DP7172 [NIDEC]

256-Position SPI;
DP7172
型号: DP7172
厂家: NIDEC COMPONENTS    NIDEC COMPONENTS
描述:

256-Position SPI

文件: 总11页 (文件大小:190K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DP7172  
256-Position SPI  
Compatible Digital  
Potentiometer  
The DP7172 is a ꢀꢁꢂïSRVLWLRQ GLJLWDO OLQHDU WDSHU SRWHQWLRPHWHU  
LGHDOO\ VXLWHG IRU UHSODFLQJ PHFKDQLFDO SRWHQWLRPHWHUV DQd  
YDULDEOH UHVLVWRUVꢃ Like PHFKDQLFDO SRWHQWLRPHWHUVꢄ WKH DP7172  
SOT23ï8  
TB SUFFIX  
CASE 527AK  
has a UHVLVWLYH HOHPHQWꢄ ZKLFK FDQ VSDQ V  
DQ\ZKHUe EHWZHHQ WKH SRZHU VXSSO\ UDLOVꢃ  
WR *URXQG RU IORDW  
CC  
WLSHU VHWWLQJV DUH FRQWUROOHG WKURXJK DQ SPIïFRPSDWLEOH GLJLWDO  
LQWHUIDFHꢃ 8SRQꢅSRZeUïXSꢄꢅWhe wiSeUꢅassuPHs a PLdïVSaQꢅSRVLWLRQꢅDQd  
PD\ EH UHSRVLWLRQHG DQ\WLPH DIWHU WKH SRZHU is VWDEOHꢃ  
The DP7172 RSHUDWHV IURP ꢀꢃꢆ V WR ꢁꢃꢁ V ZKLOH FRQVXPLQJ OHVV  
WKDQ 2 $ꢃꢅ7KLVꢅORZꢅRSHUDWLQJꢅFXUUHQWꢄꢅFRPELQHGꢅZLWKꢅDꢅVPDOOꢅSDFNDJe  
IRRWSULQWꢄ PDNH WKH DP7172 LGHDO IRU EDWWHU\ïSRZHUHG SRUWDEOH  
DSSOLDQFHꢃ  
MARKING DIAGRAM  
ADYM  
AEYM  
Features  
1
1
v 256ïSRVLWLRQ  
AD = 50 k  
v (QGïWRï(Qdꢅ5HVLVWDQFHꢇꢅꢁꢈꢅN  ꢉꢈꢈ k  
v SPI &RPSDWLEOH ,QWHUIDFH  
AE = 100 k  
Y = Production Year  
Y = (Last Digit)  
M = Production Month  
M = (1 ï 9, A, B, C)  
v 3RZeUïRQꢅ3UesHW WRꢅ0idsFDOe  
v 6LQJOH 6XSSO\ ꢀꢃꢆ V WR ꢁꢃꢁ V  
v /RZ THPSHUDWXUH &RHfILFLHQW ꢉꢈꢈ SSPꢊoC  
v /RZ 3RZHUꢄ I 2 A PD[  
DD  
PIN CONNECTIONS  
v Wide 2SeUDWLQJ THPSeUDWXUe ï4oC WR +85oC  
v 5R+SïFRPSOLDQWꢅ62Tï23 8ï/HDGꢅꢋꢀꢃꢌꢅPPꢅ[ꢅꢍꢅPPꢎꢅ3DFNDJe  
v This is a PEï)UHHꢅ'HYLFe  
W
A
1
V
B
DD  
Typical Applications  
GND  
CLK  
CS  
SDI  
v 3RWHQWLRPHWHU 5HSODFHPHQW  
v TUDQVGXFHU $GMXVWPHQW RI 3UHVVXUHꢄ THPSHUDWXUHꢄ 3RVLWLRQꢄ  
&KHPLFDOꢄ DQG 2SWLFDO 6HQVRUV  
(Top View)  
v 5)ꢅ$PSOLILHUꢅ%LDVLQJ  
v *DLQ &RQWURO DQG OfIVHWꢅ$GMXVWPHQW  
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
dimensions section on page 2 of this data sheet.  
¢
2009 NIDEC COPAL ELECTRONICS CORP.  
1
Publication Order Number:  
May, 2009 ï Rev. 0  
DP7172/D  
DP7172  
V
DD  
CS  
SDI  
CLK  
SPI  
A
INTERFACE  
W
B
WIPER  
REGISTER  
GND  
Figure 1. Functional Block Diagram  
Table 1. ORDERING INFORMATION  
Part Number  
Resistance  
Temperature Range  
Package  
Shipping  
DP7172TBIï50-GT3  
DP7172TBIï00-GT3  
50 k  
3000/Tape & Reel  
3000/Tape & Reel  
SOTï23ï8  
(PbïFree)  
ï40oC to 85oC  
100 k  
Table 2. PIN FUNCTION DESCRIPTION  
Pin No.  
Pin Name  
Description  
1
2
3
4
5
6
7
8
W
Resistor·s Wiper Terminal.  
Positive Power Supply.  
Digital Ground.  
V
DD  
GND  
CLK  
SDI  
CS  
B
Serial Clock Input. Positive edge triggered.  
Serial Data Input.  
