UPD75P316B [NEC]

4-BIT SINGLE-CHIP MICROCOMPUTER; 4位单片机
UPD75P316B
型号: UPD75P316B
厂家: NEC    NEC
描述:

4-BIT SINGLE-CHIP MICROCOMPUTER
4位单片机

计算机
文件: 总42页 (文件大小:368K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
MOS INTEGRATED CIRCUIT  
µPD75P316A  
4-BIT SINGLE-CHIP MICROCOMPUTER  
DESCRIPTION  
The µPD75P316A is a product of the µPD75316 with on-chip ROM having been replaced with the one-time PROM  
or EPROM.  
It is most suitable for test production during system development and for production in small amounts since it  
can operate under the same supply voltage as mask products.  
The one-time PROM product is capable of writing only once and is effective for production of many kinds of sets  
in small quantities and early startup. The EPROM product allows program writing and rewriting, and is therefore  
suitable for system evaluation. The on-chip RAM has twice the capacity of the µPD75316/75P316, enabling large  
amounts of data to be processed.  
Details of functions are described in the User's Manual shown below. Be sure to read in design.  
µPD75308 User's Manual : IEM-5016  
FEATURES  
Compatible (excluding mask option) with the mask products  
Memory capacity  
• Program memory (PROM) : 16256 × 8 bits  
• Data memory (RAM)  
: 1024 × 4 bits  
Low-voltage operation capability: 2.7 to 6.0 V  
ORDERING INFORMATION  
Ordering Code  
µPD75P316AGF-3B9  
µPD75P316AK  
Package  
On-Chip ROM  
One-time PROM  
EPROM  
80-pin plastic QFP (14 × 20 mm)  
80-pin ceramic WQFN (LCC with window)  
QUALITY GRADE  
Ordering Code  
Package  
Quality Grade  
Standard  
µPD75P316AGF-3B9  
µPD75P316AK  
80-pin plastic QFP (14 × 20 mm)  
80-pin ceramic WQFN (LCC with window)  
Standard  
Please refer to “Quality grade on NEC Semiconductor Devices” (Document number IEI-1209) published by  
NEC Corporation to know the specification of quality grade on the devices and its recommended applications.  
In descriptions common to one-time PROM products and EPROM products in this document, the term "PROM" is  
used.  
The information in this document is subject to change without notice.  
Document No. IC-2524A  
The mark shows major revised points.  
(O. D. No. IC-7950B)  
Date Published October 1993 P  
Printed in Japan  
© NEC Corporation 1992  
µPD75P316A  
PIN CONFIGURATION (Top View)  
80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65  
P70/KR4  
S12  
S13  
S14  
S15  
S16  
S17  
1
64  
63  
P63/KR3  
P62/KR2  
P61/KR1  
P60/KR0  
X2  
2
3
4
5
6
7
62  
61  
60  
59  
58  
S18  
X1  
S19  
S20  
S21  
S22  
V
XT2  
XT1  
PP  
8
9
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
µ
µ
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
V
DD  
S23  
P33 (MD3)  
P32 (MD2)  
S24/BP0  
S25/BP1  
S26/BP2  
S27/BP3  
S28/BP4  
S29/BP5  
S30/BP6  
S31/BP7  
COM0  
P31/SYNC (MD1)  
P30/LCDCL (MD0)  
P23/BUZ  
P22/PCL  
P21  
P20/PTO0  
P13/TI0  
P12/INT2  
P11/INT1  
21  
22  
23  
24  
44  
43  
42  
41  
COM1  
COM2  
COM3  
P10/INT0  
P03/SI/SB1  
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40  
2
BASIC  
INTERVAL  
TIMER  
PORT0  
P00-P03  
4
INTBT  
PROGRAM  
COUNTER (14)  
PORT1  
PORT2  
PORT3  
PORT4  
P10-P13  
P20-P23  
4
4
4
4
SP(8)  
CY  
ALU  
TIMER/EVENT  
COUNTER  
#0  
TI0/P13  
PTO0/P20  
P30-P33  
/MD0-MD3  
INTT0  
BANK  
P40-P43  
P50-P53  
P60-P63  
P70-P73  
WATCH  
TIMER  
BUZ/P23  
PORT5  
PORT6  
PORT7  
4
4
4
GENERAL REG.  
PROGRAM  
MEMORY  
INTW  
f
LCD  
DECODE  
AND  
CONTROL  
(PROM)  
SI/SB1/P03  
SO/SB0/P02  
SCK/P01  
DATA  
MEMORY  
(RAM)  
SERIAL BUS  
INTERFACE  
16256 × 8 BITS  
1024 × 4 BITS  
INTCSI  
24  
8
S0-S23  
INT0/P10  
INT1/P11  
INT2/P12  
S24/BP0  
–S31/BP7  
INTERRUPT  
CONTROL  
LCD  
CONTROL-  
LER  
4
COM0–COM3  
INT4/P00  
KR0/P60  
–KR7/P73  
f
/ 2N  
X
3
/DRIVER  
VLC0–VLC2  
SYSTEM CLOCK  
GENERATOR  
CLOCK  
OUTPUT  
CONTROL  
CLOCK  
DIVIDER  
STAND BY  
CONTROL  
CPU  
CLOCK  
BIT SEQ.  
BUFFER (16)  
SUB  
MAIN  
f
LCD  
BIAS  
µ
LCDCL/P30  
SYNC/P31  
PCL/P22  
XT1  
XT2  
X1 X2  
V
SS  
VPP  
V
DD  
RESET  
µPD75P316A  
CONTENTS  
1. PIN FUNCTIONS ......................................................................................................................................... 5  
1.1 PORT PINS ........................................................................................................................................................... 5  
1.2 OTHER PINS ......................................................................................................................................................... 7  
1.3 PIN INPUT/OUTPUT CIRCUITS ......................................................................................................................... 9  
1.4 CAUTION ON USING P00/INT4 PIN AND RESET PIN .................................................................................. 11  
2. DIFFERENCES BETWEEN PRODUCTS IN SERIES ............................................................................... 11  
3. DATA MEMORY (RAM) ............................................................................................................................ 13  
4. PROGRAM MEMORY WRITE AND VERIFY........................................................................................... 15  
4.1 PROGRAM MEMORY WRITE/VERIFY OPERATING MODES ....................................................................... 15  
4.2 PROGRAM MEMORY WRITING PROCEDURE ...............................................................................................16  
4.3 PROGRAM MEMORY READING PROCEDURE...............................................................................................17  
4.4 ERASURE METHOD ..........................................................................................................................................18  
5. ELECTRICAL SPECIFICATIONS ...............................................................................................................19  
6. PACKAGE INFORMATION .......................................................................................................................35  
7. RECOMMENDED SOLDERING CONDITIONS ....................................................................................... 37  
APPENDIX A. DEVELOPMENT TOOLS.........................................................................................................38  
APPENDIX B. RELATED DOCUMENTS ........................................................................................................39  
4
µPD75P316A  
1. PIN FUNCTIONS  
1.1 PORT PINS (1/2)  
Dual-  
Function Pin  
I/O Circuit  
Type*1  
Pin Name  
Afer Reset  
Function  
Input/Output  
8-Bit I/O  
P00  
P01  
Input  
INT4  
SCK  
B
4-bit input port (PORT0)  
Internal pull-up resistor specification by soft-  
ware is possible for P01 to P03 as a 3-bit unit.  
Input/output  
Input/output  
Input/output  
F - A  
F - B  
M - C  
×
Input  
Input  
Input  
Input  
P02  
SO/SB0  
SI/SB1  
INT0  
P03  
With noise elimination circuit  
