LP3954TL [NSC]

Advanced Lighting Management Unit; 先进的照明管理单元
LP3954TL
型号: LP3954TL
厂家: National Semiconductor    National Semiconductor
描述:

Advanced Lighting Management Unit
先进的照明管理单元

显示驱动器 驱动程序和接口 接口集成电路
文件: 总56页 (文件大小:6162K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
July 2007  
LP3954  
Advanced Lighting Management Unit  
General Description  
Features  
LP3954 is an advanced lighting management unit for hand-  
held devices. It drives any phone lights including display  
backlights, RGB, keypad and camera flash LEDs. The boost  
DC-DC converter drives high current loads with high efficien-  
cy. White LED backlight drivers are high efficiency low voltage  
structures with excellent matching and automatic fade in/ fade  
out function. The new stand-alone command based RGB  
controller is feature rich and easy to configure. Built-in audio  
synchronization feature allows user to synchronize the color  
LEDs to audio input. Integrated high current driver can drive  
camera flash LED or motor/vibra. Internal ADC can be used  
for ambient light or temperature sensing. The flexible SPI/I2C  
interface allows easy control of LP3954. Small micro SMD  
package together with minimum number of external compo-  
nents is a best fit for handheld devices.  
Audio synchronization for color/RGB LEDs  
Command based PWM controlled RGB LED drivers  
High current driver for flash LED with built-in timing.  
4+2 or 6 low voltage constant current white LED drivers  
with programmable 8-bit adjustment (0…25mA/LED)  
High efficiency Boost DC-DC converter  
SPI / I2C compatible interface  
Possibility for external PWM dimming control  
Possibility for clock synchronization for RGB timing  
Ambient light and temperature sensing possibility  
Small package – micro SMD or micro SMDxt, 3.0 x 3.0 x  
0.6mm  
Applications  
Cellular Phones  
PDAs, MP3 players  
Typical Applications  
20132260  
© 2007 National Semiconductor Corporation  
201322  
www.national.com  
Connection Diagrams and Package Mark Information  
CONNECTION DIAGRAMS  
Micro SMD Package, 3.0 x 3.0 x 0.6mm, 0.5mm pitch NS Package Number TLA36AAA or  
Micro SMDxt Package, 3.0 x 3.0 x 0.65mm, 0.5mm pitch NS Package Number RLA36AAA  
20132203  
20132204  
PACKAGE MARK  
20132205  
ORDERING INFORMATION  
Order Number  
LP3954TL  
Package Marking  
D49B  
Supplied As  
TNR 250  
Spec/Flow  
NoPB  
LP3954TLX  
LP3954RL  
D49B  
TNR 1000  
TNR 250  
NoPB  
D49B  
NoPB  
LP3954RLX  
D49B  
TNR 1000  
NoPB  
www.national.com  
2
PIN DESCRIPTIONS  
Pin #  
6F  
6E  
6D  
6C  
6B  
6A  
5F  
5E  
5D  
5C  
5B  
5A  
4F  
4E  
4D  
4C  
4B  
4A  
3F  
3E  
3D  
3C  
3B  
3A  
2F  
2E  
2D  
2C  
2B  
2A  
1F  
1E  
1D  
1C  
1B  
1A  
Name  
SW  
Type  
Output  
Input  
Description  
Boost Converter Power Switch  
Boost Converter Feedback  
High Current Flash Output  
Red LED 1 Output  
FB  
FLASH  
R1  
Output  
Output  
Output  
Output  
Ground  
Ground  
Power  
G1  
Green LED 1 Output  
Blue LED 1 Output  
B1  
GND_SW  
GND  
Power Switch Ground  
Ground  
VDDIO  
SS/SDA  
IRGB  
Supply Voltage for Input/output Buffers and Drivers  
Logic Input/Output Slave Select (SPI), Serial Data In/Out (I2C)  
Input  
Ground  
Ground  
Input  
Bias Current Set Resistor for RGB Drivers  
Ground for RGB Currents  
Ground for WLED Currents  
High Current Flash Current Set Resistor  
External PWM Control for LEDs or External Clock for RGB Sync  
Serial Input (SPI), Address Select (I2C)  
Serial Data Out (SPI)  
GND_RGB  
GND_WLED  
IFLASH  
SYNC_PWM  
SI  
Logic Input  
Logic Input  
Logic Output  
Output  
SO  
R2  
Red LED 2 output  
WLED5  
WLED6  
VDD1  
EN_FLASH  
SCK/SCL  
G2  
Output  
White LED 5 output  
Output  
White LED 6 output  
Power  
Supply voltage  
Logic Input  
Logic Input  
Output  
Enable for High Current Flash  
Clock (SPI/I2C)  
Green LED 2 Output  
WLED3  
WLED4  
ASE  
Output  
White LED 3 output  
Output  
White LED 4 output  
Input  
Audio Synchronization Input  
Oscillator Frequency Resistor  
Interface (SPI or I2C compatible) Selection (IF_SEL = 1 for SPI)  
Blue LED 2 Output  
IRT  
Input  
IF_SEL  
B2  
Logic Input  
Output  
WLED1  
WLED2  
GNDA  
VREF  
VDDA  
VDD2  
Output  
White LED 1 Output  
Output  
White LED 2 Output  
Ground  
Output  
Ground for Analog Circuitry  
Reference Voltage  
Power  
Internal LDO Output  
Power  
Supply Voltage  
3
www.national.com  
Operating Ratings (Notes 1, 2)  
Absolute Maximum Ratings (Notes 1, 2)  
V (SW, FB, WLED1-6, R1-2, G1-2,  
B1-2, FLASH)  
0 to 6.0V  
If Military/Aerospace specified devices are required,  
please contact the National Semiconductor Sales Office/  
Distributors for availability and specifications.  
VDD1,2 with external LDO  
VDD1,2 with internal LDO  
VDDA  
2.7 to 5.5V  
3.0 to 5.5V  
V (SW, FB, R1-2, G1-2, B1-2,  
FLASH, WLED1-6)(Notes 3, 4)  
-0.3V to +7.2V  
2.7 to 2.9V  
VDD_IO  
1.65V to VDD1  
VDD1, VDD2, VDD_IO, VDDA  
-0.3V to +6.0V  
Voltage on ASE  
0.1V to VDDA –0.1V  
0mA to 300mA  
Voltage on ASE, IRT, IFLASH,  
IRGB, VREF  
-0.3V to VDD1+0.3V  
with 6.0V max  
-0.3V to VDD_IO +0.3V  
with 6.0V max  
-0.3V to 6.0V  
Recommended Load Current  
Junction Temperature (TJ) Range  
Voltage on Logic Pins  
-30°C to +125°C  
-30°C to +85°C  
Ambient Temperature (TA) Range  
(Note 9)  
V(all other pins): Voltage to GND  
I (VREF  
)
10µA  
Thermal Properties  
I(R1, G1, B1, R2, G2, B2)  
I(FLASH)(Note 5)  
Continuous Power Dissipation  
(Note 6)  
Junction Temperature (TJ-MAX  
Storage Temperature Range  
Maximum Lead Temperature  
(Soldering) (Note 7)  
100mA  
400mA  
Internally Limited  
Junction-to-Ambient Thermal  
Resistance(θJA), TLA36AAA or  
RLA36AAA Package  
(Note 10)  
60°C/W  
)
150°C  
-65°C to +150°C  
260ºC  
ESD Rating (Note 8)  
Human Body Model:  
2kV  
www.national.com  
4
Electrical Characteristics (Notes 2, 11)  
Limits in standard typeface are for TJ = 25° C. Limits in boldface type apply over the operating ambient temperature range (-30°  
C < TA < +85°C). Unless otherwise noted, specifications apply to the LP3954 Block Diagram with: VDD1 = VDD2 = 3.6V, VDDIO  
=
2.8V, CVDD = CVDDIO = 100nF, COUT = CIN = 10µF, CVDDA = 1µF, CREF = 100nF, L1 = 4.7µH, RFLASH =1.2k, RRGB =5.6k and RRT  
=82k (Note 12).  
Symbol  
Parameter  
Standby supply current  
(VDD1, VDD2  
No-boost supply current  
(VDD1, VDD2  
Condition  
NSTBY = L  
SCK, SS, SI  
Min  
Typ  
Max Units  
IVDD  
1
8
µA  
)
NSTBY = H,  
EN_BOOST = L  
SCK, SS, SI  
400  
µA  
)
Audio sync and LEDs OFF  
No-load supply current  
(VDD1, VDD2  
NSTBY = H,  
EN_BOOST = H  
SCK, SS, SI  
1
mA  
)
Audio sync and LEDs OFF  
Autoload OFF  
RGB drivers  
(VDD1, VDD2  
CC mode at R1, G1, B1 and  
R2, G2, B2 set to 15mA  
SW mode  
150  
µA  
µA  
)
150  
500  
WLED drivers  
(VDD1, VDD2  
Audio synchronization  
4+2 banks IOUT/LED 25mA  
)
Audio sync ON  
VDD1,2 = 2.8V  
VDD1,2 = 3.6V  
(VDD1, VDD2  
)
390  
700  
2
µA  
mA  
µA  
Flash  
I(RFLASH)=1mA  
(VDD1, VDD2  
)
Peak current during flash  
IVDDIO  
VDDIO Standby Supply  
current  
NSTBY = L  
SCK, SS, SI = H  
1
VDDIO supply current  
1MHz SCK frequency in SPI  
mode, CL = 50pF at SO pin  
20  
µA  
IEXT_LDO  
VDDA  
External LDO output current  
7V tolerant application only  
IBOOST = 300mA  
6.5  
mA  
(VDD1, VDD2, VDDA  
)
Output voltage of internal  
LDO for analog parts  
(Note 13)  
2.72  
-3  
2.80  
2.88  
+3  
V
%
Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the component may occur. Operating Ratings are conditions under which operation  
of the device is guaranteed. Operating Ratings do not imply guaranteed performance limits. For guaranteed performance limits and associated test conditions,  
see the Electrical Characteristics tables.  
Note 2: All voltages are with respect to the potential at the GND pins.  
Note 3: Battery/Charger voltage should be above 6V no more than 10% of the operational lifetime.  
Note 4: Voltage tolerance of LP3954 above 6.0V relies on fact that VDD1 and VDD2 (2.8V) are available (ON) at all conditions. If VDD1 and VDD2 are not available  
(ON) at all conditions, National Semiconductor does not guarantee any parameters or reliability for this device.  
Note 5: The total load current of the boost converter in worst-case conditions should be limited to 300mA (min. input and max. output voltage).  
Note 6: Internal thermal shutdown circuitry protects the device from permanent damage. Thermal shutdown engages at TJ=160°C (typ.) and disengages at  
TJ=140°C (typ.).  
Note 7: For detailed soldering specifications and information, please refer to National Semiconductor Application Note AN1112 : Micro SMD Wafer Level Chip  
Scale Package or Application Note AN1412 : Micro SMDxt Wafer Level Chip Scale Package.  
