NJW4303 [NJRC]

PWM 3-PHASE DC BRUSHLESS MOTOR CONTROLLER; PWM 3相直流无刷电机控制器
NJW4303
型号: NJW4303
厂家: NEW JAPAN RADIO    NEW JAPAN RADIO
描述:

PWM 3-PHASE DC BRUSHLESS MOTOR CONTROLLER
PWM 3相直流无刷电机控制器

电动机控制 电机 控制器
文件: 总28页 (文件大小:341K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NJW4303  
PWM 3-PHASE DC BRUSHLESS MOTOR CONTROLLER  
„GENERAL DESCRIPTION  
„PACKAGE OUTLINE  
The NJW4303 is a 3-Phase Brushless DC Motor Control  
pre-driver IC with PWM control. It generates the most optimal  
current flow patterns by receiving rotor magnetic pole detection  
signals from hall elements of 3-phase brushless motor.  
Operational voltage range for the IC has margin as 9.0V to  
35V(maximum voltage of 40V), and it fits for a 12V/24V power  
supply. It is possible to put practical use such as speed control by  
internal oscillation circuit, and torque limiter control by current  
sensory circuit. With NJW4303, high reliability of various motor  
drive controls can be realized by a variety of function and a  
substantial protection circuit.  
NJW4303V  
„FEATURES  
Maximum Supply Voltage  
Operating Voltage  
: 40V  
: 9.0 V to 35V  
3-Phase Full-Wave PWM Predriver  
Low-side Gate Voltage Clamp  
Internal PWM Oscillation Circuit  
Current Protection Circuit  
: Hi-side: Pch-FET/ Low-side: Nch-FET  
: Gate Voltage=18V max.  
: Frequency Setting by External Capacitor  
: Current limit=0.25V±10%  
Low-Voltage Protection Circuit  
Forward/Reverse Direction  
: Changeable while Rotating  
: Controllable Dead-Time Settings  
: Using External Capacitor  
: Stop with S/S Pin  
Soft-Start Function  
ON/OFF Function  
Brake Function  
Lock Protection System  
Thermal Shutdown Circuit  
120°/60° Phase Difference Change Function  
Multi-FG Output  
Bi-CDMOS Technology  
Package Outline  
: 2bit Input Change Type  
: SSOP32  
„PIN CONNECTION  
1pin  
VREF  
H1+  
H1-  
H2+  
H2-  
H3+  
H3-  
N.C  
FG  
VCC  
UH  
VH  
WH  
N.C  
N.C  
GND  
UL  
1.VREF  
2.H1+  
3.H1-  
4.H2+  
5.H2-  
6.H3+  
7.H3-  
8.N.C  
17.GND  
18.OSC  
19.Ct  
20.FRC  
21.ILIMIT  
22.N.C  
23.WL  
24.VL  
VL  
9.FG  
25.UL  
FR  
BR  
N1  
N2  
WL  
10.FR  
11.BR  
12.N1  
13.N2  
14.DEC  
15.S/S  
16.VERR  
26.GND  
27.N.C  
28.N.C  
29.WH  
30.VH  
N.C  
ILIMIT  
FRC  
Ct  
OSC  
GND  
DEC  
S/S  
VERR  
31.UH  
32.VCC  
Ver. 2009-11-13  
- 1 -  
NJW4303  
„PIN FUNCTION LIST  
Terminal  
Pin#  
Function  
Remark  
Name  
1
VREF  
H1+  
H1-  
5V Output Voltage Terminal  
Hall Element Input Terminal H1+  
Hall Element Input Terminal H1-  
Hall Element Input TerminalH2+  
Hall Element Input Terminal H2-  
Hall Element Input Terminal H3+  
Hall Element Input Terminal H3-  
No Connection  
Outputs Supply Voltage of 5V  
Use with H1-  
2
3
Use with H1+  
4
H2+  
H2-  
Use with H2-  
5
Use with H2+  
6
H3+  
H3-  
Use with H3-  
7
8,22,27,28  
9
Use with H3+  
N.C.  
FG  
No Connection  
Output Rotary Signal  
FG pulse Output Terminal  
Forward/Reverse Direction  
Input Terminal  
10  
FR  
L, or Open=Forward Direction, H=Reverse Direction  
11  
12  
13  
14  
15  
BR  
N1  
Short Brake Input Terminal  
FG Pattern Switching Terminal1  
FG Pattern Switching Terminal2  
Hall Input Phase Switching Terminal  
Start and Stop input Terminal  
L, or Open=Rotation, H=Short Brake  
Set FG Pattern by Combination with N2. Cf. the below table  
Set FG Pattern by Combination with N1. Cf. the below table  
L, or Open=120° Hall Input, H=60° Hall Input  
L, or Open=Start, H=Stop  
N2  
DEC  
S/S  
Set Output ON Duty  
16  
VERR  
Error Amp Voltage Input Terminal  
H=Output ON Duty 100%, L=Output ON Duty 0%  
Pull-up to VREF PIN in nonuse  
17,26  
18  
GND  
OSC  
Logic Ground Terminal  
Connecting with Ground  
Insert a Capacitor between Grounds. Set PWM frequency  
depending on the value of the Capacitor  
Insert a Capacitor between Grounds. Depending on the value of the  
Capacitor, set On/Off timer for the Output at the time of activated  
Lock Protection.  
PWM Control Capacitor Terminal  
Lock Protection Capacitor  
Connection Terminal  
19  
Ct  
Dead-Time Capacitor Connection  
Terminal  