P10  
P11  
INT1  
4-bit input port (PORT1)  
Internal pull-up resistor specification by soft-  
ware is possible as a 4-bit unit.  
Input  
×
×
×
B - C  
E - B  
E - B  
P12  
INT2  
P13  
TI0  
P20  
PTO0  
P21  
4-bit input/output port (PORT2)  
Internal pull-up resistor specification by soft-  
ware is possible as a 4-bit unit.  
Input/output  
Input/output  
P22  
PCL  
P23  
BUZ  
P30 *2  
P31 *2  
P32 *2  
P33 *2  
LCDCL MD0  
SYNC MD1  
MD2  
Programmable 4-bit input/output port (PORT3)  
Input/output settable bit-wise.  
Internal pull-up resistor specification by soft-  
ware is possible as a 4-bit unit.  
MD3  
N-ch open-drain 4-bit input/output port (PORT  
4).  
Data input/output pins for program memory  
(PROM) write/verify (low-order 4 bits).  
P40 to P43*2  
P50 to P53 *2  
Input/output  
Input/output  
High impedance  
High impedance  
M - A  
M - A  
N-ch open-drain 4-bit input/output port (PORT 5)  
Data input/output pins for program memory  
(PROM) write/verify (high-order 4 bits).  
P60  
P61  
P62  
P63  
P70  
P71  
P72  
P73  
KR0  
KR1  
KR2  
KR3  
KR4  
KR5  
KR6  
KR7  
Programmable 4-bit input/output port (PORT6).  
Input/output settable bit-wise.  
Internal pull-up resistor specification by soft-  
ware is possible as a 4-bit unit.  
Input/output  
Input/output  
Input  
Input  
F - A  
4-bit input/output port (PORT7).  
Internal pull-up resistor specification by soft-  
ware is possible as a 4-bit unit.  
F - A  
*
1.  
: Indicates a Schmitt-triggered input.  
2 . Direct LED drive capability.  
5
µPD75P316A  
1.1 PORT PINS (2/2)  
Dual-  
Function Pin  
I/O Circuit  
TYPE  
Pin Name  
Input/Output  
Output  
Function  
8-Bit I/O  
After Reset  
BP0  
BP1  
BP2  
BP3  
BP4  
BP5  
BP6  
BP7  
S24  
S25  
S26  
S27  
S28  
S29  
S30  
S31  
1-bit output port (BIT PORT)  
Dual-function as segment output pins.  
×
*
G - C  
Output  
*
For BP0 to BP7, VLC1 is selected as the input source. The output level depends on BP0 to BP7 and the VLC1 external  
circuit, however.  
6
µPD75P316A  
1.2 OTHER PINS  
Dual-  
Function Pin  
I/O Circuit  
Pin Name  
After Reset  
Function  
Input/Output  
Type *1  
B - C  
E - B  
Input  
output  
P13  
P20  
P22  
External event pulse input pin for timer/event counter.  
Timer/event counter output pin  
Clock output pin  
TI0  
PTO0  
PCL  
Input  
Input  
Input/output  
E - B  
Fixed frequency output pin (for buzzer or system clock  
trimming)  
Input/output  
Input/output  
Input/output  
P23  
P01  
P02  
Input  
BUZ  
E - B  
Serial clock input/output pin  
F - A  
Input  
Input  
SCK  
Serial data output pin  
Serial bus input/output pin  
SO/SB0  
F - B  
M - C  
Serial data input pin  
Serial bus input/output pin  
Input  
SI/SB1  
INT4  
Input/output  
Input  
P03  
P00  
Edge-detected vectored interrupt input pin (rising or falling  
edge detection).  
B
INT0  
INT1  
P10  
P11  
Edge-detected vectored interrupt input pin (detection edge  
selectable)  
Input  
B - C  
Input  
Input/output  
Input/output  
Output  
B - C  
F - A  
F - A  
G - A  
G - C  
G - B  
Edge-detected testable input pin (rising edge detection)  
Testable Input/output pins (parallel falling edge detection)  
Testable Input/output pins (parallel falling edge detection)  
Segment signal output pins  
INT2  
P12  
Input  
Input  
KR0 to KR3  
KR4 to KR7  
S0 to S23  
S24 to S31  
COM0 to COM3  
P60 to P63  
P70 to P73  
*3  
Output  
*3  
BP0 to 7  
Segment signal output pins  
Output  
Common signal output pins  
*3  
V
LC0 to VLC2  
LCD drive power supply pins  
BIAS  
External split cutting output pin  
High impedance  
Input  
LCDCL*2  
SYNC*2  
Input/output  
P30  
External extension driver drive clock output pin  
External extension driver synchronization clock output pin  
E - B  
P31  
Input/output  
Input  
Input  
E - B  
Main system clock oscillation crystal/ceramic connection  
pins. When an external clock is used, the clock is input to  
X1 and the inverted clock to X2.  
X1, X2  
Subsystem clock oscillation crystal connection pins  
When an external clock is used, the clock is input to XT1 and  
the inverted clock to XT2. XT1 can be used as a 1-bit input  
(test) pin.  
Input  
XT1, XT2  
Input  
System reset input pin (low-level active).  
RESET  
B
Mode selection pin for program memory (PROM) write/  
verify.  
Input/output  
P30 to P33  
Input  
MD0 to MD3  
E - B  
Programvoltageapplicationpinforprogrammemory(PROM)  
write/verify . Connected to VDD in normal operation. Applies  
+12.5 V in program memory write/verify.  
V
PP  
V
DD  
SS  
Positive power supply pin  
GND potential pin  
V
7
µPD75P316A  
*
1.  
: Indicates a Schmitt-triggered input.  
2. Pins provided for future system expansion. Currently used only as pins 30 and 31.  
3. VLCX shown below can be selected for display outputs.  
S0 to S31: VLC1, COM0 to COM2: VLC2 , COM3: VLC0  
However, display output levels depend on the display output and VLCX external circuit.  
8
µPD75P316A  
1.3 PIN INPUT/OUTPUT CIRCUITS  
The input/output circuits of each pin of the µPD75P316A are shown by in abbreviated form.  
TYPE A (For TYPE E-B)  
TYPE D (For TYPE E-B, F-A)  
V
DD  
VDD  
data  
P-ch  
OUT  
P-ch  
IN  
output  
disable  
N-ch  
N-ch  
Push-pull output that can be made high-impedance  
output (P-ch and N-ch OFF)  
CMOS standard input buffer  
TYPE B  
TYPE E-B  
VDD  
P.U.R.  
P.U.R.  
enable  
P-ch  
IN  
data  
IN/OUT  
Type D  
Type A  
output  
disable  
P.U.R.  
:
Pull-Up Resistor  
Schmitt trigger input with hysteresis characteristic  
TYPE B-C  
TYPE F-A  
VDD  
VDD  
P.U.R.  
P.U.R.  
P.U.R.  
enable  
P-ch  
P.U.R.  
enable  
P-ch  
data  
IN/OUT  
Type D  
Type B  
output  
disable  
IN  
P.U.R. : Pull-Up Resistor  
P.U.R.  
:
Pull-Up Resistor  
Schmitt trigger input with hysteresis characteristic  
9
µPD75P316A  
TYPE F-B  
TYPE G-C  
VDD  
P.U.R.  
P-ch  
VDD  
P.U.R.  
enable  
P-ch  
VDD  
V
LC0  
output  
disable  
(P)  
P-ch  
V
LC1  
IN/OUT  
P-ch  
data  
SEG  
output  
disable  
OUT  
N-ch  
data/Bit Port data  
N-ch  
output  
disable  
(N)  
V
LC2  
N-ch  
P.U.R.  
:
Pull-Up Resistor  
TYPE G-A  
TYPE M-A  
IN/OUT  
V
LC0  
P-ch  
data  
N-ch  
(+10 V  
Withstand  
Voltage)  
V
LC1  
output  
disable  
P-ch  
SEG  
data  
OUT  
N-ch  
VLC2  
N-ch  
Middle-High Voltage Input Buffer  
(+10 V Withstand Voltage)  
TYPE G-B  
TYPE M-C  
VDD  
V
LC0  
P-ch  
P.U.R.  
P-ch  
IN/OUT  
VLC1  
P.U.R.  
enable  
N-ch  
P-ch  
OUT  
data  
N-ch  
COM  
data  
output  
disable  
N-ch P-ch  
VLC2  
N-ch  
P.U.R.  
:
Pull-Up Resistor  
10  
µPD75P316A  
1.4 CAUTION ON USING P00/INT4 PIN AND RESET PIN  
The P00/INT4 and RESET pins have a test mode setting function (IC test only) which tests internal operations of  
the µPD75P316A in addition to those functions given in 1.1 and 1.2.  
The test mode is set when voltage greater than VDD is applied to either pin. Therefore, even during normal  
operation, the test mode is engaged when noise greater than VDD is added, thus causing interference with normal  
