LP39542TLX [NSC]

Advanced Lighting Management Unit; 先进的照明管理单元
LP39542TLX
型号: LP39542TLX
厂家: National Semiconductor    National Semiconductor
描述:

Advanced Lighting Management Unit
先进的照明管理单元

文件: 总58页 (文件大小:2935K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
August 2007  
LP39542  
Advanced Lighting Management Unit  
General Description  
Features  
LP39542 is an advanced lighting management unit for hand-  
held devices. It drives any phone lights including display  
backlights, RGB, keypad and camera flash LEDs. The boost  
DC-DC converter drives high current loads with high efficien-  
cy. White LED backlight drivers are high efficiency low voltage  
structures with excellent matching and automatic fade in/ fade  
out function. The stand-alone command based RGB con-  
troller is feature rich and easy to configure. Built-in audio  
synchronization feature allows user to synchronize the color  
LEDs to audio input. Integrated high current driver can drive  
camera flash LED or motor/vibra. Internal ADC can be used  
for ambient light or temperature sensing. The flexible I2C in-  
terface allows easy control of LP39542. Small micro SMD  
package together with minimum number of external compo-  
nents is a best fit for handheld devices.  
Audio synchronization for color/RGB LEDs  
Command based PWM controlled RGB LED drivers  
Programmable ON/OFF blinking sequences for RGB LED  
High current driver for flash LED with built-in timing and  
safety feature.  
4+2 or 6 low voltage constant current white LED drivers  
with programmable 8-bit adjustment (0...25 mA/LED)  
High efficiency Boost DC-DC converter  
I2C compatible interface  
Possibility for external PWM dimming control  
Possibility for clock synchronization for RGB timing  
Ambient light and temperature sensing possibility  
Small package – microSMD-36, 3.0 x 3.0 x 0.6 mm  
Applications  
Cellular Phones  
PDAs, MP3 players  
Typical Applications  
30008560  
© 2007 National Semiconductor Corporation  
300085  
www.national.com  
Connection Diagrams and Package Mark Information  
CONNECTION DIAGRAMS  
MicroSMD-36 Package, 3.0 x 3.0 x 0.6 mm, 0.5 mm pitch NS Package Number TLA36AAA or  
MicroSMDxt-36 Package, 3.0 x 3.0 x 0.65 mm, 0.5 mm pitch NS Package Number RLA36AAA  
30008503  
30008504  
PACKAGE MARK  
30008505  
Ordering Information  
Order Number  
LP39542TL  
Package Marking  
D58B  
Supplied As  
TNR 250  
Spec/Flow  
NoPb  
LP39542TLX  
LP39542RL  
LP39542RLX  
D58B  
TNR 1000  
TNR 250  
NoPb  
D58B  
NoPb  
D58B  
TNR 1000  
NoPb  
www.national.com  
2
Pin Descriptions  
Pin #  
6F  
6E  
6D  
6C  
6B  
6A  
5F  
5E  
5D  
5C  
5B  
5A  
4F  
4E  
4D  
4C  
4B  
4A  
3F  
3E  
3D  
3C  
3B  
3A  
2F  
2E  
2D  
2C  
2B  
2A  
1F  
1E  
1D  
1C  
1B  
1A  
Name  
SW  
Type  
Output  
Input  
Description  
Boost Converter Power Switch  
Boost Converter Feedback  
High Current Flash Output  
Red LED 1 Output  
FB  
FLASH  
R1  
Output  
Output  
Output  
Output  
Ground  
Ground  
Power  
G1  
Green LED 1 Output  
Blue LED 1 Output  
B1  
GND_SW  
GND  
Power Switch Ground  
Ground  
VDDIO  
Supply Voltage for Logic Input/Output Buffers and Drivers  
SDA  
Logic Input/Output Serial Data In/Out (I2C)  
IRGB  
Input  
Ground  
Ground  
Input  
Bias Current Set Resistor for RGB Drivers  
GND_RGB  
GND_WLED  
IFLASH  
SYNC_PWM  
ADDR_SEL  
NRST  
R2  
Ground for RGB Currents  
Ground for WLED Currents  
High Current Flash Current Set Resistor  
External PWM Control for LEDs or External Clock for RGB Sync  
Address Select (I2C)  
Logic Input  
Logic Input  
Logic Input  
Output  
Reset Pin  
Red LED 2 Output  
WLED5  
WLED6  
VDD1  
Output  
White LED 5 Output  
Output  
White LED 6 Output  
Power  
Supply Voltage  
FLASH_EN  
SCL  
Logic Input  
Logic Input  
Output  
Enable for High Current Flash  
Clock (I2C)  
G2  
Green LED 2 Output  
WLED3  
WLED4  
ASE  
Output  
White LED 3 Output  
Output  
White LED 4 Output  
Input  
Audio Synchronization Input  
Oscillator Frequency Resistor  
Ground  
IRT  
Input  
GNDT  
B2  
Ground  
Output  
Blue LED 2 Output  
WLED1  
WLED2  
GNDA  
VREF  
VDDA  
Output  
White LED 1 Output  
Output  
White LED 2 Output  
Ground  
Output  
Ground for Analog Circuitry  
Reference Voltage  
Power  
Internal LDO Output  
VDD2  
Power  
Supply Voltage  
3
www.national.com  
Absolute Maximum Ratings (Notes 1, 2)  
Operating Ratings (Notes 1, 2)  
V (SW, FB, WLED1-6, R1-2, G1-2,  
B1-2, FLASH)  
VDD1,2 with external LDO  
VDD1,2 with internal LDO  
VDDA  
If Military/Aerospace specified devices are required,  
please contact the National Semiconductor Sales Office/  
Distributors for availability and specifications.  
0 to 6.0V  
2.7 to 5.5V  
3.0 to 5.5V  
V (SW, FB, R1-2, G1-2, B1-2,  
FLASH, WLED1-6)(Notes 3, 4)  
-0.3V to +7.2V  
2.7 to 2.9V  
VDD1, VDD2, VDDIO, VDDA  
-0.3V to +6.0V  
VDDIO  
1.65V to VDD1  
Voltage on ASE, IRT, IFLASH,  
IRGB, VREF  
-0.3V to VDD1+0.3V  
with 6.0V max  
Voltage on ASE  
0.1V to VDDA –0.1V  
0 mA to 400 mA  
-30°C to +125°C  
-30°C to +85°C  
Recommended Load Current  
Junction Temperature (TJ) Range  
Voltage on Logic Pins  
-0.3V to VDDIO +0.3V  
with 6.0V max  
Ambient Temperature (TA) Range  
(Note 9)  
V(all other pins): Voltage to GND  
-0.3V to 6.0V  
I (VREF  
)
10 μA  
100 mA  
400 mA  
I(R1, G1, B1, R2, G2, B2)  
I(FLASH)(Note 5)  
Thermal Properties  
Junction-to-Ambient Thermal  
Resistance(θJA), TLA36AAA or  
RLA36AAA Package  
(Note 10)  
60°C/W  
Continuous Power Dissipation  
(Note 6)  
Internally Limited  
Junction Temperature (TJ-MAX  
Storage Temperature Range  
)
150°C  
-65°C to +150°C  
260°C  
Maximum Lead Temperature  
(Soldering) (Note 7)  
ESD Rating (Note 8)  
Human Body Model:  
2 kV  
www.national.com  
4
Electrical Characteristics (Notes 2, 11)  
Limits in standard typeface are for TJ = 25°C. Limits in boldface type apply over the operating ambient temperature range (-30°C  
< TA < +85°C). Unless otherwise noted, specifications apply to the LP39542 Block Diagram with: VDD1 = VDD2 = 3.6V, VDDIO = 2.8V,  
CVDD = CVDDIO = 100 nF, COUT = CIN = 10 μF, CVDDA = 1 μF, CREF = 100 nF, L1 = 4.7 μH, RFLASH = 910Ω, RRGB = 5.6 kΩ and RRT  
= 82 kΩ (Note 12).  
Symbol  
Parameter  
Standby supply current NSTBY (bit) = L, NRST (pin) = H  
(VDD1 + VDD2 SCL=H, SDA = H  
No-boost supply current NSTBY (bit) = H,  
Condition  
Min  
Typ  
Max  
8
Units  
IVDD  
1
μA  
)
450  
μA  
(VDD1 + VDD2  
)
EN_BOOST(bit) = L  
SCL = H, SDA = H  
Audio sync and LEDs OFF  
No-load supply current NSTBY (bit) = H,  
1
mA  
(VDD1 + VDD2  
)
EN_BOOST (bit) = H  
SCL = H, SDA = H  
Audio sync and LEDs OFF  
Autoload OFF  
RGB drivers  
(VDD1 + VDD2  
CC mode at R1, G1, B1 and R2, G2, B2 set to 15 mA  
SW mode  
150  
150  
500  
μA  
μA  
)
WLED drivers  
(VDD1 + VDD2  
Audio synchronization  
4+2 banks IOUT = 25.5 mA per LED  
)
Audio sync ON  
VDD1,2 = 2.8V  
VDD1,2 = 3.6V  
(VDD1 + VDD2  
)
390  
700  
2
μA  
Flash  
I(RFLASH) = 1 mA  
mA  
(VDD1 + VDD2  
)
Peak current during flash  
IVDDIO  
VDDIO Standby Supply  
current  
NSTBY (bit)=L  
SCL = H, SDA = H  
1
μA  
IEXT_LDO External LDO output  
current  
7V tolerant application only  
IBOOST = 300 mA  
6.5  
mA  
(VDD1, VDD2, VDDA  
)
VDDA  
Output voltage of internal (Note 13)  
LDO for analog parts  
2.72  
-3  
2.80  
2.88  
+3  
V
%
Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the component may occur. Operating Ratings are conditions under which operation  
of the device is guaranteed. Operating Ratings do not imply guaranteed performance limits. For guaranteed performance limits and associated test conditions,  
see the Electrical Characteristics tables.  
Note 2: All voltages are with respect to the potential at the GND pins.  
Note 3: Battery/Charger voltage should be above 6V no more than 10% of the operational lifetime.  
Note 4: Voltage tolerance of LP39542 above 6.0V relies on fact that VDD1 and VDD2 (2.8V) are available (ON) at all conditions. If VDD1 and VDD2 are not available  
(ON) at all conditions, National Semiconductor does not guarantee any parameters or reliability for this device.  
Note 5: The total load current of the boost converter in worst-case conditions is limited to 300 mA (min. input and max. output voltage).  
Note 6: Internal thermal shutdown circuitry protects the device from permanent damage. Thermal shutdown engages at TJ=160°C (typ.) and disengages at  
TJ=140°C (typ.).  
Note 7: For detailed soldering specifications and information, please refer to National Semiconductor Application Note AN1112 : Micro SMD Wafer Level Chip  
Scale Package or Application note AN1412: Micro SMDxt Wafer Lever Chip Scale Package  
Note 8: The Human body model is a 100 pF capacitor discharged through a 1.5 kresistor into each pin.  
Note 9: In applications where high power dissipation and/or poor package thermal resistance is present, the maximum ambient temperature may have to be  
derated. Maximum ambient temperature (TA-MAX) is dependent on the maximum operating junction temperature (TJ-MAX-OP = 125°C), the maximum power  
dissipation of the device in the application (PD-MAX), and the junction-to ambient thermal resistance of the part/package in the application (θJA), as given by the  
following equation: TA-MAX = TJ-MAX-OP – (θJA × PD-MAX).  
Note 10: Junction-to-ambient thermal resistance is highly application and board-layout dependent. In applications where high maximum power dissipation exists,  
