  
4.6  
4.6  
5.1  
5.1  
61  
5.5  
5.5  
64  
V
V
V
V
1
OV  
57  
13  
OV2  
29.5  
31  
32.5  
Output Sink Resistance (Turned off)  
VGATE_HS - VSRC_HS =1V  
RDS  
22.0  
22.0  
200  
18  
Ohms  
Ohms  
mA  
3, 4, 5, 10,  
19, 24, 25  
Output Source Resistance (Turned on)  
RDS  
VCP_OUT - VGATE_HS =0.1V  
High Side Source Current from Cpout in Switch  
On State  
4, 25  
ISmax  
Max Voltage (VGATE_HS - VSRC_HS)  
,
V
4, 5, 24, 25  
INH=1, ISmax=200mA  
SENSE CURRENT AMPLIFIER SECTION (Internal VCC supply @ 12V)  
Output Dynamic Range (Isink/source = 200µA)  
28  
VOH  
VOL  
4.7  
5.0  
50  
V
mV  
300  
Open Loop Gain (at 25°C)  
A
dB  
uA  
mV  
V
Input Bias Current  
16, 17  
IIB  
1.0  
5.0  
5
Input Offset Voltage (at 25°C)  
Input Common Mode Voltage Range  
Common Mode Rejection Ratio  
Sink Capability (Vo>1.1V) (Note 3)  
Source Capability (Vo<5V) (Note 3)  
Gain Bandwidth Product  
Vio  
-5.0  
0
2.0  
ICMR  
CMRR  
Isink  
70  
3.0  
3.0  
1.8  
dB  
mA  
mA  
MHz  
V
28  
28  
2.0  
2.0  
Isource  
GBW  
VCAO  
VCAO  
Operational Amplifier Output Voltage, Isink=500uA  
28  
28  
0.5  
Operational Amplifier Output Voltage,  
Isource=500uA  
5
V
Operational Amplifier Slew Rate (+)  
Operational Amplifier Slew Rate (-)  
SR+  
SR-  
1
1
V/us  
V/us  
MC33253  
MOTOROLA  
rev3.0 - 5/15  
MC33253  
DYNAMIC ELECTRICAL CHARACTERISTICS V = 12 V, V  
= 12 V, C = 33 nF, G_EN = 4.5 V unless otherwise specified.  
CP  
CC  
CC2  
Typical values for TA = 25°C, Min/Max values for TA = -40°C to +125°C, unless otherwise specified.  
Characteristics  
Pin #  
Symbol  
Min  
Typ  
Max  
Unit  
Prop. Delay HS and LS, Cload=5nF;  
Between 50% Input to 50% Output  
(see Figure 2)  
5, 6, 7, 8, 9,  
20, 21, 22, 23  
tPD  
200  
300  
ns  
Turn On Rise Time, Cload=5nF ;  
10% to 90% (NOTE 4) (see Figure 2)  
tr  
tf  
80  
80  
180  
180  
ns  
ns  
Turn Off Fall Time, Cload=5nF ;  
10% to 90% (NOTE 4) (see Figure 2)  
5, 10, 19, 24  
NOTE 2: Between 4.6V and 5.5V, the device has been a non erroneous behaviour.  
NOTE 3: Input overdrive 1V  
NOTE 4: Rise time is given by time needed to charge the gate from 1V to 10V (Vice versa for fall time)  
NOTE : Cload corresponds to a capacitor between GATE_HS and SRC_HS for the high side and between GATE_LS and ground for low side.  
N.B.  
In some applications a large dV/dt at Pin 2 (C2) due to sudden changes at VCC can cause a large peak currents flowing through  
Pin15 (C1).  
Positive transitions at Pin2 (C2) ;mimimum peak current :  
Ic1min = 2.0A  
tc1min = 600ns (see for peak description)  
Negative transitions at Pin2 (C2); maximum peak current :  
Ic1max = 2.0A  
t
c1max = 600ns (see for peak description)  
Current sourced by Pin 15 (C1) during a large dV/dt will result in a negative voltage at Pin 15; negative transitions at Pin2(C2);  
minimum peak voltage:  
Vc1min = -1.5V  
t
c1max = 600ns (see for peak description)  
Figure 2. Limits of C1 Current&Voltage with Large ValuesdV/dt of Vcc  
VCC  
I
c1max  
tC1min  
I[C1+C2]  
0 A  
tc1max  
I
c1min  
V[LR_OUT]  
0 V  
V[C1]  
V
c1min  
MC33253  
MOTOROLA  
rev3.0 - 6/15  
MC33253  
Figure 3. Dynamic Characteristics  
/IN_HS  
or /IN_LS  
50%  
50%  
50%  
50%  
IN_HS  
or IN_LS  
t
t
pd  
pd  
GATE_HS  
or GATE_LS  
50%  
50%  
t
t
r
f
10% 90%  
90%10%  
Driver Characteristics  
Turn-On  
For turn-on the current required to charge the gate source capacitor Ciss in the specified time can be calculated as follows:  
Peak Current for Rise/Fall Time (tr) and a typical PowerMosFET Gate Charge Qg. IP = Qg/tr = 75 nC/80 ns ª 1.0 A  
Turn-Off  