Note 8: The Human body model is a 100pF capacitor discharged through a 1.5kresistor into each pin. The machine model is a 200pF capacitor discharged  
directly into each pin. MIL-STD-883 3015.7  
Note 9: In applications where high power dissipation and/or poor package thermal resistance is present, the maximum ambient temperature may have to be  
derated. Maximum ambient temperature (TA-MAX) is dependent on the maximum operating junction temperature (TJ-MAX-OP = 125°C), the maximum power  
dissipation of the device in the application (PD-MAX), and the junction-to ambient thermal resistance of the part/package in the application (θJA), as given by the  
following equation: TA-MAX = TJ-MAX-OP – (θJA × PD-MAX).  
Note 10: Junction-to-ambient thermal resistance is highly application and board-layout dependent. In applications where high maximum power dissipation exists,  
special care must be paid to thermal dissipation issues in board design.  
Note 11: Min and Max limits are guaranteed by design, test, or statistical analysis. Typical numbers are not guaranteed, but do represent the most likely norm.  
Note 12: Low-ESR Surface-Mount Ceramic Capacitors (MLCCs) used in setting electrical characteristics.  
Note 13: VDDA output is not recommended for external use.  
5
www.national.com  
Block Diagram  
20132206  
www.national.com  
6
Modes of Operation  
RESET:  
In the RESET mode all the internal registers are reset to the default values and the chip goes to STANDBY  
mode after reset. NSTBY control bit is low after reset by default. Reset is entered always if Reset Register  
is written or internal Power On Reset is active. There is no dedicated Reset pin available. LP3954 can be  
reset by writing any data to Reset Register in address 60H. Power On Reset (POR) will activate during the  
chip startup or when the supply voltage VDD2 falls below 1.5V. Once VDD2 rises above 1.5V, POR will  
inactivate and the chip will continue to the STANDBY mode.  
STANDBY:  
STARTUP:  
The STANDBY mode is entered if the register bit NSTBY is LOW. This is the low power consumption mode,  
when all circuit functions are disabled. Registers can be written in this mode and the control bits are effective  
immediately after power up.  
When NSTBY bit is written high, the INTERNAL STARTUP SEQUENCE powers up all the needed internal  
blocks (Vref, Bias, Oscillator etc..). To ensure the correct oscillator initialization, a 10ms delay is generated  
by the internal state-machine. If the chip temperature rises too high, the Thermal Shutdown (THSD) disables  
the chip operation and STARTUP mode is entered until no thermal shutdown event is present.  
BOOST STARTUP:  
NORMAL:  
Soft start for boost output is generated in the BOOST STARTUP mode. The boost output is raised in PFM  
mode during the 10ms delay generated by the state-machine. The Boost startup is entered from Internal  
Startup Sequence if EN_BOOST is HIGH or from Normal mode when EN_BOOST is written HIGH. During  
the 10ms Boost Startup time all LED outputs are switched off to ensure smooth start-up.  
During NORMAL mode the user controls the chip using the Control Registers. The registers can be written  
in any sequence and any number of bits can be altered in a register in one write  
20132207  
7
www.national.com  
The topology of the magnetic boost converter is called CPM  
control, current programmed mode, where the inductor cur-  
rent is measured and controlled with the feedback. The user  
can program the output voltage of the boost converter. The  
output voltage control changes the resistor divider in the feed-  
back loop.  
Magnetic Boost DC/DC Converter  
The LP3954 Boost DC/DC Converter generates a 4.0 – 5.3V  
voltage for the LEDs from single Li-Ion battery (3V…4.5V).  
The output voltage is controlled with an 8-bit register in 9  
steps. The converter is a magnetic switching PWM mode DC/  
DC converter with a current limit. The converter has three op-  
tions for switching frequency, 1MHz, 1.67MHz and 2MHz  
(default), when timing resistor RT is 82kohm. Timing resistor  
defines the internal oscillator frequency and thus directly af-  
fects boost frequency and all circuit's internally generated  
timing (RGB, Flash, WLED fading).  
The following figure shows the boost topology with the pro-  
tection circuitry. Four different protection schemes are imple-  
mented:  
1. Over voltage protection, limits the maximum output  
voltage  
The LP3954 Boost Converter uses pulse-skipping elimination  
to stabilize the noise spectrum. Even with light load or no load  
a minimum length current pulse is fed to the inductor. An ac-  
tive load is used to remove the excess charge from the output  
capacitor at very light loads. At very light load and when input  
and output voltages are very close to each other, the pulse  
skipping is not completely eliminated. Output voltage should  
be at least 0.5V higher than input voltage to avoid pulse skip-  
ping. Reducing the switching frequency will also reduce the  
required voltage difference.  
Keeps the output below breakdown voltage.  
Prevents boost operation if battery voltage is much  
higher than desired output.  
2. Over current protection, limits the maximum inductor  
current  
Voltage over switching NMOS is monitored; too high  
voltages turn the switch off.  
3. Feedback break protection. Prevents uncontrolled  
operation if FB pin gets disconnected.  
Active load can be disabled with the en_autoload bit. Dis-  
abling will increase the efficiency at light loads, but the down-  
side is that pulse skipping will occur. The Boost Converter  
should be stopped when there is no load to minimise the cur-  
rent consumption.  
4. Duty cycle limiting, done with digital control.  
20132208  
Boost Converter Topology  
www.national.com  
8
MAGNETIC BOOST DC/DC CONVERTER ELECTRICAL CHARACTERISTICS  
Symbol  
ILOAD  
Parameter  
Load Current  
Conditions  
Min  
Typ  
Max  
Units  
3.0V VIN  
0
300  
VOUT = 5V  
mA  
3.0V VIN  
VOUT = 4V  
0
400  
VOUT  
Output Voltage Accuracy  
(FB Pin)  
3.0V VIN VOUT - 0.5  
−5  
+5  
%
V
VOUT = 5.0V  
Output Voltage  
(FB Pin)  
1 mA ILOAD 300 mA  
VIN > 5V + V(SCHOTTKY)  
VIN–V(SCHOTTKY)  
RDSON  
fPWF  
Switch ON Resistance  
VDD1,2 = 2.8V, ISW = 0.5A  
0.4  
2
0.8  
PWM Mode Switching  
Frequency  
RT = 82 kΩ  
freq_sel[2:0] = 1XX  
MHz  
Frequency Accuracy  
−6  
±3  
+6  
2.7 VDDA 2.9  
RT = 82 kΩ  
no load  
%
−9  
+9  
tPULSE  
Switch Pulse Minimum  
Width  
25  
ns  
tSTARTUP  
ISW_MAX  
Startup Time  
Boost startup from STANDBY  
10  
ms  
SW Pin Current Limit  
700  
800  
900  
mA  
550  
950  
Boost Output Voltage Control  
BOOST STANDBY MODE  
User can stop the Boost Converter operation by writing the  
Enables register bit EN_BOOST low. When EN_BOOST is  
written high, the converter starts for 10ms in PFM mode and  
then goes to PWM mode.  
BOOST OUTPUT VOLTAGE CONTROL  
User can control the boost output voltage by boost output 8-  
bit register.  
Boost Output [7:0]  
Register 0DH  
Boost Output  
Voltage (typical)  
Bin  
Hex  
00  
01  
03  
07  
0F  
1F  
3F  
7F  
FF  
0000 0000  
0000 0001  
0000 0011  
0000 0111  
0000 1111  
0001 1111  
0011 1111  
0111 1111  
1111 1111  
4.00  
4.25  
4.40  
4.55  
4.70  
20132209  
4.85  
BOOST FREQUENCY CONTROL  
5.00 Default  
5.15  
freq_sel[2:0]  
1XX  
frequency  
2.00 MHz  
1.67 MHz  
1.00 MHz  
5.30  
01X  
001  
Register ‘boost freq’ (address 0EH). Register default value  
after reset is 07H.  
9
www.national.com  
Boost Converter Typical Performance Characteristics  
Vin = 3.6V, Vout = 5.0V if not otherwise stated  
Boost Converter Efficiency  
Battery Current vs Voltage  
Boost Line Regulation  
Boost Typical Waveforms at 100mA Load  
20132211  
20132210  
Battery Current vs Voltage  
20132212  
20132213  
Boost Startup with No Load  
20132214  
20132215  
www.national.com  
10  
Boost Load Transient, 50 mA–100 mA  
Boost Switching Frequency  
20132216  
20132217  
Output Voltage vs Load Current  
Efficiency At Low Load vs Autoload  
20132262  
20132261  
11  
www.national.com  
HC_Flash  
Functionality of Color LED Outputs  
(R1, G1, B1; R2, G2, B2)  
hc_pwm  
bit 5 PWM controls High  
Current FLASH  
LP3954 has 2 sets of RGB/color LED outputs. Both sets have  
3 outputs and the sets can be controlled in 4 different ways:  
Note: If DISPL=1, wled1-4pwm controls WLED1-6  
Note: Maximum external PWM frequency is 1kHz. If during the external  
PWM control the internal PWM is on the result will be product of both  
functions.  
1. Command based pattern generator control (internal  
PWM)  
CURRENT CONTROL OF COLOR LED OUTPUTS (R1, R2,  
G1, G2, B1, B2)  
2. Audio synchronization control  
3. Direct ON/OFF control  
4. External PWM control  
Both RGB output sets can be separately controlled as con-  