special care must be paid to thermal dissipation issues in board design.  
Note 11: Min and Max limits are guaranteed by design, test, or statistical analysis. Typical numbers are not guaranteed, but do represent the most likely norm.  
Note 12: Low-ESR Surface-Mount Ceramic Capacitors (MLCCs) used in setting electrical characteristics.  
Note 13: VDDA output is not recommended for external use.  
5
www.national.com  
Block Diagram  
30008506  
www.national.com  
6
Modes of Operation  
RESET:  
In the RESET mode all the internal registers are reset to the default values and the chip goes to STANDBY  
mode after reset. NSTBY control bit is low after reset by default. Reset is active always if NRST input pin is  
low or internal Power On Reset is active. LP39542 can be also reset by writing any data to Reset Register  
in address 60H. Power On Reset (POR) will activate during the chip startup or when the supply voltage  
VDD2 falls below 1.5V. Once VDD2 rises above 1.5V, POR will inactivate and the chip will continue to the  
STANDBY mode.  
STANDBY:  
STARTUP:  
The STANDBY mode is entered if the register bit NSTBY is LOW. This is the low power consumption mode,  
when all circuit functions are disabled. Registers can be written in this mode and the control bits are effective  
immediately after power up.  
When NSTBY bit is written high, the INTERNAL STARTUP SEQUENCE powers up all the needed internal  
blocks (Vref, Bias, Oscillator etc..). To ensure the correct oscillator initialization, a 10 ms delay is generated  
by the internal state-machine. If the chip temperature rises too high, the Thermal Shutdown (TSD) disables  
the chip operation and STARTUP mode is entered until no thermal shutdown event is present.  
BOOST STARTUP:  
NORMAL:  
Soft start for boost output is generated in the BOOST STARTUP mode. The boost output is raised in PFM  
mode during the 10 ms delay generated by the state-machine. The Boost startup is entered from Internal  
Startup Sequence if EN_BOOST is HIGH or from Normal mode when EN_BOOST is written HIGH. During  
the 10 ms Boost Startup time all LED outputs are switched off to ensure smooth start-up.  
During NORMAL mode the user controls the chip using the Control Registers. The registers can be written  
in any sequence and any number of bits can be altered in a register in one write  
30008507  
7
www.national.com  
Magnetic Boost DC/DC Converter  
The LP39542 Boost DC/DC Converter generates a 4.0 – 5.3V  
voltage for the LEDs from single Li-Ion battery (3V…4.5V).  
The output voltage is controlled with an 8-bit register in 9  
steps. The converter is a magnetic switching PWM mode DC/  
DC converter with a current limit. The converter has three op-  
tions for switching frequency, 1 MHz, 1.67 MHz and 2 MHz  
(default), when timing resistor RT is 82 kΩ. Timing resistor  
defines the internal oscillator frequency and thus directly af-  
fects boost frequency and all circuit's internally generated  
timing (RGB, Flash, WLED fading).  
The topology of the magnetic boost converter is called CPM  
control, current programmed mode, where the inductor cur-  
rent is measured and controlled with the feedback. The user  
can program the output voltage of the boost converter. The  
output voltage control changes the resistor divider in the feed-  
back loop.  
The following figure shows the boost topology with the pro-  
tection circuitry. Four different protection schemes are imple-  
mented:  
1. Over voltage protection, limits the maximum output  
voltage  
The LP39542 Boost Converter uses pulse-skipping elimina-  
tion to stabilize the noise spectrum. Even with light load or no  
load a minimum length current pulse is fed to the inductor. An  
active load is used to remove the excess charge from the  
output capacitor at very light loads. At very light load and when  
input and output voltages are very close to each other, the  
pulse skipping is not completely eliminated. Output voltage  
should be at least 0.5V higher than input voltage to avoid  
pulse skipping. Reducing the switching frequency will also  
reduce the required voltage difference.  
Keeps the output below breakdown voltage.  
Prevents boost operation if battery voltage is much  
higher than desired output.  
2. Over current protection, limits the maximum inductor  
current  
Voltage over switching NMOS is monitored; too high  
voltages turn the switch off.  
3. Feedback break protection. Prevents uncontrolled  
operation if FB pin gets disconnected.  
Active load can be disabled with the en_autoload bit. Dis-  
abling will increase the efficiency at light loads, but the down-  
side is that pulse skipping will occur. The Boost Converter  
should be stopped when there is no load to minimise the cur-  
rent consumption.  
4. Duty cycle limiting, done with digital control.  
30008508  
Boost Converter Topology  
www.national.com  
8
Magnetic Boost DC/DC Converter Electrical Characteristics  
Symbol  
ILOAD  
Parameter  
Load Current  
Conditions  
Min  
Typ  
Max  
Units  
3.0V VIN  
0
300  
VOUT = 5V  
mA  
3.0V VIN  
VOUT = 4V  
0
400  
VOUT  
Output Voltage Accuracy  
(FB Pin)  
3.0V VIN VOUT - 0.5  
−5  
+5  
%
V
VOUT = 5.0V  
Output Voltage  
(FB Pin)  
1 mA ILOAD 300 mA  
VIN > 5V + V(SCHOTTKY)  
VIN–V(SCHOTTKY)  
RDSON  
fboost  
Switch ON Resistance  
VDD1,2 = 2.8V, ISW = 0.5A  
0.4  
2
0.8  
PWM Mode Switching  
Frequency  
RT = 82 kΩ  
freq_sel[2:0] = 1XX  
MHz  
Frequency Accuracy  
−6  
±3  
+6  
2.7 VDDA 2.9  
RT = 82 kΩ  
no load  
%
−9  
+9  
tPULSE  
Switch Pulse Minimum  
Width  
25  
ns  
tSTARTUP  
ISW_MAX  
Startup Time  
Boost startup from STANDBY  
10  
ms  
SW Pin Current Limit  
700  
800  
900  
mA  
550  
950  
Boost Output Voltage Control  
BOOST STANDBY MODE  
User can stop the Boost Converter operation by writing the  
Enables register bit EN_BOOST low. When EN_BOOST is  
written high, the converter starts for 10 ms in PFM mode and  
then goes to PWM mode.  
BOOST OUTPUT VOLTAGE CONTROL  
User can control the boost output voltage by boost output 8-  
bit register.  
Boost Output [7:0]  
Register 0DH  
Boost Output  
Voltage (typical)  
Bin  
Hex  
00  
01  
03  
07  
0F  
1F  
3F  
7F  
FF  
0000 0000  
0000 0001  
0000 0011  
0000 0111  
0000 1111  
0001 1111  
0011 1111  
0111 1111  
1111 1111  
4.00  
4.25  
4.40  
4.55  
4.70  
30008509  
4.85  
BOOST FREQUENCY CONTROL  
5.00 Default  
5.15  
freq_sel[2:0]  
1XX  
frequency  
2.00 MHz  
1.67 MHz  
1.00 MHz  
5.30  
01X  
001  
Register ‘boost freq’ (address 0EH). Register default value  
after reset is 07H.  
9
www.national.com  
Boost Converter Typical Performance Characteristics  
Vin = 3.6V, Vout = 5.0V if not otherwise stated  
Boost Converter Efficiency  
Battery Current vs Voltage  
Boost Line Regulation  
Boost Typical Waveforms at 100mA Load  
30008511  
30008510  
Battery Current vs Voltage  
30008512  
30008513  
Boost Startup with No Load  
30008514  
30008515  
www.national.com  
10  
Boost Load Transient, 50 mA–100 mA  
Boost Switching Frequency  
30008516  
30008517  
Output Voltage vs Load Current  
Efficiency at Low Load vs Autoload  
30008562  
30008561  
11  
www.national.com  
Functionality of Color LED Outputs (R1, G1, B1; R2, G2, B2)  
LP39542 has 2 sets of RGB/color LED outputs. Both sets  
have 3 outputs and the sets can be controlled in 4 different  
ways:  
CURRENT CONTROL OF COLOR LED OUTPUTS (R1, R2,  
G1, G2, B1, B2)  
Both RGB output sets can be separately controlled as con-  
stant current sinks or as switches. This is done using  
cc_rgb1/2 bits in the RGB control register. In constant current  
mode one or both RGB output sets are controlled with con-  
stant current sinks (no external ballast resistors required).  
The maximum output current for both drivers is set by one  
external resistor RRGB. User can decrease the maximum cur-  
rent for an individual LED driver by programming as shown  
later.  
1. Command based pattern generator control (internal  
PWM)  
2. Audio synchronization control  
3. Programmable ON/OFF blinking sequences for RGB1  
4. External PWM control  
By using command based pattern generator user can pro-  
gram any kind of color effect patterns. LED intensity, blinking  
cycles and slopes are independently controlled with 8 16-bit  
commands. Also real time commands are possible as well as  
loops and step by step control. If analog audio is available on  
system, the user can use audio synchronization for syn-  
chronizing LED blinking to the music. The different modes  
together with the various sub modes generate very colorful  
and interesting lighting effects. Direct ON/OFF control is  
mainly for switching on and off LEDs. External PWM con-  
trol is for applications where external PWM signal is available  
and required to control the color LEDs. PWM signal can be  
connected to any color LED separately as shown later.  
The maximum current for all RGB drivers is set with RRGB  
The equation for calculating the maximum current is  
.
IMAX = 100 × 1.23V / (RRGB + 50Ω)  
where  
IMAX - maximum RGB current in any RGB output in constant  
current mode  
1.23V - reference voltage  
100 - internal current mirror multiplier  
RRGB- resistor value in Ohms  
50Ω - internal resistor in the IRGB input  
For example if 22mA is required for maximum RGB current  
RRGB equals to  
COLOR LED CONTROL MODE SELECTION  