Insert a Capacitor between Grounds. Depending on the value of the  
Capacitor, set Output Dead Band at the time of FR switching  
Connect to the ground side of the external driver  
Connect to Nch Gate Driver  
20  
FRC  
21  
23  
24  
25  
29  
30  
31  
32  
ILIMIT  
WL  
Over Current Sensing Terminal  
Output Terminal WL  
VL  
Output Terminal VL  
Connect to Nch Gate Driver  
UL  
Output Terminal UL  
Connect to Nch Gate Driver  
WH  
VH  
Output Terminal WH  
Output Terminal VH  
Connect to Pch Gate Driver  
Connect to Pch Gate Driver  
UH  
Output Terminal UH  
Connect to Pch Gate Driver  
VCC  
Motor Voltage Supply Terminal  
Connect motor power source to the terminal  
* All Ground Pins must be connected at the outside.  
* Electrical potential of all unused output pins must be fixed at the outside.  
FG Pattern by combination with N1 and N2  
No.  
1
N1  
H
N2  
H
FG  
1/2 Frequency Signal from H1  
Signal from H1  
2
H
L/OPEN  
H
3
L/OPEN  
L/OPEN  
1/2 Frequency Signal from 3 Hall Compound Signals  
3 Hall Compound Signals  
4
L/OPEN  
- 2 -  
NJW4303  
„BLOCK DIAGLAM  
FG  
VREF  
VCC  
VREF  
UVLO  
UH  
VH  
WH  
TSD  
S/S  
DEC  
N1  
N2  
Rotor  
Position  
Decode  
H1+  
H1-  
+
-
H2+  
H2-  
+
-
H3+  
H3-  
UL  
VL  
WL  
+
-
FR  
FRC  
BR  
Dead  
Time  
Saw  
Oscillator  
OSC  
PWM Logic  
+
-
VERR  
GND  
+
-
ILIMIT  
Lock  
Detect  
Ct  
- 3 -  
NJW4303  
„ABSOLUTE MAXIMUM RATINGS  
(Ta=25°C)  
PARAMETER  
Supply Voltage  
SYMBOL  
RATINGS  
UNIT  
V
Remark  
VCC  
VOH  
VFG  
VLIM  
VVERR  
VIH  
40  
40  
7
VCC PIN  
Hi-side Output Terminal Voltage  
FG Terminal Voltage  
V
UH, VH, WH PIN  
FG PIN  
V
LIMIT Terminal Voltage  
VERR Terminal Voltage  
Hall Input Terminal Voltage  
Logic Input Terminal Voltage  
Reference Voltage Output  
Current  
3.5  
6
V
ILIMIT PIN  
VERR PIN  
V
4.5  
7
V
H1+, H1-, H2+, H2-, H3+, H3- PIN  
BR, FR, DEC, N1/N2, S/S PIN  
VIN  
V
IREF  
30  
mA  
VREF PIN  
Hi-side Output Current  
Low-side Output Current  
FG Output Current  
IOH  
IOL  
40  
±40  
15  
mA  
mA  
mA  
UH, VH, WH PIN  
UL, VL, WL PIN  
FG PIN  
IFG  
Power Dissipation  
PD  
1190  
mW Ú Board Mounted  
Operating Ambient Temperature  
Storage Temperature  
Topr  
Tstg  
-40 to +85  
-50 to +150  
°C  
°C  
Ú Mounted on designated board based on EIA/JEDEC. (114.3x76.2x1.6mm: 2Layers, FR-4)  
„RECOMMENDED OPERATIONAL CONDITIONS  
(Ta=25°C)  
PARAMETER  
SYMBOL  
VCC  
TEST CONDITION  
MIN.  
9.0  
TYP. MAX. UNIT  
Logic Supply Voltage  
24.0  
35.0  
V
- 4 -  
NJW4303  
„ELECTRICAL CHARACTERISTICS  
VCC=24V, VIH1+= VIH3+=3.0V, VIH1-= VIH2-= VIH3-=2.0V, VIH2+=1.0V, VIN= VLIM= VCT=0V,  
VVERR=4.5V, VOSC=4.5V0.5V, CVREF=1uF, Ta=25°C  
PARAMETER  
„GENERAL  
SYMBOL  
TEST CONDITION  
VCC=12V  
MIN.  
TYP.  
MAX.  
UNIT  
Supply current 1  
ICC1  
ICC2  
-
-
5.3  
6.4  
8.3  
9.4  
mA  
mA  
Supply current 2  
„THERMAL SHUTDOWN BLOCK  
Thermal shutdown operating  
Thermal shutdown recovery  
Thermal shutdown hysteresis  
TTSD1  
TTSD2  
TTSD  
-
-
170  
135  
35  
-
-
°C  
°C  
°C  
„UNDER VOLTAGE LOCK OUT BLOCK  
VCC Decreasing  
VCC Increasing  
UVLO operating voltage  
UVLO recovery voltage  
UVLO hysteresis voltage  
VUVLO1  
6.3  
6.8  
-
6.8  
7.3  
0.5  
7.3  
7.8  
-
V
V
V
VUVLO2  
VUVLO  
„LOCK PROTECTION BLOCK (Ct PIN)  
High level voltage  
VHCt  
VLCt  
ICHGCt  
3.30  
0.90  
2.5  
0.25  
-
3.55  
1.00  
5.5  
3.80  
1.30  
9.0  
0.90  
-
Low level voltage  
Lock charge current  
Lock discharge current  
Lock charge/discharge current  
uA  
uA  
-
IDCHGCt  
0.55  
10  
ICHGCt/IDCHGCt  
„REFERENCE VOLTAGE BLOCK (VREF PIN)  
Reference voltage supply  
Load regulation  
VREF  
IVREF=1mA  
4.5  
5.0  
15  
50  
5.5  
60  
V
IVREF=1 to 10 mA  
-
-
mV  
mV  
VLOVREF  
VLIVREF  
Line regulation  
VCC=9 to 35V, IVREF=1 mA  
100  
„HALLAMP BLOCK (H1+, H1-, H2+, H2-, H3+, H3- PIN)  
Hysteresis Voltage range  
Input bias current  
10  
-
30  
-
50  
mV  
uA  
VHYSIH  
IBIH  
Per each input  
1.5  
„HI-SIDE BLOCK (UH, VH, WH PIN)  
Hi-side output voltage  
VOLH  
IOLEAKH  
„LOW-SIDE BLOCK (UL, VL, WL PIN)  
IOH=30 mA  
VOH=35V  