operation.  
For example, this problem may occure if the P00/INT4 and RESET pins wiring is too long, causing line noise.  
To avoid this, try to suppress line noise in wiring. If line noise is still high, try elimminating the noise using the  
exterior add-on components shown in the Figures below.  
• Connect a condenser between the VDD and the pin.  
• Connect a diode with low VF between the VDD  
and the pin.  
V
DD  
VDD  
Diode with  
Small V  
VDD  
V
DD  
F
P00/INT4, RESET  
P00/INT4, RESET  
2. DIFFERENCES BETWEEN PRODUCTS IN SERIES  
The µPD75P316A is a product of the µPD75316 with on-chip mask ROM having been replaced with the one-time  
PROM or EPROM. If you use PROM for debugging the applied system or trial manufacturing, and proceed to use  
masked ROM products for mass production, do so only with a full understanding of their differences beforehand.  
Also, µPD75P316A functions are an extension of those of theµPD75P316. Table 2-1 shows the differences between  
the series products. All products have the same functions except as indicated in this table.  
For the details of the CPU functions and the built-in hardware, please refer to the µPD75308 User's Manual (IEM-  
5016).  
11  
Table 2-1 Differences between Products in Series  
Product Name  
Comparison Item  
µPD75304/75306/75308  
µPD75312/75316  
µPD75304B/75306B/75308B µPD75312B/75316B  
µPD75P308  
µPD75P316  
µPD75P316A  
µPD75P316B*1  
Mask ROM  
4K/6K/8K  
Mask ROM  
12K/16K  
Mask ROM  
4K/6K/8K  
Mask ROM  
12K/16K  
One-time PROM,EPROM One-time PROM  
8K 16K  
One-time PROM,EPROM One-time PROM  
16K 16K  
ROM(× 8 bits)  
RAM(× 4 bits)  
Mask option  
512  
1024  
512  
1024  
Port 4, 5 pull-up resistor incorporated  
LCD driving power supplying split resistor  
No  
P30/MD0 to P33/MD3  
No. 50 to 53  
P30 to P33  
NC  
Pin  
connection  
No. 57  
IC  
V
PP  
Masked ROM products and PROM products have different current dissipation and operating temperature range *2. For details, refer to the electrical specifications of  
respective data sheet.  
Electrical specifications  
Power supply voltage range  
2.7 to 6.0 V  
2.0 to 6.0 V  
2.0 to 5.5 V  
5 V ±5 %  
2.7 to 6.0 V  
2.0 to 5.5 V  
Operating temperature  
range  
Under  
investigation  
–40 to +85 °C  
–10 to +70 °C  
–40 to +85 °C  
• 80-pin plastic QFP (14 × 20)  
• 80-pin plastic QFP  
QFP (14)  
• 80-pin plastic QFP  
(14 × 20)  
• 80-pin plastic TQFP  
(12)  
• 80-pin plastic  
QFP (14)  
• 80-pin plastic  
TQFP (12)  
• 80-pin plastic  
• 80-pin plastic  
QFP (14 × 20)  
• 80-pin plastic  
QFP (14 × 20)  
• 80-pin ceramic  
WQFN (LCC with  
window)  
• 80 pin plastic  
QFP (14)  
• 80 pin plastic  
TQFP (12)  
QFP (14 × 20)  
• 80-pin ceramic  
WQFN (LCC with  
window)  
Package  
µPD75P316  
µPD75P316A  
µPD75P316A  
µPD75P316B  
On-chip PROM product  
Others  
µPD75P308  
µPD75P316B  
––––  
Masked ROM products and PROM products have different noise endurance limits and noise radiation due to differing circuit scales and mask layouts.  
*
1. The µPD75P316B is under development.  
2. The µPD75P316A is the same as the mask ROM products.  
Note  
PROM and masked ROM have different noise endurance limits and noise radiation. When considering replacement of masked ROM products after trial manufacturing  
with PROM products, sufficient evaluation of CS products (not ES products) with masked ROM products should be performed.  
µ
µPD75P316A  
3. DATA MEMORY (RAM)  
Fig. 3-1 shows the data memory configuration. It consists of a data area and a peripheral hardware area.  
The data memory consists of memory banks 0 to 3 with each bank consisting of 256 words × 4 bits.  
Peripheral hardware has been assigned to the area of memory bank 15.  
(1) Data area  
The data area comprises a static RAM. It is used to store program data and as a subroutine, interrupt execution  
stack memory. Even if the CPU operation is stopped in the standby mode, it is possible to hold the memory content  
for a long time by battery backup, etc. The data area is operated by memory manipulation instructions.  
The static RAM has been mapped to memory banks 0, 1, 2 and 3 by 256 × 4 bits each. Bank 0 has been mapped  
as a data area but is also available as a general register area (000H to 007H) and a stack area (000H to 0FFH) (banks  
1, 2 and 3 are available only as a data area).  
In the static RAM, 1 address consists of 4 bits. It can be operated in units of 8 bits by 8-bit memory manipulation  
instructions or in bits by bit manipulation instructions, however. In an 8-bit manipulation instruction, an even  
address should be specified.  
(a) General register area  
The general register area can be operated either by general register operation instructions or by memory  
manipulation instructions. Up to eight 4-bit registers are available. That part of the 8 general registers which  
is not used in the program is available as a data area or a stack area.  
(b) Stack area  
The stack area is set by an instruction. It is available as a subroutine execution or interrupt service execution  
save area.  
(2) Peripheral hardware area  
The peripheral hardware area has been mapped to F80H to FFFH of memory bank 15.  
It is operated by memory manipulation instructions just as the static RAM. In the peripheral hardware, however,  
the operable bit unit differs from one address to another. An address to which peripheral hardware has not been  
assigned is inaccessible since no data memory is built in.  
13  
µPD75P316A  
µPD78012  
Fig. 3-1 Data Memory Map  
Data Memory  
Memory Bank  
000H  
General  
Register Area  
(8 × 4)  
007H  
008H  
Stack  
Area  
0
256 × 4  
0FFH  
100H  
Data Area  
Static RAM  
(1024 × 4)  
256 × 4  
256 × 4  
1
2
3
1FFH  
200H  
2FFH  
300H  
256 × 4  
3FFH  
Not On-Chip  
F80H  
FFFH  
15  
128 × 4  
Peripheral Hardware Area  
14  
µPD75P316A  
4. PROGRAM MEMORY WRITE AND VERIFY  
The ROM built into the µPD75P316A is a 16256 × 8-bit electrically writable one-time PROM. The table below shows  
the pins used to program this PROM. There is no address input; instead, a method to update the address by the  
clock input via the X1 pin is adopted.  
Pin Name  
Function  
Voltage applecation pin for program memory write/verify  
(normally VDD potential).  
VPP  
Address update clock inputs for program memory write/  
verify. Inverse of X1 pin signal is input to X2 pin.  
X1, X2  
Operating mode selection pins for program memory write/  
verify.  
MD0 to MD3  
8-bit data input/output pins for progrm memory write/  
verify.  
P40 to P43 (low-order 4 bits)  
P50 to P53 (high-order 4 bits)  
Supply voltage application pin.  
VDD  
Applies 2.7 to 6.0 V in normal operation, and 6 V for  
program memory write/verify.  
Note 1. A lightshield cover film should be applied to the µPD75P316AK provided  
with an erasure window, except when erasing the EPROM.  
2. The one-time PROM version of µPD75P316AGF is not provided with an  
erasure window, and therefore UV erasure is not possible.  