The RGB_SEL[1:0] bits in the Enables register (08H) control  
the output modes for RGB1 (R1, G1, B1) and RGB2 (R2, G2,  
B2) outputs as seen in the following table.  
RRGB=100×1.23V / IMAX–50Ω=123V / 0.022A–50Ω=5.54kΩ  
Each individual RGB output has a separate maximum current  
programming. The control bits are in registers RGB1 max  
current and RGB2 max current (12H and 13H) and pro-  
gramming is shown in table below. The default value after  
reset is 00b.  
RGB_SEL  
[1:0]  
Audio sync  
Pattern  
generator  
Blinking  
control  
00  
01  
10  
11  
-
RGB1 & RGB2  
-
-
RGB2  
RGB1  
-
RGB1  
IR1[1:0], IG1[1:0],  
Maximum  
RGB2  
-
-
IB1[1:0], IR2[1:0],  
current/output  
IG2[1:0], IB2[1:0]  
RGB1 & RGB2  
RGB Control register (00H) has control bits for direct on/off  
control of all color LEDs. Note that the LEDs have to be turned  
on in order to control them with audio synchronization or pat-  
tern generator.  
00  
01  
10  
11  
0.25 × IMAX  
0.50 × IMAX  
0.75 × IMAX  
1.00 × IMAX  
The external PWM signal can control any LED depending on  
the control register setup. External PWM signal is connected  
to PWM/SYNC pin. The controls are in the Ext. PWM Control  
register (address 07H) except the FLASH control in HC_Flash  
(10H) register as follows:  
SWITCH MODE  
The switch mode is used if there is a need to connect parallel  
LEDs to output or if the RGB output current needs to be in-  
creased.  
Ext. PWM Control (07H)  
Please note that the switch mode requires an external bal-  
last resistors at each output to limit the LED current.  
The switch/current mode and on/off controls for RGB are in  
the RGB_ctrl register (00H).  
wled1-4_pwm  
wled5-6_pwm  
r1_pwm  
bit 7 PWM controls WLED 1-4  
bit 6 PWM controls WLED 5-6  
bit 5 PWM controls R1 output  
bit 4 PWM controls G1 output  
bit 3 PWM controls B1 output  
bit 2 PWM controls R2 output  
bit 1 PWM controls G2 output  
bit 0 PWM controls B2 output  
HC_Flash (10H)  
g1_pwm  
b1_pwm  
r2_pwm  
g2_pwm  
b2_pwm  
hc_pwm  
bit 5 PWM controls FLASH  
Note: If DISPL=1, wled1-4pwm controls WLED1-6  
Note: Maximum external PWM frequency is 1kHz. If during the external  
PWM control the internal PWM is on, the result will be product of both  
functions.  
www.national.com  
12  
RGB_ctrl register (00H)  
1
R1, G1 and B1 are switches limit current with ballast resistor  
R1, G1 and B1 are constant current sinks, current limited internally  
CC_RGB1  
bit7  
0
1
R2, G2 and B2 are switches limit current with ballast resistor  
R2, G2 and B2 are constant current sinks, current limited internally  
CC_RGB2  
r1sw  
bit6  
bit5  
bit4  
bit3  
bit2  
bit1  
bit0  
0
1
0
1
0
1
0
1
0
1
0
1
0
R1 is on  
R1 is off  
G1 is on  
G1 is off  
B1 is on  
B1 is off  
R2 is on  
R2 is off  
G2 is on  
G2 is off  
B2 is on  
B2 is off  
g1sw  
b1sw  
r2sw  
g2sw  
b2sw  
30008518  
13  
www.national.com  
Since registers are 8-bit long one command requires 2 write  
cycles. Each command has intensity level for each LED, com-  
mand execution time (CET) and transition time (TT) as seen  
in the following figures.  
Command Based Pattern Generator  
for Color LEDs  
The LP39542 has an unique stand-alone command based  
pattern generator with 8 user controllable 16-bit commands.  
30008519  
COMMAND REGISTER WITH 8 COMMANDS  
COMMAND 1  
COMMAND 2  
COMMAND 3  
COMMAND 4  
COMMAND 5  
COMMAND 6  
COMMAND 7  
COMMAND 8  
ADDRESS 50H  
ADDRESS 51H  
ADDRESS 52H  
ADDRESS 53H  
ADDRESS 54H  
ADDRESS 55H  
ADDRESS 56H  
ADDRESS 57H  
ADDRESS 58H  
ADDRESS 59H  
ADDRESS 5AH  
ADDRESS 5BH  
ADDRESS 5CH  
ADDRESS 5DH  
ADDRESS 5EH  
ADDRESS 5FH  
R2  
CET1  
R2  
R1  
CET0  
R1  
R0  
B2  
R0  
B2  
R0  
B2  
R0  
B2  
R0  
B2  
R0  
B2  
R0  
B2  
R0  
B2  
G2  
B1  
G2  
B1  
G2  
B1  
G2  
B1  
G2  
B1  
G2  
B1  
G2  
B1  
G2  
B1  
G1  
B0  
G1  
B0  
G1  
B0  
G1  
B0  
G1  
B0  
G1  
B0  
G1  
B0  
G1  
B0  
G0  
TT2  
G0  
CET3  
TT1  
CET2  
TT0  
CET3  
TT1  
CET2  
TT0  
CET1  
R2  
CET0  
R1  
TT2  
G0  
CET3  
TT1  
CET2  
TT0  
CET1  
R2  
CET0  
R1  
TT2  
G0  
CET3  
TT1  
CET2  
TT0  
CET1  
R2  
CET0  
R1  
TT2  
G0  
CET3  
TT1  
CET2  
TT0  
CET1  
R2  
CET0  
R1  
TT2  
G0  
CET3  
TT1  
CET2  
TT0  
CET1  
R2  
CET0  
R1  
TT2  
G0  
CET3  
TT1  
CET2  
TT0  
CET1  
R2  
CET0  
R1  
TT2  
G0  
CET3  
TT1  
CET2  
TT0  
CET1  
CET0  
TT2  
COLOR INTENSITY CONTROL  
Each color has 3-bit intensity level. Level control is logarith-  
mic, 2 curves are selectable. The LOG bit in register 11H  
defines the curve used as seen in the following table.  
R[2:0], G[2:0],  
B[2:0]  
CURRENT  
[% × IMAX(COLOR)  
]
LOG=0  
0
LOG=1  
000  
001  
010  
011  
100  
101  
110  
111  
0
1
7
14  
2
21  
4
32  
10  
21  
46  
100  
46  
71  
100  
30008520  
www.national.com  
14  
COMMAND EXECUTION TIME (CET) AND TRANSITION TIME (TT)  
The command execution CET time is the duration of one sin-  
gle command. Command execution times CET are defined as  
follows, when RT=82kΩ:  
CET [3:0]  
1110  
CET duration, ms  
2949  
3146  
1111  
CET [3:0]  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
CET duration, ms  
197  
Transition time TT is duration of transition from the previous  
RGB value to programmed new value. Transition times TT  
are defined as follows:  
393  
590  
TT [2:0]  
000  
Transition time, ms  
786  
0
983  
001  
55  
1180  
1376  
1573  
1769  
1966  
2163  
2359  
2556  
2753  
010  
110  
221  
442  
885  
1770  
3539  
011  
100  
101  
110  
111  
The figure below shows an example of RGB CET and TT  
times.  
30008521  
The command execution time also may be less than the transition time – the figure below illuminates this case.  
30008522  
15  
www.national.com  
LOOP CONTROL  
is 0000 0000 and 0000 0000 in one command register. The  
loop will start from command 1 and continue until stopped by  
writing rgb_start=0 or loop=0. The example of loop is shown  
in following figure:  
Pattern generator commands can be looped using the LOOP  
bit (D1) in Pattern gen ctrl register (11H). If LOOP=1 the pro-  
gram will be looped from the command 8 register or if there  
30008523  
SINGLE PROGRAM  
If control bit LOOP=0 the program will start from Command 1  
and run to either last command or to empty “0000 0000 / 0000  
0000” command.  
30008524  
The LEDs maintain the brightness of the last command when  
the single program stops. Changes in command register will  
not be effective in this phase. The RGB_START bit has to be  
toggled off and on to make changes effective.  
START BIT  
Pattern_gen_ctrl register’s RGB_START bit will enable  
command execution starting from Command 1.  
Pattern gen ctrl register (11H)  
0 – Pattern generator disabled  
1 – execution pattern starting from command 1  
rgb_start  
loop  
Bit 2  
Bit 1  
Bit 0  
0 – pattern generator loop disabled (single pattern)  
1 – pattern generator loop enabled (execute until stopped)  
0 – color intensity mode 0  
1 – color intensity mode 1  
log  
www.national.com  
16  
Audio Synchronization  
The color LEDs connected to RGB outputs can be synchro-  
nized to incoming audio with Audio Synchronization feature.  
Audio Sync has 2 modes. Amplitude mode synchronizes  
color LEDs based on input signal’s peak amplitude. In the  
amplitude mode the user can select between 3 different am-  
plitude mapping modes and 4 different speed configurations.  
The frequency mode synchronizes the color LEDs based on  
bass, middle and treble amplitudes (= low pass, band pass  
and high pass filters). User can select between 2 different  
frequency responses and 4 different speed configurations for  
best audio-visual user experience. Programmable gain and  
AGC function are also available for adjustment of input signal  
amplitude to light response. The Audio Sync functionality is  
described more closely below.  
PWM signal with 3.3V amplitude. Active filters, such as a  
Sallen-Key filter, may also be applied. An active filter gives  
better stop-band attenuation and cut-off frequency can be  
higher than for a RC-filter.  
To make sure that the filter rolls off sufficiently quickly, con-  
nect your filter circuit to the audio input(s), turn on the audio  
synchronization feature, set manual gain to maximum, apply  
the PWM signal to the filter input and keep an eye on LEDs.  
If they are blinking without an audio signal (modulation), a  
sharper roll-off after the cut-off frequency, more stop-band  
attenuation, or smaller amplitude of the PWM signal is re-  
quired.  
AUDIO SYNCHRONIZATION SIGNAL PATH  
LP39542 audio synchronization is mainly done digitally and it  
consists of the following signal path blocks:  
USING A DIGITAL PWM AUDIO SIGNAL AS AN AUDIO  
SYNCHRONIZATION SOURCE  
Input Buffers  
AD Converter  
DC Remover  
If the input signal is a PWM signal, use a first or second order  
low pass filter to convert the digital PWM audio signal into an  
analog waveform. There are two parameters that need to be  
known to get the filter to work successfully: frequency of the  
PWM signal and the voltage level of the PWM signal. Sug-  
gested cut-off frequency (-3 dB) should be around 2 kHz to 4  
kHz and the stop-band attenuation at sampling frequency  
should be around -48 dB or better. Use a resistor divider to  
reduce the digital signal amplitude to meet the specification  
of the analog audio input. Because a low-order low-pass filter  
