UPD75P336GC-3B9 [NEC]

4-BIT SINGLE-CHIP MICROCOMPUTER; 4位单片机
UPD75P336GC-3B9
型号: UPD75P336GC-3B9
厂家: NEC    NEC
描述:

4-BIT SINGLE-CHIP MICROCOMPUTER
4位单片机

微控制器和处理器 外围集成电路 计算机 可编程只读存储器 时钟
文件: 总56页 (文件大小:525K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
MOS INTEGRATED CIRCUIT  
µPD75P336  
4-BIT SINGLE-CHIP MICROCOMPUTER  
DESCRIPTION  
The µPD75P336 is a version of the µPD75336 in which the on-chip mask ROM is replaced by one-time  
PROM.  
As the µPD75P336 is user-programmable, it is suitable for preproduction in system development, and for  
short-run and multiple device-production.  
Detailed function description, etc. are described in the following User's manual. Be sure to read it when  
designing. µPD75336 User's Manual: IEU-725  
FEATURES  
µPD75336 compatible  
Memory capacity:  
• PROM : 16256 × 8 bits  
• RAM : 768 × 4 bits  
Operable over same supply voltage range as mask ROM µPD75336  
• VDD = 2.7 to 6.0 V  
On-chip 8-bits resolution A/D converter (successive approximation type)  
On-chip LCD controller/driver  
ORDERING INFORMATION  
Ordering Code  
Package  
Quality Grade  
µPD75P336GC-3B9  
µPD75P336GK-BE9  
80-pin plastic QFP (  
80-pin plastic TQFP (fine pitch)( 12mm)  
14mm)  
Standard  
Standard  
Note Pull-up resistor cannot be incorporated by mask option.  
Please refer to “Quality grade on NEC Semiconductor Devices” (Document number IEI-1209) published by  
NEC Corporation to know the specification of quality grade on the devices and its recommended applications.  
The information in this document is subject to change without notice.  
Document No. IC-2980A  
The mark shows major revised points.  
(O. D. No. IC-8371A)  
Date Published October 1993P  
Printed in Japan  
© NEC Corporation 1993  
AN0-AN7*  
A/D  
CONVERT-  
ER  
8
AVREF  
AVSS  
PORT0  
PORT 1  
P00-P03  
P10-P13  
P20-P23  
4
4
BASIC  
INTERVAL  
TIMER  
INTBT  
PROGRAM  
COUNTER  
(15)  
SP(8)  
PORT 2  
PORT 3  
PORT 4  
PORT 5  
4
4
4
4
CY  
TIMER/EVENT  
COUNTER  
#0  
TI0/P13  
PTO0/P20  
ALU  
P30-P33  
/MD0-MD3  
INTT0  
P40-P43  
P50-P53  
BANK  
TIMER/EVENT  
COUNTER  
#1  
TI1/P80  
PTO1/P21  
INTT1  
PORT 6  
4
P60-P63  
GENERAL REG.  
WATCH  
TIMER  
BUZ/P23  
PROGRAM  
MEMORY  
(ROM)  
DECODE  
AND  
CONTROL  
PORT 7  
PORT 8  
4
4
P70-P73  
P80-P83  
16256 × 8 BITS  
DATA  
MEMORY  
(RAM)  
INTW  
fLCD  
SI/SB1/P03  
SO/SB0/P02  
SCK/P01  
CLOCKED  
SERIAL  
INTERFACE  
768 × 4 BITS  
12  
8
S12-S23  
INTCSI  
S24/BP0  
–S31/BP7  
INT0/P10  
INT1/P11  
INT2/P12  
LCD  
CONTROL-  
LER  
INTER-  
RUPT  
CONTROL  
4
COM0–COM3  
f
/ 2N  
X
SYSTEM CLOCK  
GENERATOR  
CLOCK  
OUTPUT  
CONTROL  
INT4/P00  
KR0/P60  
–KR3/P63  
KR4/P70  
–KR7/P73  
3
CLOCK  
DIVIDER  
STAND BY  
CONTROL  
/DRIVER  
VLC0–VLC2  
CPU  
CLOCK  
SUB  
MAIN  
8
BIAS  
LCDCL/P30  
SYNC/P31  
fLCD  
µ
BIT SEQ.  
