LME49860NA/NOPB [NSC]

IC DUAL OP-AMP, 700000 uV OFFSET-MAX, 55 MHz BAND WIDTH, PDIP8, PLASTIC, DIP-8, Operational Amplifier;
LME49860NA/NOPB
型号: LME49860NA/NOPB
厂家: National Semiconductor    National Semiconductor
描述:

IC DUAL OP-AMP, 700000 uV OFFSET-MAX, 55 MHz BAND WIDTH, PDIP8, PLASTIC, DIP-8, Operational Amplifier

运算放大器
文件: 总34页 (文件大小:1023K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
June 2007  
LME49860  
44V Dual High Performance, High Fidelity Audio  
Operational Amplifier  
General Description  
RL = 2kΩ  
0.00003% (typ)  
0.00003% (typ)  
2.7nV/Hz (typ)  
±20V/μs (typ)  
55MHz (typ)  
140dB (typ)  
RL = 600Ω  
The LME49860 is part of the ultra-low distortion, low noise,  
high slew rate operational amplifier series optimized and fully  
specified for high performance, high fidelity applications.  
Combining advanced leading-edge process technology with  
state-of-the-art circuit design, the LME49860 audio opera-  
tional amplifiers deliver superior audio signal amplification for  
outstanding audio performance. The LME49860 combines  
extremely low voltage noise density (2.7nV/Hz) with van-  
ishingly low THD+N (0.00003%) to easily satisfy the most  
demanding audio applications. To ensure that the most chal-  
lenging loads are driven without compromise, the LME49860  
has a high slew rate of ±20V/μs and an output current capa-  
bility of ±26mA. Further, dynamic range is maximized by an  
output stage that drives 2kloads to within 1V of either power  
supply voltage and to within 1.4V when driving 600loads.  
■ꢀInput Noise Density  
■ꢀSlew Rate  
■ꢀGain Bandwidth Product  
■ꢀOpen Loop Gain (RL = 600Ω)  
■ꢀInput Bias Current  
■ꢀInput Offset Voltage  
■ꢀDC Gain Linearity Error  
10nA (typ)  
0.1mV (typ)  
0.000009%  
Features  
Easily drives 600loads  
The LME49860's outstanding CMRR (120dB), PSRR  
(120dB), and VOS (0.1mV) give the amplifier excellent oper-  
ational amplifier DC performance.  
Optimized for superior audio signal fidelity  
Output short circuit protection  
PSRR and CMRR exceed 120dB (typ)  
SOIC, DIP packages  
The LME49860 has a wide supply range of ±2.5V to ±22V.  
Over this supply range the LME49860 maintains excellent  
common-mode rejection, power supply rejection, and low in-  
put bias current. The LME49860 is unity gain stable. This  
Audio Operational Amplifier achieves outstanding AC perfor-  
mance while driving complex loads with values as high as  
100pF.  
Applications  
Ultra high quality audio amplification  
High fidelity preamplifiers  
High fidelity multimedia  
The LME49860 is available in 8–lead narrow body SOIC and  
8–lead Plastic DIP packages. Demonstration boards are  
available for each package.  
State of the art phono pre amps  
High performance professional audio  
High fidelity equalization and crossover networks  
Key Specifications  
High performance line drivers  
■ꢀPower Supply Voltage Range  
±2.5V to ±22V  
High performance line receivers  
High fidelity active filters  
■ꢀTHD+N  
(AV = 1, VOUT = 3VRMS, fIN = 1kHz)  
Typical Application  
202151k5  
Passively Equalized RIAA Phono Preamplifier  
© 2007 National Semiconductor Corporation  
