UPD75P3216GT [NEC]

4-BIT SINGLE-CHIP MICROCONTROLLER; 4位单片微控制器
UPD75P3216GT
型号: UPD75P3216GT
厂家: NEC    NEC
描述:

4-BIT SINGLE-CHIP MICROCONTROLLER
4位单片微控制器

微控制器和处理器 外围集成电路 光电二极管 可编程只读存储器 时钟
文件: 总56页 (文件大小:360K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
MOS INTEGRATED CIRCUIT  
µPD75P3216  
4-BIT SINGLE-CHIP MICROCONTROLLER  
The µPD75P3216 replaces the µPD753208’s internal mask ROM with a one-time PROM, and features expanded  
ROM capacity.  
Because the µPD75P3216 supports programming by users, it is suitable for use in prototype testing for system  
development using the µPD753204, 753206, or 753208, and for use in small-lot production.  
The functions are explained in detail in the following user’s manual. Be sure to read this manual when  
designing your system.  
µPD753208 User’s Manual: U10158E  
FEATURES  
Compatible with µPD753208  
Memory capacity:  
PROM : 16384 × 8 bits  
RAM : 512 × 4 bits  
Can operate in same power supply voltage range as the mask version µPD753208  
VDD = 1.8 to 5.5 V  
LCD controller/driver  
ORDERING INFORMATION  
Part Number  
Package  
48-pin plastic shrink SOP (375 mil, 0.65-mm pitch)  
µPD75P3216GT  
Caution Mask-option pull-up resistors are not provided in this device.  
The information in this document is subject to change without notice.  
The mark  
shows major revised points.  
Document No. U10241EJ1V0DS00 (1st edition)  
Date Published January 1997 N  
Printed in Japan  
1997  
©
µPD75P3216  
FUNCTION OUTLINE  
Parameter  
Function  
Instruction execution time  
• 0.95, 1.91, 3.81, 15.3 µs (@ 4.19-MHz operation with system clock)  
• 0.67, 1.33, 2.67, 10.7 µs (@ 6.0-MHz operation with system clock)  
Internal memory  
PROM 16384 × 8 bits  
RAM  
512 × 4 bits  
General-purpose register  
• 4-bit operation: 8 × 4 banks  
• 8-bit operation: 4 × 4 banks  
Input/  
CMOS input  
6
Connecting on-chip pull-up resistors can be specified by software: 5  
output  
port  
CMOS input/output  
20 Connecting on-chip pull-up resistors can be specified by software: 20  
Also used for segment pins: 8  
N-ch open-drain I/O  
Total  
4
13-V withstand  
30  
LCD controller/driver  
• Segment selection:  
4/8/12 segments (can be changed to CMOS input/  
output port in 4-time units; max. 8)  
• Display mode selection: Static  
1/2 duty (1/2 bias)  
1/3 duty (1/2 bias)  
1/3 duty (1/3 bias)  
1/4 duty (1/3 bias)  
Timer  
5 channels  
• 8-bit timer/event counter: 1 channel  
• 8-bit timer counter: 2 channels (can be used as the 16-bit timer counter, carrier  
generator, timer with gate)  
• Basic interval timer/watchdog timer: 1 channel  
• Watch timer: 1 channel  
Serial interface  
• 3-wire serial I/O mode ... MSB or LSB can be selected for transferring first bit  
• 2-wire serial I/O mode  
• SBI mode  
Bit sequential buffer (BSB)  
Clock output (PCL)  
16 bits  
Φ, 524, 262, 65.5 kHz (@ 4.19-MHz operation with system clock)  
Φ, 750, 375, 93.8 kHz (@ 6.0-MHz operation with system clock)  
Buzzer output (BUZ)  
• 2, 4, 32 kHz (@ 4.19-MHz operation with system clock)  
• 2.93, 5.86, 46.9 kHz (@ 6.0-MHz with system clock)  
Vectored interrupts  
Test input  
External: 2, Internal: 5  
External: 1, Internal: 1  
System clock oscillator  
Standby function  
Power supply voltage  
Package  
Ceramic or crystal oscillator for system clock oscillation  
STOP/HALT mode  
VDD = 1.8 to 5.5 V  
48-pin plastic shrink SOP (375 mil, 0.65-mm pitch)  
2
µPD75P3216  
CONTENTS  
1. PIN CONFIGURATION (Top View) .................................................................................................... 4  
2. BLOCK DIAGRAM .............................................................................................................................. 5  
3. PIN FUNCTIONS ................................................................................................................................. 6  
3.1 Port Pins ...................................................................................................................................................... 6  
3.2 Non-port Pins .............................................................................................................................................. 7  
3.3 Equivalent Circuits for Pins...................................................................................................................... 8  
3.4 Recommended Connection of Unused Pins ........................................................................................ 10  
4. Mk I AND Mk II MODE SELECTION FUNCTION ............................................................................ 11  
4.1 Difference between Mk I Mode and Mk II Mode ................................................................................... 11  
4.2 Setting of Stack Bank Selection (SBS) Register ................................................................................. 12  
5. Differences between µPD75P3216 and µPD753204, 753206, and 753208 ................................13  
6. MEMORY CONFIGURATION ........................................................................................................... 14  
7. INSTRUCTION SET........................................................................................................................... 16  
8. ONE-TIME PROM (PROGRAM MEMORY) WRITE AND VERIFY .................................................25  
8.1 Operation Modes for Program Memory Write/Verify........................................................................... 25  
8.2 Program Memory Write Procedure ........................................................................................................ 26  
8.3 Program Memory Read Procedure ........................................................................................................ 27  
8.4 One-time PROM Screening ..................................................................................................................... 28  
9. ELECTRICAL SPECIFICATIONS ..................................................................................................... 29  
10. CHARACTERISTIC CURVE (REFERENCE VALUE) ...................................................................... 42  
11. PACKAGE DRAWINGS .................................................................................................................... 44  
12. RECOMMENDED SOLDERING CONDITIONS ............................................................................... 45  
APPENDIX A. µPD753108, 753208, AND 75P3216 FUNCTIONAL LIST ...........................................46  
APPENDIX B. DEVELOPMENT TOOLS ............................................................................................... 48  
APPENDIX C. RELATED DOCUMENTS............................................................................................... 52  
3
µPD75P3216  
1. PIN CONFIGURATION (Top View)  
48-pin plastic shrink SOP (375 mil, 0.65-mm pitch)  
µPD75P3216GT  
1
2
3
4
5
6
7
8
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
COM0  
COM1  
COM2  
COM3  
S12  
S13  
S14  
S15  
P93/S16  
P92/S17  
P91/S18  
P90/S19  
P83/S20  
P82/S21  
P81/S22  
P80/S23  
P23  
P22/PCL/PTO2  
P21/PTO1  
P20/PTO0  
P13/TI0  
P10/INT0  
P03/SI/SB1  
P02/SO/SB0  
P01/SCK  
P00/INT4  
BIAS  
V
V
V
LC0  
LC1  
LC2  
9
P30/LCDCL/MD0  
P31/SYNC/MD1  
P32/MD2  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
P33/MD3  
V
SS  
P50/D4  
P51/D5  
P52/D6  
P53/D7  
P60/KR0/D0  
P61/KR1/D1  
P62/KR2/D2  
P63/KR3/D3  
VDD  
RESET  
X1  
X2  
Note  
PP  
V
Note Be sure to connect VPP to VDD directly in normal operation mode.  
PIN IDENTIFICATIONS  
PCL  
: Programmable Clock  
BIAS  
BUZ  
: LCD Power Supply Bias Control  
: Buzzer Clock  
PTO0-PTO2 : Programmable Timer Output 0 to 2  
RESET  
S12-S23  
SB0, SB1  
SCK  
: Reset Input  
COM0-COM3 : Common Output 0 to 3  
: Segment Output 12 to 23  
: Serial Bus 0, 1  
D0-D7  
: Data Bus 0 to 7  
: External Vectored Interrupt 0, 4  
: Key Return 0 to 3  
: LCD Clock  
: Mode Selection 0 to 3  
: Port0  
INT0, INT4  
KR0-KR3  
LCDCL  
: Serial Clock  
SI  
: Serial Input  
SO  
: Serial Output  
MD0-MD3  
P00-P03  
P10, P13  
P20-P23  
P30-P33  
P50-P53  
P60-P63  
P80-P83  
P90-P93  
SYNC  
TI0  
: LCD Synchronization  
: Timer Input 0  
: Port1  
VDD  
: Positive Power Supply  
: LCD Power Supply 0 to 2  
: Programming Power Supply  
: Ground  
: Port2  
VLC0-VLC2  
VPP  
: Port3  
: Port5  
VSS  
: Port6  
X1, X2  
: System Clock Oscillation 1, 2  
: Port8  
: Port9  
4
µPD75P3216  
2. BLOCK DIAGRAM  
WATCH  
BUZ/P23  
TIMER  
INTW fLCD  
PORT0  
PORT1  
PORT2  
PORT3  
PORT5  
PORT6  
PORT8  
PORT9  
4
2
4
4
4
4
4
4
P00-P03  
P10, P13  
P20-P23  
BASIC  
INTERVAL  
TIMER/  
WATCHDOG  
TIMER  
SP (8)  
PROGRAM  
COUNTER  
CY  
ALU  
INTBT  
SBS  
8-BIT  
TIMER/EVENT  
COUNTER #0  
TI0/P13  
P30/MD0-  
P33/MD3  
BANK  
PTO0/P20  
INTT0 TOUT  
P50/D4-  
P53/D7  
INTT1  
GENERAL  
REG.  
P60/D0-  
P63/D3  
8-BIT  
TIMER  
CASCADED  
COUNTER #1 16-BIT  
PTO1/P21  
TOUT  
TIMER  
COUNTER  
8-BIT  
TIMER  
COUNTER #2  
PROM  
PROGRAM  
MEMORY  
P80-P83  
P90-P93  
DECODE  
AND  
CONTROL  
PTO2/  
PCL/P22  
DATA  
MEMORY  
(RAM)  
16384 × 8 BITS  
INTT2  
SI/SB1/P03  
SO/SB0/P02  
SCK/P01  
CLOCKED  
SERIAL  
INTERFACE  
512 × 4 BITS  
4
4
4
4
S12-S15  
INTCSI TOUT  
S16/P93-  
S19/P90  
INT0/P10  
INT4/P00  
LCD  
CONTROLLER/  
DRIVER  
S20/P83-  
S23/P80  
INTERRUPT  
CONTROL  
fx/2N  
CPU CLOCK Φ  
fLCD  
KR0/P60-  
KR3/P63  
COM0-COM3  
4
CLOCK  
OUTPUT  
CONTROL  
SYSTEM  
CLOCK  
DIVIDER  
STANDBY  
CONTROL  
CLOCK  
VLC0  
GENERATOR  
BIT SEQ.  
BUFFER (16)  
VLC1  
VLC2  
BIAS  
LCDCL/P30  
SYNC/P31  
X1 X2  
PCL/PTO2/P22  
Vpp VDD VSS RESET  
5
µPD75P3216  
3. PIN FUNCTIONS  
3.1 Port Pins  
8-bit  
I/O  
Status  
After Reset TypeNote 1  
I/O Circuit  
Pin Name  
P00  
I/O  
Shared by  
Function  
Input INT4  
×
Input  
<B>  
This is a 4-bit input port (PORT0).  
P01 to P03 are 3-bit pins for which an internal  
pull-up resistor can be connected by software.  
P01  
P02  
P03  
P10  
I/O  
I/O  
I/O  
SCK  
<F>-A  
<F>-B  
<M>-C  
<B>-C  
SO/SB0  
SI/SB1  
Input INT0  
×
×
Input  
Input  
This is a 1-bit input port (PORT1).  
These are 1-bit pins for which an internal pull-up  
resistor can be connected by software.  
P10/INT0 can select noise elimination circuit.  
P13  
TI0  
This is a 4-bit I/O port (PORT2).  
P20  
P21  
P22  
P23  
P30  
P31  
P32  
P33  
P50  
P51  
P52  
P53  
I/O  
I/O  
I/O  
PTO0  
PTO1  
PCL/PTO2  
BUZ  
E-B  
E-B  
M-E  
These are 4-bit pins for which an internal pull-up  
resistor can be connected by software.  
This is a programmable 4-bit I/O port (PORT3).  
Input and output in single-bit units can be specified.  
When set for 4-bit units, an internal pull-up resistor  
can be connected by software.  
LCDCL/MD0  
SYNC/MD1  
MD2  
×
×
Input  
MD3  
Note 2  
Note 2  
Note 2  
Note 2  
D4  
High  
This is an N-ch open-drain 4-bit I/O port (PORT5).  
When set to open-drain, voltage is 13 V.  
Also functions as data I/O pin (upper 4 bits)  
for program memory (PROM) write/verify.  
D5  
impedance  
D6  
D7  
This is a programmable 4-bit I/O port (PORT6).  
Input and output in single-bit units can be specified.  
When set for 4-bit units, an internal pull-up resistor  