stant current sinks or as switches. This is done using  
cc_rgb1/2 bits in the RGB control register. In constant current  
mode one or both RGB output sets are controlled with con-  
stant current sinks (no external ballast resistors required).  
The maximum output current for both drivers is set by one  
external resistor RRGB. User can decrease the maximum cur-  
rent for an individual LED driver by programming as shown  
later.  
By using command based pattern generator user can pro-  
gram any kind of color effect patterns. LED intensity, blinking  
cycles and slopes are independently controlled with 8 16-bit  
commands. Also real time commands are possible as well as  
loops and step by step control. If analog audio is available on  
system, the user can use audio synchronization for syn-  
chronizing LED blinking to the music. The different modes  
together with the various sub modes generate very colorful  
and interesting lighting effects. Direct ON/OFF control is  
mainly for switching on and off LEDs. External PWM con-  
trol is for applications where external PWM signal is available  
and required to control the color LEDs. PWM signal can be  
connected to any color LED separately as shown later.  
The maximum current for all RGB drivers is set with RRGB  
The equation for calculating the maximum current is  
.
IMAX = 100 ×1.23V / (RRGB + 50Ω)  
where  
IMAX - maximum RGB current in any RGB output in constant  
current mode  
COLOR LED CONTROL MODE SELECTION  
1.23V - reference voltage  
The RGB_SEL[1:0] bits in the Enables register (08H) control  
the output modes for RGB1 (R1, G1, B1) and RGB2 (R2, G2,  
B2) outputs. The following table shows the RGB_SEL func-  
tionality.  
100 - internal current mirror multiplier  
RRGB- resistor value in Ohms  
50Ω - internal resistor in the IRGB input  
For example if 22mA is required for maximum RGB current  
RRGB equals to  
RGB_SEL[1:0]  
Audio sync  
Command based  
pattern  
connected to  
generator  
connected to  
RRGB = 100 × 1.23V / IMAX –50Ω = 123V / 0.022A –50Ω =  
5.54kΩ  
00  
01  
10  
11  
none  
RGB1  
RGB1 & RGB2  
RGB2  
Each individual RGB output has a separate maximum current  
programming. The control bits are in registers RGB1 max  
current and RGB2 max current (12H and 13H) and pro-  
gramming is shown in table below. The default value after  
reset is 00.  
RGB2  
RGB1  
RGB1 & RGB2  
none  
RGB Control register (00H) has control bits for direct on/off  
control of all color LEDs. Note that the LEDs have to be turned  
on in order to control them with audio synchronization or pat-  
tern generator.  
IR1[1:0], IG1[1:0],  
IB1[1:0], IR2[1:0],  
IG2[1:0], IB2[1:0]  
Maximum  
current/output  
00  
01  
10  
11  
0.25 × IMAX  
0.50 × IMAX  
0.75 × IMAX  
1.00 × IMAX  
The external PWM signal controls any LED depending on the  
control register setup. The controls are in the Ext. PWM Con-  
trol register (address 07H) except the FLASH control in  
HC_Flash (10H) register as follows:  
Ext. PWM Control  
SWITCH MODE  
wled1-4_pwm  
wled5-6_pwm  
r1_pwm  
bit 7 PWM controls WLED 1-4  
bit 6 PWM controls WLED 5-6  
bit 5 PWM controls R1 output  
bit 4 PWM controls G1 output  
bit 3 PWM controls B1 output  
bit 2 PWM controls R2 output  
bit 1 PWM controls G2 output  
bit 0 PWM controls B2 output  
The switch mode is used if there is a need to connect parallel  
LEDs to output or if the RGB output current needs to be in-  
creased.  
g1_pwm  
Please note that the switch mode requires an external bal-  
last resistors at each output to limit the LED current.  
The switch/current mode and on/off controls for RGB are in  
the RGB_ctrl register (00H) as follows:  
b1_pwm  
r2_pwm  
g2_pwm  
b2_pwm  
www.national.com  
12  
RGB_ctrl register (00H)  
CC_RGB1  
1
R1, G1 and B1 are switches limit current with ballast resistor  
R1, G1 and B1 are constant current sinks, current limited internally  
bit7  
0
1
R2, G2 and B2 are switches limit current with ballast resistor  
R2, G2 and B2 are constant current sinks, current limited internally  
CC_RGB2  
r1sw  
bit6  
bit5  
bit4  
bit3  
bit2  
bit1  
bit0  
0
1
0
1
0
1
0
1
0
1
0
1
0
R1 is on  
R1 is off  
G1 is on  
G1 is off  
B1 is on  
B1 is off  
R2 is on  
R2 is off  
G2 is on  
G2 is off  
B2 is on  
B2 is off  
g1sw  
b1sw  
r2sw  
g2sw  
b2sw  
20132218  
13  
www.national.com  
Command Based Pattern Generator for Color LEDs  
The LP3954 has a unique stand-alone command based pattern generator with 8 user controllable 16-bit wide commands. Since  
write registers are 8-bit long one command requires 2 write cycles. Each command has intensity level for each LED, command  
execution time (CET) and transition time (TT). The command structure is shown in following two figures.  
20132219  
COMMAND REGISTER WITH 8 COMMANDS  
COMMAND 1  
COMMAND 2  
COMMAND 3  
COMMAND 4  
COMMAND 5  
COMMAND 6  
COMMAND 7  
COMMAND 8  
ADDRESS 50H  
ADDRESS 51H  
ADDRESS 52H  
ADDRESS 53H  
ADDRESS 54H  
ADDRESS 55H  
ADDRESS 56H  
ADDRESS 57H  
ADDRESS 58H  
ADDRESS 59H  
ADDRESS 5AH  
ADDRESS 5BH  
ADDRESS 5CH  
ADDRESS 5DH  
ADDRESS 5EH  
ADDRESS 5FH  
R2  
CET1  
R2  
R1  
CET0  
R1  
R0  
B2  
R0  
B2  
R0  
B2  
R0  
B2  
R0  
B2  
R0  
B2  
R0  
B2  
R0  
B2  
G2  
B1  
G2  
B1  
G2  
B1  
G2  
B1  
G2  
B1  
G2  
B1  
G2  
B1  
G2  
B1  
G1  
B0  
G1  
B0  
G1  
B0  
G1  
B0  
G1  
B0  
G1  
B0  
G1  
B0  
G1  
B0  
G0  
TT2  
G0  
CET3  
TT1  
CET2  
TT0  
CET3  
TT1  
CET2  
TT0  
CET1  
R2  
CET0  
R1  
TT2  
G0  
CET3  
TT1  
CET2  
TT0  
CET1  
R2  
CET0  
R1  
TT2  
G0  
CET3  
TT1  
CET2  
TT0  
CET1  
R2  
CET0  
R1  
TT2  
G0  
CET3  
TT1  
CET2  
TT0  
CET1  
R2  
CET0  
R1  
TT2  
G0  
CET3  
TT1  
CET2  
TT0  
CET1  
R2  
CET0  
R1  
TT2  
G0  
CET3  
TT1  
CET2  
TT0  
CET1  
R2  
CET0  
R1  
TT2  
G0  
CET3  
TT1  
CET2  
TT0  
CET1  
CET0  
TT2  
www.national.com  
14  
COLOR INTENSITY CONTROL  
CET [3:0]  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
CET duration, ms  
197  
Each color, Red, Green and Blue, has 3-bit intensity levels.  
The level control is logarithmic. 2 logarithmic curves are avail-  
able. The LOG bit in Pattern_gen_ctrl register (11H) defines  
the curve used. The values for both logarithmic curves are  
shown in following table.  
393  
590  
786  
R[2:0], G[2:0],  
B[2:0]  
CURRENT  
983  
[% × IMAX(COLOR)  
]
1180  
1376  
1573  
1769  
1966  
2163  
2359  
2556  
2753  
2949  
3146  
LOG=0  
0
LOG=1  
000  
001  
010  
011  
100  
101  
110  
111  
0
1
7
14  
2
21  
4
32  
10  
21  
46  
100  
46  
71  
100  
Transition time TT is duration of transition from the previous  
RGB value to programmed new value. Transition times TT  
are defined as follows:  
TT [2:0]  
000  
Transition time, ms  
0
001  
55  
010  
110  
221  
442  
885  
1770  
3539  
011  
100  
101  
110  
111  
The figure below shows an example of RGB CET and TT  
times.  
20132220  
COMMAND EXECUTION TIME (CET) AND TRANSITION  
TIME (TT)  
The command execution CET time is the duration of one sin-  
gle command. Command execution times CET are defined as  
follows, when RT=82k:  
20132221  
15  
www.national.com  
The command execution time also may be less than the transition time – the figure below illuminates this case.  
20132222  
LOOP CONTROL  
Pattern generator commands can be looped using the LOOP bit (D1) in Pattern gen ctrl register (11H). If LOOP=1 the program  
will be looped from the command 8 register or if there is 0000 0000 and 0000 0000 in one command register. The loop will start  
from command 1 and continue until stopped by writing rgb_start=0 or loop=0. The example of loop is shown in following figure:  
20132223  
SINGLE PROGRAM  
If control bit LOOP=0 the program will start from Command 1 and run to either last command or to empty “0000 0000 / 0000 0000”  
command.  
20132224  
The LEDs maintain the brightness of the last command when the single program stops. Changes in command register will not be  
effective in this phase. The RGB_START bit has to be toggled off and on to make changes effective.  
www.national.com  
16  
START BIT  
Pattern_gen_ctrl register’s RGB_START bit will enable command execution starting from Command 1.  
Pattern gen ctrl register (11H)  
0 – Pattern generator disabled  
1 – execution pattern starting from command 1  
rgb_start  
loop  
Bit 2  
Bit 1  
Bit 0  
0 – pattern generator loop disabled (single pattern)  
1 – pattern generator loop enabled (execute until stopped)  
0 – color intensity mode 0  
1 – color intensity mode 1  
log  
HARDWARE ON/OFF CONTROL AND DIMMING  
PWM_LED input can be used as direct ON/OFF control or PWM dimming control for selected RGB outputs or the WLED groups.  
PWM_LED control can be enabled with the control bits in the Ext. PWM Control register.  
17  