202151  
www.national.com  
Connection Diagrams  
20215155  
Order Number LME49860MA  
See NS Package Number — M08A  
Order Number LME49860NA  
See NS Package Number — N08E  
LME49860MA Top Mark  
LME49860NA Top Mark  
20215101  
20215102  
N — National Logo  
Z — Assembly Plant code  
X — 1 Digit Date code  
TT — Die Traceability  
L49860 — LME49860  
MA — Package code  
N — National Logo  
U — Fabrication code  
Z — Assembly Plant code  
XY — 2 Digit Date code  
TT — Die Traceability  
NA — Package code  
www.national.com  
2
Pins 2, 3, 5 and 6  
Junction Temperature  
Thermal Resistance  
ꢁθJA (SO)  
100V  
150°C  
Absolute Maximum Ratings (Notes 1, 2)  
If Military/Aerospace specified devices are required,  
please contact the National Semiconductor Sales Office/  
Distributors for availability and specifications.  
145°C/W  
102°C/W  
ꢁθJA (NA)  
Power Supply Voltage  
(VS = V+ - V-)  
Storage Temperature  
Input Voltage  
46V  
−65°C to 150°C  
Operating Ratings  
(V-)-0.7V to (V+)+0.7V  
Continuous  
Temperature Range  
Output Short Circuit (Note 3)  
ESD Susceptibility (Note 4)  
ESD Susceptibility (Note 5)  
Pins 1, 4, 7 and 8  
TMIN TA TMAX  
Supply Voltage Range  
−40°C TA 85°C  
±2.5V VS ±22V  
2000V  
200V  
Electrical Characteristics for the LME49860 (Note 1) The following specifications apply for VS =  
±18V and ±22V, RL = 2k, RSOURCE = 10Ω, fIN = 1kHz, TA = 25°C, unless otherwise specified.  
LME49860  
Units  
Symbol  
Parameter  
Conditions  
AV = 1, VOUT = 3Vrms  
Typical  
Limit  
(Limits)  
(Note 6)  
(Note 7)  
RL = 2kΩ  
RL = 600Ω  
THD+N  
Total Harmonic Distortion + Noise  
Intermodulation Distortion  
% (max)  
%
0.00003  
0.00003  
0.00009  
AV = 1, VOUT = 3VRMS  
IMD  
0.00005  
Two-tone, 60Hz & 7kHz 4:1  
GBWP  
SR  
Gain Bandwidth Product  
Slew Rate  
55  
45  
MHz (min)  
±20  
±15  
V/μs (min)  
VOUT = 1VP-P, –3dB  
referenced to output magnitude  
at f = 1kHz  
FPBW  
ts  
Full Power Bandwidth  
10  
MHz  
AV = –1, 10V step, CL = 100pF  
0.1% error range  
Settling time  
1.2  
μs  
μVRMS  
(max)  
fBW = 20Hz to 20kHz  
Equivalent Input Noise Voltage  
0.34  
0.65  
4.7  
en  
f = 1kHz  
f = 10Hz  
2.7  
6.4  
nV/Hz  
(max)  
Equivalent Input Noise Density  
Current Noise Density  
Offset Voltage  
in  
f = 1kHz  
f = 10Hz  
1.6  
3.1  
pA/Hz  
VS = ±18V  
VS = ±22V  
±0.12  
±0.14  
±0.7  
±0.7  
mV (max)  
mV (max)  
VOS  
Average Input Offset Voltage Drift vs  
Temperature  
ΔVOSTemp  
0.2  
–40°C TA 85°C  
μV/°C  
(Note 8)  
Average Input Offset Voltage Shift vs  
Power Supply Voltage  
VS = ±18V, Δ VS = 24V  
VS = ±22V, Δ VS = 30V  
PSRR  
120  
120  
dB  
dB (min)  
110  
72  
fIN = 1kHz  
118  
112  
ISOCH-CH  
Channel-to-Channel Isolation  
Input Bias Current  
dB  
fIN = 20kHz  
IB  
VCM = 0V  
10  
0.1  
11  
nA (max)  
nA/°C  
Input Bias Current Drift vs  
Temperature  
ΔIOSTemp  
–40°C TA 85°C  
VCM = 0V  
IOS  
Input Offset Current  
65  
nA (max)  
+17.1  
–16.9  
(V+) – 2.0  
(V-) + 2.0  
V (min)  
V (min)  
VS = ±18V  
VIN-CM  
Common-Mode Input Voltage Range  
+21.0  
–20.8  
(V+) – 2.0  
(V-) + 2.0  
V (min)  
V (min)  
VS = ±22V  
3
www.national.com  
LME49860  