can be connected by software.  
P60  
P61  
P62  
I/O  
KR0/D0  
KR1/D1  
KR2/D2  
×
Input  
<F>-A  
Also functions as data I/O pin (lower 4 bits) for  
program memory (PROM) write/verify.  
P63  
P80  
P81  
P82  
P83  
P90  
P91  
P92  
P93  
KR3/D3  
S23  
I/O  
I/O  
Input  
Input  
H
H
This is a 4-bit I/O port (PORT8).  
When set for 4-bit units, an internal pull-up resistor  
can be connected by software.  
S22  
S21  
S20  
S19  
This is a programmable 4-bit I/O port (PORT9).  
When set for 4-bit units, an internal pull-up resistor  
can be connected by software.  
S18  
S17  
S16  
Notes 1. Circuit types enclosed in brackets indicate Schmitt trigger circuits.  
2. Low level input current leakage increases when input instructions or bit manipulation instructions are  
executed.  
6
µPD75P3216  
3.2 Non-port Pins  
Status  
After Reset TypeNote 1  
I/O Circuit  
Pin Name  
TI0  
I/O  
Shared by  
Function  
Input P13  
Output P20  
P21  
External event pulse input to timer/event counter  
Timer/event counter output  
Input  
Input  
<B>-C  
E-B  
PTO0  
PTO1  
PTO2  
PCL  
Timer counter output  
P22/PCL  
P22/PTO2  
P23  
Clock output  
BUZ  
Any frequency output (for buzzer or system clock trimming)  
Serial clock I/O  
SCK  
I/O  
P01  
Input  
<F>-A  
<F>-B  
SO/SB0  
P02  
Serial data output  
Serial data bus I/O  
SI/SB1  
INT4  
P03  
Serial data input  
<M>-C  
<B>  
Serial data bus I/O  
Input P00  
Input P10  
Edge detection vectored interrupt input  
(detecting both rising and falling edges)  
Input  
Input  
INT0  
Edge detection vectored interrupt input  
(detected edge is selectable). INT0/P10  
can select noise elimination circuit  
<B>-C  
Noise elimination  
circuit/asynch  
is selectable  
KR0 to KR3  
X1  
Input P60/D0-P63/D3  
Falling edge detection testable input  
Input  
<F>-A  
Ceramic/crystal oscillation circuit connection for system  
clock. If using an external clock, input to X1 and input  
inverted phase to X2.  
Input  
X2  
RESET  
Input  
System reset input  
<B>  
<F>-A  
<F>-A  
M-E  
MD0 to MD3  
D0 to D3  
D4 to D7  
VPP  
Input P30 to P33  
Mode selection for program memory (PROM) write/verify  
Input  
Input  
I/O  
P60/KR0-P63/KR3 Data bus pin for program memory (PROM) write/verify.  
P50 to P53  
Programmable power supply voltage for program memory  
(PROM) write/verify.  
For normal operation, connect directly to VDD.  
Apply +12.5 V for PROM write/verify.  
VDD  
Positive power supply  
Ground  
VSS  
S12 to S15  
S16 to S19  
S20 to S23  
Output  
Segment signal output  
Segment signal output  
Note 2  
Input  
G-A  
H
Output P93 to P90  
P83 to P80  
COM0 to COM3 Output  
Common signal output  
Note 2  
G-B  
VLC0 to VLC2  
BIAS  
Power source for LCD drive  
Output  
Output for external split resistor cut  
Note 3  
Input  
Note 4  
LCDCL  
Output P30/MD0  
P31/MD1  
Clock output for driving external expansion driver  
Clock output for synchronization of external expansion driver  
E-B  
Note 4  
SYNC  
Notes 1. Circuit types enclosed in brackets indicate Schmitt trigger circuits.  
2. The VLCX (X = 0, 1, 2) shown below are selected as the input source for the display outputs.  
S12 to S15: VLC1, COM1 to COM2: VLC2, COM3: VLC0  
3. When the split resistor is incorporated  
: Low level  
When the split resistor is not incorporated: High impedance  
4. These pins are provided for future system expansion. Currently, only P30 and P31 are used.  
7
µPD75P3216  
3.3 Equivalent Circuits for Pins  
The equivalent circuits for the µPD75P3216’s pins are shown in abbreviated form below.  
TYPE A  
TYPE D  
VDD  
VDD  
Data  
P-ch  
OUT  
P-ch  
IN  
Output  
disable  
N-ch  
N-ch  
Push-pull output that can be set to high impedance output  
(with both P-ch and N-ch OFF).  
CMOS standard input buffer  
TYPE B  
TYPE E-B  
VDD  
P.U.R.  
P-ch  
P.U.R.  
enable  
IN  
Data  
IN/OUT  
Type D  
Output  
disable  
Type A  
Schmitt trigger input with hysteresis characteristics.  
P.U.R. : Pull-Up Resistor  
TYPE B-C  
TYPE F-A  
VDD  
VDD  
P.U.R.  
P-ch  
P.U.R.  
enable  
P.U.R.  
P.U.R.  
enable  
P-ch  
Data  
IN/OUT  
Type D  
Output  
disable  
IN  
Type B  
P.U.R. : Pull-Up Resistor  
P.U.R. : Pull-Up Resistor  
(Continued)  
8
µPD75P3216  
(Continued)  
TYPE F-B  
TYPE H  
VDD  
P.U.R.  
P-ch  
P.U.R.  
enable  
Output  
disable  
(P)  
V
DD  
IN/OUT  
SEG  
data  
Type G-A  
Type E-B  
P-ch  
IN/OUT  
Data  
Output  
disable  
N-ch  
Data  
Output  
disable  
(N)  
Output  
disable  
P.U.R. : Pull-Up Resistor  
TYPE G-A  
TYPE M-C  
VDD  
VLC0  
P.U.R.  
P-ch  
IN/OUT  
VLC1  
P.U.R.  
enable  
P-ch N-ch  
OUT  
Data  
N-ch  
SEG  
data  
Output  
disable  
N-ch  
VLC2  
N-ch  
P.U.R. : Pull-Up Resistor  
TYPE G-B  
TYPE M-E  
IN/OUT  
V
V
LC0  
LC1  
data  
N-ch  
(+13 V)  
output  
disable  
VDD  
P-ch N-ch  
input  
instruction  
P-ch  
P.U.R.Note  
OUT  
COM  
data  
Voltage  
control  
circuit  
N-ch P-ch  
V
LC2  
(+13 V)  
N-ch  
Note This pull-up resistor is effective only when an input  
instruction is executed (when the pin level is low,  
current flows from VDD to the pin).  
9
µPD75P3216  
3.4 Recommended Connection of Unused Pins  
Pin  
Recommended Connection  
P00/INT4  
Connect to Vss or VDD  
P01/SCK  
Connect to Vss or VDD through a resistor individually  
P02/SO/SB0  
P03/SI/SB1  
P10/INT0  
Connect to Vss  
Connect to Vss or VDD  
P13/TI0  
P20/PTO0  
Input status : connect to Vss or VDD through a resistor individually  
Output status: open  
P21/PTO1  
P22/PTO2/PCL  
P23/BUZ  
P30/MD0/LCDCL  
P31/MD1/SYNC  
P32/MD2  
P33/MD3  
P50/D4 to P53/D7  
Connect to Vss  
P60/KR0/D0 to P63/KR3/D3 Input status : connect to Vss or VDD through a resistor individually  
Output status: open  
S12 to S15  
Open  
COM0 to COM3  
S16/P93 to S19/P90  
S20/P83 to S23/P80  
VLC0 to VLC2  
Input status : connect to Vss or VDD through a resistor individually  
Output status: open  
Connect to Vss  
BIAS  
Connect to Vss only when VLC0 to VLC2 are all not used.  
In other cases, leave open.  
VPP  
Be sure to connect VDD directly.  
10  
µPD75P3216  
4. Mk I AND Mk II MODE SELECTION FUNCTION  
Setting a stack bank selection (SBS) register for the µPD75P3216 enables the program memory to be switched  
between Mk I mode and Mk II mode. This function is applicable when using theµPD75P3216 to evaluate the µPD753204,  
753206, or 753208.  
When the SBS bit 3 is set to 1: sets Mk I mode (supports Mk I mode for µPD753204, 753206, and 753208)  
When the SBS bit 3 is set to 0: sets Mk II mode (supports Mk II mode for µPD753204, 753206, and 753208)  
4.1 Difference between Mk I Mode and Mk II Mode  
Table 4-1 lists points of difference between the Mk I mode and the Mk II mode for the µPD75P3216.  
Table 4-1. Difference between Mk I Mode and Mk II Mode  
Item  
Mk I Mode  
Mk II Mode  
Program counter  
PC13-0  
16384  
512 × 4  
Program memory (bytes)  
Data memory (bits)  
Stack  
Stack bank  
Selectable via memory banks 0, 1  
No. of stack bytes  
2 bytes  
None  
3 bytes  
Instruction  
BRA !addr1 instruction  
CALLA !addr1 instruction  
CALL !addr instruction  
CALLF !faddr instruction  
Provided  
Instruction  
3 machine cycles  
2 machine cycles  
4 machine cycles  
3 machine cycles  
execution time  
Supported mask ROMs  
When set to Mk I mode:  
When set to Mk II mode:  
µPD753204, 753206, and 753208  
µPD753204, 753206, and 753208  
Caution The Mk II mode supports a program area which exceeds 16K bytes in the 75X and 75XL series. This  
mode enhances the software compatibility with products which have more than 16K bytes.  
When the Mk II mode is selected, the number of stack bytes used in execution of a subroutine call  
instruction increases by 1 per stack for the usable area compared to the Mk I mode. Furthermore,  
when a CALL !addr, or CALLF !faddr instruction is used, each instruction takes another machine  
cycle. Therefore, when more importance is attached to RAM utilization or throughput than software  
compatibility, use the Mk I mode.  
11  
µPD75P3216  
4.2 Setting of Stack Bank Selection (SBS) Register  
Use the stack bank selection register to switch between Mk I mode and Mk II mode. Figure 4-1 shows the format for  
doing this.  
The stack bank selection register is set using a 4-bit memory manipulation instruction. When using the Mk I mode, be  
sure to initialize the stack bank selection register to 100XBNote at the beginning of the program. When using the Mk II  
mode, be sure to initialize it to 000XBNote  
.
Note Set the desired value for X.  
Figure 4-1. Format of Stack Bank Selection Register  
Address  
3
2
1
0
Symbol  
F84H SBS3 SBS2 SBS1 SBS0 SBS  
Stack area specification  
0
0
1
1
0
1
0
1
Memory bank 0  
Memory bank 1  
Setting prohibited  
0
Be sure to enter “0” for bit 2.  
Mode selection specification  
0
1
Mk II mode  
Mk I mode  
Cautions 1. SBS3 is set to “1” after RESET input, and consequently the CPU operates in Mk I mode. When  
using instructions for Mk II mode, set SBS3 to “0” and set Mk II mode before using the  
instructions.  
2. When using Mk II mode, execute a subroutine call instruction and an interrupt instruction after  
RESET input and after setting the stack bank selection register.  
12  
µPD75P3216  
5. DIFFERENCES BETWEEN µPD75P3216 AND µPD753204, 753206, AND 753208  
The µPD75P3216 replaces the internal mask ROM in the µPD753204, 753206, and 753208 with a one-time PROM  
andfeaturesexpandedROMcapacity. TheµPD75P3216’sMkImodesupportstheMkImodeintheµPD753204,753206,  
and 753208 and the µPD75P3216’s Mk II mode supports the Mk II mode in the µPD753204, 753206, and 753208.  
Table 5-1 lists differences among the µPD75P3216 and the µPD753204, 753206, and 753208. Be sure to check the  
differences among these products before using them with PROMs for debugging or prototype testing of application  
systems or, later, when using them with a mask ROM for full-scale production.  
For details on the CPU functions and internal hardware, refer to µPD753208 User’s Manual (U10158E).  
Table 5-1. Differences between µPD75P3216 and µPD753204, 753206, and 753208  
Item  
µPD753204  
12 bits  
µPD753206  
13 bits  
µPD753208  
µPD75P3216  
14 bits  
Program counter  
Program memory (bytes)  
Mask ROM  
4096  
Mask ROM  
6144  
Mask ROM  
8192  
One-time PROM  
16384  
Data memory (× 4 bits)  
512  
Mask options  
Pull-up resistor for  
Yes (specifiable)  
No (off chip)  
port 5  
Note  
Waiting time in  
RESET  
Yes (selectable from 217/fX and 215/fX)  
No  
(Fixed to 215/fX ms)  
Pin configuration Pin 9 to 12  
Pin 14 to 17  
P30 to P33  
P30/MD0-P33/MD3  
P50/D4-P53/D7  
P50 to P53  
Pin 18 to 20  
P60/KR0 to P63/KR3  
P60/KR0/D0-  
P63/KR3/D3  
Pin 25  
IC  
VPP  
Other  
Noise resistance and noise radiation may differ due to the different circuit sizes and  
mask layouts.  
Note 217/fX = 21.8 ms (@6.0 MHz), 31.3 ms (@4.19 MHz)  
215/fX = 5.46 ms (@6.0 MHz), 7.81 ms (@4.19 MHz)  
Caution Noise resistance and noise radiation are different in PROM and mask ROMs. In transferring to mask  
ROM versions from the PROM version in a process between prototype development and full  
production, be sure to fully evaluate the mask ROM version’s CS (not ES).  
13  
µPD75P3216  
6. MEMORY CONFIGURATION  
Figure 6-1. Program Memory Map  
7
6
5
0