attenuates the high-frequency components from audio signal,  
MODE_CTRL=01b selection is recommended when frequen-  
cy synchronization mode is enabled. Application example 5  
shows an example of a second order RC-filter for 29 kHz  
Automatic Gain Control (AGC)  
Programmable Gain  
3 Band Digital Filter  
Peak Detector  
Look-up Tables (LUT)  
Mode Selector  
Integrators  
PWM Generator  
Output Drivers  
30008525  
The digitized input signal has DC component that is removed  
by digital DC REMOVER (-3 dB @ 400 Hz). Since the light  
response of input audio signal is very much amplitude de-  
pendent the AGC adjusts the input signal to suitable range  
automatically. User can disable AGC and the gain can be set  
manually with PROGRAMMABLE GAIN. LP39542 has 2 au-  
dio synchronization modes: amplitude and frequency. For  
amplitude based synchronization the PEAK DETECTION  
method is used. For frequency based synchronization 3  
BAND FILTER separates high pass, low pass and band bass  
signals. For both modes the predefined LUT is used to opti-  
mize the audio visual effect. MODE SELECTOR selects the  
synchronization mode. Different response times to music  
beat can be selected using INTEGRATOR speed variables.  
Finally PWM GENERATOR sets the driver FET duty cycles.  
scribed in the Audio Synch table. The buffer is rail-to-rail input  
operational amplifier connected as a voltage follower. DC lev-  
el of the input signal is set by a simple resistor divider  
INPUT SIGNAL TYPE AND BUFFERING  
LP39542 supports single ended audio input as shown in the  
figure below. The electric parameters of the buffer are de-  
30008526  
17  
www.national.com  
AUDIO SYNCHRONIZATION ELECTRICAL PARAMETERS  
Symbol Parameter  
Conditions  
Min  
250  
0.1  
Typical  
Max  
Units  
kΩ  
ZIN  
AIN  
Input Impedance of ASE  
500  
Audio Input Level Range  
(peak-to-peak)  
Gain = 21 dB  
Gain = 0 dB  
V
VDDA-0.1  
f3dB  
Crossover Frequencies (-3 dB)  
Narrow Frequency Response  
Low Pass  
Band Pass  
High Pass  
Low Pass  
Band Pass  
High Pass  
0.5  
1.0 and 1.5  
2.0  
kHz  
Wide Frequency Response  
1.0  
2.0 and 3.0  
4.0  
CONTROL OF ADC AND AUDIO SYNCHRONIZATION  
The following table describes the controls required for audio synchronization.  
Audio_sync_CTRL1 (2AH)  
Input signal gain control. Range 0...21 dB, step 3 dB:  
[000] = 0 dB (default)  
[001] = 3 dB  
[011] = 9 dB  
[100] = 12 dB  
[101] = 15 dB  
[110] = 18 dB  
[111] = 21 dB  
GAIN_SEL[2:0]  
Bits 7-5  
[010] = 6 dB  
Synchronization mode selector.  
SYNC_MODE  
EN_AGC  
Bit 4  
Bit 3  
SYNCMODE = 0 Amplitude Mode (default)  
SYNCMODE = 1 Frequency Mode  
Automatic Gain Control enable  
1 = enabled  
0 = disabled (Gain Select enabled) (default)  
Audio synchronization enable  
1 = Enabled  
Note : If AGC is enabled, AGC gain starts from current GAIN_SEL gain value.  
0 = Disabled (default)  
EN_SYNC  
Bit 2  
[00] = Single ended input signal, ASE.  
[01] = Temperature measurement  
[10] = Ambient light measurement  
[11] = No input (default)  
INPUT_SEL[1:0]  
Bits 1-0  
Audio_sync_CTRL2 (2BH)  
0 – averaging disabled (not applicable in audio sync mode)  
1 – averaging enabled (not applicable in audio sync mode)  
EN_AVG  
Bit 4  
MODE_CTRL[1:0]  
Bits 3-2 See below: Mode control  
Sets the LEDs light response time to audio input.  
[00] = FASTEST (default)  
[01] = FAST  
[10] = MEDIUM  
Bits 1-0  
SPEED_CTRL[1:0]  
[11] = SLOW  
(For SLOW setting in amplitude mode fMAX= 3.8 Hz,  
Frequency mode fMAX = 7.6 Hz)  
www.national.com  
18  
MODE CONTROL IN FREQUENCY MODE  
based on the music type and light effect requirements. In the  
first mode the frequency range extends to 8 kHz in the secont  
to 4 kHz.  
Mode control has two setups based on audio synchronization  
mode select: the frequency mode and the amplitude mode.  
During the frequency mode user can select two filter options  
by MODE_CTRL as shown below. User can select the filters  
The lowpass filter is used for the red, the bandpass filter for  
the blue and the hipass filter for the green LED.  
Higher frequency mode  
MODE_CTRL = 00 and SYNC_MODE = 1  
Lower frequency mode  
MODE_CTRL = 01 and SYNC_MODE = 1  
30008527  
30008528  
MODE CONTROL IN AMPLITUDE MODE  
MODE_CTRL select. These three mapping options give dif-  
ferent light response. The modes are presented in the follow-  
ing graphs.  
During the amplitude synchronization mode user can se-  
lect between three different amplitude mappings by using  
Non-overlapping mode  
MODE_CTRL[1:0] = [01]  
Partly overlapping mode  
MODE_CTRL[1:0] = [00]  
30008529  
30008530  
19  
www.national.com  
Overlapping mode  
MODE_CTRL[1:0] = [10]  
Peak Input Signal Level  
Range vs Gain Setting  
30008532  
30008531  
2. Feed SYNC/PWM pin with 5 MHz clock  
RGB Output Synchronization to  
External Clock  
By this the internal 5 MHz clock is disabled from pattern gen-  
erator and flash timing circuitry.  
The external clock signal frequency will fully determine the  
timings related to RGB and Flash.  
The RGB pattern generator and high current flash driver tim-  
ing can be synchronized to external clock with following con-  
figuration.  
Note: The boost converter will use internal 5 MHz clock even  
if the external clock is available.  
1. Set PWM_SYNC bit in Enables register to 1  
www.national.com  
20  
synchronize outputs to get desired lighting effect. R1SW,  
G1SW and B1SW bits can be used to enable and disable  
outputs when wanted.  
RGB LED Blinking Control  
LP39542 has a possibility to drive indicator LEDs with RGB1  
outputs with programmable blinking time. Blinking function is  
enabled with RGB_SEL[1:0] bits set as 01b in 0BH register.  
R1_CYCLE_EN, G1_CYCLE_EN and B1_CYCLE_EN bits in  
cycle registers (02H, 04H and 06H) enable/disable blinking  
function for corresponding output. When EN_BLINK bit is  
written high in register 11H, the blinking sequences for all  
outputs (which has CYCLE_EN bit enabled) starts simulta-  
neously. EN_BLINK bit should be written high after selecting  
wanted blinking sequences and enabling CYCLE_EN bits, to  
RGB1 blinking sequence is set with R1, G1 and B1 blink reg-  
isters (01H, 03H and 05H) by setting the appropriate OFF-ON  
times. Blinking cycle times are set with R1_CYCLE[2:0],  
G1_CYCLE[2:0] and B1_CYCLE[2:0] bits in R1, G1 and B1  
CYCLE registers (02H, 04H and 06H). OFF/ON time is a per-  
centage of the selected cycle time. Values for setting OFF/  
ON time can be seen in following table.  
R1, G1 and B1 Blink Registers (01H, 03H and 05H):  
Name  
Bit  
Description  
R1_ON[3:0], R1_OFF[3:0]  
G1_ON[3:0], G1_OFF[3:0]  
B1_ON[3:0], B1_OFF[3:0]  
7-4, 3-0  
RGB1 ON and OFF time  
Bits  
ON/OFF time  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
0%  
1%  
2.5%  
5%  
7.5%  
10%  
15%  
20%  
30%  
40%  
50%  
60%  
70%  
80%  
90%  
100%  
Blinking ON/OFF cycle is defined so that there will be first  
OFF-period then ON-period after which follows an off-period  
for the remaining cycle time that can not be set. If OFF and  
ON times are together more than 100% the first OFF time will  
be as set and the ON time is cut to meet 100%. For example,  
if 50% OFF time is set and ON time is set greater than 50%,  
only 50% ON time is used, the exceeding ON time is ignored.  
If OFF and ON times are together less than 100% the re-  
maining cycle time output is OFF.  
30008570  
21  
www.national.com  
Values for setting the blinking cycle for RGB1 can be seen in  
following table:  
R1, G1 and B1 Cycle Registers (02H, 04H and 06H):  
Name  
Bit  
Decription  
R1_CYCLE_EN  
G1_CYCLE_EN  
B1_CYCLE_EN  
3
Blinking enable  
0 = disabled  
1 = enabled, output state is defined with blinking  
cycle  
R1_CYCLE[2:0]  
G1_CYCLE[2:0]  
B1_CYCLE[2:0]  
2-0  
RGB1 cycle time  
Bits  
Blinking cycle  
time  
Blinking  
frequency  
000  
001  
010  
011  
100  
101  
110  
111  
0.1s  
0.25s  
0.5s  
1s  
10 Hz  
4 Hz  
2 Hz  
1 Hz  
2s  
0.5 Hz  
0.33 Hz  
0.25 Hz  
0.2 Hz  
3s  
4s  
5s  
PATTERN_GEN_CTRL Register (11H):  
Name  
Bit  
Description  
EN_BLINK  
3
Blinking sequence start bit  
0 = disabled  
1 = enabled  
www.national.com  
22  
RGB Driver Electrical Characteristics (R1, G1, B1, R2, G2, B2 Outputs)  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
1
Units  
ILEAKAGE  
R1, G1, B1, R2, G2, B2 pin leakage  
current  
0.1  
μA  
IRGB  
Maximum recommended sink current  
CC mode  
40  
50  
mA  
mA  
%
SW mode  
Accuracy @ 37mA  
±5  
RRGB=3.3 kΩ ±1%, CC mode  
CC mode  
Current mirror ratio  
1:100  
±5  
RGB1 and RGB2 current mismatch  
Switch resistance  
IRGB=37mA, CC mode  
SW mode  
%
RSW  
fRGB  
2.5  
5
Ω
kHz  
RGB switching frequency  
Accuracy proportional to internal clock 18.2  
20  
21.8  
freq.  
If SYNC to external 5 MHz clock is in  
use  
20  
kHz  
Note: RGB current should be limited as follows:  
constant current mode – limit by external RRGB resistor;  
switch mode – limit by external ballast resistors  
Output Current vs Pin Voltage (Current Sink Mode)  
Pin Voltage vs Output Current (Switch Mode)  
30008566  
30008568  
Output Current vs RRGB (Current Sink Mode)  
30008567  
23  
www.national.com  
Single High Current Driver  
LP39542 has internal constant current driver that is capable  
of driving high current LED, mainly targeted for FLASH LED  
in camera phone applications.  
HC[1:0] bits in the HC_Flash register control the FLASH cur-  