Units  
(Limits)  
Symbol  
Parameter  
Conditions  
Typical  
Limit  
(Note 6)  
(Note 7)  
VS = ±18V  
120  
dB  
-12V VCM 12V  
VS = ±22V  
CMRR  
Common-Mode Rejection  
120  
110  
dB (min)  
-15V VCM 15V  
Differential Input Impedance  
30  
kΩ  
ZIN  
Common Mode Input Impedance  
–10V<Vcm<10V  
VS = ±18V  
1000  
MΩ  
–12VVout12V  
RL = 600Ω  
RL = 2kΩ  
140  
140  
140  
dB  
dB  
dB  
RL = 10kΩ  
AVOL  
Open Loop Voltage Gain  
VS = ±22V  
–15VVout15V  
RL = 600Ω  
RL = 2kΩ  
125  
140  
140  
140  
dB (min)  
dB  
RL = 10kΩ  
dB  
RL = 600Ω  
VS = ±18V  
VS = ±22V  
±16.7  
±20.4  
V
±19.0  
V (min)  
RL = 2kΩ  
VOUTMAX  
Maximum Output Voltage Swing  
VS = ±18V  
±17.0  
±21.0  
V
V
VS = ±22V  
RL = 10kΩ  
VS = ±18V  
VS = ±22V  
±17.1  
±21.2  
V
V
RL = 600Ω  
VS = ±20V  
VS = ±22V  
IOUT  
Output Current  
±31  
±37  
mA  
mA (min)  
±30  
+53  
–42  
IOUT-CC  
Instantaneous Short Circuit Current  
mA  
fIN = 10kHz  
Closed-Loop  
Open-Loop  
ROUT  
CLOAD  
IS  
Output Impedance  
0.01  
13  
Capacitive Load Drive Overshoot  
Total Quiescent Current  
100pF  
16  
%
IOUT = 0mA  
VS = ±18V  
VS = ±22V  
10.2  
10.5  
mA  
mA (max)  
13  
Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur.  
Note 2: Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. For guaranteed specifications  
and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics  
may degrade when the device is not operated under the listed test conditions.  
Note 3: Amplifier output connected to GND, any number of amplifiers within a package.  
Note 4: Human body model, 100pF discharged through a 1.5kresistor.  
Note 5: Machine Model ESD test is covered by specification EIAJ IC-121-1981. A 200pF cap is charged to the specified voltage and then discharged directly into  
the IC with no external series resistor (resistance of discharge path must be under 50Ω).  
Note 6: Typical specifications are specified at +25ºC and represent the most likely parametric norm.  
Note 7: Tested limits are guaranteed to National's AOQL (Average Outgoing Quality Level).  
Note 8: PSRR is measured as follows: For VS = ±22V, VOS is measured at two supply voltages, ±7V and ±22V. PSRR = | 20log(ΔVOSVS) |.  
www.national.com  
4
Typical Performance Characteristics  
THD+N vs Output Voltage  
VCC = 15V, VEE = –15V  
THD+N vs Output Voltage  
VCC = 12V, VEE = –12V  
RL = 2kΩ  
RL = 2kΩ  
202151k6  
202151k7  
THD+N vs Output Voltage  
VCC = 22V, VEE = –22V  
THD+N vs Output Voltage  
VCC = 2.5V, VEE = –2.5V  
RL = 2kΩ  
RL = 2kΩ  
202151k8  
202151i4  
THD+N vs Output Voltage  
VCC = 15V, VEE = –15V  
THD+N vs Output Voltage  
VCC = 12V, VEE = –12V  
RL = 600Ω  
RL = 600Ω  
202151k9  
202151l0  
5
www.national.com  
THD+N vs Output Voltage  
VCC = 22V, VEE = –22V  
THD+N vs Output Voltage  
VCC = 2.5V, VEE = –2.5V  
RL = 600Ω  
RL = 600Ω  
202151l1  
202151i6  
THD+N vs Output Voltage  
VCC = 15V, VEE = –15V  
THD+N vs Output Voltage  
VCC = 12V, VEE = –12V  
RL = 10kΩ  
RL = 10kΩ  
202151l2  
202151l3  
THD+N vs Output Voltage  
VCC = 22V, VEE = –22V  
THD+N vs Output Voltage  
VCC = 2.5V, VEE = –2.5V  
RL = 10kΩ  
RL = 10kΩ  
202151l4  
202151i5  