The peak current for turn-off can be obtained in the same way as for turn-on. In addition to the dynamic current, required to  
turn-off or turn-on the FET, various application related switching scenarios have to be considered:  
The output driver sources a peak current of up to 1A for 200 ns to turn on the gate. After 200 ns 100 mA are provided  
continuously to maintain the gate charged. The output driver sinks a peak current of up to 1A for 200 ns to turn off the gate. After  
200 ns 100 mA are sinked continuously to maintain the gate discharged. In order to withstand high dV/dt spikes a low resistive  
path between gate and source is implemented during the off state.  
Figure 4. OFF-State Driver Requirement  
Flyback Spike charge LS-Gate via C  
Flyback Spike pull down HS-  
Flyback Spike pull down HS-  
Flyback Spike charge LS-Gate via  
C Charge Current I up to 2.0 A!  
rss  
rss  
Drain V Increase Delayed  
Drain V Increase Uncontrolled  
Charge Current I up to 2.0 A! Uncon-  
GS  
GS  
rss  
rss  
Turn-Off of High Side FET  
Turn-On of High Side FET  
trolled Turn-On of Low Side FET  
Delayed Turn-Off of Low Side FET  
V
V
V
V
BAT  
BAT  
BAT  
BAT  
C
C
C
C
rss  
rss  
rss  
rss  
OFF  
g_hs  
OFF  
g_hs  
V
GATE  
g_hs  
g_hs  
-V  
DRN  
I
I
I
I
LOAD  
LOAD  
LOAD  
LOAD  
L1  
L1  
L1  
L1  
C
C
iss  
C
C
iss  
iss  
iss  
C
C
C
C
rss  
rss  
rss  
rss  
I
rss  
V
GATE  
g_ls  
OFF  
g_ls  
OFF  
g_ls  
g_ls  
C
C
C
C
iss  
iss  
iss  
iss  
Driver Requirement: Low  
Resistive Gate-Source  
Path during OFF-State  
Driver Requirement: Low Resistive Driver Requirement:  
Driver Requirement: Low Resistive  
Gate Source Path during OFF-State. High Peak Sink Current Capab. Gate-Source Path during OFF-State  
High Peak Sink Current Capab.  
MC33253  
MOTOROLA  
rev3.0 - 7/15  
MC33253  
Driver Supply  
The High Side Driver is supplied from the internal charge pump buffered at CP_OUT. The low-drop regulator provides  
approx. 3.5 mA (fPWM =50kHz)pergate.In case of the full bridge that means approximately. 14 mA; 7.0 mA for the high side and  
7.0 mA for the low side. (Note: The average current required to switch a gate with a frequency of 100kHz is: Average Current  
(Charge Pump) for PWM Frq. (fPWM) andICP =Qg*fPWM =75nC*100kHz=7.5mA.A full bridge application switch only one high side  
and one low side at the same time.)  
External capacitors on Charge Pump and on Linear Regulator are necessary to supply high peak current absorbed during  
switching. The Low Side Driver is supplied from built in low drop regulator.  
Gate Protection  
The low side gate is protected by the internal linear regulator, which guarantees that VGATE_LS doesnotexceed the maximum  
VGS. Especially when working with the charge pump the voltage at POS_HS can be up to 65V. The high side gate is clamped  
internally, in order to avoid a VGS exceeding 14V.  
The Gate protection does not include a Flyback Voltage Clamp that protects the driver and the external FET from a Flyback  
voltage that can appear when driving inductive load.This Flyback voltage can reach high negative voltage values and needs to  
be clamped externally.  
Figure 5. Gate Protection and Flyback Voltage Clamp  
V
V
gs_hs  
gs_ls  
V
M
CC  
1
OUT  
IN  
GATE_HS  
SRC_HS  
Output  
Driver  
V
< 14 V  
GS  
under all  
G_LOW  
conditions  
L
Inductive  
Flyback Voltage  
Clamp  
1
D
cl  
G_LOW  
IN  
M
2
OUT  
GATE_LS  
Output  
Driver  
TMOS Failure Protection  
All output driver stages are protected against TMOS failure conditions. If one of the external power FETs is destroyed (Gate  