www.national.com  
ple 5 shows an example of a second order RC-filter for 29 kHz  
PWM signal with 3.3V amplitude. Active filters, such as a  
Sallen-Key filter, may also be applied. An active filter gives  
better stop-band attenuation and cut-off frequency can be  
higher than for a RC-filter.  
Audio Synchronization  
The color LEDs connected to RGB outputs can be synchro-  
nized to incoming audio with Audio Synchronization feature.  
Audio Sync has 2 modes. Amplitude mode synchronizes  
color LEDs based on input signal’s peak amplitude. In the  
amplitude mode the user can select between 3 different am-  
plitude mapping modes and 4 different speed configurations.  
The frequency mode synchronizes the color LEDs based on  
bass, middle and treble amplitudes (= low pass, band pass  
and high pass filters). User can select between 2 different  
frequency responses and 4 different speed configurations for  
best audio-visual user experience. Programmable gain and  
AGC function are also available for adjustment of input signal  
amplitude to light response. The Audio Sync functionality is  
described more closely below.  
To make sure that the filter rolls off sufficiently quickly, con-  
nect your filter circuit to the audio input(s), turn on the audio  
synchronization feature, set manual gain to maximum, apply  
the PWM signal to the filter input and keep an eye on LEDs.  
If they are blinking without an audio signal (modulation), a  
sharper roll-off after the cut-off frequency, more stop-band  
attenuation, or smaller amplitude of the PWM signal is re-  
quired.  
AUDIO SYNCHRONIZATION SIGNAL PATH  
LP3954 audio synchronization is mainly done digitally and it  
consists of the following signal path blocks:  
USING A DIGITAL PWM AUDIO SIGNAL AS AN AUDIO  
SYNCHRONIZATION SOURCE  
Input Buffers  
AD Converter  
DC Remover  
If the input signal is a PWM signal, use a first or second order  
low pass filter to convert the digital PWM audio signal into an  
analog waveform. There are two parameters that need to be  
known to get the filter to work successfully: frequency of the  
PWM signal and the voltage level of the PWM signal. Sug-  
gested cut-off frequency (-3dB) should be around 2 kHz to 4  
kHz and the stop-band attenuation at sampling frequency  
should be around -48dB or better. Use a resistor divider to  
reduce the digital signal amplitude to meet the specification  
of the analog audio input. Because a low-order low-pass filter  
attenuates the high-frequency components from audio signal,  
MODE_CONTROL=[01] selection is recommended when fre-  
quency synchronization mode is enabled. Application exam-  
Automatic Gain Control (AGC)  
Programmable Gain  
3 Band Digital Filter  
Peak Detector  
Look-up Tables (LUT)  
Mode Selector  
Integrators  
PWM Generator  
Output Drivers  
20132225  
The digitized input signal has DC component that is removed  
by digital DC REMOVER (-3dB @ 400Hz). Since the light re-  
sponse of input audio signal is very much amplitude depen-  
dent the AGC adjusts the input signal to suitable range  
automatically. User can disable AGC and the gain can be set  
manually with PROGRAMMABLE GAIN. LP3954 has 2 au-  
dio synchronization modes: amplitude and frequency. For  
amplitude based synchronization the PEAK DETECTION  
method is used. For frequency based synchronization 3  
BAND FILTER separates high pass, low pass and band bass  
signals. For both modes the predefined LUT is used to opti-  
mize the audio visual effect. MODE SELECTOR selects the  
synchronization mode. Different response times to music  
beat can be selected using INTEGRATOR speed variables.  
Finally PWM GENERATOR sets the driver FET duty cycles.  
scribed in the Audio Synch table. The buffer is rail-to-rail input  
operational amplifier connected as a voltage follower. DC lev-  
el of the input signal is set by a simple resistor divider  
20132226  
INPUT SIGNAL TYPE AND BUFFERING  
LP3954 supports single ended audio input as shown in the  
figure below. The electric parameters of the buffer are de-  
www.national.com  
18  
AUDIO SYNC ELECTRICAL PARAMETERS  
Symbol Parameter  
Conditions  
Min  
250  
0.1  
Typical  
Max  
Units  
kOhm  
V
ZIN  
AIN  
Input Impedance of ASE  
500  
Audio Input Level Range  
(peak-to-peak)  
Gain = 21dB  
Gain = 0 dB  
VDDA-0.1  
f3dB  
Crossover Frequencies (-3  
dB)  
Narrow Frequency  
Response  
Low Pass  
Band Pass  
High Pass  
0.5  
1.0 and 1.5  
2.0  
kHz  
Wide Frequency Response Low Pass  
1.0  
Band Pass  
High Pass  
2.0 and 3.0  
4.0  
CONTROL OF AUDIO SYNCHRONIZATION  
The following table describes the controls required for audio synchronization.  
Audio_sync_CTRL1 (2AH)  
Input signal gain control. Range 0...21 dB, step 3 dB:  
[000] = 0 dB (default)  
[001] = 3 dB  
[011] = 9 dB  
[100] = 12 dB  
[101] = 15 dB  
[110] = 18 dB  
[111] = 21 dB  
GAIN_SEL[2:0]  
Bits 7-5  
[010] = 6 dB  
Synchronization mode selector.  
SYNC_MODE  
EN_AGC  
Bit 4  
Bit 3  
SYNCMODE = 0 Amplitude Mode (default)  
SYNCMODE = 1 Frequency Mode  
Automatic Gain Control enable  
1 = enabled  
0 = disabled (Gain Select enabled) (default)  
Audio synchronization enable  
1 = Enabled  
Note : If AGC is enabled, AGC gain starts from current GAIN_SEL gain value.  
0 = Disabled (default)  
EN_SYNC  
Bit 2  
[00] = Single ended input signal, ASE.  
[01] = Temperature measurement  
[10] = Ambient light measurement  
[11] = No input (default)  
INPUT_SEL[1:0]  
Bits 1-0  
Audio_sync_CTRL2 (2BH)  
0 – average disabled (not applicable in audio synchronization mode)  
1 – average enabled (not applicable in audio synchronization mode)  
EN_AVG  
Bit 4  
MODE_CTRL[1:0]  
Bits 3-2 See below: Mode control  
Sets the LEDs light response time to audio input.  
[00] = FASTEST (default)  
[01] = FAST  
[10] = MEDIUM  
SPEED_CTRL[1:0]  
Bits 1-0  
[11] = SLOW  
(For SLOW setting in amplitude mode fMAX=3.8Hz,  
Frequency mode fMAX=7.6Hz)  
19  
www.national.com  
MODE CONTROL IN FREQUENCY MODE  
Mode control has two setups based on audio synchronization mode select: the frequency mode and the amplitude mode. During  
the frequency mode user can select two filter options by MODE_CTRL as shown below. User can select the filters based on the  
music type and light effect requirements. In the first mode the frequency range extends to 8 kHz in the secont to 4 kHz.  
The lowpass filter is used for the red, the bandpass filter for the blue and the hipass filter for the green LED.  
Higher frequency mode  
MODE_CTRL = 00 and SYNC_MODE = 1  
Lower frequency mode  
MODE_CTRL = 01 and SYNC_MODE = 1  
20132227  
20132228  
MODE CONTROL IN AMPLITUDE MODE  
During the amplitude synchronization mode user can select between three different amplitude mappings by using  
MODE_CTRL select. These three mapping option gives different light response. The modes are shown in the tables below.  
Non-overlapping mode  
MODE_CTRL[1:0] = [01]  
Partly overlapping mode  
MODE_CTRL[1:0] = [00]  
20132229  
20132230  
www.national.com  
20  
Overlapping mode  
MODE_CTRL[1:0] = [10]  
Peak Input Signal Level  
Range vs Gain Setting  
20132232  
20132231  
RGB OUTPUT SYNCHRONIZATION TO EXTERNAL CLOCK  
The RGB pattern generator and high current flash driver timing can be synchronized to external clock with following configuration.  
1. Set PWM_SYNC bit in Enables register to 1  
2. Feed PWM_SYNC pin with 5 MHz clock  
By this the internal 5 MHz clock is disabled from pattern generator and flash timing circuitry.  
The external clock signal frequency will fully determine the timings related to RGB and Flash.  
Note: The boost converter will use internal 5 MHz clock even if the external clock is available.  
RGB Driver Typical Performance Characteristics  
RGB DRIVER ELECTRICAL CHARACTERISTICS (R1, G1, B1, R2, G2, B2 OUTPUTS)  
Symbol  
ILEAKAGE  
IMAX(RGB)  
Parameter  
Condition  
Min Typ Max Units  
R1, G1, B1, R2, G2, B2 pin leakage current  
Maximum recommended sink current  
0.1  
1
µA  
mA  
mA  
%
CC mode  
40  
50  
SW mode  
Accuracy @ 37mA  
±5  
RRGB=3.3 kΩ ±1%, CC mode  
CC mode  
Current mirror ratio  
1:100  
±5  
RGB1 and RGB2 current mismatch  
Switch resistance  
IRGB=37mA, CC mode  
SW mode  
%
RSW  
2.5  
4
ƒRGB  
RGB switching frequency  
Accuracy proportional to internal clock 18.2  
20  
21.8  
kHz  
freq.  
If external SYNC 5MHz is in use  
20  
kHz  
Note: RGB current should be limited as follows:  
constant current mode – limit by external RRGB resistor;  
switch mode – limit by external ballast resistors  
21  
www.national.com  
Output Current vs Pin Voltage (Current Sink Mode)  
Pin Voltage vs Output Current (Switch Mode)  
20132266  
20132268  
Output Current vs RRGB (Current Sink Mode)  
20132267  
www.national.com  
22  
HC[1:0]  
00  