4.1 PROGRAM MEMORY WRITE/VERIFY OPERATING MODES  
The µPD75P316A assumes the program memory write/verify mode when +6 V and +12.5 V are applied  
respectively to the VDD and VPP pins. The table below shows the operating modes available by the MD0 to MD3 pin  
setting in this mode. All the remaining pins are at the VSS potential by the pull-down resistor.  
Operating Mode Setting  
Operating Mode  
VPP  
VDD  
MD1 MD2 MD3  
MD0  
L
H
L
H
H
H
H
L
H
L
Program memory address zero-clear  
Write mode  
H
H
H
+12.5 V  
+6 V  
L
Verify mode  
×
H
Program inhibit mode  
×: L or H  
15  
µPD75P316A  
µPD78012  
4.2 PROGRAM MEMORY WRITING PROCEDURE  
The program memory writing procedure is shown below. High-speed write is possible.  
(1) Pull down a pin which is not used to VSS via the resistor. The X1 pin is at the low level.  
(2) Supply 5 V to the VDD and VPP pins.  
(3) 10 µs wait.  
(4) The program memory address 0 clear mode.  
(5) Supply 6 V and 12.5 V respectively to VDD and VPP.  
(6) The program inhibit mode.  
(7) Write data in the 1-ms write mode.  
(8) The program inhibit mode.  
(9) The verify mode. If written, proceed to (10); if not written, repeat (7) to (9).  
(10) (Number of times written in (7) to (9): X) × 1-ms additional write.  
(11) The program inhibit mode.  
(12) Update (+1) the program memory address by inputting 4 pulses to the X1 pin.  
(13) Repeat (7) to (12) up to the last address.  
(14) The program memory address 0 clear mode.  
(15) Change the VDD and VPP pins voltage to 5 V.  
(16) Power off.  
The diagram below shows the procedure of the above (2) to (12).  
Repeated X Times  
Address  
Increment  
Additional  
Write  
Write  
Verify  
V
V
PP  
V
V
PP  
DD  
V
DD + 1  
DD  
V
DD  
X1  
P40-P43  
P50-P53  
Data Output  
Data Input  
Data Input  
MD0  
(P30)  
MD1  
(P31)  
MD2  
(P32)  
MD3  
(P33)  
16  
µPD75P316A  
4.3 PROGRAM MEMORY READING PROCEDURE  
The µPD75P316A can read the content of the program memory in the following procedure. It reads in the verify  
mode.  
(1) Pull down a pin which is not used to VSS via the resistor. The X1 pin is at the low level.  
(2) Supply 5 V to the VDD and VPP pins.  
(3) 10 µs wait.  
(4) The program memory address 0 clear mode.  
(5) Supply 6 V and 12.5 V respectively to VDD and VPP.  
(6) The program inhibit mode.  
(7) The verify mode. If clock pulses are input to the X1 pin, data is output sequentially 1 address at a time at  
the period of inputting 4 pulses.  
(8) The program inhibit mode.  
(9) The program memory address 0 clear mode.  
(10) Change the VDD and VPP pins voltage to 5 V.  
(11) Power off.  
The diagram below shows the procedure of the above (2) to (9).  
VPP  
VPP  
VDD  
VDD + 1  
VDD  
VDD  
X1  
P40-P43  
P50-P53  
Data Output  
Data Output  
MD0  
(P30)  
"L"  
MD1  
(P31)  
MD2  
(P32)  
MD3  
(P33)  
17  
µPD75P316A  
µPD78012  
4.4 ERASING METHOD (µPD75P316AK ONLY)  
The content of the data programmed in the µPD75P316A is erased as ultraviolet rays are irradiated to the window  
in the upper part.  
The erasable ultraviolet-ray wavelength is about 250 nm.  
The dose required for complete erasure is 15 W•s/cm2 (ultraviolet-ray intensity × erasure time). If a commercially  
available ultraviolet-ray lamp (wavelength 254 nm, intensity 12 mW/cm2) is used, it takes about 15 to 20 minutes  
to erase.  
Note 1. The content may be erased if exposed to direct sunlight or fluorescent lamp light for a long time. To  
protect the content, the window in the upper part should be masked with a lightshield cover film.  
NEC attaches such a lightshield cover film to each UV EPROM product.  
2. When erasing, the distance between the ultraviolet-ray lamp and the µPD75P316A should be kept  
normally within 2.5 cm.  
Remarks It may take longer to erase if the ultraviolet-ray lamp has deteriorated or if the package window is dirty  
and so on.  
18  
µPD75P316A  
5. ELECTRICAL SPECIFICATIONS  
ABSOLUTE MAXIMUM RATINGS (Ta = 25 °C)  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
Open-drain  
RATING  
UNIT  
VDD  
–0.3 to +7.0  
–0.3 to +13.5  
–0.3 to VDD +0.3  
V
V
V
Power supply voltage  
VPP  
Except ports 4, 5  
VI1  
Input voltage  
VI2  
Ports 4, 5  
–0.3 to +11  
V
–0.3 to VDD +0.3  
Output voltage  
VO  
V
–15  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
°C  
1 pin  
Output current high  
IOH  
–30  
All pins  
30  
Peak value  
1 pin  
15  
100  
Effective value  
Peak value  
Output current low  
Total of ports 0, 2, 3, 5  
Total of ports 4, 6, 7  
IOL*  
60  
Effective value  
Peak value  
100  
60  
Effective value  
Operating temperature  
Storage temperature  
Topt  
Tstg  
–40 to +85  
–65 to +150  
°C  
*
Calculate the effective value with the formula [Effective value] = [Peak value] × √duty.  
CAPACITANCE (Ta = 25 °C, VDD = 0 V)  
MAX.  
15  
UNIT  
pF  
PARAMETER  
Input capacitance  
Output capacitance  
SYMBOL  
CIN  
TEST CONDITIONS  
MIN.  
TYP.  
f = 1 MHz  
Unmeasured pin returned to 0 V  
COUT  
15  
pF  
Input /output  
capacitance  
CIO  
15  
pF  
19  
µPD75P316A  
MAIN SYSTEM CLOCK OSCILLATOR CHARACTERISTICS (Ta = –40 to +85 °C, VDD = 2.7 to 6.0 V)  
RECOMMENDED CIRCUIT  
PARAMETER  
TEST CONDITIONS  
MIN.  
1.0  
TYP.  
UNIT  
MHz  
RESONATOR  
MAX.  
Oscillator frequency  
(fX) *1  
5.0*3  
X1  
X2  
Ceramic  
resonator  
After VDD reaches the  
Oscillation stabilization minimum value in the  
time *2  
C1  
C2  
C2  
4
ms  
oscillation voltage  
range  
V
DD  
Oscillator frequency  
(fX) *1  
1.0  
5.0*3  
4.19  
MHz  
ms  
X1  
X2  
Crystal  
resonator  
VDD = 4.5 to 6.0 V  
10  
30  
Oscillation stabilization  
time *2  
C1  
ms  
VDD  
X1 input frequency  
(fX) *1  
5.0*3  
MHz  
ns  
1.0  
X1  
X2  
External  
clock  
X1 high and low level  
widths (tXH, tXL)  
100  
500  
µPD74HCU04  
*
1. Oscillator characteristics only. Refer to the description of AC characteristics for details of instruction execution  
time.  
2. Time required for oscillation to become stabilized after VDD reaches MIN. of the oscillation voltage range or  
after STOP mode release.  
3. When the oscillator frequency is 4.19 MHz < f 5.0 MHz, do not select PPC = 0011 as instruction execution  
X
time. If PCC = 0011 is selected, 1 machine cycle becomes less than 0.95 µs, with the result that specified MIN.  
value 0.95 µs can not be observed.  
SUBSYSTEM CLOCK OSCILLATOR CHARACTERISTICS (Ta = –40 to +85 °C, VDD = 2.7 to 6.0 V)  
TYP.  
RESONATOR RECOMMENDED CIRCUIT  
MAX.  
35  
PARAMETER  
TEST CONDITIONS  
VDD = 4.5 to 6.0 V  
MIN.  
32  
UNIT  
kHz  
Oscillator frequency  
(fXT)  
32.768  
XT1  
XT2  
Crystal  
resonator  
R
2
s
s
1.0  
Oscillation stabilization  
time*  
C3  
C4  
10  
VDD  
XT1 input frequency  
(fXT)  
32  
5
kHz  
100  
15  
X1  
X2  
External  
clock  
XT1 high and low level  
widths (tXTH, tXTL)  
µs  
20  
µPD75P316A  
*
Time required for oscillation to become stabilized after VDD reaches MIN. of the oscillation voltage range or after  
STOP made release.  