Chip Select Input, Active Low. When CS returns high, data will be loaded into the DAC register.  
Bottom Terminal of resistive element.  
A
Top Terminal of resistive element.  
Table 3. ABSOLUTE MAXIMUM RATINGS (Note 1)  
Rating  
Value  
Unit  
V
DD  
to GND  
ï0.3 to 6.5  
V
V , V , V to GND  
V
DD  
A
B
W
I
p20  
0 to 6.5  
ï40 to +85  
150  
mA  
V
MAX  
Digital Inputs and Output Voltage to GND  
Operating Temperature Range  
oC  
oC  
oC  
oC  
Maximum Junction Temperature (T  
Storage Temperature  
)
JMAX  
ï65 to +150  
300  
Lead Temperature (Soldering, 10 sec)  
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the  
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect  
device reliability.  
1. Maximum terminal current is bounded by the maximum current handling of the switches, maximum power dissipation of the package, and  
maximum applied voltage across any two of the A, B, and W terminals at a given resistance.  
2
DP7172  
Table 4. ELECTRICAL CHARACTERISTICS: 50 k and 100 k Versions  
V
DD  
= 5 V (10%, or 3 V (10%; V = V ; V = 0 V; –40$C < T < +85$C; unless otherwise noted.  
A
DD  
B
A
Typ  
(Note 2)  
Parameter  
Test Conditions  
Symbol  
Min  
Max  
Unit  
DC CHARACTERISTICS — RHEOSTAT MODE  
Resistor Differential Nonlinearity (Note 3)  
Resistor Integral Nonlinearity (Note 3)  
Nominal Resistor Tolerance (Note 4)  
R
R
, V = no connection  
RïDNL  
RïINL  
ï1  
ï2  
(0.1  
(0.4  
+1  
+2  
LSB  
LSB  
WB  
A
, V = no connection  
WB  
A
TA = 25$C  
R
AB  
ï20  
+20  
%
Resistance Temperature Coefficient  
Wiper Resistance  
V
AB  
= V , Wiper = no connection  
R
/ T  
100  
50  
ppm/$C  
DD  
AB  
V
DD  
V
DD  
= 5 V  
= 3 V  
R
120  
250  
W
100  
DC CHARACTERISTICS — POTENTIOMETER DIVIDER MODE  
Resolution  
N
8
Bits  
LSB  
Differential Nonlinearity (Note 5)  
Integral Nonlinearity (Note 5)  
DNL  
INL  
ï1  
ï1  
(0.1  
(0.4  
100  
ï1  
+1  
+1  
LSB  
Voltage Divider Temperature Coefficient  
FullïScale Error  
Code = 0x80  
V / T  
W
ppm/$C  
LSB  
Code = 0xFF  
Code = 0x00  
V
ï3  
0
3
WFSE  
WZSE  
ZeroïScale Error  
V
0
1
LSB  
RESISTOR TERMINALS  
Voltage Range (Note 6)  
Capacitance (Note 7) A, B  
V
GND  
V
DD  
V
A,B,W  
f = 1 MHz, measured to GND,  
Code = 0 x 80  
C
45  
60  
1
pF  
A,B  
Capacitance (Note 7) W  
f = 1 MHz, measured to GND,  
Code = 0 x 80  
C
W
pF  
nA  
CommonïMode Leakage (Note 7)  
DIGITAL INPUTS  
V = V = V /2  
I
CM  
A
B
DD  
Input Logic High  
V
DD  
V
DD  
V
DD  
V
DD  
= 5 V  
V
0.7 x V  
0.7 x V  
V
V
IH  
DD  
Input Logic Low  
= 5 V  
= 3 V  
= 3 V  
V
0.3V  
0.3V  
IL  
DD  
Input Logic High  
V