I(FLASH)  
Single High Current Driver  
0.25 × IMAX(FLASH)  
0.50 × IMAX(FLASH)  
0.75 × IMAX(FLASH)  
1.00 × IMAX(FLASH)  
LP3954 has internal constant current driver that is capable for  
driving high current mainly targeted for FLASH LED in camera  
phone applications.  
01  
10  
MAXIMUM CURRENT SETUP FOR FLASH  
11  
The user sets the maximum current of FLASH with RFLASH  
resistor based on following equation:  
The figure below shows the internal structure for the FLASH  
driver.  
IMAX = 300 × 1.23V / (RFLASH + 50Ω),  
where  
Imax = maximum flash current in Amps (ie. 0.3A)  
1.23V = reference voltage  
300 = internal current mirror multiplier  
RFLASH = Resistor value in Ohms  
50Ω = Internal resistor in the IFLASH input  
For example if 300mA is required for maximum flash current  
RFLASH equals to  
RFLASH = 300 × 1.23V / IMAX – 50Ω = 369V / 0.3A – 50=  
1.18kΩ  
CURRENT CONTROL FOR FLASH  
To minimize the internal current consumption, the flash func-  
20132233  
tion has an enable bit EN_HCFLASH in the HC_Flash regis-  
ter.  
FLASH TIMING  
Flash output is turned on in lower current View finder mode  
when the EN_HCFLASH bit is written high. The actual Flash  
at maximum current starts when the EN_FLASH i/o-pin goes  
high. The Flash length can be selected from 3 pre-defined  
values or EN_FLASH pin pulse length can determine the  
length. The pulse length is controlled by the FT_T[1:0] bits as  
show in the table below.  
EN_  
HCFLASH  
0
1
FLASH disabled, no extra current  
consumption through RFLASH  
FLASH enabled, IFLASH set by  
HC_SW[1:0] (see below)  
HC[1:0] bits in the HC_Flash register control the FLASH cur-  
rent as show in following table.  
FL_T[1:0]  
Flash duration typ  
Current during view finder/  
Current during FLASH  
focusing  
00  
01  
10  
11  
200ms  
400ms  
Set by HC[1:0]  
Set by HC[1:0]  
Set by HC[1:0]  
Set by HC[1:0]  
HC[11] = IMAX(FLASH)  
HC[11] = IMAX(FLASH)  
HC[11] = IMAX(FLASH)  
HC[11] = IMAX(FLASH)  
600ms  
EN_FLASH on duration  
23  
www.national.com  
The following figure shows the functionality of the built-in flash  
20132234  
HIGH CURRENT DRIVER ELECTRICAL CHARACTERISTICS  
Symbol  
ILEAKAGE  
IMAX(FLASH)  
Parameter  
Condition  
Min  
Typ  
Max Units  
FLASH pin leakage current  
Maximum Sink Current  
Accuracy @ 300 mA  
0.1  
2
µA  
400  
±10  
mA  
%
±5  
RFLASH=1.18 kΩ ±1%  
Current mirror ratio  
1:300  
www.national.com  
24  
DISPL  
Configuration  
Matching  
Backlight Drivers  
Main display up  
to 4 LEDs  
Good btw  
WLED1…4  
Good btw  
LP3954 has 2 independent backlight drivers. Both drivers are  
regulated constant current sinks. LED current for both LED  
banks (WLED1…4 and WLED5…6) are controlled by 8-bit  
current mode DACs with 0.1 mA step.  
0
Sub display up  
to 2 LEDs  
WLED5…6  
WLED1…4 and WLED5…6 can be also controlled with one  
DAC for better matching allowing the use of larger displays  
having up to 6 white LEDs in parallel.  
Large display  
up to 6 LEDs  
Good btw  
WLED 1…6  
1
Display configuration is controlled with DISPL bit as shown  
below.  
Display backlight enables  
1
0
1
0
WLED1-4 enabled  
EN_W1-4  
EN_W5-6  
WLED1-4 disabled  
WLED5-6 enabled  
WLED5-6 disabled  
20132235  
20132236  
Main display up to 4 LEDs (WLED1…4)  
Sub display driver up to 2 LEDs (WLED5…6)  
20132237  
Main display up to 6 LEDs (WLED1…6) (DISPL=1)  
BACKLIGHT DRIVER ELECTRICAL CHARACTERISTICS  
Symbol  
IMAX  
ILeakage  
IWLED1  
Parameter  
Maximum Sink Current  
Conditions  
Min Typical Max  
Units  
mA  
21.3  
25.5  
0.03  
12.8  
29.4  
1
Leakage Current  
VFB =5V  
µA  
WLED1 Current tolerance  
IWLED1 set to 12.8mA (80H)  
10.52  
-18  
14.78  
+16  
mA  
%
IMatch1-4  
IMatch5-6  
IMatch1-6  
Sink Current Matching  
Sink Current Matching  
Sink Current Matching  
ISINK=13mA, Between WLED1…4  
ISINK=13mA, Between WLED5…6  
ISINK=13mA, Between WLED1…6  
0.2  
0.2  
0.3  
%
%
%
Note: Matching is the maximum difference from the average.  
25  
www.national.com  
ADJUSTMENT  
FADE IN / FADE OUT  
LP3954 has an automatic fade in and out for main and sub  
backlight. The fade function is enabled with EN_FADE bit.  
The slope of the fade curve is set by the SLOPE bit. Fade  
control for main and sub display is set by FADE_SEL bit.  
WLED1-4[7:0]  
WLED5-6[7:0]  
Driver current,  
ma (typical)  
0000 0000  
0000 0001  
0000 0010  
0000 0011  
0
0.1  
0.2  
0.3  
0
1
0
1
0
1
Automatic fade disabled  
Automatic fade enabled  
Fade execution time 1.3s  
Fade execution time 0.65s  
Fade controls WLED1-4  
Fade controls WLED5-6  
EN_FADE  
SLOPE  
FADE_SEL  
1111 1101  
1111 1110  
1111 1111  
25.3  
25.4  
25.5  
Note: if DISPL=1 and FADE_SEL=0, Fade effects to WLED1-6  
Recommended fading sequence:  
WLED Output Current vs. Voltage  
1. ASSUMPTION: Current WLED value in register  
2. Set SLOPE  
3. Set FADE_SEL  
4. Set EN_FADE = 1  
5. Set target WLED value  
6. Fading will be done either within 0.5s or 1s based on  
Slope selection  
20132238  
WLED dimming, SLOPE=0  
WLED dimming, SLOPE=1  
20132239  
20132240  
www.national.com  
26  
TEMPERATURE MEASUREMENT  
Ambient Light and Temperature  
Measurement with LP3954  
The temperature measurement requires two external compo-  
nents: resistor and thermistor (resistor that has known tem-  
perature vs resistance curve). The ADC reads the voltage  
level at ASE pin and converts the result in digital word. User  
can read the ADC output from register. The known tempera-  
ture allows for example to monitor the temperature inside the  
display module and decrease the current level of the LEDs if  
temperature raises too high. This function may increase life-  
time of LEDs in some applications.  
The Analog-to-Digital converter (ADC) in the Audio Syn-  
cronization block can be also used for ambient light measure-  
ment or temperature measurement.  
The selection between these modes is controlled with input  
selector bits INPUT_SEL[1:0] as follows  
INPUT_SEL[1:0]  
Mode  
00  
Audio synchronization  
Temperature measurement  
(voltage input)  
01  
Ambient light measurement  
(current input)  
10  
11  
No input  
AMBIENT LIGHT MEASUREMENT  
The ambient light measurement requires only one external  
component: Ambient light sensor (photo transistor or diode).  
The ADC reads the current level at ASE pin and converts the  
result in digital word. User can read the ADC output from the  
ADC output register. The known ambient light condition al-  
lows user to set the backlight current to optimal level thus  
saving power especially in low light and bright sunlight con-  
dition.  
20132242  
Temperature sensor connection example  
20132241  
20132263  
ADC Code vs Input Voltage  
in temperature measurement mode  
20132264  
ADC Code vs Input Current  
in light measurement mode  
27  
www.national.com  
EXAMPLE TEMP SENSOR READING AT DIFFERENT  
TEMPERATURES (R(25°C)=1MΩ)  
T°C  
-40  
0
V(ASE)  
2.7540984  
2.24  
R(MΩ)  
Rt(MΩ)  
60  
1
1
1
1
1
4
25  
1
1.4  
60  
0.2  
0.04  
0.4666667  
0.1076923  
100  
20132243  
Example curve for thermistor  
www.national.com  
28  
7V Shielding  
To shield LP3954 from high input voltages 6…7.2V the use of external 2.8V LDO is required. This 2.8V voltage protects internally  
the device against high voltage condition. The recommended connection is as shown in the picture below. Internally both logic and  
analog circuitry works at 2.8V supply voltage. Both supply voltage pins should have separate filtering capacitors.  
20132244  
In cases where high voltage is not an issue the connection is as shown below  
20132245  
29  
www.national.com  
Logic Interface Characteristics  
(1.65V VDDIO VDD1,2V) (Unless otherwise noted).  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
LOGIC INPUTS SS, SI, SCK/SCL, SYNC/PWM, IF_SEL, EN_FLASH  
VIL  
VIH  
II  
Input Low Level  
Input High Level  
Logic Input Current  
0.2×VDDIO  
V
V
0.8×VDDIO  
−1.0  
1.0  
µA  
kHz  
I2C Mode  
400  
SPI Mode,  
VDDIO > 1.8V  
13  
5
MHz  
MHz  
fSCL  
Clock Frequency  
SPI Mode,  
1.65V VDDIO < 1.8V  
LOGIC OUTPUT SO  
ISO = 3 mA  
0.3  
0.5  
0.5  
VDDIO > 1.8V  
VOL  
Output Low Level  
Output High Level  
V
V
ISO = 2 mA  
0.3  
1.65V VDDIO < 1.8V  
ISO = −3 mA  
VDDIO − 0.5  
VDDIO − 0.5  
VDDIO − 0.3  
VDDIO − 0.3  
VDDIO > 1.8V  
VOH  
ISO = -2 mA  
1.65V VDDIO < 1.8V  
IL  
LOGIC OUTPUT SDA  
VOL Output Low Level  
Output Leakage Current VSO = 2.8V  
1.0  
0.5  
µA  
V
ISDA = 3 mA  
0.3  
Control Interface  
The LP3954 supports two different interface modes:  
User can define the serial interface by IF_SEL pin. IF_SEL=0  
selects the I2C mode.  
SPI interface (4 wire, serial)  
I2C compatible interface (2 wire, serial)  
SPI INTERFACE  
LP3954 is compatible with SPI serial bus specification and it operates as a slave. The transmission consists of 16-bit Write and  