-
-
0.5  
-
1.0  
1
V
Hi-side leak current  
uA  
Low-side output H voltage1  
Low-side output H voltage2  
Low-side output L voltage  
Low-side clamp voltage  
„FG OUTPUT (FG PIN)  
Output voltage  
VOHL1  
IOLSOURCE=30 mA ,VCC=12V  
IOLSOURCE=30 mA  
8.0  
8.0  
-
10.0  
10.0  
0.5  
-
-
-
V
V
V
V
VOHL2  
VOLL  
VCLL  
IOLSINK=30 mA  
1.0  
18  
IOLSOURCE=0.1 mA ,VCC=35V  
-
VFGL  
IFG=10 mA  
VFG=5V  
-
-
0.3  
-
0.7  
1
V
Leak current  
ILEAKFG  
uA  
- 5 -  
NJW4303  
„ELECTRICAL CHARACTERISTICS  
VCC=24V, VIH1+= VIH3+=3.0V, VIH1-= VIH2-= VIH3-=2.0V, VIH2+=1.0V, VIN= VLIM= VCT=0V,  
V
VERR=4.5V, VOSC=4.5V0.5V, CVREF=1uF, Ta=25°C  
PARAMETER SYMBOL  
„OVER CURRENT SENSOR BLOCK (ILIMIT PIN)  
TEST CONDITION  
MIN.  
TYP.  
MAX.  
UNIT  
Sense voltage  
VDETLIM  
IBILM  
0.225 0.250 0.275  
V
Input bias current  
-
1.6  
5.0  
uA  
„ERROR AMP BLOCK (VERR PIN)  
PWM0% sense voltage  
PWM100% sense voltage  
Input bias current  
VPWM1VERR PWMDUTY=0%  
VPWM2VERR PWMDUTY=100%  
IBVERR  
-
3.6  
-
-
-
0.5  
-
V
V
1.6  
5.0  
uA  
„OSCILLATOR BLOCK (OSC PIN)  
Saw wave peak voltage  
Saw wave bottom voltage  
OSC charge current  
VPOSC  
VBOSC  
2.7  
1.00  
30  
1
3.0  
1.35  
50  
3.3  
1.60  
70  
3
V
V
ICHGOSC  
IDCHGOSC  
uA  
mA  
kHz  
OSC discharge current  
Oscillation frequency  
2
fOSC  
COSC=1000pF  
-
28  
-
„FR DEAD TIME BLOC (FRC PIN)  
High level voltage  
VHFRC  
VLFRC  
3.15  
0.9  
16  
8
3.5  
1.0  
26  
3.85  
1.2  
36  
28  
-
V
Low level voltage  
V
FRC charge current  
ICHGFRC  
IDCHGFRC  
tDFRC1  
uA  
uA  
ms  
ms  
FRC discharge current  
FRC dead band time1  
FRC dead band time2  
18  
CFRC=1uF  
-
140  
100  
tDFRC2  
CFRC=1uF  
-
-
„CONTOROL INPUT BLOCK (FR, BR, DEC, N1, N2, S/S PIN)  
Input High level current  
Input low level current  
Pull-down resistance  
IHIN  
ILIN  
RIN  
VIN=4.5V,per each input  
VIN=0V,per each input  
25  
-
40  
-
60  
1
uA  
uA  
kΩ  
-
110  
-
„PIN OPERATIONAL CONDITIONS  
PARAMETER  
SYMBOL  
TEST CONDITION  
MIN.  
TYP.  
MAX.  
UNIT  
„HALLAMP INPUT (H1+, H1-, H2+, H2-, H3+, H3- PIN)  
Hall Input Sensitivity  
Peak to peak  
0.1  
0
-
-
-
V
V
VMIH  
VICMIH  
Hall Input voltage range  
3.5  
„CONTOROL INPUT (FR, BR, DEC, N1, N2, S/S PIN)  
High level voltage  
VHIN  
VLIN  
2
0
-
-
5
V
V
Low level voltage  
0.8  
„VERR INPUT (VERR PIN)  
Input voltage range  
VICMVERR  
0
-
4.5  
V
- 6 -  
NJW4303  
„PIN / CIRCUIT OPERATIONAL DEFINITION  
¡ Hall Input Pin Input Common-Mode Voltage Definition ¡ Hall Input Hysteresis Voltage Definition  
(Hall Amp Block)  
(Hall Amp Block)  
V
ICMIH  
V
IH  
3.5V  
LOGIC INVERSION  
LOGIC INVERSION  
3.5V  
V
HYSIH  
0V  
0V  
¡ Input pins thresh operational Definition  
¡ FR Dead Time Definition (FR Dead Time Block)  
(FR, BR, N1, N2, DEC, S/S PIN)  
ROTATING  
DIRECTION  
RVS  
FWD  
RVS  
VIN  
STOP  
STOP  
(FORWARD)  
(REVERSE)  
(REVERSE)  
VFR  
2V  
5V  
HIGH Level Voltage  
0.8V  
2.0V  
VFRC  
Undefined  
TIME t  
VVREF  
0.8V  
LOW Level Voltage  
TIME t  
0V  
DFRC1  
DFRC2  
t
t
¡Oscillation Frequency Definition(Oscillation Bloc)  
VOSC  
Time t  
tCHGOSC  
tDCHGOSC  
¡ PWM 100% Sensory Voltage / PWM 100% Sensory Voltage Definition (Error Amplifier Block)  
VVERR  
Full speed ( = PWM 100%)  
V
VVERR  
POSC  
variable speed control  
V
VOSC  
BOSC  
stop ( = PWM 0%)  
- 7 -  
NJW4303  
¡ Sensing Voltage/ Reset Voltage Definition (Over Current Sensing Block)  
VOSC  
VDETLIM  
VILIMIT  
time  
VOL  
Active  
L
Active  
(VUL,VVL,VWL  
)
time  
Motor  
Action  
Rotation  
STOP  
Rotation  
time  
¡ Lock Protection Detection/ Reset Time Definition (Lock Protection Block)  
VCt  
VHCt  
VLCt  
time  
tDCt  
tRCt  
¡ THERMAL SHUTDOWN OPERATIONSL DEFINITION (Thermal shutdown block)  
TSD RESET TEMP  
TSD OPERATING  
TEMP  
(OUTPUT STOP)  
HYSTERESIS  
TEMP  
(NORMAL  
OPERATION)  
0
°C  
85  
120  
150  
170  
°C  
TEMP  
°C  
°C  
°C  
¡ UNDER VOLTAGE PROTECTION OPERATIONAL DEFENITION (UNDER VOLTAGE PROTECTION BLOCK)  
VCC  
UVLO RESET VOLTAGE  
(NORMAL OPERATION)  
35.0V  
9.0V  
UVLO2  
V
HYSTERESIS VOLTAGE  
UVLO1  
V
UVLO OPERATING VOLTAGE  