0000H MBE RBE Internal reset start address (upper 6 bits)  
Internal reset start address (lower 8 bits)  
0002H MBE RBE INTBT/INT4 start address (upper 6 bits)  
INTBT/INT4 start address (lower 8 bits)  
CALLF  
!faddr instruction  
entry address  
0004H MBE RBE INT0 start address (upper 6 bits)  
INT0 start address (lower 8 bits)  
0006H  
BRCB  
!caddr instruction  
branch address  
0008H MBE RBE INTCSI start address (upper 6 bits)  
INTCSI start address (lower 8 bits)  
Branch addresses for  
the following instructions  
• BR !addr  
• CALL !addr  
• BRA !addr1Note  
• CALLA !addr1Note  
• MOVT BCDE  
• MOVT BCXA  
000AH MBE RBE INTT0 start address (upper 6 bits)  
INTT0 start address (lower 8 bits)  
000CH MBE RBE INTT1/INTT2 start address (upper 6 bits)  
INTT1/INTT2 start address (lower 8 bits)  
Branch/call  
address  
0020H  
by GETI  
Reference table for GETI instruction  
007FH  
0080H  
BR $addr instruction  
relative branch address  
(–15 to –1,  
+2 to +16)  
07FFH  
0800H  
0FFFH  
1000H  
BRCB  
!caddr instruction  
branch address  
1FFFH  
2000H  
BRCB  
!caddr instruction  
branch address  
2FFFH  
3000H  
BRCB  
!caddr instruction  
branch address  
3FFFH  
Note Can be used only in Mk II mode.  
Remark For instructions other than those noted above, the BR PCDE and BR PCXA instructions can be used to  
branch to addresses with changes in the PC’s lower 8 bits only.  
14  
µPD75P3216  
Figure 6-2. Data Memory Map  
Data memory  
Memory bank  
000H  
General-purpose register area  
(32 × 4)  
01FH  
020H  
0
256 × 4  
(224 × 4)  
Stack area Note  
Data area  
static RAM  
(512 × 4)  
0FFH  
100H  
256 × 4  
(236 × 4)  
1EBH  
1ECH  
1
Display data memory (12 × 4)  
(12 × 4)  
(8 × 4)  
1F7H  
1F8H  
1FFH  
F80H  
Not incorporated  
128 × 4  
15  
Peripheral hardware area  
FFFH  
Note Memory bank 0 or 1 can be selected as the stack area.  
15  
µPD75P3216  
7. INSTRUCTION SET  
(1) Representation and coding formats for operands  
In the instruction’s operand area, use the following coding format to describe operands corresponding to the  
instruction’s operand representations (for further description, refer to RA75X Assembler Package User’s Manual  
–Language (EEU-1343)). When there are several codes, select and use just one. Codes that consist of upper-case  
letters and + or – symbols are key words that should be entered as they are.  
For immediate data, enter an appropriate numerical value or label.  
Enter register flag symbols as label descriptors instead of mem, fmem, pmem, bit, etc. (for further description, refer  
to µPD753208 User’s Manual (U10158E)). The number of labels that can be entered for fmem and pmem are  
restricted.  
Representation  
reg  
Coding Format  
X, A, B, C, D, E, H, L  
X, B, C, D, E, H, L  
XA, BC, DE, HL  
BC, DE, HL  
reg1  
rp  
rp1  
rp2  
BC, DE  
rp’  
XA, BC, DE, HL, XA’, BC’, DE’, HL’  
BC, DE, HL, XA’, BC’, DE’, HL’  
HL, HL+, HL–, DE, DL  
rp’1  
rpa  
rpa1  
n4  
DE, DL  
4-bit immediate data or label  
8-bit immediate data or label  
n8  
Note  
mem  
bit  
8-bit immediate data or label  
2-bit immediate data or label  
fmem  
pmem  
addr  
addr1  
caddr  
faddr  
taddr  
PORTn  
IEXXX  
RBn  
MBn  
FB0H to FBFH, FF0H to FFFH immediate data or label  
FC0H to FFFH immediate data or label  
0000H to 3FFFH immediate data or label  
0000H to 3FFFH immediate data or label (Mk II mode only)  
12-bit immediate data or label  
11-bit immediate data or label  
20H to 7FH immediate data (however, bit0 = 0) or label  
PORT0 to PORT3, PORT5, PORT6, PORT8, PORT9  
IEBT, IECSI, IET0, IET1, IET2, IE0, IE2, IE4, IEW  
RB0 to RB3  
MB0, MB1, MB15  
Note When processing 8-bit data, only even-numbered addresses can be specified.  
16  
µPD75P3216  
(2) Operation legend  
A
: A register; 4-bit accumulator  
B
: B register  
C
: C register  
D
: D register  
E
: E register  
H
: H register  
L
: L register  
X
: X register  
XA  
BC  
DE  
HL  
XA’  
BC’  
DE’  
HL’  
PC  
SP  
CY  
PSW  
MBE  
RBE  
: Register pair (XA); 8-bit accumulator  
: Register pair (BC)  
: Register pair (DE)  
: Register pair (HL)  
: Expansion register pair (XA’)  
: Expansion register pair (BC’)  
: Expansion register pair (DE’)  
: Expansion register pair (HL’)  
: Program counter  
: Stack pointer  
: Carry flag; bit accumulator  
: Program status word  
: Memory bank enable flag  
: Register bank enable flag  
PORTn : Port n (n = 0 to 3, 5, 6, 8, 9)  
IME  
IPS  
: Interrupt master enable flag  
: Interrupt priority selection register  
IEXXX : Interrupt enable flag  
RBS  
MBS  
PCC  
.
: Register bank selection register  
: Memory bank selection register  
: Processor clock control register  
: Delimiter for address and bit  
: Addressed data  
(XX)  
XXH  
: Hexadecimal data  
17  
µPD75P3216  
(3) Description of symbols used in addressing area  
MB = MBE • MBS  
*1  
MBS = 0, 1, 15  
MB = 0  
*2  
*3  
MBE = 0  
: MB = 0 (000H to 07FH)  
MB = 15 (F80H to FFFH)  
: MB = MBS  
Data memory  
addressing  
MBE = 1  
MBS = 0, 1, 15  
MB = 15, fmem = FB0H to FBFH, FF0H to FFFH  
MB = 15, pmem = FC0H to FFFH  
*4  
*5  
*6  
addr = 0000H to 3FFFH  
addr, addr1 = (Current PC) – 15 to (Current PC) – 1  
(Current PC) +2 to (Current PC) +16  
*7  
caddr = 0000H to 0FFFH (PC13  
1000H to 1FFFH (PC13  
2000H to 2FFFH (PC13  
3000H to 3FFFH (PC13  
,
,
,
,
12 = 00B) or  
12 = 01B) or  
12 = 10B) or  
12 = 11B)  
Program memory  
addressing  
*8  
faddr = 0000H to 07FFH  
taddr = 0020H to 007FH  
*9  
*10  
*11  
addr1 = 0000H to 3FFFH (Mk II mode only)  
Remarks 1. MB indicates access-enabled memory banks.  
2. In area *2, MB = 0 for both MBE and MBS.  
3. In areas *4 and *5, MB = 15 for both MBE and MBS.  
4. Areas *6 to *11 indicate corresponding address-enabled areas.  
(4) Description of machine cycles  
S indicates the number of machine cycles required for skipping of skip-specified instructions. The value of S varies  
as shown below.  
No skip ....................................................................S = 0  
Skipped instruction is 1-byte or 2-byte instruction .. S = 1  
Skipped instruction is 3-byte instructionNote ........... S = 2  
Note  
3-byte instructions: BR !addr, BRA !addr1, CALL !addr, and CALLA !addr1  
Caution The GETI instruction is skipped for one machine cycle.  
One machine cycle equals one cycle (= tCY) of the CPU clock F. Use the PCC setting to select among four cycle  
times.  
18  
µPD75P3216  
Instruction  
Group  
No. of Machine  
Bytes Cycle  
Addressing  
Skip  
Mnemonic  
MOV  
Operand  
A, #n4  
Operation  
Area  
Condition  
Transfer  
1
2
2
2
2
1
1
1
1
2
1
2
2
2
2
2
2
2
2
2
1
1
1
1
2
2
2
1
2
1
1
1
1
1
2
2
2
2
1
An4  
String-effect A  
reg1, #n4  
XA, #n8  
reg1n4  
XAn8  
HLn8  
rp2n8  
A(HL)  
String-effect A  
String-effect B  
HL, #n8  
rp2, #n8  
A, @HL  
*1  
*1  
*1  
*2  
*1  
*1  
*1  
*3  
*3  
*3  
*3  
A, @HL+  
A, @HL–  
A, @rpa1  
XA, @HL  
@HL, A  
2+S A(HL), then LL+1  
2+S A(HL), then LL–1  
L=0  
L=FH  
1
2
1
2
2
2
2
2
2
2
2
2
1
A(rpa1)  
XA(HL)  
(HL)A  
@HL, XA  
A, mem  
(HL)XA  
A(mem)  
XA(mem)  
(mem)A  
(mem)XA  
Areg  
XA, mem  
mem, A  
mem, XA  
A, reg  
XA, rp’  
XArp’  
reg1, A  
reg1A  
rp’1, XA  
rp’1XA  
A(HL)  
XCH  
A, @HL  
*1  
*1  
*1  
*2  
*1  
*3  
*3  
A, @HL+  
A, @HL–  
A, @rpa1  
XA, @HL  
A, mem  
2+S A(HL), then LL+1  
2+S A(HL), then LL–1  
L=0  
L=FH  
1
2
2
2
1
2
3
3
3
3
A(rpa1)  
XA(HL)  
A(mem)  
XA, mem  
A, reg1  
XA(mem)  
Areg1  
XA, rp’  
XArp’  
Table  
MOVT  
XA, @PCDE  
XA, @PCXA  
XA, @BCDE  
XA, @BCXA  
XA(PC13-8+DE)ROM  
XA(PC13-8+XA)ROM  
XA(B2-0+BCDE)ROM  
XA(B2-0+BCXA)ROM  
reference  
Note  
Note  
*6  
*6  
Note Only the lower 2 bits in the B register are valid.  
19  
µPD75P3216  
Instruction  
Group  
No. of Machine  
Bytes Cycle  
Addressing  
Area  
Skip  
Mnemonic  
MOV1  
Operand  
Operation  
CY(fmem.bit)  
Condition  
Bit transfer  
CY, fmem.bit  
CY, pmem.@L  
CY, @H+mem.bit  
fmem.bit, CY  
pmem.@L, CY  
@H+mem.bit, CY  
A, #n4  
2
2
2
2
2
2
1
2
1
2
2
1
2
2
1
2
2
1
2
2
2
1
2
2
2
1
2
2
2
1
2
2
1
2
1
1
2
2
1
2
2
2
2
2
2
2
*4  
*5  
*1  
*4  
*5  
*1  
CY(pmem7-2+L3-2.bit(L1-0))  
CY(H+mem3-0.bit)  
(fmem.bit)CY  
(pmem7-2+L3-2.bit(L1-0))CY  
(H+mem3-0.bit)CY  
Arithmetic  
ADDS  
1+S AA+n4  
carry  
XA, #n8  
A, @HL  
XA, rp’  
2+S XAXA+n8  
1+S AA+(HL)  
2+S XAXA+rp’  
2+S rp’1rp’1+XA  
carry  
carry  
carry  
carry  
*1  
*1  
*1  
*1  
rp’1, XA  
A, @HL  
XA, rp’  
ADDC  
SUBS  
SUBC  
AND  
1
2
2
A, CYA+(HL)+CY  
XA, CYXA+rp’+CY  
rp’1, CYrp’1+XA+CY  
rp’1, XA  
A, @HL  
XA, rp’  
1+S AA–(HL)  
2+S XAXA–rp’  
2+S rp’1rp’1–XA  
borrow  
borrow  
borrow  
rp’1, XA  
A, @HL  
XA, rp’  
1
2
2
2
1
2
2
2
1
2
2
2
1
2
2
1
2
A, CYA–(HL)–CY  
XA, CYXA–rp’–CY  
rp’1, CYrp’1–XA–CY  
AA n4  
rp’1, XA  
A, #n4  
A, @HL  
XA, rp’  
AA (HL)  
*1  
*1  
*1  
XAXA rp’  
rp’1, XA  
A, #n4  
rp’1rp’1 XA  
AA n4  
OR  
A, @HL  
XA, rp’  
AA (HL)  
XAXA rp’  
rp’1, XA  
A, #n4  
rp’1rp’1 XA  
AA n4  
XOR  
A, @HL  
XA, rp’  
AA (HL)  
XAXA rp’  
rp’1, XA  
A
rp’1rp’1 XA  
CYA0, A3CY, An-1An  
AA  
Accumulator  
manipulation  
RORC  
NOT  
A
INCS  
reg  
1+S regreg+1  
1+S rp1rp1+1  
2+S (HL)(HL)+1  
2+S (mem)(mem)+1  
1+S regreg–1  
2+S rp’rp’–1  
reg=0  
Increment/  
decrement  
rp1  
rp1=00H  
(HL)=0  
@HL  
*1  
*3  
mem  
(mem)=0  
reg=FH  
rp’=FFH  
DECS  
reg  
rp’  
20  
µPD75P3216  
Instruction  
Group  
No. of Machine  
Bytes Cycle  
Addressing  
Skip  
Mnemonic  
SKE  
Operand  
reg, #n4  
Operation  
Area  
Condition  
Comparison  
2
2
1
2
2
2
1
1
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2+S Skip if reg=n4  
reg=n4  
@HL, #n4  
A, @HL  
2+S Skip if(HL)=n4  
1+S Skip if A=(HL)  
2+S Skip if XA=(HL)  
2+S Skip if A=reg  
2+S Skip if XA=rp’  
*1  
*1  
*1  
(HL)=n4  
A=(HL)  
XA=(HL)  
A=reg  
XA, @HL  
A, reg  
XA, rp’  
XA=rp’  
Carry flag  
SET1  
CLR1  
SKT  
CY  
1
1
CY1  
CY0  
manipulation  
CY  
CY  
1+S Skip if CY=1  
CY=1  
NOT1  
SET1  
CY  
1
2
2
2
2
2
2
2
2
CYCY  
Memory bit  
mem.bit  
(mem.bit)1  
(fmem.bit)1  
*3  
*4  
*5  
*1  
*3  
*4  
*5  
*1  
*3  
*4  
*5  
*1  
*3  
*4  
*5  
*1  
*4  
*5  
*1  
*4  
*5  
*1  
*4  
*5  
*1  
*4  
*5  
*1  
manipulation  
fmem.bit  
pmem.@L  
@H+mem.bit  
mem.bit  
(pmem7-2+L3-2.bit(L1-0))1  
(H+mem3-0.bit)1  
(mem.bit)0  
CLR1  
SKT  
fmem.bit  
(fmem.bit)0  
pmem.@L  
@H+mem.bit  
mem.bit  
(pmem7-2+L3-2.bit(L1-0))0  
(H+mem3-0.bit)0  
2+S Skip if(mem.bit)=1  
(mem.bit)=1  
fmem.bit  
2+S Skip if(fmem.bit)=1  
(fmem.bit)=1  
(pmem.@L)=1  
(@H+mem.bit)=1  
(mem.bit)=0  
pmem.@L  
@H+mem.bit  
mem.bit  
2+S Skip if(pmem7-2+L3-2.bit(L1-0))=1  
2+S Skip if(H+mem3-0.bit)=1  
2+S Skip if(mem.bit)=0  
SKF  
fmem.bit  
2+S Skip if(fmem.bit)=0  
(fmem.bit)=0  
(pmem.@L)=0  
(@H+mem.bit)=0  
(fmem.bit)=1  
(pmem.@L)=1  
(@H+mem.bit)=1  
pmem.@L  
@H+mem.bit  
fmem.bit  
2+S Skip if(pmem7-2+L3-2.bit(L1-0))=0  
2+S Skip if(H+mem3-0.bit)=0  
2+S Skip if(fmem.bit)=1 and clear  
2+S Skip if(pmem7-2+L3-2.bit (L1-0))=1 and clear  
2+S Skip if(H+mem3-0.bit)=1 and clear  
SKTCLR  
AND1  
OR1  
pmem.@L  
@H+mem.bit  
CY, fmem.bit  
CY, pmem.@L  
CY, @H+mem.bit  
CY, fmem.bit  
CY, pmem.@L  
CY, @H+mem.bit  
CY, fmem.bit  
CY, pmem.@L  
CY, @H+mem.bit  
2
2
2
2
2
2
2
2
2
CYCY (fmem.bit)  
CYCY (pmem7-2+L3-2.bit(L1-0))  
CYCY (H+mem3-0.bit)  
CYCY (fmem.bit)  
CYCY (pmem7-2+L3-2.bit(L1-0))  