www.national.com  
6
THD+N vs Frequency  
VCC = 15V, VEE = –15V, VOUT = 3VRMS  
THD+N vs Frequency  
VCC = 12V, VEE = –12V, VOUT = 3VRMS  
RL = 2kΩ  
RL = 2kΩ  
20215163  
20215162  
THD+N vs Frequency  
VCC = 22V, VEE = –22V, VOUT = 3VRMS  
THD+N vs Frequency  
VCC = 15V, VEE = –15V, VOUT = 3VRMS  
RL = 2kΩ  
RL = 600Ω  
20215164  
20215159  
THD+N vs Frequency  
VCC = 12V, VEE = –12V, VOUT = 3VRMS  
THD+N vs Frequency  
VCC = 22V, VEE = –22V, VOUT = 3VRMS  
RL = 600Ω  
RL = 600Ω  
202151k3  
20215160  
7
www.national.com  
THD+N vs Frequency  
VCC = 15V, VEE = –15V, VOUT = 3VRMS  
THD+N vs Frequency  
VCC = 12V, VEE = –12V, VOUT = 3VRMS  
RL = 10kΩ  
RL = 10kΩ  
20215167  
20215166  
THD+N vs Frequency  
VCC = 22V, VEE = –22V, VOUT = 3VRMS  
IMD vs Output Voltage  
VCC = 15V, VEE = –15V  
RL = 10kΩ  
RL = 2kΩ  
20215168  
202151e6  
IMD vs Output Voltage  
VCC = 12V, VEE = –12V  
IMD vs Output Voltage  
VCC = 22V, VEE = –22V  
RL = 2kΩ  
RL = 2kΩ  
202151e5  
202151e7  
www.national.com  
8
IMD vs Output Voltage  
VCC = 2.5V, VEE = –2.5V  
IMD vs Output Voltage  
VCC = 15V, VEE = –15V  
RL = 2kΩ  
RL = 600Ω  
202151e2  
202151e3  
202151f1  
202151e4  
202151e0  
202151e1  
IMD vs Output Voltage  
VCC = 12V, VEE = –12V  
IMD vs Output Voltage  
VCC = 22V, VEE = –22V  
RL = 600Ω  
RL = 600Ω  
IMD vs Output Voltage  
VCC = 2.5V, VEE = –2.5V  
IMD vs Output Voltage  
VCC = 15V, VEE = –15V  
RL = 600Ω  
RL = 10kΩ  
9
www.national.com  
IMD vs Output Voltage  
VCC = 12V, VEE = –12V  
IMD vs Output Voltage  
VCC = 22V, VEE = –22V  
RL = 10kΩ  
RL = 10kΩ  
202151f0  
202151f2  
IMD vs Output Voltage  
VCC = 2.5V, VEE = –2.5V  
Voltage Noise Density vs Frequency  
RL = 10kΩ  
202151h6  
202151l6  
Current Noise Density vs Frequency  
Crosstalk vs Frequency  
VCC = 15V, VEE = –15V, VOUT = 3VRMS  
AV = 0dB, RL = 2kΩ  
202151h7  
202151c8  
www.national.com  
10  
Crosstalk vs Frequency  
VCC = 15V, VEE = –15V, VOUT = 10VRMS  
Crosstalk vs Frequency  
VCC = 12V, VEE = –12V, VOUT = 3VRMS  
AV = 0dB, RL = 2kΩ  
AV = 0dB, RL = 2kΩ  
202151c9  
202151c6  
Crosstalk vs Frequency  
VCC = 12V, VEE = –12V, VOUT = 10VRMS  
Crosstalk vs Frequency  
VCC = 22V, VEE = –22V, VOUT = 3VRMS  
AV = 0dB, RL = 2kΩ  
AV = 0dB, RL = 2kΩ  
202151c7  
202151d0  
Crosstalk vs Frequency  
VCC = 22V, VEE = –22V, VOUT = 10VRMS  
Crosstalk vs Frequency  
VCC = 2.5V, VEE = –2.5V, VOUT = 1VRMS  
AV = 0dB, RL = 2kΩ  
AV = 0dB, RL = 2kΩ  
202151d1  
202151n8  
11  
www.national.com  
Crosstalk vs Frequency  
VCC = 15V, VEE = –15V, VOUT = 3VRMS  
Crosstalk vs Frequency  
VCC = 15V, VEE = –15V, VOUT = 10VRMS  
AV = 0dB, RL = 600Ω  
AV = 0dB, RL = 600Ω  
202151d6  
202151d7  
Crosstalk vs Frequency  
VCC = 12V, VEE = –12V, VOUT = 3VRMS  
Crosstalk vs Frequency  
VCC = 12V, VEE = –12V, VOUT = 10VRMS  
AV = 0dB, RL = 600Ω  
AV = 0dB, RL = 600Ω  
202151d4  
202151d5  
Crosstalk vs Frequency  
VCC = 22V, VEE = –22V, VOUT = 3VRMS  
Crosstalk vs Frequency  
VCC = 22V, VEE = –22V, VOUT = 10VRMS  
AV = 0dB, RL = 600Ω  
AV = 0dB, RL = 600Ω  
202151d8  
202151d9  
www.national.com  
12  
Crosstalk vs Frequency  
VCC = 2.5V, VEE = –2.5V, VOUT = 1VRMS  
Crosstalk vs Frequency  