= VCC, or Gate = Gnd) the function of the remaining output driver stages is not affected. All output drivers are short circuit  
protected against short circuits to ground.  
Cross Conduction Suppression  
The purpose of the cross conduction suppression is to avoid that high and low side FET are turned on at the same time,  
which prevents the half bridge power FETs of a shoot-through condition. The CCS can be disabled / enabled by an external  
signal (/CCS).  
- /CCS=0, the cross conduction is not allowed.  
- /CCS=1, the cross conduction is allowed.  
MC33253  
MOTOROLA  
rev3.0 - 8/15  
MC33253  
Figure 6. Input Logic and Cross Conduction Suppression  
G_EN  
EN_CP/LDO  
AND  
AND  
1Enable Charge Pump and LDO  
UV_OV  
RDY  
1Supply is ok  
{
1Charge Pump is Ready  
/CCS  
0Cross Conduction Suppression is Enabled  
en2hs = G_LOW_LS, en2ls = G_LOW_HS  
CCS  
BRG_EN  
1Cross Conduction Suppression is Disabled  
en2hs = 1, en2ls = 1en1hs = 0, en1ls = 0”  
10 k  
IN_HS  
AND  
OUT_HS  
AND  
en1_hs  
10 k  
1Turn-On FET  
OR  
G_LOW_H  
en2_hs  
/IN_HS  
AND  
AND  
1FET is Turned-Off  
G_LOW_LS  
10 k  
IN_LS  
en2_ls  
drv_ls  
1FET is Turned-Off  
OR  
OUT_LS  
en1_ls  
AND  
AND  
1Turn-On FET  
/IN_LS  
Logic Inputs  
Logic Input Voltage Range:  
Absolute Max :  
-0.3 V ... 10 V  
Wake Up Function:  
(G_EN)  
4.5 V ... VCC2  
During Wake-Up the logic is supplied from the G_EN pin.  
Low Drop Linear Regulator  
The low drop linear regulator provides the 5.0 V for the logic section of the driver, the Vgs_ls buffered at LR_OUT and the +13.5 V for the  
charge pump, which generates the Vgs_hs.The low drop linear regulator provides 3.5 mA average current per driver stage. If typically VCC2  
exceeds 14.5V the output is limited to 14V.  
Charge Pump  
The charge pump generates the high side driver supply voltage ( Vgs_hs), buffered at CCP_OUT. The basic circuit (Fig 7), shows  
charge pump without load:  
Figure 7. Charge Pump Basic Circuit  
VCP_OUT  
(2)  
D1  
VLR_OUT  
Ccp  
Ccp_out  
Osc.  
A
D2  
(1)  
Vbat  
When the oscillator is in low state (1), Ccp is charged through D2 until its voltage reaches Vbat-Vd2. When the oscillator is in high  
state (2), Ccp is discharged though D1 in Ccp_out, and final voltage of the charge pump, Vcp_out is Vbat+VLR_OUT - 2Vd. The frequency of  
the MC33253 oscillator is about 330 kHz.  
MC33253  
MOTOROLA  
rev3.0 - 9/15  
MC33253  
The Figure 8 represents a simplified circuitry of the high side gate driver.  
Figure 8. High Side Gate Driver  
VLR-OUT  
CP_out  
Tosc2  
Ccp  
D1  
Ccp_out  
C1  
C2  
D2  
Tosc1  
Vcc  
(3)  
T1  
HS  
MOSFET  
GATE_HS  
Rg  
T2  
SRC_HS  
M
LS  
MOSFET  
pins  
The transistors Tosc1 and Tosc2 are the oscillator switching MOSFETs. When Tosc1 is on, the oscillator is at low level. When  
Tosc2 is on, the oscillator is at high level. The high side MOSFET predriver is composed of two transistors T1 and T2. When T1 is on  
the HS MOSFET is turn on, when T2 is on the HS MOSFET is off. The capacitor Ccp_out provides peak current to the HS MOSFET  
through T1 during turn on (3) as shown in figure 11.  
Ccp  
Ccp choice depends on Power MOSFET characteristics and the working switching frequency. The following diagrams show the  
influence of Ccp value on Vcp_out average voltage level. The diagrams are given at two different frequencies for two power MOSFETs  
(MTP60N06HD and MPT36N06V).  
Figure 9. Vcp_out Versus Ccp  
21.5  
21  
20kHz  
20KhZ  
100 KhZ  
100kHz  
21  
20.5  
20  
20.5  
20  
19.5  
19  
19.5  
19  
18.5  
18  
18.5  
5
25  
45  
65  
85  
5
25  
45  
Ccp (nF)  
65  
85  
Ccp (nF)  
MTP36N06V (Qg=40nC)  