CYCY (H+mem3-0.bit)  
CYCY (fmem.bit)  
XOR1  
CYCY (pmem7-2+L3-2.bit(L1-0))  
CYCY (H+mem3-0.bit)  
21  
µPD75P3216  
Instruction  
Group  
No. of Machine  
Bytes Cycle  
Addressing  
Area  
Skip  
Mnemonic  
Operand  
addr  
Operation  
Condition  
Note  
Branch  
BR  
PC13-0addr  
*6  
Use the assembler to select the  
most appropriate instruction  
among the following.  
• BR !addr  
• BRCB !caddr  
• BR $addr  
addr1  
PC13-0addr1  
*11  
Use the assembler to select  
the most appropriate instruction  
among the following.  
• BRA !addr1  
• BR !addr  
• BRCB !caddr  
• BR $addr1  
!addr  
3
1
1
2
2
2
2
3
2
3
2
2
3
3
3
3
3
2
PC13-0addr  
*6  
*7  
$addr  
$addr1  
PCDE  
PCXA  
BCDE  
BCXA  
!addr1  
!caddr  
PC13-0addr  
PC13-0addr1  
PC13-0PC13-8+DE  
PC13-0PC13-8+XA  
PC13-0BCDE  
*6  
*6  
PC13-0BCXA  
Note  
BRA  
PC13-0addr1  
*11  
*8  
BRCB  
PC13-0PC13, 12+caddr11-0  
Note Shaded areas indicate support for Mk II mode only. Other areas indicate support for Mk I mode only.  
22  
µPD75P3216  
Instruction  
Group  
No. of Machine  
Bytes Cycle  
Addressing  
Skip  
Mnemonic  
Operand  
!addr1  
Operation  
Area  
Condition  
Note  
Subroutine  
CALLA  
3
3
(SP–6)(SP–3)(SP–4)PC11-0  
(SP–5)0, 0, PC13, 12  
stack control  
(SP–2)  
X, X, MBE, RBE  
PC13–0  
addr1, SP SP–6  
Note  
CALL  
!addr  
3
3
4
(SP–4)(SP–1)(SP–2)  
(SP–3) MBE, RBE, PC13, 12  
addr, SP SP–4  
PC11-0  
*6  
PC13–0  
(SP–6)(SP–3)(SP–4)PC11-0  
(SP–5)0, 0, PC13, 12  
(SP–2)  
X, X, MBE, RBE  
PC13-0  
addr, SP SP–6  
Note  
CALLF  
!faddr  
2
1
1
2
3
(SP–4)(SP–1)(SP–2)  
(SP–3) MBE, RBE, PC13, 12  
PC13-0000+faddr, SPSP–4  
PC11-0  
*9  
(SP–6)(SP–3)(SP–4)PC11-0  
(SP–5)0, 0, PC13, 12  
(SP–2)X, X, MBE, RBE  
PC13-0000+faddr, SPSP–6  
Note  
RET  
3
MBE, RBE, PC13, 12(SP+1)  
PC11-0(SP)(SP+3)(SP+2)  
SPSP+4  
X, X, MBE, RBE(SP+4)  
PC11-0(SP)(SP+3)(SP+2)  
MBE, 0, PC13, 12(SP+1)  
SPSP+6  
Note  
RETS  
3+S MBE, RBE, PC13, 12(SP+1)  
PC11-0(SP)(SP+3)(SP+2)  
SPSP+4  
Unconditional  
then skip unconditionally  
X, X, MBE, RBE(SP+4)  
PC11-0(SP)(SP+3)(SP+2)  
0, 0, PC13, 12(SP+1)  
SPSP+6  
then skip unconditionally  
Note  
RETI  
1
3
MBE, RBE, PC13, 12(SP+1)  
PC11-0(SP)(SP+3)(SP+2)  
PSW(SP+4)(SP+5), SPSP+6  
0, 0, PC13, 12(SP+1)  
PC11-0(SP)(SP+3)(SP+2)  
PSW(SP+4)(SP+5), SPSP+6  
PUSH  
POP  
rp  
1
2
1
2
1
2
1
2
(SP–1)(SP–2)rp, SPSP–2  
BS  
rp  
(SP–1)  
rp(SP+1)(SP), SPSP+2  
MBS(SP+1), RBS(SP), SPSP+2  
MBS, (SP–2)RBS, SPSP–2  
BS  
Note Shaded areas indicate support for Mk II mode only. Other areas indicate support for Mk I mode only.  
23  
µPD75P3216  
Instruction  
Group  
No. of Machine  
Bytes Cycle  
Addressing  
Area  
Skip  
Mnemonic  
EI  
Operand  
Operation  
Condition  
Interrupt  
control  
2
2
2
2
2
2
2
2
2
2
1
2
2
1
2
2
2
2
2
2
2
2
2
2
1
2
2
3
IME(IPS.3)1  
IEXXX1  
IEXXX  
DI  
IME(IPS.3)0  
IEXXX0  
IEXXX  
Note 1  
I/O  
IN  
A, PORTn  
XA, PORTn  
PORTn, A  
PORTn, XA  
APORTn  
(n=0-3, 5, 6, 8, 9)  
XAPORTn+1, PORTn(n=8)  
Note 1  
OUT  
PORTnA  
(n=2-3, 5, 6, 8, 9)  
PORTn+1, PORTnXA(n=8)  
Set HALT Mode(PCC.21)  
Set STOP Mode(PCC.31)  
No Operation  
CPU control  
Special  
HALT  
STOP  
NOP  
SEL  
RBn  
MBn  
RBSn (n=0-3)  
MBSn (n=0, 1, 15)  
• When using TBR instruction  
GETINote 2, 3 taddr  
*10  
PC13-0(taddr)5-0+(taddr+1)  
- - - - - - - - - - - - - - - - - - - - - - - - - - -  
• When using TCALL instruction  
- - - - - - - - - - - -  
(SP–4)(SP–1)(SP–2)PC11-0  
(SP+1)  
MBE, RBE, PC13, 12  
PC13-0(taddr)5-0+(taddr+1)  
SPSP–4  
- - - - - - - - - - - - - - - - - - - - - - - - - - -  
• When using instruction other than  
- - - - - - - - - - - -  
Determined by  
TBR or TCALL  
referenced  
instruction  
Execute (taddr)(taddr+1) instructions  
• When using TBR instruction  
PC13-0(taddr)5-0+(taddr+1)  
1
3
*10  
- - - - - - - - - - - -  
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  
4
• When using TCALL instruction  
(SP–6)(SP–3)(SP–4)  
PC11-0  
(SP–2)X, X, MBE, RBE  
PC13-0(taddr)5-0+(taddr+1)  
SPSP–6  
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  
- - - - - - - - - - - -  
Determined by  
3
• When using instruction other than  
TBR or TCALL  
referenced  
instruction  
Execute (taddr)(taddr+1) instructions  
Notes 1. Before executing the IN or OUT instruction, set MBE to 0 or 1 and set MBE to 15.  
2. TBR and TCALL instructions are assembler directives for the GETI instruction’s table definitions.  
3. Shaded areas indicate support for Mk II mode only. Other areas indicate support for Mk I mode only.  
24  
µPD75P3216  
8. ONE-TIME PROM (PROGRAM MEMORY) WRITE AND VERIFY  
The program memory contained in the µPD75P3216 is a 16384 × 8-bit one-time PROM that can be electrically written  
one time only. The pins listed in the table below are used for this PROM’s write/verify operations. Clock input from the  
X1 pin is used instead of address input as a method for updating addresses.  
Pin  
Function  
VPP  
Pin where program voltage is applied during program  
memory write/verify (usually VDD potential)  
X1, X2  
Clock input pins for address updating during program  
memory write/verify. Input the X1 pin’s inverted signal to  
the X2 pin.  
MD0 to MD3  
Operation mode selection pin for program memory write/  
verify  
D0/P60/KR0-D3/P63/KR3 (lower 4 bits) 8-bit data I/O pins for program memory write/verify  
D4/P50-D7/P53 (upper 4 bits)  
VDD  
Pin where power supply voltage is applied. Applies 1.8 to  
5.5 V in normal operation mode and +6 V for program  
memory write/verify.  
Caution Pins not used for program memory write/verify should be connected to Vss.  
8.1 Operation Modes for Program Memory Write/Verify  
When +6 V is applied to the VDD pin and +12.5 V to the VPP pin, the µPD75P3216 enters the program memory write/  
verify mode. The following operation modes can be specified by setting pins MD0 to MD3 as shown below.  
Operation Mode Specification  
Operation Mode  
VPP  
VDD  
MD0 MD1  
MD2 MD3  
+12.5 V  
+6 V  
H
L
L
H
L
H
H
H
H
L
Zero-clear program memory address  
Write mode  
H
H
H
L
Verify mode  
H
X
Program inhibit mode  
X: L or H  
25  
µPD75P3216  
8.2 Program Memory Write Procedure  
Program memory can be written at high speed using the following procedure.  
(1) Pull down unused pins to Vss through resistors. Set the X1 pin low.  
(2) Supply 5 V to the VDD and VPP pins.  
(3) Wait 10 µs.  
(4) Select the zero-clear program memory address mode.  
(5) Supply 6 V to the VDD and 12.5 V to the VPP pins.  
(6) Write data in the 1 ms write mode.  
(7) Select the verify mode. If the data is correct, go to step (8) and if not, repeat steps (6) and (7).  
(8) (X : number of write operations from steps (6) and (7)) × 1 ms additional write.  
(9) Apply four pulses to the X1 pin to increment the program memory address by one.  
(10) Repeat steps (6) to (9) until the end address is reached.  
(11) Select the zero-clear program memory address mode.  
(12) Return the VDD and VPP pins back to 5 V.  
(13) Turn off the power.  
The following figure shows steps (2) to (9).  
X repetitions  
Address  
increment  
Additional  
write  
Write  
Verify  
VPP  
VDD  
VPP  
VDD + 1  
VDD  
VDD  
X1  
D0/P60/KR0-  
D3/P63/KR3  
Data  
output  
Data input  
Data input  
D4/P50-  
D7/P53  
MD0/P30  
MD1/P31  
MD2/P32  
MD3/P33  
26  
µPD75P3216  
8.3 Program Memory Read Procedure  
The µPD75P3216 can read program memory contents using the following procedure.  
(1) Pull down unused pins to VSS through resistors. Set the X1 pin low.  
(2) Supply 5 V to the VDD and VPP pins.  
(3) Wait 10 µs.  
(4) Select the zero-clear program memory address mode.  
(5) Supply 6 V to the VDD and 12.5 V to the VPP pins.  
(6) Select the verify mode. Apply four pulses to the X1 pin. Every four clock pulses will output the data stored in one  
address.  
(7) Select the zero-clear program memory address mode.  
(8) Return the VDD and VPP pins back to 5 V.  
(9) Turn off the power.  
The following figure shows steps (2) to (9).  
V
PP  
VPP  
V
DD  
VDD + 1  
V
DD  
VDD  
X1  
D0/P60/KR0-  
D3/P63/KR3  
Data output  
Data output  
D4/P50-  
D7/P53  
MD0/P30  
“L”  
MD1/P31  
MD2/P32  
MD3/P33  
27  
µPD75P3216  
8.4 One-time PROM Screening  
Due to its structure, the one-time PROM cannot be fully tested before shipment by NEC. Therefore, NEC recommends  
that after the required data is written and the PROM is stored under the temperature and time conditions shown below,  
the PROM should be verified via a screening.  
Storage Temperature  
125 ˚C  
Storage Time  
24 hours  
28  
µPD75P3216  
9. ELECTRICAL SPECIFICATIONS  
ABSOLUTE MAXIMUM RATINGS (TA = 25 ˚C)  
Parameter  
Supply voltage  
Symbol  
VDD  
VPP  
VI1  
Test Conditions  
Rating  
Unit  
V
–0.3 to +7.0  
–0.3 to +13.5  
–0.3 to VDD + 0.3  
–0.3 to +14  
–0.3 to VDD + 0.3  
–10  
PROM supply voltage  
Input voltage  
V
Except port 5  
V
VI2  
Port 5  
N-ch open-drain  
V
Output voltage  
VO  
V
Output current, high  
IOH  
Per pin  
mA  
mA  
mA  
mA  
˚C  
Total for all pins  
Per pin  
–30  
Output current, low  
IOL  
TA  
30  
Total for all pins  
220  
Operating ambient  
temperature  
–40 to +85Note  
Storage temperature  
Tstg  
–65 to +150  
˚C  
Note When LCD is driven in normal mode: TA = –10 to +85 ˚C  
Caution Exposure to Absolute Maximum Ratings even for instant may affect device reliability; exceeding  
the ratings could cause parmanent damage. The parameters apply independently. The device  
should be operated within the limits specified under DC and AC Characteristics.  
CAPACITANCE (TA = 25 ˚C, VDD = 0 V)  
Parameter  
Input capacitance  
Output capacitance  
I/O capacitance  
Symbol  
CIN  
Test Conditions  
MIN.  
TYP.  
MAX.  
15  
Unit  
pF  
f = 1 MHz  
Unmeasured pins returned to 0 V.  
COUT  
CIO  
15  
pF  
15  
pF  
29  
µPD75P3216  
SYSTEM CLOCK OSCILLATOR CHARACTERISTICS (TA = –40 to +85 ˚C, VDD = 1.8 to 5.5 V)  
Resonator  
Ceramic  
Recommended Constant  
Parameter  
Test Conditions  
MIN. TYP. MAX.  
Unit  
Note 2  
Oscillator  
1.0  
6.0  
MHz  
X2  
X1  
resonator  
frequency (fx) Note 1  
Oscillation  
C1  
C2  
After VDD reaches oscil-  
4
ms  
MHz  
ms  
stabilization time Note 3 lation voltage range MIN.  
V
DD  
Note 2  
Crystal  
Oscillator  
1.0  
6.0  
X2  
X1  
resonator  
frequency (fx) Note 1  
C1  
C2  
Oscillation  
VDD = 4.5 to 5.5 V  
10  
30  
stabilization time Note 3  
V
DD  
Note 2  
External  
clock  
X1 input  
1.0  
6.0  
MHz  
ns  
frequency (fx) Note 1  
X1 input  
X1  
X2  
83.3  
500  
high/low level width  
(tXH, tXL)  
Notes 1. The oscillator frequency and X1 input frequency indicate characteristics of the oscillator only. For the  
instruction execution time, refer to the AC characteristics.  
2. When the oscillator frequency is 4.19 MHz < fx 6.0 MHz, setting the processor clock control register  
(PCC) to 0011 results in 1 machine cycle being less than the required 0.95 µs. Therefore, set PCC  
to a value other than 0011.  
3. The oscillation stabilization time is necessary for oscillation to stabilize after applying VDD or releasing  
the STOP mode.  
Caution When using the system clock oscillator, wiring in the area enclosed with the dotted line should be  
carried out as follows to avoid an adverse effect from wiring capacitance.  
• Wiring should be as short as possible.  