IH  
V
DD  
Input Logic Low  
V
V
IL  
DD  
Input Current  
V
IN  
= 0 V or 5 V  
I
IL  
(1  
A
Input Capacitance (Note 7)  
POWER SUPPLIES  
Power Supply Range  
Supply Current  
C
5
pF  
IL  
VDD RANGE  
2.7  
5.5  
2
V
A
V
IH  
= 5 V or V = 0 V  
I
DD  
0.3  
IL  
Power Dissipation (Note 8)  
Power Supply Sensitivity  
V
= 5 V or V = 0 V, V = 5 V  
P
DISS  
0.2  
mW  
%/%  
IH  
IL  
DD  
V
DD  
= +5 V (10%, Code = Midscale  
PSS  
(0.05  
2. Typical specifications represent average readings at +25$C and V = 5 V.  
DD  
3. Resistor position nonlinearity error RïINL is the deviation from an ideal value measured between the maximum resistance and the minim-  
um resistance wiper positions. RïDNL measures the relative step change from ideal between successive tap positions. Parts are guaran-  
teed monotonic.  
4. V = V , Wiper (V ) = no connect.  
AB  
DD  
W
5. INL and DNL are measured at VW with the DP configured as a potentiometer divider similar to a voltage output D/A converter. V = V  
A
DD  
and V = 0 V. DNL specification limits of (1 LSB maximum are guaranteed monotonic operating conditions.  
B
6. Resistor terminals A, B, W have no limitations on polarity with respect to each other.  
7. Guaranteed by design and not subject to production test.  
8. PDISS is calculated from (I x V ). CMOS logic level inputs result in minimum power dissipation.  
DD  
DD  
9. All dynamic characteristics use V = 5 V.  
DD  
3
DP7172  
Table 4. ELECTRICAL CHARACTERISTICS: 50 k and 100 k Versions (continued)  
V
DD  
= 5 V (10%, or 3 V (10%; V = V ; V = 0 V; –40$C < T < +85$C; unless otherwise noted.  
A
DD  
B
A
Typ  
(Note 2)  
Parameter  
DYNAMIC CHARACTERISTICS (Notes 7 and 9)  
Test Conditions  
Symbol  
Min  
Max  
Unit  
Bandwidth –3 dB  
R
AB  
= 50 k / 100 k , Code = 0x80  
BW  
100/40  
0.05  
kHz  
%
Total Harmonic Distortion  
V =1 V rms, V = 0 V,  
THD  
W
A
B
f = 1 kHz, R = 10 k  
AB  
V
W
Settling Time (50 k /100 k  
)
V = 5 V, V = 0 V, (1 LSB error band  
t
S
2
s
A
B
2. Typical specifications represent average readings at +25$C and V = 5 V.  
DD  
3. Resistor position nonlinearity error RïINL is the deviation from an ideal value measured between the maximum resistance and the minim-  
um resistance wiper positions. RïDNL measures the relative step change from ideal between successive tap positions. Parts are guaran-  
teed monotonic.  
4. V = V , Wiper (V ) = no connect.  
AB  
DD  
W
5. INL and DNL are measured at VW with the DP configured as a potentiometer divider similar to a voltage output D/A converter. V = V  
A
DD  