(OUTPUT STOP)  
0V  
- 8 -  
NJW4303  
„TRUTH TABLE  
¡ INPUT VS OUTPUT TRUTH TABLE1 (DEC=L, H1+>H1-, H2+>H2-, H3+>H3-="H", Don't Care="X")  
H1  
H
H
L
H2  
L
H3  
L
BR  
TSD UVLO S/S VERR FR  
DEC  
N1  
N2  
UH  
VH  
WH  
UL  
H
L
VL  
WL  
FG VREF  
COMMENT  
Hi-Z Hi-Z  
Hi-Z Hi-Z  
L
L
L
L
H
H
H
L
L
L
H
H
L
L
Hi-Z  
L
L
Hi-Z Hi-Z  
Hi-Z Hi-Z  
L
L
L
FR="L"  
FWD Rotation  
L
OFF OFF  
OFF OFF  
OFF OFF  
OFF OFF  
OFF OFF  
OFF OFF  
L
H
H
H
X
X
L
L
H
X
X
X
X
X
X
X
X
L
L
L
ON  
L
H
H
H
L
L
L
H
H
L
Hi-Z  
L
L
Hi-Z  
Hi-Z  
L
L
L
Hi-Z  
Hi-Z  
L
L
H
H
H
L
L
H
L
L
Hi-Z  
L
L
Hi-Z Hi-Z  
L
H
H
L
H
H
H
L
L
Hi-Z  
Hi-Z  
L
L
Hi-Z  
Hi-Z  
L
L
L
Hi-Z  
L
H
H
L
L
L
FR="H"  
REV Rotation  
L
L
L
L
L
L
L
L
H
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
ON  
L
H
H
H
L
Hi-Z Hi-Z  
Hi-Z Hi-Z  
L
L
Hi-Z  
L
L
L
H
H
L
L
H
H
H
L
L
L
Hi-Z Hi-Z  
L
L
Hi-Z  
L
L
Hi-Z Hi-Z  
Hi-Z Hi-Z  
L
L
H
L
L
H
H
H
L
L
H
H
L
L
Hi-Z  
L
L
Hi-Z Hi-Z  
Hi-Z Hi-Z  
L
L
L
FRC="L"  
FWD Rotation  
L
ON  
Hi-Z  
L
H
H
H
L
L
L
H
H
L
L
Hi-Z  
Hi-Z  
L
L
Hi-Z  
Hi-Z  
L
L
L
L
H
H
H
L
L
H
L
Hi-Z  
L
L
Hi-Z Hi-Z  
Hi-Z Hi-Z  
H
H
H
L
L
L
Hi-Z  
L
L
Hi-Z Hi-Z  
Hi-Z Hi-Z  
L
LOCK PROTECTION  
Operation  
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
ON  
L
H
H
H
L
L
Hi-Z  
L
L
Hi-Z  
Hi-Z  
L
L
Hi-Z  
Hi-Z  
L
H
H
H
L
L
Hi-Z  
L
L
Hi-Z Hi-Z  
Hi-Z Hi-Z  
H
H
H
L
L
L
Hi-Z  
L
L
Hi-Z Hi-Z  
Hi-Z Hi-Z  
L
OVER CURRENT  
Operation  
L
ON  
Hi-Z  
L
H
H
H
L
L
L
Hi-Z  
Hi-Z  
L
L
Hi-Z  
Hi-Z  
L
L
H
H
H
L
L
Hi-Z  
L
L
Hi-Z Hi-Z  
Hi-Z Hi-Z  
H
H
H
L
L
L
Hi-Z  
L
L
Hi-Z Hi-Z  
Hi-Z Hi-Z  
L
VERR="L"  
PWM Operation  
L
ON  
Hi-Z  
L
H
H
H
L
L
L
Hi-Z  
Hi-Z  
L
L
Hi-Z  
Hi-Z  
L
H
H
H
L
L
Hi-Z  
L
L
H
H
H
L
L
Hi-Z  
L
L
S/S="H"  
STOP Operation  
X
X
X
ON  
X
H
X
X
X
X
X
X
X
Hi-Z Hi-Z Hi-Z  
Hi-Z Hi-Z Hi-Z  
Hi-Z Hi-Z Hi-Z  
ON  
Hi-Z  
L
H
H
H
L
L
L
H
H
H
L
L
Hi-Z  
L
L
H
H
H
L
L
Hi-Z  
L
L
UVLO=ON  
UVLO Operation  
ON  
Hi-Z  
L
H
H
H
L
L
L
H
H
H
L
L
Hi-Z  
L
L
H
H
H
L
L
Hi-Z  
L
L
TSD=ON  
TSD Operation  
ON  
ON  
Hi-Z  
L
H
H
H
L
L
L
H
H
H
L
L
Hi-Z  
L
L
H
H
H
L
L
Hi-Z  
L
L
BR="H"  
BRAKE Operation  
X
X
L
L
L
ON  
L
H
H
H
Hi-Z  
L
L
H
L
Hi-Z  
¡ INPUT VS OUTPUT TRUTH TABLE2 (DEC=L, Invalid Code Pattern)  
(H1+>H1-, H2+>H2-, H3+>H3-="H", Don't Care="X")  
BR  
L
TSD UVLO S/S VERR FR  
DEC  
L
N1  
L
N2  
L
UH  
VH  
WH  
UL  
L
VL  
L
WL  
L
FG VREF  
COMMENT  
H1  
H
L
H2  
H
L
H3  
H
L
L
Invalid Code Pattern  
X
X
X
X
X
X
X
X
X
X
Hi-Z Hi-Z Hi-Z  
ON  
Hi-Z  
H
L
H
L
H
L
L
Invalid Code Pattern  
BR="H" BARKE Operation  
H
L
L
L
L
L
L
L
L
L
ON  
Hi-Z  
- 9 -  
NJW4303  
¡ INPUT VS OUTPUT TRUTH TABLE3 (DEC=H, H1+>H1-, H2+>H2-, H3+>H3-="H", Don't Care="X")  
H1  
H
H
H
L
H2  
L
H3  
L
BR  
TSD UVLO S/S VERR FR  
DEC  
N1  
N2  
UH  
VH  
WH  
L
UL  
H
L
VL  
L
WL  
L
FG VREF  
COMMENT  
Hi-Z Hi-Z  
Hi-Z Hi-Z  
Hi-Z  
L
H
H
H
L
L
L
H
H
L
L
H
H
H
L
L
Hi-Z Hi-Z  
Hi-Z Hi-Z  
L
L
Hi-Z  
ON  
FR="L"  
FWD Rotation  
L
OFF OFF  
OFF OFF  
OFF OFF  
OFF OFF  
OFF OFF  
L
H
H
X
X
L
L
H
X
X
X
X
X
X
X
H
L
L
L
L
H
H
L
L
Hi-Z  
L
L
Hi-Z  
Hi-Z  
L
L
L
Hi-Z  
Hi-Z  
L
L
L
L
H
L
L
H
H
H
L
L
L
Hi-Z Hi-Z  
L
H
H
L
Hi-Z  
L
H
H
H
L
L
Hi-Z  
Hi-Z  
L
L
Hi-Z  
Hi-Z  
L
L
L
H
H
H
L
H
H
L
L
Hi-Z  
ON  
L
FR="H"  
REV Rotation  
L
L
L
L
L
L
L
H
L
H
H
H
H
H
H
H
H
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
Hi-Z Hi-Z  
Hi-Z Hi-Z  
L
L
L
L
H
H
L
Hi-Z  
L
L
L
L
Hi-Z Hi-Z  
L
L
H
H
H
L
L
L
Hi-Z Hi-Z  
Hi-Z Hi-Z  
L
L
Hi-Z  
L
H
H
H
L
L
H
H
H
L
L
Hi-Z Hi-Z  
Hi-Z Hi-Z  
Hi-Z  
ON  
L
LOCK PROTECTION  
Operation  
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
Hi-Z  
Hi-Z  
L
L
Hi-Z  
Hi-Z  
L
Hi-Z  
L
L
L
H
H
H
L
L
L
Hi-Z Hi-Z  
Hi-Z Hi-Z  
Hi-Z  
L
H
H
H
L
L
L
H
H
H
L
L
Hi-Z Hi-Z  
Hi-Z Hi-Z  
Hi-Z  
ON  
OVER CURRENT  
Operation  
L
L
L
Hi-Z  
L
L
Hi-Z  
Hi-Z  
L
L
Hi-Z  
Hi-Z  
L
L
L
H
H
H
L
L
L
Hi-Z Hi-Z  
Hi-Z Hi-Z  
Hi-Z  
L
H
H
H
L
L
L
H
H
H
L
L
Hi-Z Hi-Z  
Hi-Z Hi-Z  
Hi-Z  
ON  
L
VERR="L"  
PWM Operation  
L
L
L
Hi-Z  
Hi-Z  
L
L
Hi-Z  
Hi-Z  
Hi-Z  
L
L
L
H
H
H
L
L
L
Hi-Z  
L
H
H
H
L
L
H
H
H
L
Hi-Z  
ON  
L
S/S="H"  
STOP Operation  
X
X
X
ON  
X
H
X
X
X
X
X
X