BUFFER (16)  
PCL/P22  
XT1  
XT2  
X1 X2  
V
SS  
V
PP  
V
DD  
RESET  
*
AN6/P82, AN7/P83  
µPD75P336  
PIN CONFIGURATION (Top View)  
80-pin plastic QFP (14mm)  
80-pin plastic TQFP (fine pitch) (12mm)  
80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61  
1
2
3
4
5
6
7
8
9
AN2  
AN1  
AN0  
S31/BP7  
S30/BP6  
S29/BP5  
S28/BP4  
S27/BP3  
S26/BP2  
60  
59  
58  
P83/AN7  
57  
56  
55  
54  
53  
52  
P82/AN6  
P81  
P80/TI1  
P33/MD3  
P32/MD2  
µ
µ
S25/BP1  
S24/BP0  
S23  
S22  
S21  
S20  
S19  
S18  
S17  
S16  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
P31/SYNC/MD1  
P30/LCDCL/MD0  
P23/BUZ  
P22/PCL  
P21/PTO1  
P20/PTO0  
P13/TI0  
P12/INT2  
P11/INT1  
S15  
S14  
S13  
P10/INT0  
P03/SI/SB1  
S12  
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40  
*
In normal operation, VPP should be connected to VDD directly.  
3
µPD75P336  
PIN NAME  
P00 to 03 : Port 0  
P10 to 13 : Port 1  
P20 to 23 : Port 2  
P30 to 33 : Port 3  
P40 to 43 : Port 4  
P50 to 53 : Port 5  
P60 to 63 : Port 6  
P70 to 73 : Port 7  
P80 to 83 : Port 8  
BP0 to 7 : Bit Port  
KR0 to 7 : Key Return  
SB0, 1  
RESET  
: Serial Bus 0,1  
: Reset Input  
S12 to 31 : Segment Output 12 to 31  
COM0 to 3 : Common Output 0 to 3  
VLC0 to 2  
BIAS  
LCDCL  
SYNC  
TI0, 1  
PTO0, 1  
BUZ  
: LCD Power Supply 0 to 2  
: LCD Power Supply Bias Control  
: LCD Clock  
: LCD Synchronization  
: Timer Input 0, 1  
: Programmable Timer Output 0, 1  
: Buzzer Clock  
AVREF  
AVSS  
: Analog Reference  
: Analog Ground  
PCL  
: Programmable Clock  
INT0, 1, 4 : External Vectored Interrupt 0, 1, 4  
AN0 to 7 : Analog Input 0 to 7  
INT2  
X1, 2  
XT1, 2  
VDD  
: External Test Interrupt 2  
: Main System Clock Oscillation 1, 2  
: Subsystem Clock Oscillation 1, 2  
: Positive Power Supply  
: Ground  
SCK  
SI  
SO  
: Serial Clock  
: Serial Input  
: Serial Output  
MD0 to 3 : Mode Selection  
VPP : Programming/Verifying  
Power Supply  
VSS  
4
µPD75P336  
CONTENTS  
1. PIN FUNCTIONS ......................................................................................................................................... 6  
1.1 PORT PINS............................................................................................................................................................. 6  
1.2 OTHER PINS .......................................................................................................................................................... 8  
1.3 PIN INPUT/OUTPUT CIRCUITS...........................................................................................................................10  
2. DIFFERENCES BETWEEN µPD75P336 AND µPD75336 ......................................................................... 13  
2.1 PROGRAM MEMORY (PROM) 16256 WORDS × 8 BITS ..................................................................................14  
2.2 DATA MEMORY (RAM) 768 WORDS × 4 BITS..................................................................................................15  
3. INSTRUCTION SET AND INSTRUCTION OPERATIONS ....................................................................... 16  
4. ONE-TIME PROM (PROGRAM MEMORY) WRITE AND VERIFY OPERATIONS.................................. 25  
4.1 PROGRAM MEMORY WRITE/VERIFY OPERATING MODES...........................................................................26  
4.2 PROGRAM MEMORY WRITE PROCEDURE .......................................................................................................27  
4.3 PROGRAM MEMORY READ PROCEDURE.........................................................................................................28  
5. ELECTRICAL SPECIFICATIONS ................................................................................................................ 29  
6. PACKAGE INFORMATION ........................................................................................................................ 48  
7. RECOMMENDED SOLDERING CONDITIONS ......................................................................................... 50  
APPENDIX A. LIST OF FUNCTIONS.............................................................................................................. 51  
APPENDIX B. DEVELOPMENT TOOLS ......................................................................................................... 52  
5
µPD75P336  
1. PIN FUNCTIONS  
1.1 PORT PINS (1/2)  
Dual-  
Function Pin  
I/O Circuit  
Type *1  
Pin Name  
After Reset  
Input  
Input/Output  
Function  
8-bit I/O  
P00  
P01  
Input  
INT4  
SCK  
B
4-bit input port (PORT0)  
Input/output  
Input/output  
Input/output  
F
F
- A  
- B  
Internal pull-up resistor specification by  
software is possible for P01 to P03 as a 3-bit  
unit.  