and V = 0 V. DNL specification limits of (1 LSB maximum are guaranteed monotonic operating conditions.  
B
6. Resistor terminals A, B, W have no limitations on polarity with respect to each other.  
7. Guaranteed by design and not subject to production test.  
8. PDISS is calculated from (I x V ). CMOS logic level inputs result in minimum power dissipation.  
DD  
DD  
9. All dynamic characteristics use V = 5 V.  
DD  
Table 5. TIMING CHARACTERISTICS: 50 k and 100 k Versions  
V
DD  
= 5 V ( 10%, or 3 V ( 10%; V = V ; V = 0 V; –40$C < T < +85$C; unless otherwise noted.  
A
DD  
B
A
Typ  
(Note 10)  
Parameter  
Test Conditions  
Symbol  
Min  
Max  
Unit  
SPI INTERFACE TIMING CHARACTERISTICS (Notes 11 and 12) (Specifications Apply to All Parts)  
Clock Frequency  
f
25  
MHz  
ns  
CLK  
Input Clock Pulse width  
Data Setup Time  
Clock level high or low  
t
, t  
20  
5
CH CL  
t
ns  
DS  
DH  
Data Hold Time  
t
5
ns  
CS Setup Time  
T
15  
40  
0
ns  
CSS  
CSW  
CSH0  
CSH1  
CS High Pulse Width  
CLK Fall to CS Fall Hold Time  
CLK Fall to CS Rise Hold Time  
CS Rise to Clock Rise Setup  
T
ns  
T
T
ns  
0
ns  
T
10  
ns  
CS1  
10.Typical specifications represent average readings at +25$C and V = 5 V.  
DD  
11. Guaranteed by design and not subject to production test.  
12.See timing diagram for location of measured values. All input control voltages are specified with t = t = 2 ns (10% to 90% of 3 V) and timed  
R
F
from a voltage level of 1.5 V.  
4
DP7172  
SPI Interface  
Table 6. DP7172 SERIAL DATWORD FORMAT  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
MSB  
LSB  
7
0
2
2
CS  
1
2
3
4
5
6
7
8
CLK  
DATA IN  
D7 D6 D5 D4 D3 D2 D1 D0  
SDI  
V1  
V
OUT  
V2  
Figure 2. DP7172 SPI Interface Timing Diagram (V A = 5 V, VB = 0 V, VW = VOUT  
)
1
SDI  
Dx  
Dx  
(DATA IN)  
0
1
0
t
DS  
t
t
t
DH  
CH  
CS1  
CLK  
t
CSH1  
t
t
CL  
CSHO  
t
CSS  
1
0
CS  
t
CSW  
t
S
V
W
(1 LSB  
VOUT  
V
W0  
Figure 3. SPI Interface Detailed Timing Diagram (VA = 5 V, VB = 0 V, VW = VOUT  
)
5
DP7172  
TYPICAL CHARACTERISTICS  
0.03  
0.02  
0.01  
0
0.1  
0
ï0.1  
ï0.2  
ï0.3  
DNL  
INL  
ï0.01  
ï0.02  
ï0.03  
ï0.4  
ï0.5  
ï0.04  
ï0.05  
0
32  
64  
96  
128  
TAP  
160  
192  
224 256  
0
32  
64  
96  
128  
160  
192  
224 256  
TAP  
Figure 4. Differential NonïLinearity,  
CC = 5.6 V  
Figure 5. Integral NonïLinearity,  
V
VCC = 5.6 V  
120  
100  
80  
6
5
4
3
2
5.6 V  
5.0 V  
V
= 2.6 V  
CC  
4.0 V  
3.3 V  
60  
3.3 V  
5.6 V  
40  
V
= 2.6 V  
CC  
20  
0
1
0
4.0 V  
0
50  
100  
150  
200  
250  
0
52  
104  
156  
208  
260  
TAP  
TAP  
Figure 6. Wiper Resistance at Room  
Temperature  