rent as show in following table.  
HC[1:0]  
00  
I(FLASH)  
MAXIMUM CURRENT SETUP FOR FLASH  
0.25 × IMAX(FLASH)  
0.50 × IMAX(FLASH)  
0.75 × IMAX(FLASH)  
1.00 × IMAX(FLASH)  
The user sets the maximum current of FLASH with RFLASH  
resistor based on following equation:  
01  
10  
IMAX = 300 × 1.23V / (RFLASH + 50Ω),  
11  
where  
The figure below shows the internal structure for the FLASH  
driver.  
Imax = maximum flash current in Amps (ie. 0.3A)  
1.23V = reference voltage  
300 = internal current mirror multiplier  
RFLASH = Resistor value in Ohms  
50Ω = Internal resistor in the IFLASH input  
For example if 400mA is required for the maximum flash cur-  
rent, RFLASH equals to  
RFLASH = 300 × 1.23V / IMAX – 50Ω = 369V / 0.4A – 50Ω =  
873Ω e.g. 910resistor can be used  
CURRENT CONTROL FOR FLASH  
To minimize the internal current consumption, the flash func-  
tion has an enable bit EN_HCFLASH in the HC_Flash regis-  
ter.  
EN_  
HCFLASH  
MODE  
30008533  
FLASH disabled, no extra current  
consumption through RFLASH  
FLASH TIMING  
0
Flash output is turned on in lower current View finder mode  
when the EN_HCFLASH bit is written high. The actual flash  
at maximum current starts when the FLASH_EN digital input  
pin goes high. The Flash length can be selected from 3 pre-  
defined values or the FLASH_EN pin pulse length can deter-  
mine how long the flash pulse is. After flash pulse the flash is  
shut down completely. To enable flash again, EN_HCFLASH  
bit must be set to 0 and then 1.The pulse length is controlled  
by the FT_T[1:0] bits in register 10H as show in the table be-  
low.  
FLASH enabled, IFLASH set by  
HC_SW[1:0] (see below)  
1
Current during view finder/  
FL_T[1:0]  
Flash duration typ  
Current during FLASH  
focusing  
00  
01  
10  
11  
200ms  
400ms  
Set by HC[1:0]  
Set by HC[1:0]  
Set by HC[1:0]  
Set by HC[1:0]  
HC[11] = IMAX(FLASH)  
HC[11] = IMAX(FLASH)  
HC[11] = IMAX(FLASH)  
HC[11] = IMAX(FLASH)  
600ms  
EN_FLASH on duration  
After the flash pulse the EN_HCFLASH bit has to be written  
low, the LP39542 does not clear this bit automatically. If 11b  
is selected in the FL_T[1:0] register, then it is possible to use  
safety bit EN_SAFETY in register 10H. When EN_SAFETY  
is 1, then the flash is shut down automatically, if the  
FLASH_EN pulse duration is longer than 1.2 seconds (typ.).  
This prevents any damage to the application circuitry, if the  
FLASH_EN pin is stuck high because of user or program er-  
ror.  
www.national.com  
24  
The following figure shows the functionality of the built-in flash  
30008534  
Flash LED can be controlled also with external PWM signal:  
HC_FLASH Register (10H):  
Description  
Name  
Bit  
Flash external PWM control  
HC_PWM  
5
0 = Flash external PWM control disabled  
1 = Flash external PWM control enabled  
High Current Driver Electrical Characteristics  
Symbol  
ILEAKAGE  
IMAX(FLASH)  
Parameter  
Condition  
Min  
Typ  
Max  
2
Units  
μA  
FLASH pin leakage current  
Maximum Sink Current  
0.1  
400  
mA  
-10  
-5  
10  
5
Accuracy  
RFLASH = 910Ω  
%
s
Current mirror ratio  
Flash safety time  
1:300  
1.2  
tSAFETY  
EN_SAFETY = 1, FL_T = 11b  
25  
www.national.com  
Backlight Drivers  
LP39542 has 2 independent backlight drivers. Both drivers  
are regulated constant current sinks. LED current for both  
LED banks (WLED1…4 and WLED5…6) are controlled by 8-  
bit current mode DACs with 0.1 mA step.  
DISPL  
Configuration  
Matching  
Main display up  
to 4 LEDs  
Good btw  
WLED1…4  
Good btw  
0
Sub display up  
to 2 LEDs  
WLED1…4 and WLED5…6 can be also controlled with one  
DAC for better matching allowing the use of larger displays  
having up to 6 white LEDs in parallel.  
WLED5…6  
Large display  
up to 6 LEDs  
Good btw  
WLED 1…6  
1
Display configuration is controlled with DISPL bit as shown in  
the following table.  
30008535  
30008536  
Main display up to 4 LEDs (WLED1…4)  
Sub display driver up to 2 LEDs (WLED5…6)  
30008537  
Main display up to 6 LEDs (WLED1…6) (DISPL=1)  
www.national.com  
26  
FADE IN / FADE OUT  
slope of the fade curve. The fading times are shown in the  
graphs, which corresponds the full range current change  
(0-255). Note that when large display mode is selected (DIS-  
PL = 1), then EN_FADE_W5_6 and SLOPE_W5_6 bits do not  
have any effect.  
LP39542 has an automatic fade in and out for main and sub  
backlight. The fade function is enabled to main and sub back-  
lights with EN_FADE_W1_4 and EN_FADE_W5_6 register  
bits. Register bits SLOPE_W1_4 and SLOPE_W5_6 set the  
WLED dimming, SLOPE=0  
WLED dimming, SLOPE=1  
30008539  
30008540  
WLED Control Register (08H):  
Name  
Bit  
Description  
Slope for WLED5-6  
SLOPE_W5_6  
6
0 = Full range fade execution time 1.30s  
1 = Full range fade execution time 0.65s  
Slope for WLED1-4  
SLOPE_W1_4  
EN_FADE_W5_6  
EN_FADE_W1_4  
5
4
3
0 = Full range fade execution time 1.30s  
1 = Full range fade execution time 0.65s  
Enable fade for WLED5-6  
0 = Fade disabled  
1 = Fade enabled  
Enable fade for WLED1-4  
0 = Fade disabled  
1 = Fade enabled  
Large display mode enable  
0 = WLED1-4 and WLED5-6 are controlled  
separately  
DISPL  
2
1 = WLED1-4 and WLED5-6 are controlled with  
WLED1-4 controls  
Enable WLED1-4  
EN_W1_4  
EN_W5_6  
1
0
0 = WLED1-4 disabled  
1 = WLED1-4 enabled  
Enable WLED5-6  
0 = WLED5-6 disabled  
1 = WLED5-6 enabled  
27  
www.national.com  
WLED Output Current vs. Voltage  
ADJUSTMENT  
WLED1-4[7:0]  
Driver current,  
mA (typical)  
WLED5-6[7:0]  
0000 0000  
0000 0001  
0000 0010  
0000 0011  
0
0.1  
0.2  
0.3  
1111 1101  
1111 1110  
1111 1111  
25.3  
25.4  
25.5  
30008538  
Backlight Driver Electrical Characteristics  
Symbol  
IMAX  
Parameter  
Maximum Sink Current  
Leakage Current  
Conditions  
Min Typical Max  
Units  
21.3  
25.5  
0.03  
12.8  
29.4  
1
mA  
Ileakage  
IWLED1  
μA  
mA  
%
WLED1 Current tolerance  
IWLED1 set to 12.8 mA (80H)  
10.52  
-18  
14.78  
+16  
Imatch1-4  
Imatch5-6  
Imatch1-6  
Sink Current Matching  
Sink Current Matching  
Sink Current Matching  
ISINK = 13 mA, Between WLED1…4  
ISINK = 13 mA, Between WLED5…6  
ISINK = 13 mA, Between WLED1…6  
0.2  
0.2  
0.3  
%
%
%
Note: Matching is the maximum difference from the average.  
www.national.com  
28  
Ambient Light and Temperature Measurement with LP39542  
The Analog-to-Digital converter (ADC) in the Audio Syn-  
cronization block can be also used for ambient light measure-  
ment or temperature measurement.  
The selection between these modes is controlled with input  
selector bits INPUT_SEL[1:0] in register 2AH as seen on the  
following table. Internal averaging function can be used to fil-  
ter unwanted noise from the measured signal. Averaging  
function can be enabled with EN_AVG bit in register 2BH.  
INPUT_SEL[1:0]  
Mode  
00  
Audio synchronization  
Temperature measurement  
(voltage input)  
01  
Ambient light measurement  
(current input)  
10  
11  
No input  
30008564  
Averaging disabled. fsample = 122 Hz,  
data in register changes every 8.2 ms.  
EN_AVG = 0  
EN_AVG = 1  
ADC Code vs Input Current  
in Light Measurement Mode  
Averaging enabled. fsample = 244 Hz,  
averaging of 64 samples, data in  
register changes every 262 ms  
(3.2Hz).  
TEMPERATURE MEASUREMENT  
The temperature measurement requires two external compo-  
nents: resistor and thermistor (resistor that has known tem-  
perature vs resistance curve). The ADC reads the voltage  
level at ASE pin and converts the result into a digital word.  
User can read the ADC output from register. The known tem-  
perature allows for example to monitor the temperature inside  
the display module and decrease the current level of the LEDs  
if temperature raises too high. This function may increase  
lifetime of LEDs in some applications.  
AMBIENT LIGHT MEASUREMENT  
The ambient light measurement requires only one external  
component: Ambient light sensor (photo transistor or diode).  
The ADC reads the current level at ASE pin and converts the  
result into a digital word. User can read the ADC output from  
the ADC output register. The known ambient light condition  
allows user to set the backlight current to optimal level thus  
saving power especially in low light and bright sunlight con-  
dition.  
30008542  
Temperature sensor connection example  
30008541  
ASE Input Configuration for Light Measurement  
29  
www.national.com  
EXAMPLE TEMP SENSOR READING AT DIFFERENT  
TEMPERATURES (R25°C = 1MΩ)  
T(°C)  
-40  
0
V(ASE)  
2.7540984  
2.24  
R(MΩ)  
Rt(MΩ)  
60  
1
1
1
1
1
4
25  
1
1.4  
60  
0.2  
0.04  
0.4666667  
0.1076923  
100  
30008563  
ADC Code vs Input Voltage  
in temperature measurement mode  
30008543  
Example curve for thermistor  
www.national.com  
30  
ommended connection is as shown in the picture below.  
Internally both logic and analog circuitry works at 2.8V supply  
voltage. Both supply voltage pins should have separate filter-  
ing capacitors.  
7V Shielding  
To shield LP39542 from high input voltages 6…7.2V the use  
of external 2.8V LDO is required. This 2.8V voltage protects  
internally the device against high voltage condition. The rec-  
30008544  
In cases where high voltage is not an issue the connection is  
as shown below  
30008545  
31  
www.national.com  
Logic Interface Electrical Characteristics  