X
Hi-Z Hi-Z Hi-Z  
Hi-Z Hi-Z Hi-Z  
Hi-Z Hi-Z Hi-Z  
L
Hi-Z  
L
L
L
H
H
H
L
L
L
Hi-Z  
L
H
H
H
L
L
H
H
H
L
Hi-Z  
ON  
UVLO=ON  
UVLO Operation  
L
Hi-Z  
L
L
L
L
H
H
H
L
L
L
Hi-Z  
L
H
H
H
L
L
H
H
H
L
Hi-Z  
ON  
L
TSD=ON  
TSD Operation  
ON  
L
Hi-Z  
L
L
L
H
H
H
L
L
L
Hi-Z  
L
H
H
H
L
L
H
H
H
L
Hi-Z  
ON  
BR="H"  
X
X
L
L
L
BRAKE Operation  
L
Hi-Z  
L
L
L
L
¡ INPUT VS OUTPUT TRUTH TABLE4 (DEC=H, Invalid Code Pattern)  
(H1+>H1-, H2+>H2-,H3+>H3-="H", Don't Care="X")  
BR  
TSD UVLO S/S VERR FR  
DEC  
N1  
N2  
L
UH  
VH  
WH  
UL  
L
VL  
L
WL  
L
FG VREF  
COMMENT  
H1  
H
L
H2  
H3  
H
L
L
L
Invalid Code Pattern  
L
X
X
X
X
X
X
X
X
X
X
H
L
Hi-Z Hi-Z Hi-Z  
ON  
H
L
Hi-Z  
H
L
H
L
L
Invalid Code Pattern  
BR="H" BARKE Operation  
H
H
L
L
L
L
L
L
L
L
ON  
H
Hi-Z  
- 10 -  
NJW4303  
„TIMING CHART  
Ú Codes used in Hall input:  
Logics of H1, H2, H3 are expressed with each  
3-colum starting from the top.  
High Logic = 1, Low Logic = 0  
1. Normal FunctionPWM Function  
ELECTRIC DEGREE POSITION (deg)  
240 300 360 420 480  
0
60  
120  
180  
540  
600  
660  
720  
H1  
H2  
HALL INPUT  
H3  
code  
100  
110  
010  
011  
001  
101  
100  
110  
010  
011  
001  
101  
DEC(=L)  
FR(=L)  
N1(=L)  
N2(=L)  
FG  
UH  
VH  
Hi-SIDE  
WH  
UL  
VL  
LOW-SIDE  
WL  
TORQUE  
CONTROL  
INPUT  
VERR  
OSC  
Fullspeed (PWMDUTY=100%)  
Reduced Speed (PWMDUTY=70%)  
- 11 -  
NJW4303  
2. NORMAL FUNCTIONFORWARD/REVERSE SWITCHING while rotating  
ELECTRIC DEGREE POSITION (deg)  
0
60  
120  
180  
240  
300  
360  
420  
480  
540  
600  
660  
720  
H1  
H2  
HALL INPUT  
H3  
code  
100  
110  
010  
010  
110  
100  
101  
001  
011  
011  
001  
101  
DEC(=L)  
N1(=L)  
N2(=L)  
FG  
FR  
FORWARD/REVERS  
INPUT  
FRC  
UH  
VH  
Hi-SIDE  
WH  
UL  
VL  
LOW-SIDE  
WL  
FR=L  
Deadtime  
FR=H  
Deadtime  
FR=L  
- 12 -  
NJW4303  
3. NORMAL FUNCTIONBRAKE CONTROLBRAKE RESET  
ELECTRIC DEGREE POSITION (deg)  
0
60  
120  
180  
240 300 360 420 480  
540  
600  
660  
720  
H1  
H2  
HALL INPUT  
H3  
code  
100  
110  
010  
011  
001  
101  
100  
110  
010  
011  
001  
101  
DEC(=L)  
FR(=L)  
N1(=L)  
N2(=L)  
FG  
BRAKE INPUT  
BR  
UH  
VH  
WH  
Hi-SIDE  
UL  
VL  
LOW-SIDE  
WL  
motor rotate function  
BR=L  
Brake function  
BR=H  
motor rotate function  
BR=L  
Deadtime  
Deadtime  
- 13 -  
NJW4303  
4. NORMAL FUNCTIONLOCK PROTECTIONLOCK RESET  
ELECTRIC DEGREE POSITION (deg)  
240 300 360 420 480  
0
60  
120  
180  
540  
600  
660  
720  
H1  
H2  
HALL INPUT  
H3  
code  
100  
110  
010  
011  
011  
011  
011  
001  
101  
100  
110  
010  
DEC(=L)  
FR(=L)  
N1(=L)  
N2(=L)  
FG  
CT PIN OUTPUT  
CT  
UH  
VH  
WH  
HI-SIDE  
UL  
VL  
LOW-SIDE  
WL  
motor rotate function  
Lock function  
motor rotate function  
- 14 -  
NJW4303  
5. NORMAL FUNCTIONLOW VOLTAGE PROTECTIONNORMAL FUNCTION  
ELECTRIC DEGREE POSITION (deg)  
0
60  
120  
180  
240  
300  
360  
420  
480  
540  
600  
660  
720  
VCC  
H1  
H2  
H3  
HALL INPUT  
code  
DEC(=L)  
FR(=L)  
N1(=L)  
N2(=L)  
FG  
100  
110  
010  
011  
001  
101  
100  
110  
010  
011  
001  
101  
UH  
VH  
Hi-Z  
Hi-Z  
Hi-Z  
HI-SIDE  
WH  
UL  
VL  
LOW-SIDE  
WL  
TORQUE  
CONTROL  
INPUT  
VERR  
OSC  
Fullspeed  
motor stop (UVLO ON)  
Fullspeed  
- 15 -  
NJW4303  
6. NORMAL FUNCTIONSTOP FUNCTION (S/S=H)NORMAL FUNCTION  
ELECTRIC DEGREE POSITION (deg)  
0
60  
120  
180  
240  
300  
360  
420  
480  
540  
600  
660  
720  
VCC  
S/S  
H1  
H2  
HALL INPUT  
H3  
code  
100  
110  
010  
011  
001  
101  
100  
110  
010  
011  
001  
101  
DEC(=L)  
FR(=L)  
N1(=L)  
N2(=L)  
FG  
UH  
VH  
Hi-Z  
Hi-Z  
Hi-Z  
HI-SIDE  
WH  
UL  
VL  
LOW-SIDE  
WL  
VERR  
OSC  
TORQUE  
CONTROL  
INPUT  
Fullspeed  
motor stop (STOP ON)  
Fullspeed  
- 16 -  
NJW4303  
7. SOFT START FUNCTION  
ELECTRIC DEGREE POSITION (deg)  
240 300 360 420 480  
0
60  
120  
180  
540  
600  
660  
720  
VCC  
VREF  
H1  
H2  
HALL INPUT  
H3  
code  
110  
110  
010  
011  
001  
101  
100  
110  
010  
011  
001  
101  
DEC (=L)  
FR(=L)  
N1(=L)  
N2(=L)  
FG  
UH  
Hi-SIDE  
VH  
WH  
UL  