Figure 7. Wiper Voltage  
0.4  
0.2  
102.15  
102.10  
102.05  
102.00  
101.95  
101.90  
101.85  
0
101.80  
101.75  
ï0.2  
ï50  
ï20  
10  
40  
70  
100  
ï50  
ï20  
10  
40  
70  
100  
TEMPERATURE ($C)  
TEMPERATURE ($C)  
Figure 8. Change in EndïtoïEnd Resistance  
Figure 9. EndïtoïEnd Resistance vs.  
Temperature  
6
DP7172  
TYPICAL CHARACTERISTICS  
400  
CS  
350  
T = 90$C  
T = ï45$C  
300  
250  
200  
W
T = 25$C  
150  
100  
2
3
4
5
6
V
(V)  
Figure 10. Wiper·s Transition from Position  
0xFF to Position 0x00 Relative to the CS  
Disable, VCC = 5 V  
CC  
Figure 11. Standby Current  
0
ï6  
30  
25  
20  
15  
10  
V
= 5 V  
CC  
ï12  
ï18  
V
CC  
= 5 V  
V
CC  
= 3 V  
V
CC  
= 3 V  
ï24  
ï30  
ï36  
5
0
1
10  
100  
1000  
1
10  
100  
1000  
f (KHz)  
f (KHz)  
Figure 12. Gain vs. Bandwidth (Tap 0x80)  
Figure 13. PSRR  
7
DP7172  
A
Basic Operation  
The DP7172 is a ꢀꢁꢂïSRVLWLRQ GLJLWDO SRWHQWLRPHWHr.  
:KHQ SRZHU is ILUVW DSSOLHG WKH ZLSHU DVVXPHs  
a PLGïVFDOH SRVLWLRQ DQG ZLOO UHPDLQ WKHUH as ORQJ  
as CS UHPLDQV high. 2QFH WKH SRZHU VXSSO\ is VWDEOH WKH  
ZLSHUꢅPD\ꢅEe reSRVLWLRQed via Whe SPI FRPSDWLEOH iQWHrfDFH.  
The ULVLQJ edge RI WKH CS VLJQDO DFWV as WKH WUDQVIHU  
FRPPDQd DQGꢅHDFKꢅWLPHꢅ&SꢅWUDQVLWLRQVꢅIURPꢅ/2:ꢅWRꢅ+,*+  
WKH FRQWHQWV RI WKH LQSXW UHJLVWHU are ORDGHG LQWR WKH ZLSHU  
UHJLVWHr.  
IQ WKH SRZHUïXS F\FOHꢄ WKH LQSXW GDWD UHJLVWHU is FOHDUHGꢄ  
VHWWLQJꢅDOOꢅELWVꢅWRꢅꢈꢅDQGꢅWKHꢅZLSHUꢅUHJLVWHUꢅLVꢅORDGHGꢅZLWKꢅꢈ[ꢏꢈ  
(12 'HFLPDOꢎ ZKLFK PRYHV WKH ZLSHU WR LWV PLGVFDOH  
SRVLWLRQ If CS is WRJJOHG DP7172 WUDQVIHUV WKH FRQWHQWV RI  
WKH LQSXW GDWD UHJLVWHU ꢋꢈ[ꢈꢈꢎ WR WKH ZLSHU UHJLVWHU PRYLQJ  
WKH ZLSHU WR WKH ERWWRPïPRVW SRVLWLRQ (W = WHUPLQDO %ꢎꢃ  
This WUDQVIHU is LQGHSHQGHQW RI ZKHWKHU QHZ GDWD has EHHQ  
LQSXW RU QRW EHFDXVH CS DFWV as WKH WUDQVIHU FRPPDQGꢃ  
R
R
R
S
S
S
Wiper  
Register  
and  
W
B
Decoder  
R
S
Figure 14. DP7172 Equivalent DP Circuit  
The HTXDWLRQ IRU GHWHUPLQLQJ WKH GLJLWDOO\ SURJUDPPHG  
RXWSXWꢅUHVLVWDQFHꢅEHWZHHQꢅ:ꢅDQGꢅ%ꢅLV  
Programming: Variable Resistor  
Rheostat Mode  
D
RWB  
RAB RW  
(eq. 1)  
256  
The UHVLVWDQFH EHWZHHQ WHUPLQDOV A DQG %ꢄ R  has a  
ZKHUe D is WKHꢅGHFLPDOꢅHTXLYDOHQWꢅRIꢅWKHꢅELQDU\ꢅFRGHꢅORDGHd  
AB  
QRPLQDO YDOXH RI ꢁꢈ k RU ꢉꢈꢈ k DQG has 256 FRQWDFW  
SRLQWV DFFHVVHG E\ WKH ZLSHU WHUPLQDOꢄ SOXV WKH B WHUPLQDO  
FRQWDFW. 'DWDꢅLQꢅWKHꢅꢏïELWꢅWLSHUꢅUHJLVWHUꢅLVꢅGHFRGHGꢅWRꢅVHOHFW  
RQe RI WKHVH 256 SRVVLEOH VHWWLQJVꢃ  
LQ WKH ꢏïELW WLSHU UHJLVWHr R  
is WKH HQGïWRïHQG  
AB  
UHVLVWDQFHꢄꢅaQGꢅR isꢅWKHꢅZLSHUꢅUHsisWDQFHꢅFRQWULEXWHGꢅE\ꢅWKe  
W
RQ UHVLVWDQFH RI WKH LQWHUQDO VZLWFKꢃ  