(1.65V VDDIO VDD1,2V) (Unless otherwise noted).  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
LOGIC INPUTS ADDR_SEL, NRST, SCL, SYNC_PWM, FLASH_EN, SDA  
VIL  
VIH  
IL  
Input Low Level  
Input High Level  
Logic Input Current  
Clock Frequency  
0.2×VDDIO  
V
V
0.8×VDDIO  
−1.0  
1.0  
μA  
kHz  
fSCL  
400  
LOGIC OUTPUT SDA  
VOL  
IL  
ISDA = 3 mA  
Output Low Level  
0.3  
0.5  
1.0  
V
Output Leakage Current VSDA = 2.8V  
μA  
Note: Any unused digital input pin has to be connected to GND to avoid floating and extra current consumption.  
I2C Compatible Interface  
INTERFACE BUS OVERVIEW  
STOP condition is defined as the SDA transitioning from LOW  
to HIGH while SCL is HIGH. The I2C master always generates  
START and STOP bits. The I2C bus is considered to be busy  
after START condition and free after STOP condition. During  
data transmission, I2C master can generate repeated START  
conditions. First START and repeated START conditions are  
equivalent, function-wise.  
The I2C compatible synchronous serial interface provides ac-  
cess to the programmable functions and registers on the  
device. This protocol uses a two-wire interface for bi-direc-  
tional communications between the devices connected to the  
bus. The two interface lines are the Serial Data Line (SDA),  
and the Serial Clock Line (SCL). These lines should be con-  
nected to a positive supply, via a pull-up resistor and remain  
HIGH even when the bus is idle. Every device on the bus is  
assigned a unique address and acts as either a Master or a  
Slave depending on whether it generates or receives the se-  
rial clock (SCL).  
DATA TRANSACTIONS  
One data bit is transferred during each clock pulse. Data is  
sampled during the high state of the serial clock (SCL). Con-  
sequently, throughout the clock’s high period, the data should  
remain stable. Any changes on the SDA line during the high  
state of the SCL and in the middle of a transaction, aborts the  
current transaction. New data should be sent during the low  
SCL state. This protocol permits a single data line to transfer  
both command/control information and data using the syn-  
chronous serial clock.  
30008550  
TRANSFERRING DATA  
Every byte put on the SDA line must be eight bits long, with  
the most significant bit (MSB) being transferred first. Each  
byte of data has to be followed by an acknowledge bit. The  
acknowledge related clock pulse is generated by the master.  
The transmitter releases the SDA line (HIGH) during the ac-  
knowledge clock pulse. The receiver must pull down the SDA  
line during the 9th clock pulse, signifying an acknowledge. A  
receiver which has been addressed must generate an ac-  
knowledge after each byte has been received.  
I2C DATA VALIDITY  
The data on SDA line must be stable during the HIGH period  
of the clock signal (SCL). In other words, state of the data line  
can only be changed when CLK is LOW.  
After the START condition, the I2C master sends a chip ad-  
dress. This address is seven bits long followed by an eighth  
bit which is a data direction bit (R/W). The LP39542 address  
is 54h or 55H as selected with ADDR_SEL pin. I2C address  
for LP39542 is 54H when ADDR_SEL=0 and 55H when  
ADDR_SEL=1. For the eighth bit, a “0” indicates a WRITE  
and a “1” indicates a READ. The second byte selects the reg-  
ister to which the data will be written. The third byte contains  
data to write to the selected register.  
30008549  
I2C Signals: Data Validity  
I2C START AND STOP CONDITIONS  
START and STOP bits classify the beginning and the end of  
the I2C session. START condition is defined as SDA signal  
transitioning from HIGH to LOW while SCL line is HIGH.  
30008551  
I2C Chip Address  
www.national.com  
32  
Register changes take an effect at the SCL rising edge during the last ACK from slave.  
30008552  
w = write (SDA = “0”)  
r = read (SDA = “1”)  
ack = acknowledge (SDA pulled down by either master or slave)  
rs = repeated start  
id = 7-bit chip address, 54H (ADDR_SEL=0) or 55H (ADDR_SEL=1) for LP39542.  
I2C Write Cycle  
When a READ function is to be accomplished, a WRITE function must precede the READ function, as shown in the Read Cycle  
waveform.  
30008553  
I2C Read Cycle  
30008554  
I2C Timing Diagram  
33  
www.national.com  
I2C Timing Parameters  
VDD1,2 = 3.0 to 4.5V, VDD_IO = 1.65V to VDD1,2  
Symbol  
Parameter  
Limit  
Units  
Min  
0.6  
1.3  
600  
600  
300  
0
Max  
1
2
Hold Time (repeated) START Condition  
μs  
μs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
μs  
pF  
Clock Low Time  
3
Clock High Time  
4
Setup Time for a Repeated START Condition  
Data Hold Time (Output direction, delay generated by LP39542)  
Data Hold Time (Input direction, delay generated by the Master)  
Data Setup Time  
5
900  
900  
5
6
100  
7
Rise Time of SDA and SCL  
20+0.1Cb  
15+0.1Cb  
600  
300  
300  
8
Fall Time of SDA and SCL  
9
Set-up Time for STOP condition  
10  
Cb  
Bus Free Time between a STOP and a START Condition  
Capacitive Load for Each Bus Line  
1.3  
10  
200  
NOTE: Data guaranteed by design  
Autoincrement mode is available, with this mode it is possible to read or write bytes with autoincreasing addresses. LP39542 has  
empty spaces in address register map, and it is recommended to use autoincrement mode only for writing in pattern command  
registers.  
www.national.com  
34  
Recommended External Components  
OUTPUT CAPACITOR, COUT  
than the peak inductor current (ca. 1A). Average current rating  
of the schottky diode should be higher than maximum output  
current (400 mA). Schottky diodes with a low forward drop  
and fast switching speeds are ideal for increasing efficiency  
in portable applications. Choose a reverse breakdown of the  
schottky diode larger than the output voltage. Do not use or-  
dinary rectifier diodes, since slow switching speeds and long  
recovery times cause the efficiency and the load regulation to  
suffer.  
The output capacitor COUT directly affects the magnitude of  
the output ripple voltage. In general, the higher the value of  
COUT, the lower the output ripple magnitude. Multilayer ce-  
ramic capacitors with low ESR are the best choice. At the  
lighter loads, the low ESR ceramics offer a much lower Vout  
ripple that the higher ESR tantalums of the same value. At the  
higher loads, the ceramics offer a slightly lower Vout ripple  
magnitude than the tantalums of the same value. However,  
the dv/dt of the Vout ripple with the ceramics is much lower  
than the tantalums under all load conditions. Capacitor volt-  
age rating must be sufficient, 10V or greater is recommended.  
INDUCTOR, L1  
The LP39542’s high switching frequency enables the use of  
the small surface mount inductor. A 4.7 μH shielded inductor  
is suggested for 2 MHz operation, 10 μH should be used at 1  
MHz. The inductor should have a saturation current rating  
higher than the peak current it will experience during circuit  
operation (ca. 1A). Less than 300 mESR is suggested for  
high efficiency. Open core inductors cause flux linkage with  
circuit components and interfere with the normal operation of  
the circuit. This should be avoided. For high efficiency,  
choose an inductor with a high frequency core material such  
as ferrite to reduce the core losses. To minimize radiated  
noise, use a toroid, pot core or shielded core inductor. The  
inductor should be connected to the SW pin as close to the  
IC as possible. Examples of suitable inductors are: TDK  
VLF4012AT-4R7M1R1 and Panasonic ELLVEG4R7N.  
Some ceramic capacitors, especially those in small pack-  
ages, exhibit a strong capacitance reduction with the  
increased applied DC voltage, so called DC bias effect.  
The capacitance value can fall to below half of the nom-  
inal capacitance. Too low output capacitance will in-  
crease noise and it can make the boost converter  
unstable. Recommended maximum DC bias effect at 5V  
DC voltage is -50%.  
INPUT CAPACITOR, CIN  
The input capacitor CIN directly affects the magnitude of the  
input ripple voltage and to a lesser degree the VOUT ripple. A  
higher value CIN will give a lower VIN ripple. Capacitor voltage  
rating must be sufficient, 10V or greater is recommended.  
OUTPUT DIODE, D1  
A schottky diode should be used for the output diode. Peak  
repetitive current rating of the schottky diode should be larger  
LIST OF RECOMMENDED EXTERNAL COMPONENTS  
Symbol  
CVDD1  
CVDD2  
CVDDIO  
CVDDA  
COUT  
CIN  
Symbol explanation  
Value  
100  
100  
100  
1
Unit  
nF  
Type  
Ceramic, X7R / X5R  
Ceramic, X7R / X5R  
Ceramic, X7R / X5R  
Ceramic, X7R / X5R  
Ceramic, X7R / X5R, 10V  
Ceramic, X7R / X5R  
Shielded, low ESR, Isat 1A  
Ceramic, X7R  
C between VDD1 and GND  
C between VDD2 and GND  
C between VDDIO and GND  
C between VDDA and GND  
C between FB and GND  
nF  
nF  
μF  
μF  
μF  
μH  
nF  
nF  
10  
C between battery voltage and GND  
L between SW and VBAT at 2 MHz  
C between VREF and GND  
C between VDDIO and GND  
R between IFLASH and GND  
R between IRGB and GND  
10  
L1  
4.7  
100  
100  
1.2  
5.6  
82  
CVREF  
CVDDIO  
RFLASH  
RRBG  
RRT  
Ceramic, X7R  
±1%  
kΩ  
kΩ  
kΩ  
V
±1%  
R between IRT and GND  
±1%  
D1  
Rectifying Diode (Vf @ maxload)  
C between Audio input and ASE  
0.3  
100  
Schottky diode  
CASE  
nF  
Ceramic, X7R / X5R  
LEDs  
DLIGHT  
User defined  