Read Cycles. One cycle consists of 7 Address bits, 1 Read/Write (RW) bit and 8 Data bits. RW bit high state defines a Write Cycle  
and low defines a Read Cycle. SO output is normally in high-impedance state and it is active only when Data is sent out during a  
Read Cycle. A pull-up resistor may be needed in SO line if a floating logic signal can cause unintended current consumption in the  
input circuits where SO is connected.The Address and Data are transmitted MSB first. The Slave Select signal SS must be low  
during the Cycle transmission. SS resets the interface when high and it has to be taken high between successive Cycles. Data is  
clocked in on the rising edge of the SCK clock signal, while data is clocked out on the falling edge of SCK.  
20132246  
SPI Write Cycle  
www.national.com  
30  
20132247  
SPI Read Cycle  
20132248  
SPI Timing Diagram  
SPI Timing Parameters  
VDD = VDD_IO = 2.775V  
Limit  
Symbol  
Parameter  
Units  
Min  
70  
35  
35  
35  
35  
20  
0
Max  
1
2
Cycle Time  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Enable Lead Time  
Enable Lag Time  
Clock Low Time  
Clock High Time  
Data Setup Time  
Data Hold Time  
Data Access Time  
Disable Time  
3
4
5
6
7
8
20  
10  
20  
9
10  
11  
Data Valid  
Data Hold Time  
0
Note: Data guaranteed by design.  
31  
www.national.com  
I2C COMPATIBLE INTERFACE  
I2C Signals  
In I2C mode the LP3954 pin SCK is used for the I2C clock SCL  
and the pin SS is used for the I2C data signal SDA. Both these  
signals need a pull-up resistor according to I2C specification.  
SI pin is the address select pin. I2C address for LP3954 is 54h  
when SI = 0 and 55h when SI = 1. Unused pin SO can be left  
unconnected.  
20132250  
Transferring Data  
I2C Data Validity  
Every byte put on the SDA line must be eight bits long, with  
the most significant bit (MSB) being transferred first. Each  
byte of data has to be followed by an acknowledge bit. The  
acknowledge related clock pulse is generated by the master.  
The transmitter releases the SDA line (HIGH) during the ac-  
knowledge clock pulse. The receiver must pull down the SDA  
line during the 9th clock pulse, signifying an acknowledge. A  
receiver which has been addressed must generate an ac-  
knowledge after each byte has been received.  
The data on SDA line must be stable during the HIGH period  
of the clock signal (SCL). In other words, state of the data line  
can only be changed when CLK is LOW.  
After the START condition, the I2C master sends a chip ad-  
dress. This address is seven bits long followed by an eighth  
bit which is a data direction bit (R/W). The LP3954 address is  
54h or 55H as selected with SI pin. For the eighth bit, a “0”  
indicates a WRITE and a “1” indicates a READ. The second  
byte selects the register to which the data will be written. The  
third byte contains data to write to the selected register.  
20132249  
I2C Signals: Data Validity  
I2C Start and Stop Conditions  
START and STOP bits classify the beginning and the end of  
the I2C session. START condition is defined as SDA signal  
transitioning from HIGH to LOW while SCL line is HIGH.  
STOP condition is defined as the SDA transitioning from LOW  
to HIGH while SCL is HIGH. The I2C master always generates  
START and STOP bits. The I2C bus is considered to be busy  
after START condition and free after STOP condition. During  
data transmission, I2C master can generate repeated START  
conditions. First START and repeated START conditions are  
equivalent, function-wise.  
20132251  
I2C Chip Address  
Register changes take an effect at the SCL rising edge during  
the last ACK from slave.  
20132252  
w = write (SDA = “0”)  
r = read (SDA = “1”)  
ack = acknowledge (SDA pulled down by either master or slave)  
rs = repeated start  
id = 7-bit chip address, 54h (SI=0) or 55h (SI=1) for LP3954.  
I2C Write Cycle  
www.national.com  
32  
When a READ function is to be accomplished, a WRITE function must precede the READ function, as shown in the Read Cycle  
waveform.  
20132253  
I2C Read Cycle  
20132254  
I2C Timing Diagram  
I2C Timing Parameters (VDD1,2 = 3.0 to 4.5V, VDD_IO = 1.65V  
to VDD1,2  
)
Symbol  
Parameter  
Hold Time (repeated) START Condition  
Limit  
Units  
Min  
0.6  
1.3  
600  
600  
300  
0
Max  
1
2
µs  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
pF  
Clock Low Time  
3
Clock High Time  
4
Setup Time for a Repeated START Condition  
Data Hold Time (Output direction, delay generated by LP3954)  
Data Hold Time (Input direction, delay generated by the Master)  
Data Setup Time  
5
900  
900  
5
6
100  
7
Rise Time of SDA and SCL  
20+0.1Cb  
15+0.1Cb  
600  
300  
300  
8
Fall Time of SDA and SCL  
9
Set-up Time for STOP condition  
10  
Cb  
Bus Free Time between a STOP and a START Condition  
Capacitive Load for Each Bus Line  
1.3  
10  
200  
NOTE: Data guaranteed by design  
Autoincrement mode is available, with this possible read or write few byte with autoincreasing addresses, but LP3954 has holes  
in address register map, and is recommended to use autoincrement mode only for the pattern command registers.  
33  
www.national.com  
OUTPUT DIODE, DOUT  
Recommended External  
Components  
A Schottky diode should be used for the output diode. To  
maintain high efficiency the average current rating of the  
schottky diode should be larger than the peak inductor current  
(1A). Schottky diodes with a low forward drop and fast switch-  
ing speeds are ideal for increasing efficiency in portable ap-  
plications. Choose a reverse breakdown of the schottky diode  
larger than the output voltage. Do not use ordinary rectifier  
diodes, since slow switching speeds and long recovery times  
cause the efficiency and the load regulation to suffer.  
OUTPUT CAPACITOR, COUT  
The output capacitor COUT directly affects the magnitude of  
the output ripple voltage. In general, the higher the value of  
COUT, the lower the output ripple magnitude. Multilayer ce-  
ramic capacitors with low ESR are the best choice. At the  
lighter loads, the low ESR ceramics offer a much lower Vout  
ripple that the higher ESR tantalums of the same value. At the  
higher loads, the ceramics offer a slightly lower Vout ripple  
magnitude than the tantalums of the same value. However,  
the dv/dt of the Vout ripple with the ceramics is much lower  
that the tantalums under all load conditions. Capacitor voltage  
rating must be sufficient, 10V or greater is recommended.  
INDUCTOR, L1  
The LP3954’s high switching frequency enables the use of  
the small surface mount inductor. A 4.7 µH shielded inductor  
is suggested for 2 MHz operation, 10 µH should be used at 1  
MHz. The inductor should have a saturation current rating  
higher than the peak current it will experience during circuit  
operation (1A). Less than 300 mESR is suggested for high  
efficiency. Open core inductors cause flux linkage with circuit  
components and interfere with the normal operation of the  
circuit. This should be avoided. For high efficiency, choose an  
inductor with a high frequency core material such as ferrite to  
reduce the core losses. To minimize radiated noise, use a  
toroid, pot core or shielded core inductor. The inductor should  
be connected to the SW pin as close to the IC as possible.  
Some ceramic capacitors, especially those in small pack-  
ages, exhibit a strong capacitance reduction with the  
increased applied voltage. The capacitance value can fall  
to below half of the nominal capacitance. Too low output  
capacitance will increase the noise and it can make the  
boost converter unstable.  
INPUT CAPACITOR, CIN  
The input capacitor CIN directly affects the magnitude of the  
input ripple voltage and to a lesser degree the VOUT ripple. A  
higher value CIN will give a lower VIN ripple. Capacitor voltage  
rating must be sufficient, 10V or greater is recommended.  
LIST OF RECOMMENDED EXTERNAL COMPONENTS  
Symbol  
CVDD1  
CVDD2  
CVDDIO  
CVDDA  
COUT  
Symbol explanation  
Value  
100  
100  
100  
1
Unit  
nF  
nF  
nF  
µF  
µF  
µF  
µH  
nF  
nF  
Type  
Ceramic, X7R / X5R  
Ceramic, X7R / X5R  
Ceramic, X7R / X5R  
Ceramic, X7R / X5R  
Ceramic, X7R / X5R, 10V  
Ceramic, X7R / X5R  
Shielded,low ESR, Isat 1A  
Ceramic, X7R  
C between VDD1 and GND  
C between VDD2 and GND  
C between VDDIO and GND  
C between VDDA and GND  
C between FB and GND  
10  
CIN  
C between battery voltage and GND  
L between SW and VBAT at 2 MHz  
C between VREF and GND  
C between VDDIO and GND  
R between IFLASH and GND  
R between IRGB and GND  
10  
LBOOST  
CVREF  
CVDDIO  
RFLASH  
RRBG  
4.7  
100  
100  
1.2  
5.6  
82  
Ceramic, X7R  
±1%  
kΩ  
kΩ  
kΩ  