MTP60N06HD (Qg=50nC)  
Figure 10.  
MOTOROLA  
MC33253  
rev3.0 - 10/15  
MC33253  
The smaller Ccp value is, the smaller Vcp_out value is. Moreover, for a same Ccp value, when the switching frequency  
increases, the average Vcp_out level decreases. For most of the applications a typical value of 33nF is recommended.  
Ccp_out  
As shown in figure 11, at high side MOSFET turn on, Vcp_out voltage decreases. This decrease can be calculated according to  
Ccp_out value as following :  
Qg  
VCcp_ out  
=
Ccp _ out  
Qg : Power MosFET Gate Charge  
The following figure is the simplified Ccp_out current and voltage waveforms.  
f
pwm : working switching frequency  
Figure 11. Simplified Ccp_out Current and Voltage Waveforms  
High Side  
turn on  
Oscillator  
in high  
state  
VCp_out  
Oscillator  
in low  
VCcp  
_ out  
state  
average VCp_out  
ICp_out  
fPWM  
f=330kHz  
Peak  
Current  
CLR_OUT  
CLR_OUT provides peak current needed by the low side MOSFET turn on. VLR_OUT decreasing is as follow:  
Qg  
VLR _out  
=
CLR _out  
Capacitors typical values  
In most working cases the following typical values are advised for a good charge pump performing:  
Ccp=33nF, Ccp_out=470nF and CLR_OUT=470nF.  
These values give a typical 100mV voltage ripple on Vcp_out and VLR_OUT with Qg=50nC.  
OP-Amp  
The built-in A.O.P. available in the MC33253 allows to get a voltage image of the H-bridge current. This voltage can be  
provided by a shunt resistor, as shown in figure 13.  
Typically shunt resistivity is dimensioned as low as possible (25mOhm/10A). The maximum A.O.P output voltage is 5V.  
Therefore a gain of 10 sets the maximum drop voltage on the sensing resistance at 500mV.  
MC33253  
MOTOROLA  
rev3.0 - 11/15  
MC33253  
A differential mode is advised as shown in fig 12:  
Figure 12. : Differential A.O.P  
R
3
IS  
+IN  
IS  
OUT  
+
_
AOP  
R
4
V
2
IS  
-IN  
V
out  
R
1
R
2
V
1
R2  
R1  
with R2=R4 and R1=R3,  
Vout  
R2  
=
(V 2 V1)  
A gain of 10 gives  
= 10 ( a )  
R1  
To minimize the perturbations, impedance seen by the A.O.P inputs may be as low as possible.  
Knowing the maximum output current (2mA), the minimum value of (R1+R2) can be deduced when VOUT maximum is 5V:  
5V  
(R1 + R2 )min  
=
= 2,5k ( b )  
2mA  
with (a) and (b), the minimum values of R1, R2, R3 and R4 can be calculated.  
R1=R3=227 Ohms and R2=R4=2.27 kOhms  
Over/Under Voltage Shutdown  
The under voltage protection becomes active at VCC below 5.5 V and the overvoltage protection is activated at VCC above 55 V or  
at VCC2 above 28 V. If the O/UV protection is activated the outputs are driven low, in order to switch off the FETs.  
Protection  
A protection against double battery and load dump spikes up to 55 V is given by VCC = 55 V. A protection against reverse  
polarity is given by the external power FET with the free wheeling diodes, forming a conducting pass from ground to VCC. An  
additional protection is not provided within the circuit. There is a temperature shut down protection per each half bridge. It protects  
the circuitry against temperature damage by blocking the output drives.  
MC33253  
MOTOROLA  
rev3.0 - 12/15  
MC33253  
Figure 13. DC Motor Control with Microcontroller  
C
V
470nF  
LRout  
BAT  
V
LOGIC  
V
/V  
CC CC2  
LR_OUT  
/G_EN  
/CCS  
470nF  
M
M
3
1
CP_OUT  
C
Pout  
C
1
50ohms  
C2  
C
33nF  
GATE_HS  
Cp  
1
CAN  
PWM  
SRC_HS  
1
50ohms  
50ohms  
IN_HS  
HS_1  
GATE_LS  
1
1
2
2
1
M
1
2
3
4
FULL  
BRIDGE  
DRIVER  
50ohms  
IN_LS  
IN_HS  
IN_LS  
LS_1  
HS_2  
LS_2  
GATE_HS  
2
PWM  
PWM  
PWM  
SRC_HS  
2
GATE_LS  
2
GND  
IS  
IS  
+IN  