IQꢅVXPPDU\ꢄꢅif R ꢅ ꢅꢉꢈꢈꢅk ꢅDQGꢅWKHꢅ$ꢅWHUPLQDOꢅLVꢅRSHQ  
AB  
The ZLSHr·s ILUVW FRQQHFWLRQ is DW WKH B WHUPLQDOꢄ  
FRUUHVSRQGLQg WR FRQWURO SRVLWLRQ ꢈ[ꢈꢈꢃ ,GHDOO\ WKLV ZRXOG  
SUHVHQW a ꢈꢅ EHWZHHQ WKH WLSHU DQG %ꢄ EXW MXVW as ZLWK a  
PHFKDQLFDO UKHRVWDW WKHUH is a VPDOO DPRXQW RI FRQWDFW  
UHVLVWDQFe WR EH FRQVLGHUHGꢄ WKHUH is a ZLSHU UHVLVWDQFH  
FLUFXLWHGꢄ WheꢅIROORZiQJꢅRXWSXW resisWDQFH R ꢅZLOOꢅEe sHWꢅIRr  
WB  
WKH LQGLFDWHG WLSHU UHJLVWHU FRGHVꢇ  
Table 7. CODES AND CORRESPONDING RWB  
RESISTANCE FOR RAB = 100 k , VDD = 5 V  
FRPSULVHd RI WKH R  
RI WKH FET VZLWFK FRQQHFWLQJ WKH  
D (Dec.)  
R
WB  
( )  
Output State  
ON  
ZLSHU RXWSXW ZLWK LWV UHVSHFWLYH FRQWDFW SRLQWꢃ ,Q DP7172  
WKLV ¶FRQWDFW·ꢅUHVLVWDQFHꢅLVꢅW\SLFDOO\ꢅꢁꢈ . Thus a FRQQHFWLRQ  
VHWWLQJ RI ꢈ[ꢈꢈ \LHOGV a PLQLPXP UHVLVWDQFH RI ꢁꢈ  
EHWZHHQꢅWHUPLQDOVꢅ:ꢅDQGꢅ%ꢃ  
255  
128  
1
99,559  
50,050  
441  
Full Scale (R – 1 LSB + R )  
AB  
W
Midscale  
1 LSB  
)RrꢅDꢅꢉꢈꢈꢅk ꢅGHYLFHꢄꢅWKHꢅVHFRQGꢅFRQQHFWLRQꢄꢅRUꢅWKHꢅILUVWꢅWDS  
0
50  
Zero Scale  
(Wiper Contact Resistance)  
SRLQWꢄ FRUUHVSRQGVꢅWRꢅꢐꢐ1 (R = R /256 + R =ꢅꢍꢌꢈꢃ6  
WB  
AB  
W
ꢑꢅꢁꢈ ꢎꢅIRUꢅGDWDꢅꢈ[ꢈꢉꢃꢅ7KHꢅWKLUGꢅFRQQHFWLRQꢅLVꢅWKHꢅQH[WꢅWDS  
SRLQWꢄꢅLVꢅꢏꢍ1 ꢅꢋꢀꢅ[ꢅꢍꢌꢈꢃꢂꢅꢑꢅꢁꢈ ꢎꢅIRUꢅGDWDꢅꢈ[ꢈꢀꢄꢅDQGꢅVRꢅRQ.  
Figure 1 VKRZV a VLPSOLILHG HTXLYDOHQW FLUFXLW ZKHUH WKH  
ODVW UHVLVWRU VWULQJ ZLOO QRW EH DFFHVVHGꢒ WKHUHIRUHꢄ WKHUH is  
1 /6BꢅOHVVꢅRIꢅWKHꢅQRPLQDOꢅUHVLVWDQFHꢅDWꢅIXOOꢅVFDOHꢅLQꢅDGGLWLRQ  
WR WKH ZLSHU UHVLVWDQFHꢃ  
Be DZDUH WKDW LQ WKH ]HURïVFDOH SRVLWLRQꢄ WKH ZLSHU  
UHVLVWDQFeꢅRIꢅꢁꢈ ꢅLVꢅVWLOOꢅSUHVHQWꢃꢅ&XUUHQWꢅIORZꢅEHWZHHQꢅW  
DQd B LQ WKLV FRQGLWLRQ VKRXOG EH OLPLWHG WR a PD[LPXP  
SXOVHdꢅFXUUHQWꢅRIꢅQRꢅPRUHꢅWKDQꢅꢀꢈꢅP$ꢃꢅ)DLOXUHꢅWRꢅKHHGꢅWKLs  
UHVWULFWLRQꢅFDQꢅFDXVHꢅGHJUDGDWLRQꢅRUꢅSRVVLEOHꢅGHVWUXFWLRQꢅRf  
WKH LQWHUQDO VZLWFK FRQWDFWꢃ  
6LPLODr WR WKH PHFKDQLFDO SRWHQWLRPHWHr WKH UHVLVWDQFH  
Rf WKH DP ꢋ'LJLWDO 3RWHQWLRPHWHUꢎ EHWZHHQ WKH ZLSHUꢅ  
W DQG WHUPLQDO A DOVR SURGXFHV a GLJLWDOO\ FRQWUROOHGꢅ  
FRPSOHPHQWDU\ UHVLVWDQFH R . :KHQ WKHVH WHUPLQDOV are  
WA  
XVHGꢄ WKH B WHUPLQDO FDQ EH RSHQHGꢃ 6HWWLQJ WKH UHVLVWDQFH  
YDOXe IRU R ꢅVWDUWVꢅDWꢅDꢅPD[LPXPꢅYDOXHꢅRIꢅUHVLVWDQFHꢅDQG  
WA  
GHFUHDVHVꢅDVꢅWKHꢅGDWDꢅORDGHGꢅLQꢅWKHꢅODWFKꢅLQFUHDVHVꢅLQꢅYDOXH.  
The JHQHUDO HTXDWLRQ IRU WKLV RSHUDWLRQ is  
256  
D
RWA(D)  
RAB RW  
(eq. 2)  
256  
8
DP7172  
Terminal Voltage Operating Range  
For R = 100 k and the B terminal open circuited, the  
AB  
The DP7172 V  
and GND power supply define the  
following output resistance R will be set for the indicated  
DD  
WA  
limits for proper 3ïterminal digital potentiometer operation.  
Wiper register codes.  