VL  
LOW-SIDE  
WL  
VERR  
TORQUE  
CONTROL  
INPUT  
VERR  
OSC  
OFF  
Soft Start (PWM)  
Full speed (no PWM)  
- 17 -  
NJW4303  
8. FG OUTPUT TIMING CHART  
OUTPUT TIMING CHART 1 (120 deg Input Mode)  
ELECTRIC DEGREE POSITION (deg)  
240 300 360 420 480  
0
60  
120  
180  
540  
600  
660  
720  
H1  
H2  
HALL INPUT  
DEC=L or open  
(120 deg input mode)  
H3  
code  
101  
100  
110  
010  
011  
001  
101  
100  
110  
010  
011  
001  
N1=H, N2=H  
N1=H, N2=L  
N1=L, N2=H  
N1=L, N2=L  
FG OUTPUT  
OUTPUT TIMING CHART 2 (60 deg Input Mode)  
ELECTRIC DEGREE POSITION (deg)  
240 300 360 420 480  
0
60  
120  
180  
540  
600  
660  
720  
H1  
H2  
HALL INPUT  
DEC=H  
H3  
(60 deg input mode)  
code  
100  
110  
111  
011  
001  
000  
100  
110  
111  
011  
001  
000  
N1=H, N2=H  
N1=H, N2=L  
N1=L, N2=H  
N1=L, N2=L  
FG OUTPUT  
* When the status of N1/N2 is H/H or L/H, FG output is not synchronized with Hall input, because FG output is produced by using a frequency divider.  
- 18 -  
NJW4303  
„FUNCTION DESCRIPTION  
¡ Lock Protection Block – Detect/Reset Time  
Lock Protection can be done by charging/discharging to the capacitor CCt. Lock Protection Detect time (tDCt) and Reset  
time (tRCt) are determined by the value of either Ct charging current (ICHGCt) or Ct discharging current (IDCHGCt) and the  
value of the external capacitor CCt. To adjust Detect/Reset Time, change the value of CCt. The calculation formula for  
Detect/Reset Time can be described in equation below: adjustment range for CCt is 0.1µF to 10µF.  
Symbol  
Formula  
Comments  
tDCt 4.6  106  CCt  
tRCt 0.46  106  CCt  
Detect Time  
Reset Time  
tDCt  
tRCt  
Figure1: Lock Protection Detect/ Reset Time Calculating Formula  
When the motor is rotating, electric charge of CCt capacitor discharging is produced repeatedly by input from hall signal.  
However, when we set the motor to low speed using the speed control application, input time from hall signal is longer,  
with this, Ct voltage level will increase and malfunction can be expected. When this occurs, it is recommended to add  
Ct discharge circuit by using FG signal output. Please refer to typical application circuit 2.  
VREF  
¡ Reference Voltage Block – How to use VREF  
When using VREF pin, make sure that it is not oscillating.  
Use the recommended VCC operational condition.  
10k  
10k  
H1+/H2+/H3  
¡ Hall Amp Block - Capacitor  
Input from hall signal requires more than that of the Hall Input Sensitivity  
(VMIH=100mV).  
H1- to H3-  
pin connecting  
Hall Amp  
Block  
Taking measures in keeping noise immunity, when using FG output,  
FG jitter can be expected. When this occurs, it is recommended  
to add capacitors more than 0.01µF between Hall input pins.  
¡ Hall Amp Block – How to use Hall IC  
20k  
10k  
Hall IC  
Hall input pins H1-, H2- and H3- are biased to VREF/2.  
To keep Hall IC Output voltage within the Hall Input voltage range (VICMIH),  
it needs to add 2 pieces of biased resistor for every H1+, H2+ and H3+ pins.  
Figure2: Hall IC application  
¡ Oscillation Block - Oscillation Frequency  
OSC pin produce Oscillating wave by charging/discharging to the capacitor COSC. Oscillating frequency (fOSC) is  
modulated by COSC, and determined by charging time (tCHGOSC) and discharging time (tDCHGOSC). The oscillation  
frequency depends on tCHGOSC in great deal compare to tDCHGOSC, sothat the calculation formula for oscillation frequency  
can be described in equation below: adjustment range for COSC is 330pF to 2200pF.  
Symbol  
Formula  
Comments  
FOSC 28  10-6 / COSC  
Oscillation Frequency  
fOSC  
Figure3: Oscillation Frequency Calculating Formula  
¡ FR Dead Time Block – Dead Band Time  
FR Dead band time is divided in two types depending on giving conditions.  
The two dead band time are determined by the value of either FRC charged current or FRC discharge current IDCHGFRC  
,
and the value of an external capacitor. To adjust the dead band time, change the value of CFRC. FR dead band time can  
be expressed as following: adjustment range for CFRC is more than 1pF.  