×
P02  
SO/SB0  
SI/SB1  
INT0  
P03  
M - C  
With noise elimination circuit  
P10  
P11  
INT1  
Input  
4-bit input port (PORT1)  
Internal pull-up resistor specification by  
software is possible as a 4-bit unit.  
×
×
×
Input  
Input  
Input  
B - C  
P12  
INT2  
P13  
TI0  
P20  
PTO0  
PTO1  
PCL  
P21  
4-bit input/output port (PORT2)  
Internal pull-up resistor specification by  
software is possible as a 4-bit unit.  
Input/output  
Input/output  
E - B  
P22  
P23  
BUZ  
P30 *2  
P31 *2  
P32 *2  
P33 *2  
LCDCL MD0  
Programmable 4-bit input/output port (PORT3)  
SYNC MD1 Input/output settable bit-wise.  
Internal pull-up resistor specification by  
E - B  
MD2  
software is possible as a 4-bit unit.  
MD3  
N-ch open-drain 4-bit input/output port (PORT  
4).  
Data input/output pins for program memory  
(PROM) write/verify (low-order 4 bits).  
P40 to P43 *2  
P50 to P53 *2  
Input/output  
Input/output  
Input  
Input  
M - B  
M - B  
N-ch open-drain 4-bit input/output port (PORT  
5)  
Data input/output pins for program memory  
(PROM) write/verify (high-order 4 bits).  
P60  
P61  
P62  
P63  
P70  
P71  
P72  
P73  
KR0  
KR1  
KR2  
KR3  
KR4  
KR5  
KR6  
KR7  
Programmable 4-bit input/output port (PORT6).  
Input/output settable bit-wise.  
Internal pull-up resistor specification by  
software is possible as a 4-bit unit.  
Input/output  
Input/output  
Input  
Input  
F - A  
4-bit input/output port (PORT7).  
Internal pull-up resistor specification by  
software is possible as a 4-bit unit.  
F
- A  
*
1.  
: Indicates a Schmitt-triggered input.  
2. Direct LED drive capability.  
6
µPD75P336  
1.1 PORT PINS (2/2)  
Dual-  
Function Pin  
I/O Circuit  
Pin Name  
Input/Output  
Input/output  
Function  
8-bit I/O  
After Reset  
Type  
E - E  
E - B  
P80  
P81  
P82  
P83  
BP0  
BP1  
BP2  
BP3  
BP4  
BP5  
BP6  
BP7  
TI1  
4-bit input/output port (PORT8).  
Internal pull-up resistor specification by  
software is possible as a 4-bit unit.  
Input  
×
AN6  
AN7  
S24  
S25  
S26  
S27  
S28  
S29  
S30  
S31  
Y - B  
Output  
Output  
1-bit output port (BIT PORT)  
Dual function as segment output pins.  
×
G - C  
*
*
VLCX shown below can be selected for the display outputs.  
S12 to S31: VLC1, COM0 to COM2: VLC2, COM3: VLC0  
However, display output levels depend on the display outputs and VLCX external circuit.  
7
µPD75P336  
1.2 OTHER PINS (1/2)  
I/O Circuit  
Type *  
Dual-  
Function Pin  
Pin Name  
Function  
After Reset  
Input/Output  
Input  
TI0  
TI1  
P13  
P80  
P20  
P21  
P22  
B
B
- C  
- E  
Input  
External event pulse input pin for timer/event counter.  
PTO0  
PTO1  
PCL  
output  
output  
Input  
Input  
Timer/event counter output pin  
Clock output pin  
E - B  
E - B  
E - B  
Frequency output pin (for buzzer or system clock  
trimming)  
Input  
Input  
BUZ  
SCK  
output  
P23  
P01  
Input/output  
Serial clock input/output pin  
F
- A  
- B  
Serial data output pin  
Input  
Input  
Input  
SO/SB0  
SI/SB1  
INT4  
Input/output  
Input/output  
Input  
P02  
P03  
P00  
F
Serial bus input/output pin  
Serial data input pin  
M - C  
B
Serial bus input/output pin  
Edge-detected vectored interrupt input pin (both rising  
and falling edge detection valid).  