VCC = 15V, VEE = –15V, VOUT = 3VRMS  
AV = 0dB, RL = 600Ω  
AV = 0dB, RL = 10kΩ  
202151d2  
202151o0  
Crosstalk vs Frequency  
VCC = 15V, VEE = –15V, VOUT = 10VRMS  
Crosstalk vs Frequency  
VCC = 12V, VEE = –12V, VOUT = 3VRMS  
AV = 0dB, RL = 10kΩ  
AV = 0dB, RL = 10kΩ  
202151n7  
202151n9  
Crosstalk vs Frequency  
VCC = 12V, VEE = –12V, VOUT = 10VRMS  
Crosstalk vs Frequency  
VCC = 22V, VEE = –22V, VOUT = 3VRMS  
AV = 0dB, RL = 10kΩ  
AV = 0dB, RL = 10kΩ  
202151n6  
202151n5  
13  
www.national.com  
Crosstalk vs Frequency  
VCC = 22V, VEE = –22V, VOUT = 10VRMS  
Crosstalk vs Frequency  
VCC = 2.5V, VEE = –2.5V, VOUT = 1VRMS  
AV = 0dB, RL = 10kΩ  
AV = 0dB, RL = 10kΩ  
202151n3  
202151n4  
PSRR+ vs Frequency  
VCC = 15V, VEE = –15V  
PSRR- vs Frequency  
VCC = 15V, VEE = –15V  
RL = 2k, VRIPPLE = 200mVpp  
RL = 2k, VRIPPLE = 200mVpp  
202151o1  
202151n2  
PSRR+ vs Frequency  
VCC = 12V, VEE = –12V  
PSRR- vs Frequency  
VCC = 12V, VEE = –12V  
RL = 2k, VRIPPLE = 200mVpp  
RL = 2k, VRIPPLE = 200mVpp  
202151n1  
202151n0  
www.national.com  
14  
PSRR+ vs Frequency  
VCC = 22V, VEE = –22V  
PSRR- vs Frequency  
VCC = 22V, VEE = –22V  
RL = 2k, VRIPPLE = 200mVpp  
RL = 2k, VRIPPLE = 200mVpp  
202151m9  
202151o3  
PSRR+ vs Frequency  
VCC = 2.5V, VEE = –2.5V  
PSRR- vs Frequency  
VCC = 2.5V, VEE = –2.5V  
RL = 2k, VRIPPLE = 200mVpp  
RL = 2k, VRIPPLE = 200mVpp  
202151o6  
202151m8  
PSRR+ vs Frequency  
VCC = 15V, VEE = –15V  
PSRR- vs Frequency  
VCC = 15V, VEE = –15V  
RL = 600Ω, VRIPPLE = 200mVpp  
RL = 600Ω, VRIPPLE = 200mVpp  
202151o7  
202151o2  
15  
www.national.com  
PSRR+ vs Frequency  
VCC = 12V, VEE = –12V  
PSRR- vs Frequency  
VCC = 12V, VEE = –12V  
RL = 600Ω, VRIPPLE = 200mVpp  
RL = 600Ω, VRIPPLE = 200mVpp  
202151m7  
202151o4  
PSRR+ vs Frequency  
VCC = 22V, VEE = –22V  
PSRR- vs Frequency  
VCC = 22V, VEE = –22V  
RL = 600Ω, VRIPPLE = 200mVpp  
RL = 600Ω, VRIPPLE = 200mVpp  
202151o5  
202151m6  
PSRR+ vs Frequency  
VCC = 2.5V, VEE = –2.5V  
PSRR- vs Frequency  
VCC = 2.5V, VEE = –2.5V  
RL = 600Ω, VRIPPLE = 200mVpp  
RL = 600Ω, VRIPPLE = 200mVpp  
202151m5  
202151m4  
www.national.com  
16  
PSRR+ vs Frequency  
VCC = 15V, VEE = –15V  
PSRR- vs Frequency  
VCC = 15V, VEE = –15V  
RL = 10k, VRIPPLE = 200mVpp  
RL = 10k, VRIPPLE = 200mVpp  
202151m2  
202151m3  
PSRR+ vs Frequency  
VCC = 12V, VEE = –12V  
PSRR- vs Frequency  
VCC = 12V, VEE = –12V  
RL = 10k, VRIPPLE = 200mVpp  
RL = 10k, VRIPPLE = 200mVpp  
202151m1  
202151m0  
PSRR+ vs Frequency  
VCC = 22V, VEE = –22V  
PSRR- vs Frequency  
VCC = 22V, VEE = –22V  
RL = 10k, VRIPPLE = 200mVpp  
RL = 10k, VRIPPLE = 200mVpp  
202151l9  
202151l8  
17  
www.national.com  
PSRR+ vs Frequency  
VCC = 2.5V, VEE = –2.5V  
PSRR- vs Frequency  
VCC = 2.5V, VEE = –2.5V  
RL = 10k, VRIPPLE = 200mVpp  
RL = 10k, VRIPPLE = 200mVpp  
202151l7  
202151l5  
CMRR vs Frequency  
VCC = 15V, VEE = –15V  
CMRR vs Frequency  
VCC = 12V, VEE = –12V  
RL = 2kΩ  
RL = 2kΩ  
202151f7  
202151g0  
CMRR vs Frequency  
VCC = 22V, VEE = –22V  
CMRR vs Frequency  
VCC = 2.5V, VEE = –2.5V  
RL = 2kΩ  
RL = 2kΩ  
202151g3  
202151f4  
www.national.com  