Note When the main system clock and subsystem clock oscillation circuit are used, the area enclosed by dotted  
line in the figure should be wired as follows to prevent influence from the wiring capacitance, etc..  
• Wiring should be as short as possible.  
• Do not cross other signal lines.  
Do not place the circuit closed to a line in which varying high current flows.  
• The connecting point of oscillation circuit capacitor should always be the same potential as VDD. Do  
not connect it to the power supply pattern in which high current flows.  
• Do not pick up a signal from the oscillation circuit.  
The subsystem clock oscillation circuit is designed to be low amplification circuit for low dissipation  
current, thus misoperation due to noise occurs more often than with the main system clock oscillation  
circuit. Therefore, when the subsystem clock is used, care is needed especially for the wiring procedure.  
21  
µPD75P316A  
DC CHARACTERISTICS (Ta = –40 to +85 °C, VDD = 2.7 to 6.0 V) (1/2)  
PARAMETER  
SYMBOL  
VIH1  
TEST CONDITIONS  
Ports 2 and 3  
MIN.  
0.7 VDD  
0.8 VDD  
0.7 VDD  
VDD –0.5  
0
TYP.  
MAX.  
VDD  
UNIT  
V
V
V
V
V
V
V
VIH2  
Ports 0, 1, 6, 7, RESET  
Ports 4 and 5  
VDD  
Input voltage  
high  
VIH3  
Open-drain  
10  
VIH4  
VIL1  
X1, X2, XT1  
VDD  
Ports 2, 3, 4 and 5  
Ports 0, 1, 6, 7, RESET  
X1, X2, XT1  
0.3 VDD  
0.2 VDD  
0.4  
Input voltage  
low  
VIL2  
0
VIL3  
0
VDD = 4.5 to  
6.0 V  
IOH = –1 mA  
Ports  
0, 2, 3, 6, 7,  
BIAS  
VDD –1.0  
VDD –0.5  
VDD –2.0  
VDD –1.0  
V
V
V
VOH1  
V0H2  
Output voltage  
high  
IOH = -100 µA  
VDD = 4.5 to  
6.0 V  
IOH = –100 µA  
BP0 to BP7  
(with 2 IOH  
outputs)  
IOH = –30 µA  
V
V
Ports 3, 4 and 5  
VDD = 4.5 to  
6.0 V  
0.4  
2.0  
IOL = 15 mA  
Ports  
0, 2, 3, 4, 5, 6  
and 7  
VDD = 4.5 to  
6.0 V  
IOL = 1.6 mA  
0.4  
0.5  
V
V
VOL1  
Output voltage  
low  
IOL = 400 µA  
Open-drain  
pull-up  
resistor 1 kΩ  
SB0, 1  
V
V
0.2 VDD  
VDD = 4.5 to  
6.0 V  
IOL = 100 µA  
1.0  
1.0  
BP0 to BP7 (with 2  
IOL outputs)  
VOL2  
IOL = 50 µA  
V
Other than  
below  
µA  
µA  
ILIH1  
ILIH2  
3
VIN = VDD  
VIN = 10 V  
VIN = 0 V  
20  
X1, X2, XT1  
Input leakage  
current high  
Ports 4 and 5  
(when open-  
drain)  
µA  
20  
ILIH3  
Other than  
below  
µA  
µA  
ILIL1  
ILIL2  
-3  
Input leakage  
current low  
X1, X2, XT1  
-20  
22  
µPD75P316A  
DC CHARACTERISTICS (Ta = –40 to +85 °C, VDD = 2.7 to 6.0 V) (1/2)  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
Other than  
MIN.  
TYP.  
MAX.  
3
UNIT  
µA  
ILOH1  
VOUT = VDD  
below  
Output leakage  
current high  
Ports 4 and 5  
(when open-  
drain)  
20  
µA  
µA  
ILOH2  
VOUT = 10 V  
VOUT = 0 V  
Output leakage  
current low  
ILOL  
–3  
80  
VDD = 5.0 V  
15  
40  
kΩ  
Ports 0, 1, 2, 3, 6  
and 7 (Except P00)  
VIN = 0 V  
±10%  
On-chip pull-up  
resistor  
RL1  
VDD = 3.0 V  
30  
300  
kΩ  
±10%  
LCD drive voltage  
VDD  
2.5  
V
VLCD  
LCD output  
voltage  
deviation*1  
(common)  
VLCD0 = VLCD  
VLCD1 =  
VLCD × 2/3  
VLCD2 = VLCD  
× 1/3  
IO = ±5 µA  
IO = ±5µA  
VODC  
0
0
±0.2  
±0.2  
V
V
LCD output  
voltage  
deviation*1  
(segment)  
2.7 V VLCD  
VDD  
VODC  
VDD = 5 V  
±10%*4  
4.5  
0.9  
14  
3
mA  
mA  
IDD1  
VDD = 3 V  
±10%*5  
4.19 MHz*3 crystal  
oscillation C1=C2  
22 pF  
HALT VDD =  
mode 5 V  
±10%  
700  
2100  
µA  
IDD2  
VDD =  
3 V  
±10%  
300  
100  
900  
300  
µA  
µA  
Ope-  
VDD =  
3 V  
Supply current*2  
IDD3  
IDD4  
rating  
mode  
±10%  
32 kHz*6  
crystal oscillation  
HALT VDD =  
mode 3 V  
±10%  
20  
60  
µA  
VDD = 5 V±10%  
0.5  
0.1  
20  
10  
µA  
µA  
XT1 =  
0 V STOP mode  
IDD5  
VDD =  
3 V±10%  
Ta = 25°C  
0.1  
5
5
µA  
µA  
32 kHz  
crystal oscillation  
STOP mode  
IDD6  
15  
VDD = 3 V ±10%*7  
23  
µPD75P316A  
*
1. The voltage deviation is a difference between the segment and common output ideal value (VLCDn; n = 0, 1,  
2) and output voltage.  
2. Current flowing in the internal pull-up resistor and LCD split resistor are not included.  
3. Includes when the subsystem clock is oscillated.  
4. When the processor clock control register (PCC) is set to 0011 and operated in high-speed mode.  
5. When the PCC is set to 0000 and operated in low-speed mode.  
6. When operated by the subsystem clock with the system clock control register (SCC) set to 1011 and the main  
system clock stops.  
7. When the STOP instruction is executed during the main system clock operation and the subsystem clock is  
oscillated.  
24  
µPD75P316A  
AC CHARACTERISTICS (Ta = –40 to +85 °C , VDD = 2.7 to 6.0 V)  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
VDD = 4.5 to 6.0 V  
MIN.  
TYP.  
MAX. UNIT  
0.95  
3.8  
64  
64  
µs  
µs  
Operation with main  
system clock  
CPU clock cycle time  
(minimum instruction  
execution time = 1  
machine cycle )*1  
tCY  
Operation with  
114  
122  
125  
µs  
subsystem clock  
0
0
1
MHZ  
kHz  
µs  
VDD = 4.5 to 6.0 V  
VDD = 4.5 to 6.0 V  
fTI  
TI0 input frequency  
275  
0.48  
tTIH,  
TI0 input high and low-  
level widths  
tTIL  
1.8  
µs  
*2  
10  
10  
µs  
µs  
µs  
INT0  
tINTH,  
Interrupt input high and  
low-level widths  
INT1, 2, 4  
KR0–7  
tINTL  
10  
µs  
RESET low-level width  
tRSL  
t
CY VS  
V
DD  
* 1. CPU clock (Φ) cycle time is determined by oscillator  
frequencyoftheconnectedresonator, systemclock  
control register (SCC) and processor clock control  
register (PCC). Characteristics for power supply  
voltage VDD vs • cycle time tCY in main system clock  
operation is shown below.  
(Main System Clock in Operation)  
70  
64  
30  
6
5
2. It becomes 2tCY or 128/f by interrupt mode register  
X
(IM0) setting.  
4
3
µ
2
1
0.5  
0
1
2
3
4
5
6
Power Supply Voltage VDD [V]  
25  
µPD75P316A  
Serial Transfer Operation  
2-wire and 3-wire serial I/O mode (SCK...Internal clock output)  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
VDD = 4.5 to 6.0 V  
MIN.  
1600  
TYP.  
MAX. UNIT  
ns  
ns  
ns  
ns  
ns  
ns  
tKCY1  
SCK cycle time  
3800  
tKL1  
tKH1  
tSIK1  
tKSI1  
VDD = 4.5 to 6.0 V  
tKCY1/2–50  
tKCY1/2–150  
150  
SCK high and low level  
widths  
SI setup time (to SCK)  
SI hold time (from SCK)  
400  
VDD = 4.5 to 6.0 V  
250  
ns  
ns  
SO output delay time  
from SCK↓  
RL = 1 k , CL = 100 pF*  
tKSO1  
1000  
*
R
L
and C  
L
are SO output line load resistance and load capacitance, respectively.  
2-wire and 3-wire serial I/O mode (SCK...External clock input)  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
VDD = 4.5 to 6.0 V  
MIN.  
800  
TYP.  
MAX. UNIT  
ns  
ns  
ns  
ns  
ns  
ns  
SCK cycle time  
tKCY2  
3200  
400  
tKL2  
tKH2  
tSIK2  
tKSI2  
VDD = 4.5 to 6.0 V  
SCK high and low level  
widths  
1600  
100  
SI setup time (to SCK)  
SI hold time (from SCK)  
400  
VDD = 4.5 to 6.0 V  
300  
ns  
ns  
SO output delay time  
from SCK↓  
tKSO2  
RL = 1 k , CL = 100 pF*  
1000  
*
R
L
and C are SO output line load resistance and load capacitance, respectively.  
L
26  
µPD75P316A  