M
G
M
G
2
4
ISOUT  
CURRENT FDB  
-IN  
mC  
S
S
L
L
R
2
R
3
R
sense  
R
4
R
1
This application use the internal charge pump to provide the high side floating voltage. This voltage can be provided by an  
external source also.  
MC33253  
MOTOROLA  
rev3.0 - 13/15  
MC33253  
Pin  
Symbol  
Pin Description  
1
V
Supply1  
CC  
2
3
C2  
Charge Pump Capacitor  
Charge Pump Out  
CP_OUT  
SRC_HS1  
GATE_HS1  
/IN_HS1  
IN_HS1  
4
Source 1 Output High Side  
Gate 1 Output High Side  
Neg. Input High Side 1  
Pos. Input High Side 1  
Neg. Input Low Side 1  
Pos. Input Low Side 1  
Gate 1 Output Low Side  
Power Ground  
5
6
7
8
/IN_LS1  
IN_LS1  
9
10  
11  
12  
13  
GATE_LS1  
GND1  
LR_OUT  
Linear Regulator Output  
Supply 2  
V
CC2  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
GND_A  
C1  
Analog Ground (A.O.P)  
Charge Pump Capacitor  
Sense OpAmp Pos. Input  
Sense OpAmp Neg. Input  
Logic Ground 2  
IS+  
IS-  
GND2  
GATE_LS2  
IN_LS2  
/IN_LS2  
IN_HS2  
/IN_HS2  
GATE_HS2  
SRC_HS2  
/CCS  
Gate 2 Output Low Side  
Pos. Input Low Side 2  
Neg. Input Low Side 2  
Pos. Input High Side 2  
Neg. Input High Side 2  
Gate 2 Output High Side  
Source 2 Output High Side  
Enable Cross Conduction Suppression  
Global Enable  
G_EN  
IS_OUT  
Sense Current OpAmp Output  
MC33253  
MOTOROLA  
rev3.0 - 14/15  
D
NOTES:  
A
28  
15  
1. DIMENSIONS ARE IN MILLIMETERS.  
2. INTERPRET DIMENSIONS AND TOLERANCES  
PER ASME Y14.5M, 1994.  
3. DIMENSIONS D AND E DO NOT INCLUDE  
MOLD PROTRUSIONS.  
4. MAXIMUM MOLD PROTRUSION 0.015 PER  
SIDE.  
5. DIMENSION B DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.13 TOTAL IN  
1
14  
MILLIMETERS  
DIM MIN MAX  
B
PIN 1 IDENT  
A
A1  
B
2.35  
0.13  
0.35  
0.23  
2.65  
0.29  
0.49  
0.32  
C
D
E
e
H
L
θ
17.80 18.05  
7.40 7.60  
1.27 BSC  
10.05 10.55  
L
0.10  
e
0.41  
0
0.90  
8
C
°
°
SEATING  
B
C
θ
PLANE  
M
S
S
0.025  
C A  
B
CASE 751F-05  
ISSUE F  
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability  
of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all  
liability, including without limitation consequential or incidental damages. Typicalparameters which may be provided in Motorola data sheets and/or specifications can and do  
vary in different applications and actual performance may vary over time. All operating parameters, including Typicalmust be validated for each customer application by  
customers technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for  
use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any application in which the failure of the  
Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized  
application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and  
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or un authorized use, even if  
such claim alleges that Motorola was negligent regarding the design or manufacture of the parts. Motorola and  
an Equal Employment Opportunity/Affirmative Action Employer.  
are registered trademarks of Motorola, Inc. Motorola, Inc. is  
How to reach us:  
USA / EUROPE / Locations Not Listed: Motorola Literature Distribution;  
JAPAN: Motorola Japan Ltd.; SPS, Technical Information Center, 3-20-1,  
P.O. Box 5405, Denver, Colorado 80217. 1-303-675-2140 or 1-800-441-2447  
Minami-Azabu, Minato-ku, Tokyo 106-8573 Japan. 81-3-344-3569  
Technical Information Center: 1-800-521-6274  
ASIA / PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre,  
2, Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong.  
852-26668334  
HOME PAGE: http://www.motorola.com/semiconductors  
MC33253/D  
MC33253  
MOTOROLA  