INT0  
INT1  
P10  
P11  
Edge-detected vectored  
interrupt input pin (detected  
edge selectable)  
Clocked  
Input  
Input  
Input  
Input  
B
- C  
- C  
Asynchronous  
Edge-detected testable input pin  
(rising edge detection)  
INT2  
P12  
B
Asynchronous  
Input  
Input  
Input  
Input  
KR0 to KR3  
KR4 to KR7  
P60 to P63  
P70 to P73  
Parallel falling edge detected testable input pins.  
Parallel falling edge detected testable input pins.  
F
F
- A  
- A  
Main system clock oscillation crystal/ceramic resonator  
inputs. When an external clock is used, the clock is  
input to X1 and the inverted clock to X2.  
X1, X2  
Subsystem clock oscillation crystal reasonator inputs  
When an external clock is used, the clock is input to XT1  
and the inverted clock toXT2. XT1 can be used as a 1-  
bit input (test) pin.  
XT1, XT2  
––  
B
Input  
RESET  
System reset input pin.  
Mode selection pin for program memory (PROM) write/  
verify.  
Input  
MD0 to MD3  
Input/output  
P30 to P33  
E - B  
Program voltage application pin for program memory  
(PROM) write/verify. Applies +12.5 V in program  
memory write/verify.  
PP  
V
Directly connected to VDD in normal operation.  
VDD  
VSS  
Positive power supply pin  
GND potential pin  
*
: indicates a Schmitt-triggered input.  
8
µPD75P336  
1.2 OTHER PINS (2/2)  
Dual-  
Function Pin  
I/O Circuit  
Type  
Function  
Segment signal output pins  
Input/Output  
After Reset  
Pin Name  
S12 to S23  
S24 to S31  
COM0 to COM3  
VLC0 to VLC2  
BIAS  
*2  
*2  
*2  
Output  
Output  
Output  
Input  
BP0 to 7  
G - A  
G - C  
G - B  
Segment signal output pins  
Common signal output pins  
LCD drive power supply pins  
External split cutting output pin  
External extension driver drive clock output pin  
High impedance  
Input  
Output  
Output  
LCDCL*1  
P30  
E - B  
E - B  
External extension driver synchronization drive clock  
output pin  
Input  
P31  
SYNC *1  
Output  
AN0 to AN5  
AN6  
P82  
P83  
Y
A/D converter analog signal input pins  
Input  
Input  
Y
- B  
AN7  
AVREF  
A/D converter reference voltage input pin  
A/D converter GND potential pin  
Z
Input  
AVSS  
Z
*
1. Pins provided for future system expansion. Currently used only as pins 30 and 31.  
2. VLCX shown below can be selected for the display outputs.  
S12 to S31: VLC1, COM0 to COM2: VLC2, COM3:VLC0  
However, display output levels depend on the display outputs and VLCX external circuit.  
9
µPD75P336  
1.3 PIN INPUT/OUTPUT CIRCUITS  
The input/output circuits for each of the pin µPD75P336 are shown below in partially simplified form.  
TYPE A (For TYPE E-B)  
TYPE D (For TYPE E-B, F-A)  
V
DD  
VDD  
data  
P-ch  
P-ch  
OUT  
IN  
output  
disable  
N-ch  
N-ch  
Push-Pull Output that can be Made High-Impedance  
Output (P-ch and N-ch OFF)  
CMOS Standard Input Buffer  
TYPE B  
TYPE E-B  
VDD  
P.U.R.  
output  
disable  
P-ch  
IN  
data  
IN/OUT  
Type D  
output  
disable  
Type A  
P.U.R.  
:
Pull-Up Resistor  
Schmitt-Trigger Input with Hysteresis Characteristic  
TYPE B-C  
VDD  
TYPE E-E  
P.U.R.  
P.U.R.  
enable  
VDD  
P-ch  
P.U.R.  
data  
IN/OUT  
Type D  
output  
disable  
P.U.R.  
enable  
P-ch  
Type A  
IN  
Type B  
P.U.R. : Pull-Up Resistor  
P.U.R.  
:
Pull-Up Resistor  
Schmitt-Trigger Input with Hysteresis Characteristic  
10  
µPD75P336  
TYPE F-A  
TYPE G-B  
VDD  
V
LC0  
LC1  
P.U.R.  