SBI mode (SCK...Internal clock output (master))  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
VDD = 4.5 to 6.0 V  
MIN.  
1600  
3800  
tKCY3/2–50  
tKCY3/2–150  
150  
TYP.  
MAX. UNIT  
ns  
ns  
ns  
ns  
ns  
ns  
SCK cycle time  
tKCY3  
tKL3  
tKH3  
tSIK3  
tKSI3  
VDD = 4.5 to 6.0 V  
SCK high and low level  
widths  
SB0andSB1setuptime(toSCK)  
SB0andSB1holdtime (fromSCK)  
tKCY3/2  
0
VDD = 4.5 to 6.0 V  
250  
ns  
ns  
ns  
ns  
ns  
ns  
SB0 and SB1 output  
delay time from SCK↓  
tKSO3  
RL = 1 k , CL = 100 pF*  
0
1000  
SB0, SB1from SCK↑  
SCK from SB0, SB1↓  
tKCY3  
tKSB  
tSBK  
tSBL  
tSBH  
tKCY3  
tKCY3  
SB0andSB1low-levelwidths  
SB0andSB1high-levelwidths  
tKCY3  
*
R
L
and C are SO output line load resistance and load capacitance, respectively.  
L
SBI mode (SCK...External clock input (slave))  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
VDD = 4.5 to 6.0 V  
MIN.  
800  
3200  
400  
TYP.  
MAX. UNIT  
ns  
ns  
ns  
ns  
ns  
ns  
SCK cycle time  
tKCY4  
tKL4  
tKH4  
tSIK4  
tKSI4  
VDD = 4.5 to 6.0 V  
SCK high and low level  
widths  
1600  
100  
tKCY3/2  
0
SB0andSB1setuptime(toSCK)  
SB0andSB1holdtime (fromSCK)  
VDD = 4.5 to 6.0 V  
300  
ns  
ns  
ns  
ns  
ns  
ns  
SB0 and SB1 output  
delay time from SCK↓  
tKSO4  
RL = 1 k , CL = 100 pF*  
0
1000  
SB0, SB1from SCK↑  
SCK from SB0, SB1↓  
tKCY4  
tKCY4  
tKCY4  
tKCY4  
tKSB  
tSBK  
tSBL  
tSBH  
SB0andSB1low-levelwidths  
SB0andSB1high-levelwidths  
*
R
L
and C are SO output line load resistance and load capacitance, respectively.  
L
27  
µPD75P316A  
AC Timing Test Points (Except X1 and XT1 Inputs)  
0.8 VDD  
0.2 VDD  
0.8 VDD  
0.2 VDD  
Test Points  
Clock Timing  
1/fX  
tXL  
tXH  
X1 Input  
VDD - 0.5 V  
0.4 V  
1/fXT  
t
XTL  
tXTH  
XT1 Input  
VDD - 0.5 V  
0.4 V  
TI0 Timing  
1/fT1  
t
TIL  
tTIH  
TI0  
28  
µPD75P316A  
Serial Transfer Timing  
3-wire serial I/O mode:  
t
KCY1  
t
KH1  
tKL1  
SCK  
tSIK1  
tKSI1  
SI  
Input Data  
tKSO1  
SO  
Output Data  
2-wire serial I/O mode:  
t
KCY2  
t
KL2  
t
KH2  
SCK  
t
SIK2  
t
KS12  
SB0,1  
t
KSO2  
29  
µPD75P316A  
Serial Transfer Timing  
Bus release signal transfer:  
t
KCY3,4  
t
KL3,4  
t
KH3,4  
SCK  
t
SIK3,4  
tKSB  
t
SBL  
t
SBH  
tSBK  
t
KSI3,4  
SB0,1  
t
KSO3,4  
Command signal transfer:  
t
KCY3,4  
t
KL3,4  
t
KH3,4  
SCK  
t
SIK3,4  
t
KSB  
tSBK  
tKSI3,4  
SB0,1  
t
KSO3,4  
Interrupt Input Timing  
t
INTL  
t
INTH  
INT0,1,2,4  
KR0-7  
RESET Input Timing  
tRSL  
RESET  
30  
µPD75P316A  
DATA MEMORY STOP MODE LOW POWER SUPPLY VOLTAGE DATA RETENTION CHARACTERISTICS (Ta = –40  
to +85 °C)  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN.  
2.0  
TYP.  
0.1  
MAX.  
6.0  
UNIT  
V
VDDDR  
IDDDR  
tSREL  
Data retention power supply voltage  
Data retention power supply current *1  
Release signal set time  
VDDDR = 2.0 V  
10  
µA  
µs  
0
Release by RESET  
217/fX  
ms  
ms  
Oscillation stabilization wait  
tWAIT  
time *2  
Release by interrupt request  
*3  
* 1. Current to the internal pull-up resistor is not included.  
2. Oscillation stabilization wait time is time to stop CPU operation to prevent unstable operation upon oscillation  
start.  
3. According to the setting of the basic interval timer mode register (BTM) (see below).  
Wait Time  
BTM3  
BTM2  
BTM1  
BTM0  
(Values at fXX = 4.19 MHz in parentheses)  
220/fXX (approx. 250 ms)  
0
0
1
1
0
1
0
1
0
1
1
1
217/fXX (approx. 31.3 ms)  
215/fXX (approx. 7.82 ms)  
213/fXX (approx. 1.95 ms)  
Data Retention Timing (STOP Mode Release by RESET)  
Internal Reset Operation  
HALT Mode  
Operating Mode  
STOP Mode  
Data Retention Mode  
VDD  
tSREL  
VDDDR  
STOP Instruction Execution  
RESET  
t
WAIT  
31  
µPD75P316A  
Data Retention Timing (Standby Release Signal: STOP Mode Release by Interrupt Signal)  
HALT Mode  
Operating Mode  
STOP Mode  
Data Retention Mode  
VDD  
t
SREL  
VDDDR  
STOP Instruction Execution  
Standby Release Signal  
(Interrupt Request)  
t
WAIT  
DC PROGRAMMING CHARACTERISTICS (Ta = –25 to ±5 °C, VDD = 6.0 ±0.25 V, VPP = 12.5 ±0.3 V, VSS = 0 V)  
MAX.  
UNIT  
TYP.  
TEST CONDITIONS  
Except X1, X2  
MIN.  
PARAMETER  
SYMBOL  
0.7 VDD  
VIH1  
VDD  
VDD  
V
V
V
V
Input voltage high  
VDD –0.5  
VIH2  
VIL1  
VIL2  
X1, X2  
Except X1, X2  
0
0
0.3 VDD  
0.4  
Input voltage low  
X1, X2  
Input leakage current  
Output voltage high  
10  
µA  
ILI  
VIN = VIL or VIH  
IOH = –1mA  
VDD –1.0  
V
VOH  
Output voltage low  
0.4  
30  
V
VOL  
IDD  
IOL = 1.6 mA  
VDD power supply current  
VPP power supply current  
mA  
mA  
IPP  
30  
MD0 = VIL, MD1 = VIH  
Note 1. VPP including overshoot should not exceed +13.5 V.  
2. VDD should be applied before VPP and should be cut after VPP  
.
32  
µPD75P316A  
AC PROGRAMMING CHARACTERISTICS (Ta = 25 to ±5 °C, VDD = 6.0 ±0.25 V, VPP = 12.5 ±0.3 V, VSS = 0 V)  
TEST CONDITIONS  
PARAMETER  
SYMBOL  
*1  
MIN.  
TYP.  
MAX.  
UNIT  
Address setup time*2 (to MD0 )  
µs  
µs  
µs  
tAS  
tAS  
2
2
tM1S  
tOES  
MD1 setup time (to MD0 )  
Data setup time (to MD0 )  
tDS  
tDS  
2
Address hold time*2 (from MD0 )  
Data hold time (to MD0 )  
tAH  
tDH  
tAH  
tDH  
µs  
µs  
2
2
Data output float delay time from MD0 ↑  
VPP setup time (to MD3 )  
tDF  
tDF  
130  
ns  
µs  
0
tVPS  
tVDS  
tPW  
tVPS  
tVCS  
tPW  
tOPW  
tCES  
2
µs  
VDD setup time (to MD3 )  
2
ms  
ms  
µs  
1.05  
21.0  
0.95  
0.95  
2
1.0  
Initial program pulse width  
Additional program pulse width  
MD1 setup time (to MD1 )  
tOPW  
tMOS  
1
Data output delay time from MD0 ↓  
MD1 hold time (from MD0 )  
MD1 recovery time (from MD0 )  
Program counter reset time  
tDV  
tDV  
MD0 = MD1 = VIL  
µs  
µs  
µs  
2
2
tM1H  
tM1R  
tOEH  
tOR  
tM1H + tM1R 50 µs  
tPCR  
µs  
µs  
10  
X1 input high/low level width  
X1 input frequency  
tXH, tXL  
0.125  
4.19  
MHz  
µs  
fX  
tI  
Initial mode set time  
2
2
2
µs  
tM3S  
tM3H  
MD3 setup time (to MD1 )  
MD3 hold time (from MD1 )  
MD3 setup time (to MD0 )  
µs  
µs  
µs  
ns  
tM3SR  
When reading program memory  
When reading program memory  
When reading program memory  
When reading program memory  
2
2
tDAD  
tHAD  
tACC  
tOH  
Data output delay time from address*2  
Data output hold time from address*2  
130  
0
2
µs  
µs  
tM3HR  
tDFR  
MD3 hold time (from MD0 )  
2
Data output float delay time from MD3 ↓  
When reading program memory  
*
1. Symbol of the corresponding µPD27C256A.  
2. The internal address signal is incremented (+1) at the rising edge of the fourth X1 input. The signal is not  
connected to pins.  
33  
µPD75P316A  
Program Memory Write Timing  
tVPS  
V
PP  
V
V
PP  
VDD  
tVDS  
VDD + 1  
DD  
VDD  
tXH  
X1  
t
XL  
P40 – P43  
P50 –P53  
Data Input  
Data Input  
Data Input  
Data Output  
t
DH  
AH  
t
DS  
t
I
t
DS  
t
tAS  
t
OH  
t
DV  
t
DF  
MD0  
t
MOS  
t
OPW  
tM1R  
tPW  
MD1  
MD2  
t
PCR  
t
M1S  
tM1H  
t
M3H  
t
M3S  
MD3  
Program Memory Read Timing  
tVPS  
V
PP  
VPP  
VDD  
tVDS  
V
DD + 1  
VDD  
V
DD  
t
XH  
X1  
t
XL  
t
DAD  
tHAD  
P40 – P43  
P50 –P53  