TDK BSC2015  
Light Sensor  
35  
www.national.com  
Application Examples  
EXAMPLE 1  
30008555  
MAIN BACKLIGHT  
SUB BACKLIGHT  
AUDIO SYNCHRONIZED FUNLIGHTS  
RGB INDICATION LIGHT  
FLASH LED  
FLIP PHONE  
www.national.com  
36  
EXAMPLE 2  
30008556  
6 WHITE LED BACKLIGHT  
KEYPAD LIGHTS  
RGB INDICATION LED  
WHITE SINGLE LED FLASH  
TEMPERATURE SENSOR  
SMART PHONE  
37  
www.national.com  
EXAMPLE 3  
30008557  
MAIN BACKLIGHT  
KEYPAD LIGHTS  
AUDIO SYNCHRONIZED FUNLIGHTS  
VIBRA  
CANDYBAR PHONE  
www.national.com  
38  
EXAMPLE 4  
30008565  
MAIN BACKLIGHT  
SUB BACKLIGHT  
AUDIO SYNCHRONIZED FUNLIGHTS  
RGB INDICATION LIGHT  
There may be cases where the audio input signal going into the LP39542 is too weak for audio synchronization. This figure presents a single-supply inverting  
amplifier connected to the ASE input for audio signal amplification. The amplification is +20 dB, which is well enough for 20 mVp-p audio signal. Because the  
amplifier (LMV321) is operating in single supply voltage, a voltage divider using R3 and R4 is implemented to bias the amplifier so the input signal is within the  
input common-mode voltage range of the amplifier. The capacitor C1 is placed between the inverting input and resistor R1 to block the DC signal going into the  
audio signal source. The values of R1 and C1 affect the cutoff frequency, fc = 1/(2π*R1*C1), in this case it is around 160 Hz. As a result, the LMV321 output  
signal is centered around mid-supply, that is VDDA/2. The output can swing to both rails, maximizing the signal-to-noise ratio in a low voltage system  
USING EXTRA AMPLIFIER  
39  
www.national.com  
EXAMPLE 5  
30008569  
MAIN BACKLIGHT  
SUB BACKLIGHT  
AUDIO SYNCHRONIZED FUNLIGHTS  
RGB INDICATION LIGHT  
Here, a second order RC-filter is used on the ASE input to convert a PWM signal to an analog waveform.  
USING PWM SIGNAL  
More application information is available in the document "LP39542 Evaluation Kit".  
www.national.com  
40  
41  
www.national.com  
www.national.com  
42  
43  
www.national.com  
LP39542 Registers  
REGISTER BIT EXPLANATIONS  
Each register is shown with a key indicating the accessibility of the each individual bit, and the initial condition:  
Register Bit Accessibility and Initial Condition  
Key  
rw  
Bit Accessibility  
Read/write  
r
Read only  
–0,–1  
Condition after POR  
RGB CTRL (00H) – RGB LEDS CONTROL REGISTER  
D7  
cc_rgb1  
rw-1  
D6  
cc_rgb2  
rw-1  
D5  
D4  
D3  
D2  
D1  
D0  
r1sw  
rw-0  
g1sw  
rw-0  
b1sw  
rw-0  
r2sw  
rw-0  
g2sw  
rw-0  
b2sw  
rw-0  
0 - R1, G1 and B1 are constant current sinks, current limited internally  
1 - R1, G1 and B1 are switches, limit current with external ballast resistor  
cc_rgb1 Bit 7  
cc_rgb2 Bit 6  
0 – R2, G2 and B2 are constant current sinks, current limited internally  
1 – R2, G2 and B2 are switches, limit current with external ballast resistor  
0 – R1 disabled  
1 – R1 enabled  
r1sw  
g1sw  
b1sw  
r2sw  
g2sw  
b2sw  
Bit 5  
Bit 4  
0 – G1 disabled  
1 – G1 enabled  
Bit 3 0 – B1 disabled  
1 – B1 enabled  
0 – R2 disabled  
Bit 2  
1 – R2 enabled  
0 – G2 disabled  
Bit 1  
1 – G2 enabled  
0 – B2 disabled  
Bit 0  
1 – B2 enabled  
R1/G1/B1 BLINK (01H, 03H, 05H) – BLINKING ON/OFF TIME CONTROL REGISTER  
D7  
D6  
R1/G1/B1_ON[3:0]  
rw-0 rw-0  
D5  
D4  
D3  
D2  
R1/G1/B1_OFF[3:0]  
rw-0 rw-0  
D1  
D0  
rw-0  
rw-0  
rw-0  
rw-0  
www.national.com  
44  
RGB1 ON and OFF time  
Bits  
ON/OFF time  
0%  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
1%  
2.5%  
5%  
7.5%  
10%  
15%  
20%  
30%  
40%  
50%  
60%  
70%  
80%  
90%  
100%  
R1_ON[3:0],  
R1_OFF[3:0]  
G1_ON[3:0],  
G1_OFF[3:0]  
B1_ON[3:0],  
B1_OFF[3:0]  
Bits 7-4, 3-0  
R1/G1/B1 CYCLE(02H, 04H, 06H) – BLINKING CYCLE CONTROL REGISTER  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
R1/G1/  
R1/G1/B1_CYCLE[2:0]  
B1_CYCLE_EN  
r-0  
r-0  
r-0  
r-0  
rw-0  
rw-0  
rw-0  
rw-0  
R1_CYCLE_EN  
G1_CYCLE_EN  
B1_CYCLE_EN  
Bit 3  
Blinking enable  
0 = disabled, output state is defined with RGB registers  
1 = enabled, output state is defined with blinking cycle  
R1_CYCLE[2:0]  
G1_CYCLE[2:0]  
B1_CYCLE[2:0]  
Bits 2-0  
RGB1 cycle time  
Bits  
000  
001  
010  
011  
100  
101  
110  
111  
Blinking cycle time  
Blinking frequency  
10 Hz  
0.1s  
0.25s  
0.5s  
1s  
4 Hz  
2 Hz  
1 Hz  
2s  
0.5 Hz  
3s  
0.33 Hz  
0.25 Hz  
0.2 Hz  
4s  
5s  
45  
www.national.com  
EXT_PWM_CONTROL (07H) – EXTERNAL PWM CONTROL REGISTER  
D7  
wled1_4_pwm wled5_6_pwm  
rw-0 rw-0  
D6  
D5  
r1_pwm  
rw-0  
D4  
g1_pwm  
rw-0  
D3  
b1_pwm  
rw-0  
D2  
r2_pwm  
rw-0  
D1  
g2_pwm  
rw-0  
D0  
b2_pwm  
rw-0  
0 – WLED1…WLED4 PWM control disabled  
1 – WLED1…WLED4 PWM control enabled  
wled1_4_pwm  
wled5_6_pwm  
r1_pwm  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0 – WLED5, WLED6 PWM control disabled  
1 – WLED5, WLED6 PWM control enabled  
0 – R1 PWM control disabled  
1 – R1 PWM control enabled  
0 – G1 PWM control disabled  
1 – G1 PWM control enabled  
g1_pwm  
0 – RB PWM control disabled  
1 – B1 PWM control enabled  
b1_pwm  
0 – R2 PWM control disabled  
1 – R2 PWM control enabled  
r2_pwm  
0 – G2 PWM control disabled  
1 – G2 PWM control enabled  
g2_pwm  
0 – B2 PWM control disabled  
1 – B2 PWM control enabled  
b2_pwm  
WLED CONTROL (08H) – WLED CONTROL REGISTER  
D7  
r-0  
D6  
D5  
D4  
D3  
D2  
D1  
en_w1_4  
rw-0  
D0  
en_w5_6  
rw-0  
slope_w5_6 slope_w1_4 en_fade_w5_6 en_fade_w1_4  
displ  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
0 – WLED5-6 full range fade execution time 1.3s  
1 – WLED5-6 full range fade execution time 0.65s  
slope_w5_6  
slope_w1_4  
en_fade_w5_6  
en_fade_w1_4  
displ  
Bit 6  
0 – WLED1-4 full range fade execution time 1.3s  
1 – WLED1-4 full range fade execution time 0.65s  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0 – disable fade for WLED5-6  
1 – enable fade for WLED5-6  
0 – disable fade for WLED1-4  
1 – enable fade for WLED1-4  
0 – WLED1-4 and WLED5-6 are controlled separately  
1 – WLED1-4 and WLED5-6 are controlled with WLED1-4 controls  
0 – WLED1-4 disabled  
1 – WLED1-4 enabled  
en_w1_4  
0 – WLED5-6 disabled  
1 – WLED5-6 enabled  
en_w5_6  
www.national.com  
46  
WLED1-4 (09H) – WLED1…WLED4 BRIGHTNESS CONTROL REGISTER  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
wled1_4[7:0]  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
Adjustment  
wled1_4[7:0]  
0000 0000  
0000 0001  
0000 0010  
0000 0011  
0000 0100  
Typical driver current (mA)  
0
0.1  
0.2  
0.3  
0.4  
wled1_4[7:0] Bits 7-0  
1111 1101  
1111 1110  
1111 1111  
25.3  
25.4  
25.5  
WLED5-6 (0AH) – WLED5, WLED6 BRIGHTNESS CONTROL REGISTER  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
wled5_6[7:0]  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
Adjustment  
wled5_6[7:0]  
0000 0000  
0000 0001  
0000 0010  
0000 0011  
0000 0100  
Typical driver current (mA)  
0
0.1  
0.2  
0.3  
0.4  
wled5_6[7:0] Bits 7-0  
1111 1101  
1111 1110  
1111 1111  
25.3  
25.4  
25.5  
47  
www.national.com  
ENABLES (0BH) – ENABLES REGISTER  
D7  
pwm_sync  
rw-0  
D6  
D5  
en_boost  
rw-0  
D4  
r-0  
D3  
r-0  
D2  
en_autoload  
rw-1  
D1  
D0  
nstby  
rw-0  
rgb_sel[1:0]  
rw-0  
rw-0  
0 – synchronization to external clock disabled  
1 – synchronization to external clock enabled  
pwm_sync  
Bit 7  
Bit 6  
Bit 5  
Bit 2  
0 – LP39542 standby mode  
1 – LP39542 active mode  
nstby  
0 – boost converter disabled  
1 – boost converter enabled  
en_boost  
en_autoload  
0 – internal boost converter loader off  
1 – internal boost converter loader on  
Color LED control mode selection  
rgb_sel[1:0]  
Audio sync  
Pattern generator  
Blinking sequence  
00  
01  
10  
11  
-
RGB1 & RGB2  
-
rgb_sel[1:0]  
Bits 1-0  
-
RGB2  
RGB1  
-
RGB1  
RGB2  
-
-
RGB1 & RGB2  
ADC_OUTPUT (0CH) – ADC DATA REGISTER  
D7  
r-0  
D6  
r-0  
D5  
r-0  
D4  
r-0  
D3  
D2  
r-0  
D1  
r-0  
D0  
r-0  
data[7:0]  
r-0  
data[7:0]  
Bits 7-0  
Data register ADC (Audio input, light or temperature sensors)  
www.national.com  
48  
BOOST_OUTPUT (0DH) – BOOST OUTPUT VOLTAGE CONTROL REGISTER  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Boost[7:0]  
rw-0  
rw-0  
rw-1  
rw-1  
rw-1  
rw-1  
rw-1  
rw-1  
Adjustment  
Boost[7:0]  
Typical boost output (V)  
0000 0000  
0000 0001  
0000 0011  
0000 0111  
0000 1111  
0001 1111  
0011 1111  
0111 1111  
1111 1111  
4.00  
4.25  
4.40  
Boost[7:0]  
Bits 7-0  
4.55  
4.70  
4.85  
5.00 (default)  
5.15  
5.30  
BOOST_FRQ (0EH) – BOOST FREQUENCY CONTROL REGISTER  
D7  
r-0  
D6  
r-0  
D5  
r-0  
D4  
r-0  
D3  
r-0  
D2  
D1  
D0  
freq_sel[2:0]  
rw-1  
rw-1  
rw-1  
Adjustment  
freq_sel[2:0]  
Frequency  
2.00 MHz  
1.67 MHz  
1.00 MHz  
freq_sel[2:0]  
Bits 7-0  
1xx  
01x  
00x  
49  
www.national.com  
HC_FLASH (10H) – HIGH CURRENT FLASH DRIVER CONTROL REGISTER  
D7  
r-0  
D6  
en_safety  
rw-0  
D5  
hc_pwm  
rw-0  
D4  
D3  
D2  
D1  
D0  
en_hcflash  
rw-0  
fl_t[1:0]  
hc[1:0]  
rw-0  
rw-0  
rw-0  
rw-0  
0 - flash timeout feature disabled  
1 - flash timeout feature enabled  
en_safety  
Bit 6  
Bit 5  
0 – ext. PWM for high current flash driver disabled  
1 – ext. PWM for high current flash driver enabled  
hc_pwm  
Flash duration for high current driver  
fl_t[1:0]  
00  
Typical flash duration  
200 ms  
fl_t[1:0]  
Bits 4-3  
01  
400 ms  
10  
600 ms  
11  