• Wiring should not cross other signal lines.  
• Wiring should not be placed close to a varying high current.  
• The potential of the oscillator capacitor ground should be the same as VSS.  
• Do not ground it to the ground pattern in which a high current flows.  
• Do not fetch a signal from the oscillator.  
30  
µPD75P3216  
DC CHARACTERISTICS (TA = –40 to +85 ˚C, VDD = 1.8 to 5.5 V)  
Parameter  
Symbol  
Test Conditions  
MIN. TYP. MAX.  
Unit  
mA  
mA  
V
Output current, low  
IOL  
Per pin  
15  
150  
Total for all pins  
Ports 2, 3, 8, 9  
Input voltage, high  
VIH1  
VIH2  
VIH3  
2.7 VDD 5.5 V 0.7VDD  
1.8 VDD < 2.7 V 0.9VDD  
2.7 VDD 5.5 V 0.8VDD  
1.8 VDD < 2.7 V 0.9VDD  
VDD  
VDD  
V
Ports 0, 1, 6, RESET  
VDD  
V
VDD  
V
Port 5  
N-ch open-drain 2.7 VDD 5.5 V 0.7VDD  
1.8 VDD < 2.7 V 0.9VDD  
VDD – 0.1  
13  
V
13  
V
VI14  
VIL1  
X1  
VDD  
V
Input voltage, low  
Ports 2, 3, 5, 8, 9  
2.7 VDD 5.5 V  
1.8 VDD < 2.7 V  
2.7 VDD 5.5 V  
1.8 VDD < 2.7 V  
0
0.3VDD  
0.1VDD  
0.2VDD  
0.1VDD  
0.1  
V
0
V
VIL2  
Ports 0, 1, 6, RESET  
X1  
0
V
0
0
V
VIL3  
VOH  
VOL1  
V
Output voltage, high  
Output voltage, low  
SCK, SO, ports 2, 3, 6, 8, 9 IOH = –1 mA  
SCK, SO, ports 2, 3, 5, 6, 8, 9 IOL = 15 mA,  
VDD – 0.5  
V
0.2  
2.0  
V
VDD = 4.5 to 5.5 V  
IOL = 1.6 mA  
0.4  
0.2VDD  
3
V
VOL2  
ILIH1  
ILIH2  
ILIH3  
ILIL1  
ILIL2  
ILIL3  
SB0, SB1  
N-ch open-drain pull-up resistor 1 kΩ  
Other pins than X1  
X1  
V
Input leakage  
current, high  
VIN = VDD  
µA  
µA  
µA  
µA  
µA  
µA  
20  
VIN = 13 V  
VIN = 0 V  
Port 5 (N-ch open-drain)  
Other pins than port 5 and X1  
X1  
20  
Input leakage  
current, low  
–3  
–20  
–3  
Port 5 (N-ch open-drain) When an  
input instruction is not executed  
Port 5 (N-ch  
–30  
µA  
open-drain)  
When an input  
instruction  
VDD = 5.0 V  
VDD = 3.0 V  
–10  
–3  
–27  
–8  
µA  
µA  
is executed  
Output leakage  
current, high  
ILOH1  
ILOH2  
ILOL  
VOUT = VDD  
VOUT = 13 V  
VOUT = 0 V  
SCK, SO/SB0, SB1, ports 2, 3, 6, 8, 9  
Port 5 (N-ch open-drain)  
3
µA  
µA  
µA  
20  
–3  
Output leakage  
current, low  
Pull-up resistor  
RL  
VIN = 0 V  
Ports 0, 1, 2, 3, 6, 8, 9  
(Excluding P00 pin)  
50  
100  
200  
kΩ  
31  
µPD75P3216  
DC CHARACTERISTICS (TA = –40 to +85 ˚C, VDD = 1.8 to 5.5 V)  
Parameter  
Symbol  
Test Conditions  
MIN. TYP. MAX.  
Unit  
V
LCD drive voltage  
VLCD  
VAC0 = 0  
VAC0 = 1  
TA = –40 to +85 °C  
TA = –10 to +85 °C  
2.7  
2.2  
1.8  
VDD  
VDD  
VDD  
4
V
V
VAC current  
IVAC  
VAC0 = 1, VDD = 2.0 V ± 10%  
1
µA  
V
LCD output voltage  
deviation Note 1 (common)  
LCD output voltage  
deviation Note 1 (segment)  
Supply current Note 2  
VODC  
lo = ±1 µA  
lo = ±0.5 µA  
6.0 MHz  
VLCD0 = VLCD  
0
0
±0.2  
VLCD1 = VLCD × 2/3  
VODS  
IDD1  
VLCD2 = VLCD × 1/3  
2.2 V VLCD VDD  
VDD = 5.0 V ± 10%  
±0.2  
V
Note 1  
Note 3  
Note 4  
2.6  
0.47  
0.72  
0.27  
1.9  
7.8  
1.4  
2.1  
0.8  
5.7  
1.1  
2.0  
0.7  
10  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
µA  
Crystal oscillation VDD = 3.0 V ± 10%  
IDD2  
IDD1  
IDD2  
IDD5  
C1 = C2 = 22 pF  
HALT mode VDD = 5.0 V ± 10%  
VDD = 3.0 V ± 10%  
4.19 MHz  
VDD = 5.0 V ± 10% Note 3  
Crystal oscillation VDD = 3.0 V ± 10% Note 4  
0.36  
0.7  
C1 = C2 = 22 pF  
HALT mode VDD = 5.0 V ± 10%  
VDD = 3.0 V ± 10%  
0.23  
0.05  
0.02  
0.02  
Note 5  
STOP mode  
VDD = 5.0 V ± 10%  
DD = 3.0 V  
±10%  
V
5
µA  
TA = 25˚C  
3
µA  
Notes 1. The voltage deviation is the difference from the output voltage corresponding to the ideal value of the  
segment and common outputs (VLCDn; n = 0, 1, 2).  
2. Not including current flowing in on-chip pull-up resistors.  
3. When the processor clock control register (PCC) is set to 0011 and the device is operated in the high-  
speed mode.  
4. When PCC is set to 0000 and the device is operated in the low-speed mode.  
5. Set VAC0 to 0 when setting the STOP mode. If VAC0 is set to 1, the current increases by about 1  
µA.  
32  
µPD75P3216  
AC CHARACTERISTICS (TA = –40 to +85 ˚C, VDD = 1.8 to 5.5 V)  
Parameter  
Symbol  
Test Conditions  
MIN. TYP. MAX.  
Unit  
µs  
CPU clock cycle  
tCY  
VDD = 2.7 to 5.5 V  
VDD = 2.7 to 5.5 V  
VDD = 2.7 to 5.5 V  
0.67  
0.95  
0
64  
64  
1
Note 1  
time  
µs  
TI0 input frequency  
fTI  
MHz  
kHz  
µs  
0
275  
TI0 input  
tTIH, tTIL  
0.48  
1.8  
Note 2  
10  
high/low-level width  
Interrupt input high/  
low-level width  
µs  
tINTH, tINTL INT0  
IM02 = 0  
IM02 = 1  
µs  
µs  
INT4  
10  
µs  
KR0 to KR3  
10  
µs  
RESET low level width  
tRSL  
10  
µs  
Notes 1. Thecycletime(minimuminstruction  
execution time) of the CPU clock  
(Φ) is determined by the oscillation  
frequency of the connected  
resonator (and external clock) and  
theprocessorclockcontrolregister  
(PCC). The figure at the right  
indicates the cycle time tCY versus  
supply voltage VDD characteristic.  
2. 2tCY or 128/fx is set by setting the  
interrupt mode register (IM0).  
t
CY vs VDD  
64  
30  
6
5
Guaranteed Operation  
Range  
µ
4
3
1
0.5  
0
1
2
3
4
5
6
Supply Voltage VDD [V]  
33  
µPD75P3216  
SERIAL TRANSFER OPERATION  
2-Wire and 3-Wire Serial I/O Mode (SCK...Internal clock output): (TA = –40 to +85 ˚C, VDD = 1.8 to 5.5 V)  
Parameter  
Symbol  
Test Conditions  
VDD = 2.7 to 5.5 V  
MIN.  
1300  
3800  
tKCY1/2–50  
tKCY1/2–150  
150  
TYP.  
MAX.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCK cycle time  
tKCY1  
SCK high/low-level  
width  
tKL1, tKH1  
tSIK1  
VDD = 2.7 to 5.5 V  
VDD = 2.7 to 5.5 V  
VDD = 2.7 to 5.5 V  
RL = 1 k,  
SINote 1 setup time  
(to SCK)  
500  
SINote 1 hold time  
(from SCK)  
tKSI1  
400  
600  
SONote 1 output delay time  
from SCK↓  
tKSO1  
VDD = 2.7 to 5.5 V  
0
250  
Note 2  
CL = 100 pF  
0
1000  
Notes 1. In the 2-wire serial I/O mode, read SB0 or SB1 instead.  
2. RL and CL are the load resistance and load capacitance of the SO output lines.  
2-Wire and 3-Wire Serial I/O Mode (SCK...External clock input): (TA = –40 to +85 ˚C, VDD = 1.8 to 5.5 V)  
Parameter  
Symbol  
Test Conditions  
VDD = 2.7 to 5.5 V  
MIN.  
800  
3200  
400  
1600  
100  
150  
400  
600  
0
TYP.  
MAX.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCK cycle time  
tKCY2  
SCK high/low-level  
width  
tKL2, tKH2  
tSIK2  
VDD = 2.7 to 5.5 V  
VDD = 2.7 to 5.5 V  
VDD = 2.7 to 5.5 V  
RL = 1 k,  
SINote 1 setup time  
(to SCK)  
SINote 1 hold time  
(from SCK)  
tKSI2  
SONote 1 output delay time  
from SCK↓  
tKSO2  
VDD = 2.7 to 5.5 V  
300  
Note 2  
CL = 100 pF  
0
1000  
Notes 1. In the 2-wire serial I/O mode, read SB0 or SB1 instead.  
2. RL and CL are the load resistance and load capacitance of the SO output lines.  
34  
µPD75P3216  
SBI Mode (SCK...Internal clock output (master)): (TA = –40 to +85 ˚C, VDD = 1.8 to 5.5 V)  
Parameter  
Symbol  
Test Conditions  
VDD = 2.7 to 5.5 V  
MIN.  
1300  
3800  
tKCY3/2–50  
tKCY3/2–150  
150  
TYP.  
MAX.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCK cycle time  
tKCY3  
SCK high/low-level  
width  
tKL3, tKH3  
tSIK3  
VDD = 2.7 to 5.5 V  
VDD = 2.7 to 5.5 V  
SB0, 1 setup time  
(to SCK)  
500  
SB0, 1 hold time (from SCK)  
SB0, 1 output delay  
time from SCK↓  
tKSI3  
VDD = 2.7 to 5.5 V  
RL = 1 k,Note  
CL = 100 pF  
tKCY3/2  
0
tKSO3  
VDD = 2.7 to 5.5 V  
250  
0
1000  
SB0, 1from SCK↑  
SCKfrom SB0, 1↑  
SB0, 1 low-level width  
SB0, 1 high-level width  
tKSB  
tSBK  
tSBL  
tSBH  
tKCY3  
tKCY3  
tKCY3  
tKCY3  
Note RL and CL are the load resistance and load capacitance of the SB0 and SB1 output lines.  
SBI Mode (SCK...External clock input (slave)): (TA = –40 to +85 ˚C, VDD = 1.8 to 5.5 V)  
Parameter  
Symbol  
Test Conditions  
VDD = 2.7 to 5.5 V  
MIN.  
800  
3200  
400  
1600  
100  
150  
tKCY4/2  
0
TYP.  
MAX.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCK cycle time  
tKCY4  
SCK high/low-level  
width  
tKL4, tKH4  
tSIK4  
VDD = 2.7 to 5.5 V  
VDD = 2.7 to 5.5 V  
SB0, 1 setup time  
(to SCK)  
SB0, 1 hold time (from SCK)  
SB0, 1 output delay  
time from SCK↓  
tKSI4  
VDD = 2.7 to 5.5 V  
RL = 1 k,Note  
CL = 100 pF  
tKSO4  
VDD = 2.7 to 5.5 V  
300  
0
1000  
SB0, 1from SCK↑  
SCKfrom SB0, 1↑  
SB0, 1 low-level width  
SB0, 1 high-level width  
tKSB  
tSBK  
tSBL  
tSBH  
tKCY4  
tKCY4  
tKCY4  
tKCY4  
Note RL and CL are the load resistance and load capacitance of the SB0 and SB1 output lines.  
35  
µPD75P3216  
AC Timing Test Point (Excluding X1 Input)  
VIH (MIN.)  
VIL (MAX.)  
VIH (MIN.)  
VIL (MAX.)  
VOH (MIN.)  
VOL (MAX.)  
VOH (MIN.)  
VOL (MAX.)  
Clock Timing  
1/f  
X
t
XL  
t
XH  
V
DD–0.1 V  
X1 Input  
0.1 V  
TI0 Timing  
1/fTI  
t
TIL  
t
TIH  
TI0  
36  
µPD75P3216  
Serial Transfer Timing  
3-wire serial I/O mode  
t
KCY1, 2  
t
KL1, 2  
t
KH1, 2  
SCK  
t
SIK1, 2  
t
KSI1, 2  
SI  
Input Data  
t
KSO1, 2  
SO  
Output Data  
2-wire serial I/O mode  
t
KCY1, 2  
t
KL1, 2  
t
KH1, 2  
SCK  
t
SIK1, 2  
t
KSI1, 2  
SB0, 1  
t
KSO1, 2  
37  
µPD75P3216  
Serial Transfer Timing  
Bus release signal transfer  
t
KCY3, 4  
t
KL3, 4  
t
KH3, 4  
SCK  
t
SIK3, 4  
t
KSI3, 4  
t
KSB  
t
SBL  
t
SBH  
t
SBK  
SB0, 1  
t
KSO3, 4  
Command signal transfer  
t
KCY3, 4  
t
KL3, 4  
t
KH3, 4  
SCK  
t
SIK3, 4  
t
KSB  
t
SBK  
t
KSI3, 4  
SB0, 1  
t
KSO3, 4  
Interrupt input timing  
t
INTL  
t
INTH  
INTP0, 4  
KR0 to 3  
RESET input timing  
t
RSL  
RESET  
38  
µPD75P3216  
DATA MEMORY STOP MODE LOW SUPPLY VOLTAGE DATA RETENTION CHARACTERISTICS  
(TA = –40 to +85 ˚C)  
Parameter  
Symbol  
tSREL  
Test Conditions  
MIN. TYP. MAX.  
Unit  
µs  
Release signal set time  
Oscillation stabilization  
wait time Note 1  
0
tWAIT  
Release by RESET  
Release by interrupt  
215/fX  
ms  
ms  
Note 2  
Notes 1. The oscillation stabillization wait time is the time during which the CPU operation is stopped to prevent  
unstable operation at the oscillation start.  
2. Depends on the basic interval timer mode register (BTM) settings (See the table below).  
BTM3  
BTM2  
BTM1  
BTM0  
Wait Time  
When fx = 4.19-MHz operation  
When fx = 6.0-MHz operation  
220/fx (approx. 175 ms)  
217/fx (approx. 21.8 ms)  
215/fx (approx. 5.46 ms)  
213/fx (approx. 1.37 ms)  
0
0
1
1
0
1
0
1
0
1
1
1
220/fx (approx. 250 ms)  
217/fx (approx. 31.3 ms)  
215/fx (approx. 7.81 ms)  
213/fx (approx. 1.95 ms)  
Data Retention Timing (STOP Mode Release by RESET)  
Internal Reset Operation  
HALT Mode  
Operating Mode  
STOP Mode  
Data Retention Mode  
V
DD  
V
DDDR  
t
SREL  
STOP Instruction Execution  
RESET  
t
WAIT  
Data Retention Timing (Standby Release Signal: STOP Mode Release by Interrupt Signal)  
HALT Mode  
Operating Mode  
STOP Mode  
Data Retention Mode  
V
DD  
V
DDDR  
t
SREL  
STOP Instruction Execution  
Standby Release Signal  
(Interrupt Request)  
t
WAIT  
39  
µPD75P3216  
DC Programming Characteristics (TA = 25 ± 5 °C, VDD = 6.0 ± 0.25 V, VPP = 12.5 ± 0.3 V, VSS = 0V)  
Parameter  
Symbol  
Test Conditions  
Other than X1, X2 pins  
X1, X2  
MIN.  
0.7 VDD  
VDD – 0.5  
0
TYP.  
MAX.  
VDD  
Unit  
V
Input voltage, high  
VIH1  
VIH2  
VIL1  
VIL2  
ILI  
VDD  
V
Input voltage, low  
Other than X1, X2 pins  
X1, X2  
0.3 VDD  
0.4  
V
0
V
Input leakage current  
Output voltage, high  
Output voltage, low  
VDD supply current  
VPP supply current  
VIN = VIL or VIH  
IOH = – 1 mA  