V
±1%  
RRT  
R between IRT and GND  
±1%  
DOUT  
Rectifying Diode (Vf @ maxload)  
C between Audio input and ASE  
0.3  
100  
Schottky diode  
CASE  
nF  
Ceramic, X7R / X5R  
LEDs  
DLIGHT  
User defined  
TDK BSC2015  
Light Sensor  
www.national.com  
34  
Application Examples  
EXAMPLE 1  
20132255  
MAIN BACKLIGHT  
SUB BACKLIGHT  
AUDIO SYNCHRONIZED FUNLIGHTS  
RGB INDICATION LIGHT  
FLASH LED  
FLIP PHONE  
35  
www.national.com  
EXAMPLE 2  
20132256  
6 WHITE LED BACKLIGHT  
KEY PAD LIGHTS  
RGB INDICATION LED  
WHITE SINGLE LED FLASH  
TEMPERATURE SENSOR  
SMART PHONE  
www.national.com  
36  
EXAMPLE 3  
20132257  
MAIN BACKLIGHT  
KEYPAD LIGHTS  
AUDIO SYNCHRONIZED FUNLIGHTS  
VIBRA  
CANDYBAR PHONE  
37  
www.national.com  
EXAMPLE 4  
20132265  
MAIN BACKLIGHT  
SUB BACKLIGHT  
AUDIO SYNCHRONIZED FUNLIGHTS  
RGB INDICATION LIGHT  
There may be cases where the audio input signal going into the LP3954 is too weak for audio synchronization. This figure presents a single-supply inverting  
amplifier connected to the ASE input for audio signal amplification. The amplification is +20 dB, which is well enough for 20 mVp-p audio signal. Because the  
amplifier (LMV321) is operating in single supply voltage, a voltage divider using R3 and R4 is implemented to bias the amplifier so the input signal is within the  
input common-mode voltage range of the amplifier. The capacitor C1 is placed between the inverting input and resistor R1 to block the DC signal going into the  
audio signal source. The values of R1 and C1 affect the cutoff frequency, fc = 1/(2*Pi*R1*C1), in this case it is around 160 Hz. As a result, the LMV321 output  
signal is centered around mid-supply, that is VDDA/2. The output can swing to both rails, maximizing the signal-to-noise ratio in a low voltage system  
USING EXTRA AMPLIFIER  
www.national.com  
38  
EXAMPLE 5  
20132269  
MAIN BACKLIGHT  
SUB BACKLIGHT  
AUDIO SYNCHRONIZED FUNLIGHTS  
RGB INDICATION LIGHT  
Here, a second order RC-filter is used on the ASE input to convert a PWM signal to an analog waveform.  
USING PWM SYGNAL  
More application information is available in the document "LP3954 Evaluation Kit".  
39  
www.national.com  
www.national.com  
40  
41  
www.national.com  
LP3954 Registers  
REGISTER BIT EXPLANATIONS  
Each register is shown with a key indicating the accessibility of the each individual bit, and the initial condition:  
Register Bit Accessibility and Initial Condition  
Key  
rw  
Bit Accessibility  
Read/write  
r
Read only  
–0,–1  
Condition after POR  
RGB CTRL (00H) – RGB LEDS CONTROL REGISTER  
D7  
cc_rgb1  
rw-1  
D6  
cc_rgb2  
rw-1  
D5  
D4  
D3  
D2  
D1  
D0  
r1sw  
rw-0  
g1sw  
rw-0  
b1sw  
rw-0  
r2sw  
rw-0  
g2sw  
rw-0  
b2sw  
rw-0  
0 - R1, G1 and B1 are constant current sinks, current limited internally  
1 - R1, G1 and B1 are switches, limit current with external ballast resistor  
cc_rgb1 Bit 7  
cc_rgb2 Bit 6  
0 – R2, G2 and B2 are constant current sinks, current limited internally  
1 – R2, G2 and B2 are switches, limit current with external ballast resistor  
0 – R1 disabled  
1 – R1 enabled  
r1sw  
g1sw  
b1sw  
r2sw  
g2sw  
b2sw  
Bit 5  
Bit 4  
0 – G1 disabled  
1 – G1 enabled  
Bit 3 0 – B1 disabled  
1 – B1 enabled  
0 – R2 disabled  
Bit 2  
1 – R2 enabled  
0 – G2 disabled  
Bit 1  
1 – G2 enabled  
0 – B2 disabled  
Bit 0  
1 – B2 enabled  
www.national.com  
42  
EXT_PWM_CONTROL (07H) – EXTERNAL PWM CONTROL REGISTER  
D7  
wled1_4_pwm  
rw-0  
D6  
wled5_6_pwm  
rw-0  
D5  
r1_pwm  
rw-0  
D4  
g1_pwm  
rw-0  
D3  
b1_pwm  
rw-0  
D2  
r2_pwm  
rw-0  
D1  
g2_pwm  
rw-0  
D0  
b2_pwm  
rw-0  
0 – WLED1…WLED4 PWM control disabled  
1 – WLED1…WLED4 PWM control enabled  
wled1_4_pwm  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0 – WLED5, WLED6 PWM control disabled  
1 – WLED5, WLED6 PWM control enabled  
wled5_6_pwm  
r1_pwm  
0 – R1 PWM control disabled  
1 – R1 PWM control enabled  
0 – G1 PWM control disabled  
1 – G1 PWM control enabled  
g1_pwm  
b1_pwm  
r2_pwm  
0 – RB PWM control disabled  
1 – B1 PWM control enabled  
0 – R2 PWM control disabled  
1 – R2 PWM control enabled  
0 – G2 PWM control disabled  
1 – G2 PWM control enabled  
g2_pwm  
b2_pwm  
0 – B2 PWM control disabled  
1 – B2 PWM control enabled  
WLED CONTROL (08H) – WLED CONTROL REGISTER  
D7  
r-0  
D6  
r-0  
D5  
D4  
fade_sel  
rw-0  
D3  
en_fade  
rw-0  
D2  
D1  
D0  
en_w5_6  
rw-0  
slope  
rw-0  
displ  
rw-0  
en_w1_4  
rw-0  
0 – fade execution time 1.3 sec  
1 – fade execution time 0.65 sec  
slope  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0 – fade control for WLED1… WLED4  
1 – fade control for WLED5, WLED6  
fade_sel  
en_fade  
displ  
0 – automatic fade disabled  
1 – automatic fade enabled  
0 – WLED1-4 and WLED5-6 are controlled separately  
1 – WLED1-4 and WLED5-6 are controlled with WLED1-4 controls  
0 – WLED1…WLED4 disabled  
1 – WLED1…WLED4 enabled  
en_w1_4  
en_w5_6  
0 – WLED5,WLED6 disabled  
1 – WLED5,WLED6 enabled  
43  
www.national.com  
WLED1-4 (09H) – WLED1…WLED4 BRIGHTNESS CONTROL REGISTER  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
wled1_4[7:0]  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
Adjustment  
wled1_4[7:0]  
0000 0000  
0000 0001  
0000 0010  
0000 0011  
0000 0100  
Typical driver current (ma)  
0
0.1  
0.2  
0.3  
0.4  
wled1_4[7:0]  
Bits 7-0  
1111 1101  
1111 1110  
1111 1111  
25.3  
25.4  
25.5  
WLED5-6 (0AH) – WLED5, WLED6 BRIGHTNESS CONTROL REGISTER  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
wled5_5[7:0]  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
Adjustment  
wled5_6[7:0]  
0000 0000  
0000 0001  
0000 0010  
0000 0011  
0000 0100  
Typical driver current (ma)  
0
0.1  
0.2  
0.3  
0.4  
wled5_6[7:0]  
Bits 7-0  
1111 1101  
1111 1110  
1111 1111  
25.3  
25.4  
25.5  
www.national.com  
44  
ENABLES (0BH) – ENABLES REGISTER  
D7  
pwm_sync  
rw-0  
D6  
D5  
en_boost  
rw-0  
D4  
r-0  
D3  
r-0  
D2  
en_autoload  
rw-1  
D1  
D0  
nstby  
rw-0  
rgb_sel[1:0]  
rw-0  
rw-0  
0 – synchronization to external clock disabled  
1 – synchronization to external clock enabled  
pwm_sync  
nstby  
Bit 7  
Bit 6  
Bit 5  
Bit 2  
0 – LP3954 standby mode  
1 – LP3954 active mode  
0 – boost converter disabled  
1 – boost converter enabled  
en_boost  
en_autoload  
0 – internal boost converter active load off  
1 – internal boost converter active load on  
Color LED control mode selection  
rgb_sel[1:0]  
Audio sync  
connected to  
Pattern generator  
connected to  
00  
01  
10  
11  
none  
RGB1  
RGB1 & RGB2  
RGB2  
rgb_sel[1:0]  
Bits 1-0  
RGB2  
RGB1  
RGB1 & RGB2  
none  
ADC_OUTPUT (0CH) – ADC DATA REGISTER  
D7  
r-0  
D6  
r-0  
D5  
r-0  
D4  
D3  
r-0  
D2  
r-0  
D1  
r-0  
D0  
r-0  
data[7:0]  
r-0  
data[7:0]  
Bits 7-0  
Data register ADC (Audio input, light or temperature sensors)  
45  
www.national.com  
BOOST_OUTPUT (0DH) – BOOST OUTPUT VOLTAGE CONTROL REGISTER  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Boost[7:0]  
rw-0  
rw-0  
rw-1  
rw-1  
rw-1  
rw-1  
rw-1  
rw-1  
Adjustment  
Boost[7:0]  
Typical boost output (V)  
0000 0000  
0000 0001  
0000 0011  
0000 0111  
0000 1111  
0001 1111  
0011 1111  
0111 1111  
1111 1111  
4.00  
4.25  
4.40  
Boost[7:0]  
Bits 7-0  
4.55  
4.70  
4.85  
5.00 (default)  
5.15  
5.30  
BOOST_FRQ (0EH) – BOOST FREQUENCY CONTROL REGISTER  
D7  
r-0  
D6  
r-0  
D5  
r-0  
D4  
r-0  
D3  
r-0  
D2  
D1  
D0  
freq_sel[2:0]  
rw-1  
rw-1  
rw-1  
Adjustment  
freq_sel[2:0]  
Frequency  
2.00 MHz  
1.67 MHz  
1.00 MHz  
freq_sel[2:0]  
Bits 7-0  
1xx  
01x  
00x  
www.national.com  
46  
HC_FLASH (10H) – HIGH CURRENT FLASH DRIVER CONTROL REGISTER  
D7  
r-0  
D6  
r-0  
D5  
hc_pwm  
rw-0  
D4  
D3  
D2  
D1  
D0  
en_hcflash  
rw-0  
fl_t[1:0]  
hc[1:0]  
rw-0  
rw-0  
rw-0  
rw-0  
0 – PWM for high current flash driver disabled  
1 – PWM for high current flash driver enabled  
hc_pwm  
fl_t[1:0]  
Bit 5  
Flash duration for high current driver  
fl_t[1:0]  
00  
Typical flash duration  
200 ms  
Bits 4-3  
01  
400 ms  
10  
600 ms  
11  
According EN_FLASH pin on duration  
Current control for high current flash driver  
hc[1:0]  
current  
00  
01  
10  
11  
0.25×IMAX(FLASH)  
0.50×IMAX(FLASH)  
0.75×IMAX(FLASH)  
1.00×IMAX(FLASH)  
hc[1:0]  
Bits 2-1  
Bit 0  
0 – high current flash driver disabled  
1 – high current flash driver enabled  
en_hcflash  
PATTERN_GEN_CTRL (11H) – PATTERN GENERATOR CONTROL REGISTER  
D7  
r-0  
D6  
r-0  
D5  
r-0  
D4  
r-0  
D3  
r-0  
D2  
rgb_start  
rw-0  
D1  
D0  
log  
loop  
rw-0  
rw-0  
0 – Pattern generator disabled  
1 – execution pattern starting from command 1  
rgb_start  
loop  
Bit 2  
Bit 1  
Bit 0  
0 – pattern generator loop disabled (single patter)  