EN_FLASH pin on duration  
Current control for high current flash driver  
hc[1:0]  
current  
00  
01  
10  
11  
0.25×IMAX(FLASH)  
0.50×IMAX(FLASH)  
0.75×IMAX(FLASH)  
1.00×IMAX(FLASH)  
hc[1:0]  
Bits 2-1  
Bit 0  
0 – high current flash driver disabled  
1 – high current flash driver enabled  
en_hcflash  
PATTERN_GEN_CTRL (11H) – PATTERN GENERATOR CONTROL REGISTER  
D7  
r-0  
D6  
r-0  
D5  
r-0  
D4  
r-0  
D3  
en_blink  
rw-0  
D2  
rgb_start  
rw-0  
D1  
D0  
log  
loop  
rw-0  
rw-0  
0 - blinking sequences start bit disabled  
1 - blinking sequences start bit enabled  
en_blink  
rgb_start  
loop  
Bit 3  
0 – pattern generator disabled  
1 – execution pattern starting from command 1  
Bit 2  
Bit 1  
Bit 0  
0 – pattern generator loop disabled (single pattern)  
1 – pattern generator loop enabled (execute until stopped)  
0 – color intensity mode 0  
1 – color intensity mode 1  
log  
www.national.com  
50  
RGB1_MAX_CURRENT (12H) – RGB1 DRIVER INDIVIDUAL MAXIMUM CURRENT CONTROL REGISTER  
D7  
r-0  
D6  
r-0  
D5  
D4  
D3  
D2  
D1  
D0  
ir1[1:0]  
ig1[1:0]  
ib1[1:0]  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
Maximum current for R1 driver  
ir1[2:0]  
00  
Maximum output current  
0.25×IMAX  
ir1[1:0]  
ig1[1:0]  
ib1[1:0]  
Bits 5-4  
Bits 3-2  
Bits 1-0  
01  
0.50×IMAX  
10  
0.75×IMAX  
11  
1.00×IMAX  
Maximum current for G1 driver  
ig2[1:0]  
Maximum output current  
00  
01  
10  
11  
0.25×IMAX  
0.50×IMAX  
0.75×IMAX  
1.00×IMAX  
Maximum current for B1 driver  
ib1[1:0]  
00  
Maximum output current  
0.25×IMAX  
01  
0.50×IMAX  
10  
0.75×IMAX  
11  
1.00×IMAX  
51  
www.national.com  
RGB2_MAX_CURRENT (13H) – RGB2 DRIVER INDIVIDUAL MAXIMUM CURRENT CONTROL REGISTER  
D7  
r-0  
D6  
r-0  
D5  
D4  
D3  
D2  
D1  
D0  
ir2[1:0]  
ig2[1:0]  
ib2[1:0]  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
Maximum current for R2 driver  
ir2[2:0]  
00  
Maximum output current  
0.25×IMAX  
ir2[1:0]  
ig2[1:0]  
ib2[1:0]  
Bits 5-4  
Bits 3-2  
Bits 1-0  
01  
0.50×IMAX  
10  
0.75×IMAX  
11  
1.00×IMAX  
Maximum current for G2 driver  
ig2[1:0]  
Maximum output current  
00  
01  
10  
11  
0.25×IMAX  
0.50×IMAX  
0.75×IMAX  
1.00×IMAX  
Maximum current for B2 driver  
ib2[1:0]  
00  
Maximum output current  
0.25×IMAX  
01  
0.50×IMAX  
10  
0.75×IMAX  
11  
1.00×IMAX  
www.national.com  
52  
AUDIO_SYNC_CTRL1 (2AH) – AUDIO SYNCHRONIZATION AND ADC CONTROL REGISTER 1  
D7  
D6  
gain_sel[2:0]  
rw-0  
D5  
D4  
sync_mode  
rw-0  
D3  
en_agc  
rw-0  
D2  
en_sync  
rw-0  
D1  
D0  
input_sel[1:0]  
rw-0  
rw-0  
rw-1  
rw-1  
Input signal gain control  
gain_sel[2:0]  
000  
gain, dB  
0 (default)  
001  
3
6
010  
gain_sel[2:0]  
Bits 7-5  
011  
9
100  
12  
15  
18  
21  
101  
110  
111  
Input filter mode control  
0 – Amplitude mode  
sync_mode  
Bit 4  
1 – Frequency mode  
0 – automatic gain control disabled  
1 – automatic gain control enabled  
en_agc  
Bit 3  
Bit 2  
0 – audio synchronization disabled  
1 – audio synchronization enabled  
en_sync  
ADC input selector  
input_sel[1:0]  
Input  
00  
01  
10  
11  
Single ended input signal (ASE)  
Temperature measurement  
Ambient light measurement  
No input (default)  
input_sel[1:0]  
Bits 1-0  
AUDIO_SYNC_CTRL2 (2BH) – AUDIO SYNCHRONIZATION AND ADC CONTROL REGISTER 2  
D7  
r-0  
D6  
r-0  
D5  
r-0  
D4  
en_avg  
rw-0  
D3  
D2  
D1  
D0  
mode_ctrl[1:0]  
speed_ctrl[1:0]  
rw-0  
rw-0  
rw-0  
rw-0  
0 – averaging disabled. fsample = 122 Hz, data in  
register changes every 8.2 ms.  
en_avg  
Bit 4  
1 – averaging enabled. fsample = 244 Hz, averaging of  
64 samples, data in register changes every 262 ms  
(3.2Hz).  
mode_ctrl[1:0]  
speed_ctrl[1:0]  
Bits 3-2 Filtering mode control  
LEDs light response time to audio input  
speed_ctrl[1:0]  
Response  
FASTEST (default)  
FAST  
00  
01  
10  
11  
Bits 1-0  
MEDIUM  
SLOW  
53  
www.national.com  
PATTERN CONTROL REGISTERS  
Command_[1:8]A – Pattern Control Register A  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
r[2:0]  
rw-0  
g[2:0]  
rw-0  
cet[3:2]  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
Command_[1:8]B – Pattern Control Register B  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
cet[1:0]  
b[2:0]  
rw-0  
tt[2:0]  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
Red color intensity  
current, %  
r[2:0]  
log=0  
log=1  
000  
001  
010  
011  
100  
101  
110  
111  
0×IMAX  
0×IMAX  
1%×IMAX  
2%×IMAX  
4%×IMAX  
10%×IMAX  
21%×IMAX  
46%×IMAX  
100%×IMAX  
7%×IMAX  
Bits  
7-5A  
14%×IMAX  
21%×IMAX  
32%×IMAX  
46%×IMAX  
71%×IMAX  
100%×IMAX  
Green color intensity  
r[2:0]  
g[2:0]  
current, %  
log=0  
log=1  
0×IMAX  
000  
001  
010  
011  
100  
101  
110  
111  
0×IMAX  
7%×IMAX  
14%×IMAX  
21%×IMAX  
32%×IMAX  
46%×IMAX  
71%×IMAX  
100%×IMAX  
1%×IMAX  
2%×IMAX  
4%×IMAX  
10%×IMAX  
21%×IMAX  
46%×IMAX  
100%×IMAX  
Bits  
4-2A  
g[2:0]  
www.national.com  
54  
Command execution time  
cet[3:0] CET duration, ms  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
197  
393  
590  
786  
983  
1180  
Bits  
1-0A  
7-6B  
1376  
cet[3:0]  
1573  
1769  
1966  
2163  
2359  
2556  
2753  
2949  
3146  
Blue color intensity  
b[2:0]  
current, %  
log=0  
log=1  
0×IMAX  
000  
001  
010  
011  
100  
101  
110  
111  
0×IMAX  
7%×IMAX  
14%×IMAX  
21%×IMAX  
32%×IMAX  
46%×IMAX  
71%×IMAX  
100%×IMAX  
1%×IMAX  
2%×IMAX  
4%×IMAX  
10%×IMAX  
21%×IMAX  
46%×IMAX  
100%×IMAX  
Bits  
5-3B  
b[2:0]  
Transition time  
tt[2:0]  
000  
001  
010  
011  
100  
101  
110  
111  
Transition time, ms  
0
55  
110  
221  
442  
885  
1770  
3539  
Bits  
2-0B  
tt[2:0]  
RESET (60H) - RESET REGISTER  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Writing any data to Reset Register in address 60H can reset LP39542  
w-0 w-0 w-0 w-0  
w-0  
w-0  
w-0  
w-0  
55  
www.national.com  
Physical Dimensions inches (millimeters) unless otherwise noted  
The dimension for X1 ,X2 and X3 are as given:  
X1=3.00 mm ±0.03 mm  
X2=3.00 mm ±0.03 mm  
X3=0.60 mm ±0.075 mm  
36-bump micro SMD Package, 3 x 3 x 0.6 mm, 0.5 mm pitch  
NS Package Number TLA36AAA  
www.national.com  
56  
The dimension for X1 ,X2 and X3 are as given:  
X1=3.00 mm ±0.03 mm  
X2=3.00 mm ±0.03 mm  
X3=0.65 mm ±0.075 mm  
36-bump micro SMDxt Package, 3 x 3 x 0.65 mm, 0.5 mm pitch  
NS Package Number RLA36AAA  
See Application notes AN–1112 and AN–1412 for PCB design and assembly instructions.  
57  
www.national.com  
Notes  
THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION  
(“NATIONAL”) PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY  
OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO  
SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS,  
IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS  
DOCUMENT.  
TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT  
NATIONAL’S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL  
PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR  
APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND  
APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE  
NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.  
EXCEPT AS PROVIDED IN NATIONAL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO  
LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE  
AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR  
PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY  
RIGHT.  
LIFE SUPPORT POLICY  
NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR  
SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL  
COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:  
Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and  
whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected  
to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform  
can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.  
National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other  
brand or product names may be trademarks or registered trademarks of their respective holders.  
Copyright© 2007 National Semiconductor Corporation  
For the most current product information visit us at www.national.com  
National Semiconductor  
Americas Customer  
Support Center  
National Semiconductor Europe  
Customer Support Center  
Fax: +49 (0) 180-530-85-86  
National Semiconductor Asia  
Pacific Customer Support Center  
Email: ap.support@nsc.com  
National Semiconductor Japan  
Customer Support Center  
Fax: 81-3-5639-7507  
Email:  
new.feedback@nsc.com  
Tel: 1-800-272-9959  
Email: europe.support@nsc.com  
Deutsch Tel: +49 (0) 69 9508 6208  
English Tel: +49 (0) 870 24 0 2171  
Français Tel: +33 (0) 1 41 91 8790  
Email: jpn.feedback@nsc.com  
Tel: 81-3-5639-7560  
www.national.com  

相关型号:

LP3954RL

Advanced Lighting Management Unit
NSC

LP3954RLX

Advanced Lighting Management Unit
NSC

LP3954RLX/NOPB

Advanced Lighting Management Unit 36-DSBGA
TI

LP3954TL

Advanced Lighting Management Unit
NSC

LP3954TL/NOPB

高级照明管理单元 | YZR | 36 | -30 to 85
TI

LP3954TLX

Advanced Lighting Management Unit
NSC

LP3954TLX/NOPB

高级照明管理单元 | YZR | 36 | -30 to 85
TI

LP3958

Lighting Management Unit with High Voltage Boost Converter
NSC

LP3958

具有高压升压转换器的照明管理单元
TI

LP3958TL

Lighting Management Unit with High Voltage Boost Converter
NSC

LP3958TL/NOPB

具有高压升压转换器的照明管理单元 | YZR | 25 | -30 to 85
TI

LP3958TLX

Lighting Management Unit with High Voltage Boost Converter
NSC