Symbol  
Formula  
Comments  
FR : H L (open)  
FR : L (open) H  
tDFRC1 140  103  CFRC  
tDFRC2 140  103  CFRC  
FR Dead Band Time1  
FR Dead Band Time2  
tDFRC1  
tDFRC2  
Figure4: Dead Band Time Calculating Formula  
- 19 -  
NJW4303  
„TYPICALAPPLICATION CIRCUIT 1  
VM  
+
+
+
RFG  
CVREF  
CVCC  
GND  
FG-OUT  
FG  
VREF  
VCC  
VREF  
UVLO  
UH  
TSD  
S/S  
3Phase Motor  
DEC  
N1  
N
VH  
S
S
N2  
N
Rotor  
Position  
Decode  
H1+  
H1-  
WH  
H
H
H
+
-
H2+  
H2-  
+
-
UL  
VL  
H3+  
H3-  
+
-
FRC  
FR  
Dead  
Time  
CFRC  
BR  
WL  
OSC  
Saw  
Oscillator  
PWM Logic  
COSC  
+
-
VERR  
GND  
ILIMIT  
+
-
CVERR  
Lock  
Detect  
Lowpass Filter  
Cct  
- 20 -  
NJW4303  
„TYPICALAPPLICATION CIRCUIT 2  
VM  
+
+
+
CVREF  
CVCC  
GND  
VREF  
VCC  
VREF  
UVLO  
UH  
TSD  
S/S  
3Phase Motor  
N
DEC  
N1  
VH  
S
S
N2  
N
Rotor  
Position  
Decode  
H1+  
WH  
H
H
H
+
-
H1-  
H2+  
H2-  
+
-
UL  
VL  
H3+  
H3-  
+
-
FRC  
FR  
Dead  
Time  
CFRC  
BR  
WL  
OSC  
Saw  
Oscillator  
PWM Logic  
COSC  
+
-
VERR  
GND  
ILIMIT  
RFG  
+
-
CVERR  
Lock  
Detect  
Lowpass Filter  
FG  
V-IN  
Ct  
Cct  
V-FG  
COMP1  
Comparator  
R2  
C1  
FG-IN  
R1  
+
+
FG-OUT  
<Reference Value>  
C1=22nF  
R1=10k  
D1  
R3  
R2=40kΩ  
R3=10kΩ  
D1:1S2076  
COMP1:NJM2903  
- 21 -  
NJW4303  
„TYPICAL CHARACTERISTICS  
VCC vs VREF  
VCC vs ICC  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
10  
Tj=25[oC]  
9
Tj=25[oC]  
IVREF=1[mA]  
8
7
6
5
4
3
2
1
0
0
5
10  
15  
20  
25  
30  
35  
40  
0
5
10  
15  
20  
25  
30  
35  
40  
VCC[V]  
V
CC[V]  
IREF vs VREF  
IOH vs VOLH  
5.50  
5.40  
5.30  
5.20  
5.10  
5.00  
4.90  
4.80  
4.70  
4.60  
4.50  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
Tj=25[oC]  
Tj=25[oC]  
VCC=24[V]  
VCC=24[V]  
0
5
10  
15  
20  
25  
30  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
IREF[mA]  
IOH [mA]  
IOLSINK vs VOLL  
IOLSOURCE vs VOHL  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
11.0  
10.8  
10.6  
10.4  
10.2  
10.0  
9.8  
Tj=25[oC]  
Tj=25[oC]  
VCC=24[V]  
VCC=24[V]  
9.6  
9.4  
9.2  
9.0  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
IOLSOURCE[mA]  
IOLSINK[mA]  
- 22 -  
NJW4303  
„TYPICAL CHARACTERISTICS  
IFG vs VFGL  
VCC vs VOHL  
15  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
Tj=25[oC]  
CC=24[V]  
Tj=25[oC]  
V
IOLSOURCE=0.1[mA]  
14  
13  
12  
11  
10  
9
8
7
6
5
0
2
4
6
8
FG[mA]  
10  
12  
14  
16  
5
10  
15  
20  
25  
30  
35  
40  
I
V
CC[V]  
VCt vs ICHGCt  
VCt vs IDCHGCt  
9.00  
8.50  
8.00  
7.50  
7.00  
6.50  
6.00  
5.50  
5.00  
4.50  
4.00  
3.50  
3.00  
2.50  
0.90  
0.85  
0.80  
0.75  
0.70  
0.65  
0.60  
0.55  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
Tj=25[oC]  
Tj=25[oC]  
CC=24[V]  
VCC=24[V]  
V
0.50  
1.00  
1.50  
2.00  
2.50  
3.00  
3.50  
4.00  
0.50  
1.00  
1.50  
2.00  
2.50  
3.00  
3.50  
4.00  
V
Ct[V]  
V
Ct[V]  
VOSC vs IDCHGOSC  
VOSC vs ICHGOSC  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
52.0  
51.5  
51.0  
50.5  
50.0  
49.5  
49.0  
48.5  
Tj=25[oC]  
Tj=25[oC]  
VCC=24[V]  
VCC=24[V]  
1.00  
1.50  
2.00  
2.50  
3.00  
3.50  
1.00  
1.50  
2.00  
2.50  
3.00  
3.50  
V
OSC[V]  
V
OSC[V]  
- 23 -  
NJW4303  
„TYPICAL CHARACTERISTICS  
VFRC vs ICHGFRC  
VFRC vs IDCHGFRC  
36  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
Tj=25[oC]  
Tj=25[oC]  
V
CC=24[V]  
34  
32  
30  
28  
26  
24  
22  
20  
18  
16  
VCC=24[V]  
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
V
FRC[V]  
VFRC[V]  
Ct vs tDCHGCt  
Ct vs tCHGCt  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
5.0  
Tj=25[oC]  
Tj=25[oC]  
VCC=24[V]  
VCC=24[V]  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
0
0.1  
1.0  
Ct [uF]  
10.0  
0.1  
1.0  
Ct [uF]  
10.0  
COSC vs fOSC  
VCC vs fOSC  
1000  
100  
10  
30.0  
29.5  
29.0  
28.5  
28.0  
27.5  
27.0  
Tj=25[oC]  
Tj=25[oC]  
VCC=24[V]  
COSC=1000[pF]  
1
5
10  
15  
20  
25  
30  
35  
40  
100  
1000  
10000  
VCC[V]  
COSC[pF]  
- 24 -  
NJW4303  
„TYPICAL CHARACTERISTICS  
CFRC vs fDFRC1  
CFRC vs fDFRC2  
2000  
2000  
1800  
1600  