1 – pattern generator loop enabled (execute until stopped)  
0 – color intensity mode 0  
1 – color intensity mode 1  
log  
47  
www.national.com  
RGB1_MAX_CURRENT (12H) – RGB1 DRIVER INDIVIDUAL MAXIMUM CURRENT CONTROL REGISTER  
D7  
r-0  
D6  
r-0  
D5  
D4  
D3  
D2  
D1  
D0  
ir1[1:0]  
ig1[1:0]  
ib1[1:0]  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
Maximum current for R1 driver  
ir1[2:0]  
00  
Maximum output current  
0.25×IMAX  
ir1[1:0]  
Bits 5-4  
Bits 3-2  
Bits 1-0  
01  
0.50×IMAX  
10  
0.75×IMAX  
11  
1.00×IMAX  
1aximum current for G1 driver  
ig2[1:0]  
Maximum output current  
00  
01  
10  
11  
0.25×IMAX  
0.50×IMAX  
ig1[1:0]  
ib1[1:0]  
0.75×IMAX  
1.00×IMAX  
Maximum current for B1 driver  
ib1[1:0]  
00  
Maximum output current  
0.25×IMAX  
01  
0.50×IMAX  
10  
0.75×IMAX  
11  
1.00×IMAX  
www.national.com  
48  
RGB2_MAX_CURRENT (13H) – RGB2 DRIVER INDIVIDUAL MAXIMUM CURRENT CONTROL REGISTER  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
ir2[1:0]  
ig2[1:0]  
ib2[1:0]  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
Maximum current for R2 driver  
ir2[2:0]  
00  
Maximum output current  
0.25×IMAX  
ir2[1:0]  
Bits 5-4  
Bits 3-2  
Bits 1-0  
01  
0.50×IMAX  
10  
0.75×IMAX  
11  
1.00×IMAX  
Maximum current for G2 driver  
ig2[1:0]  
Maximum output current  
00  
01  
10  
11  
0.25×IMAX  
0.50×IMAX  
ig2[1:0]  
ib2[1:0]  
0.75×IMAX  
1.00×IMAX  
Maximum current for B2 driver  
ib2[1:0]  
00  
Maximum output current  
0.25×IMAX  
01  
0.50×IMAX  
10  
0.75×IMAX  
11  
1.00×IMAX  
49  
www.national.com  
AUDIO_SYNC_CTRL1 (2AH) – AUDIO SYNCHRONIZATION AND ADC CONTROL REGISTER 1  
D7  
D6  
gain_sel[2:0]  
rw-0  
D5  
D4  
sync_mode  
rw-0  
D3  
en_agc  
rw-0  
D2  
en_sync  
rw-0  
D1  
D0  
input_sel[1:0]  
rw-0  
rw-0  
rw-1  
rw-1  
Input signal gain control  
gain_sel[2:0]  
000  
gain, db  
0 (default)  
001  
3
6
010  
gain_sel[2:0]  
sync_mode  
Bits 7-5  
011  
9
100  
12  
15  
18  
21  
101  
110  
111  
Input filter mode control  
0 – Amplitude mode  
Bit 4  
1 – Frequency mode  
0 – automatic gain control disabled  
1 – automatic gain control enabled  
en_agc  
Bit 3  
Bit 2  
0 – audio synchronization disabled  
1 – audio synchronization enabled  
en_sync  
ADC input selector  
input_sel[1:0]  
Input  
00  
01  
10  
11  
Single ended input signal (ASE)  
Temperature measurement  
Ambient light measurement  
No input (default)  
input_sel[1:0]  
Bits 1-0  
AUDIO_SYNC_CTRL2 (2BH) – AUDIO SYNCHRONIZATION AND ADC CONTROL REGISTER 2  
D7  
r-0  
D6  
r-0  
D5  
r-0  
D4  
en_avg  
rw-0  
D3  
D2  
D1  
D0  
mode_ctrl[1:0]  
speed_ctrl[1:0]  
rw-0  
rw-0  
rw-0  
rw-0  
0 – averaging disabled  
1 – averaging enabled  
en_avg  
Bit 4  
mode_ctrl[1:0]  
Bits 3-2  
Filtering mode control  
LEDs light response time to audio input  
speed_ctrl[1:0]  
Response  
FASTEST (default)  
FAST  
00  
01  
10  
11  
speed_ctrl[1:0]  
Bits 1-0  
MEDIUM  
SLOW  
www.national.com  
50  
PATTERN CONTROL REGISTERS  
Command_[1:8]A – Pattern Control Register A  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
r[2:0]  
rw-0  
g[2:0]  
rw-0  
cet[3:2]  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
Command_[1:8]B – Pattern Control Register B  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
cet[1:0]  
b[2:0]  
rw-0  
tt[2:0]  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
Red color intensity  
current, %  
r[2:0]  
log=0  
log=1  
000  
001  
010  
011  
100  
101  
110  
111  
0×IMAX  
0×IMAX  
1%×IMAX  
2%×IMAX  
4%×IMAX  
10%×IMAX  
21%×IMAX  
46%×IMAX  
100%×IMAX  
7%×IMAX  
14%×IMAX  
21%×IMAX  
32%×IMAX  
46%×IMAX  
71%×IMAX  
100%×IMAX  
Bits  
7-5A  
r[2:0]  
* log bit is in pattern_gen_ctrl register  
Green color intensity  
current, %  
g[2:0]  
log=0  
log=1  
0×IMAX  
000  
001  
010  
011  
100  
101  
110  
111  
0×IMAX  
7%×IMAX  
14%×IMAX  
21%×IMAX  
32%×IMAX  
46%×IMAX  
71%×IMAX  
100%×IMAX  
1%×IMAX  
2%×IMAX  
4%×IMAX  
10%×IMAX  
21%×IMAX  
46%×IMAX  
100%×IMAX  
Bits  
4-2A  
g[2:0]  
* log bit is in pattern_gen_ctrl register  
51  
www.national.com  
Command execution time  
cet[3:0] CET duration, ms  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
197  
393  
590  
786  
983  
1180  
Bits  
1-0A  
7-6B  
1376  
cet[3:0]  
1573  
1769  
1966  
2163  
2359  
2556  
2753  
2949  
3146  
Blue color intensity  
b[2:0]  
current, %  
log=0  
log=1  
0×IMAX  
000  
001  
010  
011  
100  
101  
110  
111  
0×IMAX  
7%×IMAX  
14%×IMAX  
21%×IMAX  
32%×IMAX  
46%×IMAX  
71%×IMAX  
100%×IMAX  
1%×IMAX  
2%×IMAX  
4%×IMAX  
10%×IMAX  
21%×IMAX  
46%×IMAX  
100%×IMAX  
Bits  
5-3B  
b[2:0]  
* log bit is in pattern_gen_ctrl register  
Transition time  
tt[2:0]  
000  
001  
010  
011  
100  
101  
110  
111  
Transition time, ms  
0
55  
110  
221  
442  
885  
1770  
3539  
Bits  
2-0B  
tt[2:0]  
RESET (60H) - RESET REGISTER  
D7  
r-0  
D6  
r-0  
D5  
D4  
D3  
D2  
D1  
D0  
r-0  
Writing any data to Reset Register in address 60H can reset LP3954  
r-0 r-0 r-0 r-0  
r-0  
www.national.com  
52  
Physical Dimensions inches (millimeters) unless otherwise noted  
The dimension for X1 ,X2 and X3 are as given:  
X1=3.00mm ±0.03mm  
X2=3.00mm ±0.03mm  
X3=0.60mm ±0.075mm  
36-bump micro SMD Package, 3 x 3 x 0.6mm, 0.5mm pitch  
NS Package Number TLA36AAA  
53  
www.national.com  
The dimension for X1 ,X2 and X3 are as given:  
X1=3.00mm ±0.03mm  
X2=3.00mm ±0.03mm  
X3=0.65mm ±0.075mm  
36-bump micro SMDxt Package, 3 x 3 x 0.65mm, 0.5mm pitch  
NS Package Number RLA36AAA  
See Application note AN1112 for micro SMD and AN1412 for micro SMDxt PCB design and assembly instructions.  
www.national.com  
54  
Notes  
55  
www.national.com  
Notes  
THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION  
(“NATIONAL”) PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY  
OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO  
SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS,  
IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS  
DOCUMENT.  
TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT  
NATIONAL’S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL  
PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR  
APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND  
APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE  
NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.  
EXCEPT AS PROVIDED IN NATIONAL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO  
LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE  
AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR  
PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY  
RIGHT.  
LIFE SUPPORT POLICY  
NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR  
SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL  
COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:  
Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and  
whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected  
to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform  
can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.  
National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other  
brand or product names may be trademarks or registered trademarks of their respective holders.  
Copyright© 2007 National Semiconductor Corporation  
For the most current product information visit us at www.national.com  
National Semiconductor  
Americas Customer  
Support Center  
National Semiconductor Europe  
Customer Support Center  
Fax: +49 (0) 180-530-85-86  
National Semiconductor Asia  
Pacific Customer Support Center  
Email: ap.support@nsc.com  
National Semiconductor Japan  
Customer Support Center  
Fax: 81-3-5639-7507  
Email:  
new.feedback@nsc.com  
Tel: 1-800-272-9959  
Email: europe.support@nsc.com  
Deutsch Tel: +49 (0) 69 9508 6208  
English Tel: +49 (0) 870 24 0 2171  
Français Tel: +33 (0) 1 41 91 8790  
Email: jpn.feedback@nsc.com  
Tel: 81-3-5639-7560  
www.national.com  

相关型号:

LP3954TL/NOPB

高级照明管理单元 | YZR | 36 | -30 to 85
TI

LP3954TLX

Advanced Lighting Management Unit
NSC

LP3954TLX/NOPB

高级照明管理单元 | YZR | 36 | -30 to 85
TI

LP3958

Lighting Management Unit with High Voltage Boost Converter
NSC

LP3958

具有高压升压转换器的照明管理单元
TI

LP3958TL

Lighting Management Unit with High Voltage Boost Converter
NSC

LP3958TL/NOPB

具有高压升压转换器的照明管理单元 | YZR | 25 | -30 to 85
TI

LP3958TLX

Lighting Management Unit with High Voltage Boost Converter
NSC

LP3958TLX/NOPB

Lighting Management Unit with High Voltage Boost Converter 25-DSBGA -30 to 85
TI

LP395Z

Ultra Reliable Power Transistor
NSC

LP395Z/NOPB

TRANSISTOR 100 mA, 36 V, NPN, Si, SMALL SIGNAL TRANSISTOR, TO-92, TO-92, 3 PIN, BIP General Purpose Small Signal
NSC

LP3961

800mA Fast Ultra Low Dropout Linear Regulators
NSC