18  
CMRR vs Frequency  
VCC = 15V, VEE = –15V  
CMRR vs Frequency  
VCC = 12V, VEE = –12V  
RL = 600Ω  
RL = 600Ω  
202151o9  
202151f9  
202151f6  
202151f8  
CMRR vs Frequency  
VCC = 22V, VEE = –22V  
CMRR vs Frequency  
VCC = 2.5V, VEE = –2.5V  
RL = 600Ω  
RL = 600Ω  
202151g5  
CMRR vs Frequency  
VCC = 15V, VEE = –15V  
CMRR vs Frequency  
VCC = 12V, VEE = –12V  
RL = 10kΩ  
RL = 10kΩ  
202151o8  
19  
www.national.com  
CMRR vs Frequency  
VCC = 22V, VEE = –22V  
CMRR vs Frequency  
VCC = 2.5V, VEE = –2.5V  
RL = 10kΩ  
RL = 10kΩ  
202151g4  
202151f5  
Output Voltage vs Load Resistance  
VCC = 15V, VEE = –15V  
THD+N = 1%  
Output Voltage vs Load Resistance  
VCC = 12V, VEE = –12V  
THD+N = 1%  
202151h0  
202151h1  
Output Voltage vs Load Resistance  
VCC = 22V, VEE = –22V  
THD+N = 1%  
Output Voltage vs Load Resistance  
VCC = 2.5V, VEE = –2.5V  
THD+N = 1%  
202151h2  
202151g9  
www.national.com  
20  
Output Voltage vs Total Power Supply Voltage  
Output Voltage vs Total Power Supply Voltage  
RL = 2k, THD+N = 1%  
RL = 600Ω, THD+N = 1%  
20215107  
20215109  
Output Voltage vs Total Power Supply Voltage  
Power Supply Current vs Total Power Supply Voltage  
RL = 10k, THD+N = 1%  
RL = 2kΩ  
20215108  
20215104  
Power Supply Current vs Total Power Supply Voltage  
Power Supply Current vs Total Power Supply Voltage  
RL = 600Ω  
RL = 10kΩ  
20215106  
20215105  
21  
www.national.com  
Full Power Bandwidth vs Frequency  
Gain Phase vs Frequency  
202151j0  
202151j1  
Small-Signal Transient Response  
AV = 1, CL = 10pF  
Small-Signal Transient Response  
AV = 1, CL = 100pF  
202151i7  
202151i8  
www.national.com  
22  
inputs changes the amplifier’s noise gain. The result is that  
the error signal (distortion) is amplified by a factor of 101. Al-  
though the amplifier’s closed-loop gain is unaltered, the feed-  
back available to correct distortion errors is reduced by 101,  
which means that measurement resolution increases by 101.  
To ensure minimum effects on distortion measurements,  
keep the value of R1 low as shown in Figure 1.  
Application Information  
DISTORTION MEASUREMENTS  
The vanishingly low residual distortion produced by  
LME49860 is below the capabilities of all commercially avail-  
able equipment. This makes distortion measurements just  
slightly more difficult than simply connecting a distortion me-  
ter to the amplifier’s inputs and outputs. The solution, how-  
ever, is quite simple: an additional resistor. Adding this  
resistor extends the resolution of the distortion measurement  
equipment.  
This technique is verified by duplicating the measurements  
with high closed loop gain and/or making the measurements  
at high frequencies. Doing so produces distortion compo-  
nents that are within the measurement equipment’s capabili-  
ties. This datasheet’s THD+N and IMD values were generat-  
ed using the above described circuit connected to an Audio  
Precision System Two Cascade.  
The LME49860’s low residual distortion is an input referred  
internal error. As shown in Figure 1, adding the 10resistor  
connected between the amplifier’s inverting and non-inverting  