P-ch  
P.U.R.  
enable  
V
P-ch  
N-ch  
P-ch  
data  
IN/OUT  
Type D  
Type B  
output  
disable  
OUT  
COM  
data  
N-ch P-ch  
VLC2  
N-ch  
P.U.R.  
:
Pull-Up Resistor  
TYPE F-B  
TYPE G-C  
V
DD  
P.U.R.  
P-ch  
VDD  
P.U.R.  
enable  
P-ch  
V
LC0  
V
DD  
output  
disable  
(P)  
P-ch  
V
LC1  
IN/OUT  
P-ch  
data  
SEG  
OUT  
N-ch  
output  
disable  
data/Bit Port data  
N-ch  
output  
disable  
(N)  
V
LC2  
N-ch  
P.U.R.  
:
Pull-Up Resistor  
TYPE G-A  
TYPE M-B  
IN/OUT  
V
LC0  
P-ch  
data  
VLC1  
N-ch  
P-ch  
output  
disable  
SEG  
data  
OUT  
N-ch  
VLC2  
Middle-High Voltage Input Buffer  
N-ch  
11  
µPD75P336  
V
DD  
TYPE M-C  
TYPE Y-B  
V
DD  
P.U.R.  
P-ch  
P.U.R  
enable  
P-ch  
P.U.R.  
enable  
IN/OUT  
data  
IN/OUT  
Type D  
output  
disable  
data  
N-ch  
output  
disable  
Type A  
Type Y  
P.U.R.  
:
Pull-Up Resistor  
P.U.R:Pull-Up Resistor  
TYPE Y  
TYPE Z  
IN  
VDD  
IN  
P-ch  
N-ch  
+
-
Sampl-  
ing C  
VDD  
AVSS  
Reference Voltage  
AVSS  
Reference Voltage  
(From Series Resistance  
Voltage Tap)  
input  
AVSS  
enable  
12  
µPD75P336  
2. DIFFERENCES BETWEEN µPD75P336 AND µPD75336  
Parameter  
Program memory  
µPD75336  
Mask ROM 16256 × 8 bits  
768 × 4 bits  
µPD75P336  
One-time PROM 16256 × 8 bits  
768 × 4 bits  
Data memory  
Incorporation specifiable by mask  
option  
Ports 4, 5 pull-up resistor  
No  
No  
LCD drive power supply split  
resistor  
Incorporation specifiable by mask  
option  
Subsystem clock oscillation  
feedback resistor  
Incorporation specifiable by mask  
option  
Incorporated  
VPP  
Pin 69  
IC  
13  
µPD75P336  
2.1 PROGRAM MEMORY (PROM) ..... 16256 WORDS × 8 BITS  
The program memory consists of 16256-byte PROM. The program memory map is shown in Fig. 2-1.  
Fig. 2-1 Program Memory Map  
7
6
0
0000H  
0002H  
Internal Reset Start Address (High-Order 6 Bits)  
(Low-Order 8 Bits)  
MBE RBE  
I
NTBT/INT4 Start Address (High-Order 6 Bits)  
(Low-Order 8 Bits)  
MBE RBE  
0004H MBE  
INT0 Start Address  
INT1 Start Address  
INTCSI Start Address  
INTT0 Start Address  
(High-Order 6 Bits)  
(Low-Order 8 Bits)  
(High-Order 6 Bits)  
(Low-Order 8 Bits)  
(High-Order 6 Bits)  
(Low-Order 8 Bits)  
(High-Order 6 Bits)  
(Low-Order 8 Bits)  
RBE  
RBE  
RBE  
RBE  
RBE  
CALLF  
!faddr  
Instruction  
Entry  
MBE  
MBE  
0006H  
0008H  
Address  
BRCB !caddr  
Instruction  
Branch  
000AH MBE  
Address  
BR !addr  
Instruction  
Branch Address  
000CH  
MBE  
INTT1 Start Address  
(High-Order 6 Bits)  
(Low-Order 8 Bits)  
CALL !addr  
Instruction  
Branch Address  
0020H  
Branch/Call  
Address, by  
GETI  
GETI Instruction Reference Table  
007FH  
0080H  
BR $addr  
Instruction  
Relative  
Branch Address  
(-15 to -1,  
07FFH  
0800H  
+2 to +16)  
0FFFH  
1000H  
BRCB !caddr  
Instruction  
Branch Address  
1FFFH  
2000H  
BRCB !caddr  
Instruction  
Branch Address  
2FFFH  
3000H  
BRCB !caddr  
Instruction  
Branch Address  
3F7FH  
14  
µPD75P336  
Remarks In addition to the above, branching is possible with the BR PCDE and BR PCXA instructions to addresses  
with the low-order 8 bits only of the PC modified.  