1400  
1200  
1000  
800  
Tj=25[oC]  
Tj=25[oC]  
VCC=24[V]  
1800  
VCC=24[V]  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
600  
400  
200  
0
0
2
4
6
8
10  
12  
0
2
4
6
8
10  
12  
CFRC[uF]  
CFRC[uF]  
Tj vs ICC2  
Tj vs ICC1  
12  
10  
8
12  
10  
8
VCC=24[V]  
VCC=12[V]  
6
6
4
4
2
2
0
0
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
Tj [oC]  
75  
100  
125  
150  
Tj [oC]  
Tj vs VUVLO1  
Tj vs VUVLO2  
9.0  
9.0  
8.5  
8.0  
7.5  
7.0  
6.5  
6.0  
5.5  
VCC Decreasing  
VCC Increasing  
8.5  
8.0  
7.5  
7.0  
6.5  
6.0  
5.5  
5.0  
5.0  
-50  
-50  
-25  
0
25  
50  
Tj [oC]  
75  
100  
125  
150  
-25  
0
25  
50  
Tj [oC]  
75  
100  
125  
150  
- 25 -  
NJW4303  
„TYPICAL CHARACTERISTICS  
Tj vs VREF  
Tj vs  
V
HYSIH  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5.5  
VCC=24[V]  
VCC=24[V]  
5.4  
IVREF=1[mA]  
5.3  
5.2  
5.1  
5.0  
4.9  
4.8  
4.7  
4.6  
4.5  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Tj [oC]  
Tj [oC]  
Tj vs IBIH  
Tj vs VOLH  
1.5  
1.0  
VCC=24[V]  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
VCC=24[V]  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
IOH=30[mA]  
-50  
-25  
0
25  
50  
Tj [oC]  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Tj [oC]  
Tj vs VOLL  
Tj vs VOHL  
1.0  
11.0  
VCC=24[V]  
VCC=24[V]  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
IOLSINK=30[mA]  
IOLSOURCE=30[mA]  
10.5  
10.0  
9.5  
9.0  
8.5  
8.0  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Tj [oC]  
Tj [oC]  
- 26 -  
NJW4303  
„TYPICAL CHARACTERISTICS  
Tj vs VFGL  
Tj vs VDETLIM  
1.00  
0.275  
0.265  
0.255  
0.245  
0.235  
0.225  
VCC=24[V]  
0.90  
VCC=24[V]  
IFG=10[mA]  
0.80  
0.70  
0.60  
0.50  
0.40  
0.30  
0.20  
0.10  
0.00  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Tj [oC]  
Tj [oC]  
Tj vs IDCHGOSC  
Tj vs ICHGOSC  
70  
65  
60  
55  
50  
45  
40  
35  
30  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
VCC=24[V]  
VCC=24[V]  
V
OSC=2.5[V]  
VOSC=2.5[V]  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Tj [oC]  
Tj [oC]  
Tj vs fOSC  
Tj vs RIN  
34  
32  
30  
28  
26  
24  
22  
20  
250  
200  
150  
100  
50  
VCC=24[V]  
VCC=24[V]  
COSC=1000[pF]  
0
-50  
-25  
0
25  
50  
Tj [oC]  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
Tj [oC]  
75  
100  
125  
150  
- 27 -  
NJW4303  
„TYPICAL CHARACTERISTICS  
Tj vs VHCt  
Tj vs VLCt  
3.80  
1.30  
1.25  
1.20  
1.15  
1.10  
1.05  
1.00  
0.95  
0.90  
VCC=24[V]  
3.75  
VCC=24[V]  
3.70  
3.65  
3.60  
3.55  
3.50  
3.45  
3.40  
3.35  
3.30  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
Tj [oC]  
75  
100  
125  
150  
Tj [oC]  
Tj vs ICHGCt  
Tj vs IDCHGCt  
9.0  
8.5  
8.0  
7.5  
7.0  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
0.90  
0.85  
0.80  
0.75  
0.70  
0.65  
0.60  
0.55  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
VCC=24[V]  
VCC=24[V]  
VCt=2.5[V]  
V
Ct=2.5[V]  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Tj [oC]  
Tj [oC]  
[CAUTION]  
The specifications on this databook are only  
given for information , without any guarantee  
as regards either mistakes or omissions. The  
application circuits in this databook are  
described only to show representative usages  
of the product and not intended for the  
guarantee or permission of any right including  
the industrial rights.  
- 28 -  

相关型号:

NJW4303_10

Hall Element-PWM Type 3-Phase Motor Control IC
NJRC

NJW4305

PWM 3-PHASE DC BRUSHLESS MOTOR CONTROLLER
NJRC

NJW4308

3 Phase Blush Less DC Motor Controller with Lead Angle
NJRC

NJW4308V

3 Phase Blush Less DC Motor Controller with Lead Angle
NJRC

NJW4350D

Stepper Motor Controller, 1.5A, DMOS, PDIP16, DIP-16
NJRC

NJW4350E2

Stepper Motor Controller, 1.5A, DMOS, PDSO16, SOP-16
NJRC

NJW4351

Unipolar Stepper Motor Driver
NJRC

NJW4351D

Unipolar Stepper Motor Driver
NJRC

NJW4351VC3

Unipolar Stepper Motor Driver
NJRC

NJW4371E3

FB Based Peripheral Driver With PWM, 0.7A, BCD, PDSO24, EMP-24
NJRC

NJW4371E3-TE1

Micro Peripheral IC,
NJRC

NJW4371E3-TE2

Micro Peripheral IC,
NJRC