相关型号:

MC3325P

Analog Circuit, 1 Func, BIPolar, PDIP14, PLASTIC, DIP-14
MOTOROLA

MC33260

GreenLine Compact Power Factor Controller:Innovative Circuit for Cost Effective Solutions
ONSEMI

MC33260

小型廉价功率因数控制器
MOTOROLA

MC33260D

GreenLine TM Compact Power Factor Controller: Innovative Circuit for Cost Effective Solutions
ONSEMI

MC33260DG

GreenLine TM Compact Power Factor Controller: Innovative Circuit for Cost Effective Solutions
ONSEMI

MC33260DR2

GreenLine TM Compact Power Factor Controller: Innovative Circuit for Cost Effective Solutions
ONSEMI

MC33260DR2G

GreenLine TM Compact Power Factor Controller: Innovative Circuit for Cost Effective Solutions
ONSEMI

MC33260P

GreenLine Compact Power Factor Controller:Innovative Circuit for Cost Effective Solutions
ONSEMI

MC33260PG

GreenLine TM Compact Power Factor Controller: Innovative Circuit for Cost Effective Solutions
ONSEMI

MC33260_05

GreenLine TM Compact Power Factor Controller: Innovative Circuit for Cost Effective Solutions
ONSEMI

MC33260_1

Power Factor Controllers
ONSEMI

MC33261

POWER FACTOR CONTROLLERS
MOTOROLA