Signals or potentials applied to terminals A, B or the wiper  
Table 8. CODES AND CORRESPONDING RWA  
RESISTANCE FOR RAB = 100 k , VDD = 5 V  
must remain inside the span of V  
and GND. Signals  
DD  
which attempt to go outside these boundaries will be  
clamped by the internal forward biased diodes.  
D (Dec.)  
R
WA  
( )  
Output State  
255  
128  
1
441  
Full Scale  
Midscale  
1 LSB  
V
DD  
50,050  
99,659  
100,050  
0
Zero Scale  
W, A, B  
LOGIC  
Typical device to device resistance matching is lot  
dependent and may vary by up to (20%.  
DP7172  
SPI Compatible 3ïWire Serial Bus  
Control of DP7172 is through a ꢍïZLUH SPI compatible  
digital interface (SDI, CS, and CLK).  
The CLK input is risingïedge sensitive and requires crisp  
transitions to avoid clocking incorrect data into the serial  
input register. When CS is low, the clock loads data into the  
serial register on each positive clock edge (Figure 1). Each  
8ïbit serial word must be loaded starting with the MSB. The  
format of the word is shown in Table 6.  
GND  
Figure 16.  
Powerïup Sequence  
Because ESD protection diodes limit the voltage  
compliance at terminals A, B, and W (see Figure 15), it is  
Data loaded into '3ꢆꢉꢆꢀ·V ꢏïELW serial input register is  
transferred to the internal Wiper register when the CS line  
returns to logic high. Extra MSB bits are ignored.  
recommended that V /GND be powered before applying  
DD  
any voltage to terminals A, B, and W. The ideal powerïup  
sequence is: GND, V , digital inputs, and then V  
. The  
DD  
A
A/B/W  
order of powering V , V , V , and the digital inputs is not  
B
W
ESD Protection  
important as long as they are powered after V /GND.  
DD  
Digital  
Power Supply Bypassing  
LOGIC  
Input  
Good design practice employs compact, minimum lead  
length layout design. Leads should be as direct as possible.  
It is also recommended to bypass the power supplies with  
quality low ESR Ceramic chip capacitors of 0.01 F to  
0.1 F. Low ESR 1 F to 10 F tantalum or electrolytic  
capacitors can also be applied at the supplies to suppress  
transient disturbances and low frequency ripple. As a further  
precaution digital ground should be joined remotely to the  
analog ground at one point to minimize the ground bounce.  
GND  
Potentiometer  
V
DD  
V
DD  
+
C
C
1
3
DP7172  
0.1  
F
10  
F
GND  
GND  
Figure 15. ESD Protection Networks  
Figure 17. Power Supply Bypassing  
9
DP7172  
PACKAGE DIMENSIONS  
SOTï23, 8 Lead  
SYMBOL  
MIN  
NOM  
MAX  
1.45  
0.15  
1.30  
0.80  
0.38  
0.22  
A
A1  
A2  
A3  
b
0.90  
0.00  
0.90  
0.60  
0.28  
0.08  
1.10  