Data Output  
Data Output  
tDFR  
tDV  
t
I
tM3HR  
MD0  
MD1  
MD2  
tPCR  
t
M3SR  
MD3  
34  
µPD75P316A  
6. PACKAGE INFORMATION  
80 PIN PLASTIC QFP (14×20)  
A
B
41  
40  
64  
65  
detail of lead end  
25  
24  
80  
1
G
H
M
N
I
J
K
L
P80GF-80-3B9-2  
NOTE  
ITEM  
MILLIMETERS  
INCHES  
Each lead centerline is located within 0.15  
mm (0.006 inch) of its true position (T.P.) at  
maximum material condition.  
±
±
A
B
C
D
F
23.6 0.4  
0.929 0.016  
+0.009  
±
20.0 0.2  
0.795  
–0.008  
+0.009  
±
14.0 0.2  
0.551  
–0.008  
±
±
0.693 0.016  
17.6 0.4  
1.0  
0.8  
0.039  
G
H
I
0.031  
+0.004  
±
0.35 0.10  
0.014  
–0.005  
0.15  
0.006  
J
0.8 (T.P.)  
0.031 (T.P.)  
+0.008  
±
K
L
1.8 0.2  
0.071  
–0.009  
+0.009  
±
0.031  
0.8 0.2  
–0.008  
+0.10  
+0.004  
0.15  
M
N
P
Q
S
0.006  
–0.05  
–0.003  
0.15  
2.7  
0.006  
0.106  
±
±
0.1 0.1  
0.004 0.004  
3.0 MAX.  
0.119 MAX.  
35  
µPD75P316A  
80 PIN CERAMIC WQFN  
A
B
Q
K
T
80  
1
M
H
I
U
J
R
X80KW-80A-1  
NOTE  
ITEM  
A
MILLIMETERS  
INCHES  
Each lead centerline is located within 0.08  
mm (0.003 inch) of its true position (T.P.) at  
maximum material condition.  
+0.017  
±
20.0 0.4  
0.787  
–0.016  
B
19.0  
13.2  
0.748  
0.520  
C
±
±
D
E
14.2 0.4  
0.559 0.016  
1.64  
0.065  
F
2.14  
0.084  
G
H
I
4.064 MAX.  
0.160 MAX.  
±
±
0.51 0.10  
0.020 0.004  
0.08  
0.003  
J
0.8 (T.P.)  
0.031 (T.P.)  
+0.009  
±
K
1.0 0.2  
0.039  
–0.008  
Q
R
C 0.5  
0.8  
C 0.020  
0.031  
S
1.1  
0.043  
T
R 3.0  
12.0  
R 0.118  
U
W
0.472  
+0.008  
±
0.75 0.2  
0.030  
–0.009  
36  
µPD75P316A  
7. RECOMMENDED SOLDERING CONDITIONS  
The µPD75P316A should be soldered and mounted under the conditions recommended in the table below.  
For detail of recommended soldering conditions, refer to the information document “Semiconductor Device  
Mount Manual” (IEI-1207).  
For soldering methods and conditions other than those recommended below, contact our salesman.  
Table 7-1 Surface Mounting Type Soldering Conditions  
µPD75P316AGF-3B9 : 80-pin plastic QFP (14 × 20 mm)  
Recommended  
Solderring Method  
Wave soldering  
Solderring Conditions  
Condition Symbol  
Solder bath temperature: 260 °C or below. , Duration: 10 sec. max.  
Number of times: Once, Time limit: 7 days*(thereafter 20 hours prebaking required  
at 125 °C)  
WS60-207-1  
Package peak temperature: 230 °C, Duration: 30 sec. max. (at 210 °C or above),  
Number of times: Once, Time limit: 7 days*(thereafter 20 hours prebaking required  
at 125 °C)  
Infrared reflow  
IR30-207-1  
Package peak temperature: 215 °C, Duration: 40 sec. max. (at 200 °C or above),  
Number of times: Once, Time limit: 7 days* (thereafter 20 hours prebaking required  
at 125 °C)  
VPS  
VP15-207-1  
–––  
Pin part heating  
Pin part temperature: 300 °C or below , Duration: 3 sec. max. (per device side)  
*
For the storage period after dry-pack decapsulation, storage conditions are max. 25 °C, 65 % RH.  
Note Use more than one soldering method should be avoided (except in the case of pin part heating).  
For Your Information  
Products to improve the recommended soldering conditions are available.  
(Improvements : Extension of the infrared reflow peak temperature to 235 °C, doubled frequency, increased  
life, etc.)  
For further details, consult our sales personnel.  
37  
µPD75P316A  
APPENDIX A. DEVELOPMENT TOOLS  
The following development tools are available for system development using the µPD75P316A.  
IE-75000-R*1  
In-circuit emulator for use with the 75X series  
IE-75001-R  
IE-75000-R-EM*2  
Emulation board for use with the IE-75000-R and the IE-75001-R  
EP-75308GF-R  
Emulation probe for use with the µPD75P308GF 80-pin conversion socket EV-9200G-80  
included  
EV-9200G-80  
PG-1500  
PROM programmer  
PA-75P308GF  
PA-75P308K  
Connect to PG-1500 with PROM programmer adapter for use with the µPD75P308GF  
Connect to PG-1500 with PROM programmer adapter for use wtih the µPD75P308K  
IE-control program  
Host machine  
PG-1500 controller  
• PC-9800 series (MS-DOS Ver. 3.30 to Ver.5.00A *3)  
• IBM PC/AT (PC DOS Ver. 3.1)  
RA75X relocatable assembler  
*
1. Maintenance product  
2. Not a built-in component in the IE-75001-R  
3. Ver. 5.00/5.00A has a task swaping function, which cannot be used with this software.  
Remarks Refer to the 75X Series Selection Guide (IF-151) for third-party development tools.  
38  
µPD75P316A  
APPENDIX B. RELATED DOCUMENTS  
Device Related Documents  
Document Name  
User's Manual  
Document Number  
IEM-5016  
Instruction Application Table  
75X Series Selection Guide  
IEM-994  
IF-151  
Development Tools Documents  
Document Name  
IE-75000-R/IE-75001-R User's Manual  
IE-75000-R-EM User's Manual  
EP-75308GF-R User's Manual  
Document Number  
EEU-846  
EEU-673  
EEU-689  
EEU-651  
EEU-731  
EEU-730  
EEU-704  
PG-1500 User's Manual  
Operation Volume  
Language Volume  
RA75X Assembler Package User's Manual  
PG-1500 Controller User's Manual  
Other Documents  
Document Name  
Package Manual  
Document Number  
IEI-635  
IEI-1207  
IEI-1209  
IEM-5068  
MEM-539  
MEI-603  
Surface Mount Technology Manual  
Quality Grade on NEC Semiconductor Devices  
NEC Semiconductor Device Reliability & Quality Control  
Electrostatic Discharge (ESD) Test  
Semiconductor Devices Quality Guide Guarantee Guide  
Microcomputer Related Products Guide Other  
Other Manufacturers Volume  
MEI-604  
Note The information in these related documents is subject to change without notice. For design purpose, etc.,  
check if your documents are the latest ones and be sure to use the latest ones.  
39  
µPD75P316A  
40  
µPD75P316A  
41  
µPD75P316A  
[MEMO]  
No part of this document may be copied or reproduced in any form or by any means without the prior written  
consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this  
document.  
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual  
property rights of third parties by or arising from use of a device described herein or any other liability arising  
from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights  
or other intellectual property rights of NEC Corporation or others.  
The devices listed in this document are not suitable for use in aerospace equipment, submarine cables, nuclear  
reactor control systems and life support systems. If customers intend to use NEC devices for above applications  
or they intend to use "Standard" quality grade NEC devices for applications not intended by NEC, please contact  
our sales people in advance.  
Application examples recommended by NEC Corporation  
Standard : Computer, Office equipment, Communication equipment, Test and Measurement equipment,  
Machine tools, Industrial robots, Audio and Visual equipment, Other consumer products, etc.  
Special  
:
Automotive and Transportation equipment, Traffic control systems, Antidisaster systems,  
Anticrime systems, etc.  
M4 92.6  
MS-DOS is a trademark of MicroSoft Corporation.  
PC DOS and PC/AT are trademarks of IBM Corporation.  