10  
µA  
V
VOH  
VOL  
IDD  
VDD – 1.0  
IOL = 1.6 mA  
0.4  
30  
30  
V
mA  
mA  
IPP  
MD0 = VIL, MD1 = VIH  
Cautions 1. Keep VPP to within +13.5 V, including overshoot.  
2. Apply VDD before VPP and turn it off after VPP.  
AC Programming Characteristics (TA = 25 ± 5 °C, VDD = 6.0 ± 0.25 V, VPP = 12.5 ± 0.3 V, VSS = 0 V)  
Parameter  
Symbol  
Note 1  
Test Conditions  
MIN.  
2
TYP.  
MAX.  
Unit  
Note 2  
Address setup time  
tAS  
tAS  
µs  
(vs. MD0 )  
MD1 setup time (vs. MD0 )  
Data setup time (vs. MD0 )  
tM1S  
tDS  
tOES  
tDS  
2
2
2
µs  
µs  
µs  
Note 2  
Address hold time  
tAH  
tAH  
(vs. MD0 )  
Data hold time (vs. MD0 )  
tDH  
tDF  
tDH  
tDF  
2
0
µs  
MD0 ↑ → data output float  
130  
ns  
delay time  
VPP setup time (vs. MD3 )  
VDD setup time (vs. MD3 )  
Initial program pulse width  
tVPS  
tVDS  
tPW  
tVPS  
tVCS  
tPW  
tOPW  
tCES  
tDV  
tOEH  
tOR  
2
2
µs  
µs  
0.95  
0.95  
2
1.0  
1.05  
21.0  
ms  
ms  
µs  
Additional program pulse width tOPW  
MD0 setup time (vs. MD1 )  
MD0 ↓ → data output delay time tDV  
tM0S  
MD0 = MD1 = VIL  
1
µs  
MD1 hold time (vs. MD0 )  
MD1 recovery time (vs. MD0 )  
Program counter reset time  
X1 input high-, low-level width  
X1 input frequency  
tM1H  
tM1H + tM1R 50 µs  
2
2
µs  
tM1R  
tPCR  
tXH, tXL  
fX  
µs  
10  
µs  
0.125  
µs  
4.19  
MHz  
µs  
Initial mode set time  
t1  
2
2
2
2
MD3 setup time (vs. MD1 )  
MD3 hold time (vs. MD1 )  
tM3S  
tM3H  
tM3SR  
µs  
µs  
MD3 setup time (vs. MD0 )  
When program memory is read  
When program memory is read  
µs  
Note 2  
Address  
data output tDAD  
tACC  
2
µs  
delay time  
Note 2  
Address  
data output tHAD  
tOH  
When program memory is read  
0
2
130  
ns  
hold time  
MD3 hold time (vs. MD0 )  
tM3HR  
tDFR  
When program memory is read  
When program memory is read  
µs  
µs  
MD3 ↓ → data output float  
2
delay time  
Notes 1. Symbol of corresponding µPD27C256A  
2. The internal address signal is incremented by one at the rising edge of the fourth X1 input and is not  
connected to a pin.  
40  
µPD75P3216  
Program Memory Write Timing  
t
t
VPS  
V
PP  
VPP  
V
DD  
VDS  
V
DD  
DD+1  
V
t
XH  
V
DD  
X1  
D0/P60/KR0-  
D3/P63/KR3  
D4/P50-  
t
XL  
Data input  
Data output  
Data input  
Data input  
D7/P53  
t
DS  
t
DS  
t
DH tAH  
t
AS  
t
I
t
DH  
t
DV  
t
DF  
MD0/P30  
MD1/P31  
t
PW  
t
M1R  
t
M0S  
t
OPW  
t
PCR  
t
M1S  
t
M1H  
MD2/P32  
MD3/P33  
t
M3S  
t
M3H  
Program Memory Read Timing  
t
VPS  
V
PP  
VPP  
VDD  
t
VDS  
VDD+1  
VDD  
t
XH  
V
DD  
X1  
t
XL  
t
DAD  
t
HAD  
D0/P60/KR0-  
D3/P63/KR3  
D4/P50-  
Data output  
Data output  
D7/P53  
t
DV  
t
DFR  
t
I
t
M3HR  
MD0/P30  
MD1/P31  
t
PCR  
MD2/P32  
MD3/P33  
t
M3SR  
41  
µPD75P3216  
10. CHARACTERISTIC CURVE (REFERENCE VALUE)  
I
DD vs VDD (System clock : 6.0 MHz Crystal resonator)  
(TA = 25 °C)  
10  
5.0  
PCC = 0011  
PCC = 0010  
PCC = 0001  
PCC = 0000  
HALT mode  
1.0  
0.5  
0.1  
0.05  
0.01  
0.005  
X1  
X2  
Crystal  
resonator  
6.0 MHz  
22 pF  
22 pF  
V
DD  
0.001  
0
1
2
3
4
5
6
7
8
Supply Voltage VDD (V)  
42  
µPD75P3216  
IDD vs VDD (System clock : 4.19 MHz Crystal resonator)  
(TA = 25 °C)  
10  
5.0  
PCC = 0011  
PCC = 0010  
PCC = 0001  
1.0  
0.5  
PCC = 0000  
HALT mode  
0.1  
0.05  
0.01  
0.005  
X1  
X2  
Crystal  
resonator  
4.19 MHz  
22 pF  
22 pF  
VDD  
0.001  
0
1
2
3
4
5
6
7
8
Supply Voltage VDD (V)  
43  
µPD75P3216  
11. PACKAGE DRAWINGS  
48 PIN PLASTIC SHRINK SOP (375 m il)  
48  
25  
detail of lead end  
1
24  
A
H
I
J
N
C
L
B
D
M
M
P48GT-65-375B-1  
NOTE  
ITEM  
A
B
MILLIMETERS  
16.21 MAX.  
0.63 MAX.  
INCHES  
0.639 MAX.  
0.025 MAX.  
Each lead centerline is located within 0.10  
mm (0.004 inch) of its true position (T.P.) at  
maximum material condition.  
C
0.65 (T.P.)  
0.026 (T.P.)  
+0.004  
±
0.012  
D
E
0.30 0.10  
–0.005  
±
±
0.125 0.075  
0.005 0.003  
F
2.0 MAX.  
0.079 MAX.  
±
±
G
H
I
1.7 0.1  
0.067 0.004  
+0.012  
–0.013  
±
10.0 0.3  
0.394  
±
±
8.0 0.2  
0.315 0.008  
+0.009  
–0.008  
±
0.039  
J
1.0 0.2  
+0.10  
+0.004  
0.15  
0.006  
K
L
–0.05  
–0.002  
+0.008  
–0.009  
±
0.5 0.2  
0.020  
M
N
0.10  
0.10  
0.004  
0.004  
44  
µPD75P3216  
12. RECOMMENDED SOLDERING CONDITIONS  
The µPD75P3216 should be soldered and mounted under the conditions recommended in the table below.  
For details of recommended soldering conditions, refer to the information document “Semiconductor Device  
Mounting Technology Manual” (C10535E).  
For soldering methods and conditions other than those recommended below, contact an NEC Sales representative.  
Table 12-1. Surface Mounting Type Soldering Conditions  
µPD75P3216GT: 48-pin plastic shrink SOP (375 mil, 0.65-mm pitch)  
Soldering  
Soldering Conditions  
Symbol  
Method  
Infrared rays  
reflow  
Peak package's surface temperature: 235 ˚C, Reflow time: 30 seconds or less  
(at 210 ˚C or higher), Number of reflow processes: Twice max.  
Number of days: 7Note (after that, prebaking is necessary at 125 °C for 10 hours)  
<Precaution>  
IR35-107-2  
Products other than those supplied in thermal-resistant tray (magazine, taping, and non-  
thermal-resistant tray) cannot be baked in their packs.  
VPS  
Peak package's surface temperature: 215 ˚C, Reflow time: 40 seconds or less  
(at 200 ˚C or higher), Number of reflow processes: Twice max.  
Number of days: 7Note (after that, prebaking is necessary at 125 °C for 10 hours)  
<Precaution>  
VP15-107-2  
Products other than those supplied in thermal-resistant tray (magazine, taping, and non-  
thermal-resistant tray) cannot be baked in their packs.  
Wave soldering  
Partial heating  
Solder temperature: 260 ˚C or below, Flow time: 10 seconds or less, Number of  
flow process: 1, Preheating temperature: 120 ˚C or below (Package surface temperature)  
Number of days: 7Note (after that, prebaking is necessary at 125 °C for 10 hours)  
WS60-107-1  
Pin temperature: 300 ˚C or below, Time: 3 seconds or less (per device side)  
Note The number of days during which the product can be stored at 25 °C, 65 % RH max. after the dry pack  
has been opened.  
Caution Use of more than one soldering method should be avoided (except for partial heating).  
45  
µPD75P3216  
APPENDIX A. µPD753108, 753208, AND 75P3216 FUNCTIONAL LIST  
Parameter  
Program memory  
µPD753108  
µPD753208  
µPD75P3216  
Mask ROM  
0000H-1FFFH  
(8192 × 8 bits)  
One-time PROM  
0000H-3FFFH  
(16384 × 8 bits)  
Data memory  
000H-1FFH  
(512 × 4 bits)  
CPU  
75XL CPU  
Instruction  
When main system  
clock is selected  
0.95, 1.91, 3.81, 15.3 µs (@ 4.19-MHz operation)  
0.67, 1.33, 2.67, 10.7 µs (@ 6.0-MHz operation)  
execution  
time  
When subsystem  
clock is selected  
122 µs (@ 32.768-kHz  
None  
operation)  
I/O port  
CMOS input  
8 (on-chip pull-up resistors can  
be specified by software: 7)  
6 (on-chip pull-up resistors can be specified by software: 5)  
CMOS input/output  
20 (on-chip pull-up resistors can be specified by software)  
N-ch open drain  
input/output  
4 (on-chip pull-up resistors can be specified by software,  
withstand voltage is 13 V)  
4 (no mask option, withstand  
voltage is 13 V)  
Total  
32  
30  
LCD controller/driver  
Segment selection: 16/20/24  
(can be changed to CMOS  
input/output port in 4 time-  
unit; max. 8)  
Segment selection: 4/8/12 segments  
(can be changed to CMOS input/output port in 4 time-unit;  
max. 8)  
Display mode selection: static, 1/2 duty (1/2 bias), 1/3 duty (1/2 bias), 1/3 duty (1/3 bias),  
1/4 duty (1/3 bias)  
On-chip split resistor for LCD driver can be specified by  
using mask option.  
No on-chip split resistor for  
LCD driver  
Timer  
5 channels  
5 channels  
• 8-bit timer/event  
• 8-bit timer counter: 2 channels  
counter: 3 channels  
(Can be used as 16-bit  
timer/event counter, carrier  
generator, timer with gate)  
• Basic interval timer/  
watchdog timer: 1 channel  
• Watch timer: 1 channel  
(Can be used as 16-bit timer counter, carrier generator,  
timer with gate)  
• 8-bit timer/event counter: 1 channel  
• Basic interval timer/watchdog timer: 1 channel  
• Watch timer: 1 channel  
Clock output (PCL)  
Buzzer output (BUZ)  
Φ, 524, 262, 65.5 kHz  
(Main system clock: @ 4.19-MHz operation)  
Φ, 750, 375, 93.8 kHz  
(Main system clock: @ 6.0-MHz operation)  
• 2, 4, 32 kHz  
• 2, 4, 32 kHz  
(Main system clock: @  
4.19-MHz operation or sub-  
system clock: @ 32.768-kHz  
operation)  
(Main system clock: @ 4.19-MHz operation)  
• 2.93, 5.86, 46.9 kHz  
(Main system clock: @ 6.0-MHz operation)  
• 2.86, 5.72, 45.8 kHz  
(Main system clock: @  
6.0-MHz operation)  
Serial interface  
3 modes are available  
• 3-wire serial I/O mode ... MSB/LSB can be selected for transfer top bit  
• 2-wire serial I/O mode  
• SBI mode  
SCC register  
Contained  
None  
SOS register  
Vectored interrupt  
External: 3, internal: 5  
External: 2, internal: 5  
46  
µPD75P3216  
Parameter  
µPD753108  
External: 1, internal: 1  
VDD = 1.8 to 5.5 V  
µPD753208  
µPD75P3216  
Test input  
Operation supply voltage  
Operating ambient temperature  
Package  
TA = –40 to +85°C  
• 64-pin plastic QFP  
(14 × 14 mm)  
• 48-pin plastic shrink SOP  
(375 mil, 0.65-mm pitch)  
• 64-pin plastic QFP  
(12 × 12 mm)  
47  
µPD75P3216  
APPENDIX B. DEVELOPMENT TOOLS  
The following development tools have been provided for system development using the µPD75P3216.  
In the 75XL series, relocatable assemblers common to the series can be used in combination with the device files for  
each product type.  
RA75X relocatable assembler  
Host machine  
Part No. (name)  
OS  
Supply medium  
3.5” 2HD  
PC-9800 Series  
MS-DOSTM  
µS5A13RA75X  
µS5A10RA75X  
Ver.3.30 to  
5” 2HD  
Note  
Ver.6.2  
IBM PC/ATTM  
or compatible  
Refer to “OS for  
3.5” 2HC  
5” 2HC  
µS7B13RA75X  
µS7B10RA75X  
IBM PCs”  
Device file  
Host machine  
Part No. (name)  
OS  
Supply medium  
3.5” 2HD  
PC-9800 Series  
MS-DOSTM  
Ver.3.30 to  
µS5A13DF753208  
µS5A10DF753208  
5” 2HD  
Note  
Ver.6.2  
IBM PC/AT  
Refer to “OS for  
3.5” 2HC  
5” 2HC  
µS7B13DF753208  
µS7B10DF753208  
or compatible  
IBM PCs”  
Note Ver. 5.00 or later includes a task swapping function, but this software is not able to use that function.  
Remark Operation of the PG-1500 controller is guaranteed only when using the host machine and OS described  
above.  
48  
µPD75P3216  
PROM Write Tools  
Hardware  
PG-1500  
This is a PROM programmer that can program single-chip microcomputer with PROM in  
stand alone mode or under control of host machine when connected with supplied  
accessory board and optional programmer adapter.  
It can also program typical PROMs in capacities ranging from 256 K to 4 M bits.  
PA-75P3216GT  
This is a PROM programmer adapter for the µPD75P3216GT.  
It can be used when connected to a PG-1500.  
Software  
PG-1500 controller  
Connects PG-1500 to host machine with serial and parallel interface and controls PG-1500  
on host machine.  
Host machine  
Part No. (name)  
OS  
Supply medium  
3.5” 2HD  
PC-9800 Series  
MS-DOS  
µS5A13PG1500  
µS5A10PG1500  
Ver.3.30 to  
5” 2HD  
Ver.6.2Note  
Refer to “OS for  
IBM PCs”  
IBM PC/AT  
3.5” 2HD  
5” 2HC  
µS7B13PG1500  
µS7B10PG1500  
or compatible  
Note Ver. 5.00 or later includes a task swapping function, but this software is not able to use that function.  