202151k4  
FIGURE 1. THD+N and IMD Distortion Test Circuit  
23  
www.national.com  
The LME49860 is a high speed op amp with excellent phase  
margin and stability. Capacitive loads up to 100pF will cause  
little change in the phase characteristics of the amplifiers and  
are therefore allowable.  
a resistor in series with the output. This resistor will also pre-  
vent excess power dissipation if the output is accidentally  
shorted.  
Capacitive loads greater than 100pF must be isolated from  
the output. The most straightforward way to do this is to put  
20215127  
Complete shielding is required to prevent induced pick up from external sources. Always check with oscilloscope for power line noise.  
Noise Measurement Circuit  
Total Gain: 115 dB @f = 1 kHz  
Input Referred Noise Voltage: en = V0/560,000 (V)  
RIAA Preamp Voltage Gain, RIAA  
Deviation vs Frequency  
Flat Amp Voltage Gain vs  
Frequency  
20215128  
20215129  
www.national.com  
24  
TYPICAL APPLICATIONS  
NAB Preamp  
NAB Preamp Voltage Gain  
vs Frequency  
20215131  
20215130  
AV = 34.5  
F = 1 kHz  
En = 0.38 μV  
A Weighted  
Balanced to Single Ended Converter  
Adder/Subtracter  
20215133  
VO = V1 + V2 − V3 − V4  
20215132  
VO = V1–V2  
Sine Wave Oscillator  
20215134  
25  
www.national.com  
Second Order High Pass Filter  
(Butterworth)  
Second Order Low Pass Filter  
(Butterworth)  
20215135  
20215136  
Illustration is f0 = 1 kHz  
Illustration is f0 = 1 kHz  
State Variable Filter  
20215137  
Illustration is f0 = 1 kHz, Q = 10, ABP = 1  
www.national.com  
26  
AC/DC Converter  
20215138  
2 Channel Panning Circuit (Pan Pot)  
Line Driver  
20215139  
20215140  
27  
www.national.com  
Tone Control  
20215141  
Illustration is:  
fL = 32 Hz, fLB = 320 Hz  
fH =11 kHz, fHB = 1.1 kHz  
20215142  
RIAA Preamp  
20215103  
Av = 35 dB  
En = 0.33 μV  
S/N = 90 dB  
f = 1 kHz  
A Weighted  
A Weighted, VIN = 10 mV  
www.national.com  
28  
@f = 1 kHz  
Balanced Input Mic Amp  
20215143  
Illustration is:  
V0 = 101(V2 − V1)  
29  
www.national.com  
10 Band Graphic Equalizer  
20215144  
fo (Hz)  
32  
C1  
C2  
R1  
R2  
0.12μF  
0.056μF  
0.033μF  
0.015μF  
8200pF  
3900pF  
2000pF  
1100pF  
510pF  
4.7μF  
3.3μF  
75kΩ  
68kΩ  
62kΩ  
68kΩ  
62kΩ  
68kΩ  
68kΩ  
62kΩ  
68kΩ  
51kΩ  
500Ω  
510Ω  
510Ω  
470Ω  
470Ω  
470Ω  
470Ω  
470Ω  
510Ω  
510Ω  
64  
125  
250  
500  
1k  
1.5μF  
0.82μF  
0.39μF  
0.22μF  
0.1μF  
2k  
4k  
0.056μF  
0.022μF  
0.012μF  
8k  
16k  
330pF  
Note 9: At volume of change = ±12 dB  
ꢀꢀQ = 1.7  
ꢀꢀReference: “AUDIO/RADIO HANDBOOK”, National Semiconductor, 1980, Page 2–61  
www.national.com  
30  
Revision History  
Rev  
1.0  
Date  
Description  
06/01/07  
06/11/07  
Initial release.  
1.1  
Added the LME49860MA and LME49860NA Top Mark Information.  
31  
www.national.com  
Physical Dimensions inches (millimeters) unless otherwise noted  
Narrow SOIC Package  
Order Number LME49860MA  
NS Package Number M08A  
Dual-In-Line Package  
Order Number LME49860NA  
NS Package Number N08E  
www.national.com  
32  
Notes  
33  
www.national.com  
Notes  
THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION  