相关型号:

UPD75P316BGC-3B9

4-BIT SINGLE-CHIP MICROCOMPUTER
NEC

UPD75P316BGK-BE9

4-BIT SINGLE-CHIP MICROCOMPUTER
NEC

UPD75P316BKK-T

4-BIT SINGLE-CHIP MICROCOMPUTER
NEC

UPD75P316GF

4-Bit, Single-Chip Microcontrollers With LCD Controller/Driver
NEC

UPD75P316GF3B9

Microcontroller
ETC

UPD75P3216

4-BIT SINGLE-CHIP MICROCONTROLLER
NEC

UPD75P3216GT

4-BIT SINGLE-CHIP MICROCONTROLLER
NEC

UPD75P3216GT

4-BIT, OTPROM, 6MHz, MICROCONTROLLER, PDSO48, 0.375 INCH, 0.65 MM PITCH, PLASTIC, SSOP-48
RENESAS

UPD75P3216GT-A

Microcontroller, 4-Bit, OTPROM, 6MHz, MOS, PDSO48, 0.375 INCH, 0.65 MM PITCH, LEAD FREE, PLASTIC, SSOP-48
NEC

UPD75P328

4 BIT SINGLE CHIP MICRO COMPUTER WITH LCD CONTROLLER/ DRIVER AND A/D CONVERTER
NEC

UPD75P328GC

4 BIT SINGLE CHIP MICRO COMPUTER WITH LCD CONTROLLER/ DRIVER AND A/D CONVERTER
NEC

UPD75P328GC-3B9

4-Bit Microcontroller
ETC