Remark Operation of the PG-1500 controller is guaranteed only when using the host machine and OS described  
above.  
49  
µPD75P3216  
Debugging Tools  
In-circuit emulators (IE-75000-R and IE-75001-R) are provided as program debugging tools for the µPD75P3216.  
Various system configurations using these in-circuit emulators are listed below.  
Hardware IE-75000-RNote 1  
The IE-75000-R is an in-circuit emulator to be used for hardware and software debugging  
during development of application systems using the 75X or 75XL Series products.  
For development of the µPD753208 subseries, the IE-75000-R is used with optional  
emulation board (IE-75300-R-EM) and emulation probe (EP-753208GT-R).  
Highly efficient debugging can be performed when connected to host machine and PROM  
programmer.  
The IE-75000-R includes a connected emulation board (IE-75000-R-EM).  
IE-75001-R  
The IE-75001-R is an in-circuit emulator to be used for hardware and software debugging  
during development of application systems using the 75X or 75XL Series products.  
The IE-75001-R is used in combination with optional emulation board (IE-75300-R-EM) and  
emulation probe (EP-753208GT-R).  
Highly efficient debugging can be performed when connected to host machine and PROM  
programmer.  
IE-75300-R-EM  
EP-753208GT-R  
This is an emulation board for evaluating application systems using the µPD75P3216.  
It is used in combination with the IE-75000-R or IE-75001-R.  
This is an emulation probe for the µPD75P3216GK.  
When being used, it is connected with the IE-75000-R or IE-75001-R and the IE-75300-R-  
EM.  
EV-9500GT-48 It includes a flexible board (EV-9500GT-48) to facilitate connections with target system.  
Software  
IE control program  
This program can control the IE-75000-R or IE-75001-R on a host machine when connected  
to the IE-75000-R or IE-75001-R via an RS-232-C or Centronics interface.  
Host machine  
Part No. (name)  
OS  
Supply medium  
3.5” 2HD  
PC-9800 Series  
MS-DOS  
µS5A13IE75X  
µS5A10IE75X  
Ver.3.30 to  
5” 2HD  
Ver.6.2Note 2  
Refer to “OS for  
IBM PCs”  
IBM PC/AT  
3.5” 2HC  
5” 2HC  
µS7B13IE75X  
µS7B10IE75X  
or compatible  
Notes 1. This is a maintenance product.  
2. Ver. 5.00 or later includes a task swapping function, but this software is not able to use that function.  
Remarks 1. Operation of the IE control program is guaranteed only when using the host machine and OS described  
above.  
2. The generic name for the µPD753204, 753206, 753208, and 75P3216 is the µPD753208 subseries.  
50  
µPD75P3216  
OS for IBM PCs  
The following operating systems for the IBM PC are supported.  
OS  
Version  
PC DOSTM  
Ver.5.02 to Ver.6.3  
Note  
Note  
J6.1/V  
to J6.3/V  
MS-DOS  
Ver.5.0 to Ver.6.22  
Note  
Note  
5.0/V  
to 6.2/V  
Note  
IBM DOSTM  
J5.02/V  
Note Only English version is supported.  
Caution Ver. 5.0 or later include a task swapping function, but this software is not able to use that function.  
51  
µPD75P3216  
APPENDIX C. RELATED DOCUMENTS  
Some of the related documents are preliminary but are not marked as such.  
Device related documents  
Document Number  
Japanese English  
U10166J U10166E  
U10241J  
Document Name  
µPD753204, 753206, 753208 preliminary product information  
µPD75P3216 data sheet  
This document  
U10158E  
µPD753208 user’s manual  
U10158J  
U10453J  
75XL series selection guide  
U10453E  
Development tool related documents  
Document Number  
Japanese English  
EEU-1416  
Document Name  
Hardware  
Software  
IE-75000-R/IE-75001-R user’s manual  
IE-75300-R-EM user’s manual  
EP-753208GT-R user’s manual  
PG-1500 user’s manual  
EEU-846  
U11354J  
U10739J  
EEU-651  
EEU-731  
EEU-730  
EEU-704  
U11354E  
U10739E  
EEU-1335  
EEU-1346  
EEU-1363  
EEU-1291  
RA75X assembler package user’s manual  
Operation  
Language  
PG-1500 controller user’s manual  
PC-9800 series  
(MS-DOS) base  
IBM PC series  
(PC DOS) base  
EEU-5008  
U10540E  
Other related documents  
Document Number  
Japanese English  
Document Name  
IC package manual  
C10943X  
C10535J  
C11531J  
C10983J  
MEM-539  
MEI-603  
U11416J  
Semiconductor device mounting technology manual  
Quality grade on NEC semiconductor devices  
NEC semiconductor device reliability/quality control system  
Static electricity discharge (ESD) test  
C10535E  
C11531E  
C10983E  
Semiconductor device quality guarantee guide  
Microcomputer related product guide - other manufacturers  
MEI-1202  
Caution The related documents listed above are subject to change without notice. Be sure to use the latest  
documents for designing, etc.  
52  
µPD75P3216  
[MEMO]  
53  
µPD75P3216  
NOTES FOR CMOS DEVICES  
1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS  
Note: Strong electric field, when exposed to a MOS device, can cause destruction of  
the gate oxide and ultimately degrade the device operation. Steps must be taken  
to stop generation of static electricity as much as possible, and quickly dissipate  
it once, when it has occurred. Environmental control must be adequate. When  
it is dry, humidifier should be used. It is recommended to avoid using insulators  
that easily build static electricity. Semiconductor devices must be stored and  
transported in an anti-static container, static shielding bag or conductive  
material. All test and measurement tools including work bench and floor should  
begrounded. Theoperatorshouldbegroundedusingwriststrap. Semiconductor  
devices must not be touched with bare hands. Similar precautions need to be  
taken for PW boards with semiconductor devices on it.  
2 HANDLING OF UNUSED INPUT PINS FOR CMOS  
Note: No connection for CMOS device inputs can be cause of malfunction. If no  
connection is provided to the input pins, it is possible that an internal input level  
may be generated due to noise, etc., hence causing malfunction. CMOS devices  
behave differently than Bipolar or NMOS devices. Input levels of CMOS devices  
must be fixed high or low by using a pull-up or pull-down circuitry. Each unused  
pin should be connected to VDD or GND with a resistor, if it is considered to have  
a possibility of being an output pin. All handling related to the unused pins must  
be judged device by device and related specifications governing the devices.  
3 STATUS BEFORE INITIALIZATION OF MOS DEVICES  
Note: Power-on does not necessarily define initial status of MOS device. Production  
process of MOS does not define the initial operation status of the device.  
Immediately after the power source is turned ON, the devices with reset function  
have not yet been initialized. Hence, power-on does not guarantee out-pin  
levels, I/O settings or contents of registers. Device is not initialized until the  
reset signal is received. Reset operation must be executed immediately after  
power-on for devices having reset function.  
54  
µPD75P3216  
Regional Information  
Some information contained in this document may vary from country to country. Before using any NEC  
product in your application, please contact the NEC office in your country to obtain a list of authorized  
representatives and distributors. They will verify:  
• Device availability  
• Ordering information  
• Product release schedule  
• Availability of related technical literature  
• Development environment specifications (for example, specifications for third-party tools and  
components, host computers, power plugs, AC supply voltages, and so forth)  
• Network requirements  
In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary  
from country to country.  
NEC Electronics Inc. (U.S.)  
Santa Clara, California  
Tel: 800-366-9782  
NEC Electronics Hong Kong Ltd.  
Hong Kong  
Tel: 2886-9318  
NEC Electronics (Germany) GmbH  
Benelux Office  
Eindhoven, The Netherlands  
Tel: 040-2445845  
Fax: 800-729-9288  
Fax: 2886-9022/9044  
Fax: 040-2444580  
NEC Electronics (Germany) GmbH  
Duesseldorf, Germany  
Tel: 0211-65 03 02  
NEC Electronics Hong Kong Ltd.  
Seoul Branch  
Seoul, Korea  
NEC Electronics (France) S.A.  
Velizy-Villacoublay, France  
Tel: 01-30-67 58 00  
Fax: 0211-65 03 490  
Tel: 02-528-0303  
Fax: 02-528-4411  
Fax: 01-30-67 58 99  
NEC Electronics (UK) Ltd.  
Milton Keynes, UK  
Tel: 01908-691-133  
NEC Electronics Singapore Pte. Ltd.  
United Square, Singapore 1130  
Tel: 253-8311  
NEC Electronics (France) S.A.  
Spain Office  
Madrid, Spain  
Fax: 01908-670-290  
Fax: 250-3583  
Tel: 01-504-2787  
NEC Electronics Italiana s.r.1.  
Milano, Italy  
Tel: 02-66 75 41  
Fax: 01-504-2860  
NEC Electronics Taiwan Ltd.  
Taipei, Taiwan  
Tel: 02-719-2377  
NEC Electronics (Germany) GmbH  
Scandinavia Office  
Fax: 02-66 75 42 99  
Fax: 02-719-5951  
Taeby, Sweden  
Tel: 08-63 80 820  
NEC do Brasil S.A.  
Sao Paulo-SP, Brasil  
Tel: 011-889-1680  
Fax: 011-889-1689  
Fax: 08-63 80 388  
J96. 8  
55  
µPD75P3216  
[MEMO]  
MS-DOS is a trademark of Microsoft Corporation.  
IBM DOS, PC/AT, and PC DOS are trademarks of IBM Corporation.  
The export of this product from Japan is regulated by the Japanese government. To export this product may be prohibited  
without governmental license, the need for which must be judged by the customer. The export or re-export of this product  
from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales  
representative.  
No part of this document may be copied or reproduced in any form or by any means without the prior written  
consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in  
this document.  
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property  
rights of third parties by or arising from use of a device described herein or any other liability arising from use  
of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other  
intellectual property rights of NEC Corporation or others.  
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices,  
the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or  
property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety  
measures in its design, such as redundancy, fire-containment, and anti-failure features.  
NEC devices are classified into the following three quality grades:  
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a  
customer designated "quality assurance program" for a specific application. The recommended applications of  
a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device  
before using it in a particular application.  
Standard: Computers, office equipment, communications equipment, test and measurement equipment,  
audio and visual equipment, home electronic appliances, machine tools, personal electronic  
equipment and industrial robots  
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster  
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed  
for life support)  
Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life  
support systems or medical equipment for life support, etc.  
The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books.  
If customers intend to use NEC devices for applications other than those specified for Standard quality grade,  
they should contact an NEC sales representative in advance.  
Anti-radioactive design is not implemented in this product.  
M4 96.5  