E1  
E
c
D
2.90 BSC  
2.80 BSC  
1.60 BSC  
E
E1  
e
b
e
L
0.65 BSC  
0.45  
PIN #1 IDENTIFICATION  
0.30  
0.60  
TOP VIEW  
L1  
0.60 REF  
0.25 REF  
L2  
Q
0°  
8°  
D
A2  
A
c
A3  
A1  
L1  
L
L2  
SIDE VIEW  
END VIEW  
Notes:  
(1) All dimensions in millimeters. Angles in degrees.  
(2) Complies with JEDEC standard MO-178.  
DP7172/D  
10  
NIDEC COPAL ELECTRONICS CORP. MAKES NO WARRANTY, REPRESENTATION OR GUARANTEE, EXPRESS OR IMPLIED, REGARDING THE SUITABILITY OF ITS  
PRODUCTS FOR ANY PARTICULAR PURPOSE, NOR THAT THE USE OF ITS PRODUCTS WILL NOT INFRINGE ITS INTELLECTUAL PROPERTY RIGHTS OR THE  
RIGHTS OF THIRD PARTIES WITH RESPECT TO ANY PARTICULAR USE OR APPLICATION AND SPECIFICALLY DISCLAIMS ANY AND ALL LIABILITY ARISING  
OUT OF ANY SUCH USE OR APPLICATION, INCLUDING BUT NOT LIMITED TO, CONSEQUENTIAL OR INCIDENTAL DAMAGES.  
NIDEC COPAL ELECTRONICS CORP. product s are not de signe d, int e nde d, or aut horize d for use as compone nt s in syst e ms int e nde d for surgical implant int o t he body, or  
ot he r applicat ions int e nde d t o support or sust ain life , or for any ot he r applicat ion in which t he failure of t he NIDEC COPAL ELECTRONICS CORP. product could cre at e a  
sit uat ion where personal injury or deat h may occur.  
NIDEC COPAL ELECTRONICS CORP. re se rve s t he right t o make change s t o or discont inue any product or se rvice de scribe d he re in wit hout not ice . Product s wit h dat a she e t s  
labeled "Advance Informat ion" or "Preliminary" and ot her product s described herein may not be in product ion or offered for sale.  
NIDEC COPAL ELECTRONICS CORP. advise s cust ome rs t o obt ain t he curre nt ve rsion of t he re le vant product informat ion be fore placing orde rs. Circuit diagrams illust rat e  
t ypical semiconduct or applicat ions and may not be complet e.  
NIDEC COPAL ELECTRONICS CORP.  
Japan Head Office  
Nishi-Shinjuku, Kimuraya Bldg.,  
7-5-25 Nishi-Shinjuku, Shinjuku-ku, Tokyo 160-0023  
Phone: +81-3-3364-7055  
Fax: +81-3-3364-7098  
www.nidec-copal-electronics.com  

相关型号:

DP72

16 Pin DIP 2-Pole Filters
ETC

DP7221

Dual Digital Potentiometer
NIDEC

DP7241

Quad Digital Potentiometer
NIDEC

DP7251

Quad Digital Potentiometer
NIDEC

DP7259

Quad Digital Potentiometers
NIDEC

DP7261

Dual Digital Potentiometers
NIDEC

DP7269

Dual Digital Potentiometers
NIDEC

DP72H2B

16 Pin DIP 2-Pole Filters
FREQUENCYDEVI

DP72H2B-2.50KHZ

16 Pin DIP 2-Pole Filters
ETC

DP72H2B-33.3KHZ

16 Pin DIP 2-Pole Filters
ETC

DP72H2B-849HZ

16 Pin DIP 2-Pole Filters
ETC

DP72H2L

16 Pin DIP 2-Pole Filters
FREQUENCYDEVI