(“NATIONAL”) PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY  
OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO  
SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS,  
IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS  
DOCUMENT.  
TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT  
NATIONAL’S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL  
PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR  
APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND  
APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE  
NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.  
EXCEPT AS PROVIDED IN NATIONAL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO  
LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE  
AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR  
PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY  
RIGHT.  
LIFE SUPPORT POLICY  
NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR  
SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL  
COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:  
Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and  
whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected  
to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform  
can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.  
National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other  
brand or product names may be trademarks or registered trademarks of their respective holders.  
Copyright© 2007 National Semiconductor Corporation  
For the most current product information visit us at www.national.com  
National Semiconductor  
Americas Customer  
Support Center  
National Semiconductor Europe  
Customer Support Center  
Fax: +49 (0) 180-530-85-86  
National Semiconductor Asia  
Pacific Customer Support Center  
Email: ap.support@nsc.com  
National Semiconductor Japan  
Customer Support Center  
Fax: 81-3-5639-7507  
Email:  
new.feedback@nsc.com  
Tel: 1-800-272-9959  
Email: europe.support@nsc.com  
Deutsch Tel: +49 (0) 69 9508 6208  
English Tel: +49 (0) 870 24 0 2171  
Français Tel: +33 (0) 1 41 91 8790  
Email: jpn.feedback@nsc.com  
Tel: 81-3-5639-7560  
www.national.com  

相关型号:

LME49870

44V Single High Performance, High Fidelity Audio Operational Amplifier
NSC

LME49870

44V Single High Performance, High Fidelity Audio Operational Amplifier
TI

LME49870MA

IC OP-AMP, 55 MHz BAND WIDTH, PDSO8, SOIC-8, Operational Amplifier
NSC

LME49870MA/NOPB

44V Single High Performance, High Fidelity Audio Operational Amplifier 8-SOIC -40 to 85
TI

LME49871

High Performance, High Fidelity Current Feedback Audio Operational Amplifier
NSC

LME49871MA

High Performance, High Fidelity Current Feedback Audio Operational Amplifier
NSC

LME49871MAX

IC,OP-AMP,SINGLE,BIPOLAR,SOP,8PIN,PLASTIC
TI

LME49880

Dual JFET Input Audio Operational Amplifier
NSC

LME49880

E-Series Dual JFET Input Audio Operational Amplifier
TI

LME49880MR

Dual JFET Input Audio Operational Amplifier
NSC

LME49880MR/NOPB

E-Series Dual JFET Input Audio Operational Amplifier
TI

LME49880MRX

Dual JFET Input Audio Operational Amplifier
NSC