相关型号:

UPD75P3216GT-A

Microcontroller, 4-Bit, OTPROM, 6MHz, MOS, PDSO48, 0.375 INCH, 0.65 MM PITCH, LEAD FREE, PLASTIC, SSOP-48
NEC

UPD75P328

4 BIT SINGLE CHIP MICRO COMPUTER WITH LCD CONTROLLER/ DRIVER AND A/D CONVERTER
NEC

UPD75P328GC

4 BIT SINGLE CHIP MICRO COMPUTER WITH LCD CONTROLLER/ DRIVER AND A/D CONVERTER
NEC

UPD75P328GC-3B9

4-Bit Microcontroller
ETC

UPD75P336

4-BIT SINGLE-CHIP MICROCOMPUTER
NEC

UPD75P336GC-3B9

4-BIT SINGLE-CHIP MICROCOMPUTER
NEC

UPD75P336GK-BE9

4-BIT SINGLE-CHIP MICROCOMPUTER
NEC

UPD75P402C

Microcontroller, 4-Bit, OTPROM, 4.19MHz, CMOS, PDIP28, PLASTIC, DIP-28
NEC

UPD75P402CT

4-Bit Microcontroller
ETC

UPD75P402GB

Microcontroller, 4-Bit, OTPROM, 4.19MHz, CMOS, PQFP44, PLASTIC, QFP-44
NEC

UPD75P402GB-3B4

4-Bit Microcontroller
ETC

UPD75P4308

4-BIT SINGLE-CHIP MICROCONTROLLER
NEC