2.2 DATA MEMORY (RAM) .......768 WORDS × 4 BITS  
The configuration of the data memory is shown in Fig. 2-2. The data memory comprises a data area and peripheral  
hardware area, the data area comprises 768 × 4-bit static RAM.  
Fig. 2-2 Data Memory Map  
Data Memory  
000H  
General  
Register Area  
(32 × 4)  
01FH  
020H  
Stack Area  
Memory Bank 0  
256 × 4  
0FFH  
100H  
Data Area  
Static RAM  
768 × 4  
Memory Bank 1  
256 × 4  
(20 × 4)  
1EBH  
1ECH  
Display Data  
Memory Area  
1FFH  
200H  
Memory Bank 2  
256 × 4  
2FFH  
Not On-Chip  
F80H  
FFFH  
Memory Bank 15  
128 × 4  
Peripheral Hardware Area  
15  
µPD75P336  
3. INSTRUCTION SET AND INSTRUCTION OPERATIONS  
(1) Operand identifier and description  
Operand identifiers and description method operands are written in the operand column for each instruction in  
accordance with the description method for the operand identifier for that instruction (refer to "RA75X Assembler  
Package User's Manual Language Volume (EEU-730)" for details). Where multiple items are included in the  
description method, one of those elements should be selected. Uppercase letters and the symbols + and – are  
keywords and should be written as they are.  
In the case of immediate data, an appropriate number or label is written.  
Description Method  
X, A, B, C, D, E, H, L  
Descriptor  
reg  
X, B, C, D, E, H, L  
reg1  
rp  
XA, BC, DE, HL  
BC, DE, HL  
rp1  
BC, DE  
rp2  
XA, BC, DE, HL, XA', BC', DE' HL'  
BC, DE, HL, XA', BC', DE', HL'  
HL, HL+, HL–, DE, DL  
DE, DL  
rp'  
rp'1  
rpa  
rpa1  
n4  
4-bit immediate date or label  
8-bit immediate date or label  
8-bit immediate date or label*  
2-bit immediate date or label  
n8  
mem  
bit  
fmem  
pmem  
FB0H to FBFH, FF0H to FFFH immediate data or label  
FC0H to FFFH immediate data or label  
0000H to 3F7FH immediate data or label  
12-bit immediate date or label  
11-bit immediate date or label  
20H to 7FH immediate date (bit 0 = 0) or label  
PORT0 to PORT8  
addr  
caddr  
faddr  
taddr  
PORTn  
IE×××  
RBn  
IEBT, IECSI, IET0, IET1, IE0 to IE2, IE4, IEW  
RB0 to RB3  
MB0, MB1, MB2, MB15  
MBn  
*
In 8-bit data processing, only an even address can be specified.  
16  
µPD75P336  
(2) Operation description legend  
A
: A register; 4-bit accumulator  
B
: B register; 4-bit accumulator  
: C register; 4-bit accumulator  
: D register; 4-bit accumulator  
: E register; 4-bit accumulator  
: H register; 4-bit accumulator  
: L register; 4-bit accumulator  
: X register; 4-bit accumulator  
: Register pair (XA); 8-bit accumulator  
: Register pair (BC); 8-bit accumulator  
: Register pair (DE); 8-bit accumulator  
: Register pair (HL); 8-bit accumulator  
: Extended register pair (XA')  
: Extended register pair (BC')  
: Extended register pair (DE')  
: Extended register pair (HL')  
: Program counter  
C
D
E
H
L
X
XA  
BC  
DE  
HL  
XA'  
BC'  
DE'  
HL'  
PC  
SP  
: Stack pointer  
CY  
: Carry flag; bit accumulator  
: Program status word  
PSW  
MBE  
RBE  
PORTn  
IME  
IPS  
IE×××  
RBS  
MBS  
PCC  
.
: Memory bank enable flag  
:
Register bank enable flag  
: Portn (n = 0 to 8)  
: Interrupt master enable flag  
: Interrupt priority selection register  
: Interrupt enable flag  
: Register bank selection register  
: Memory bank selection register  
: Processor clock control register  
: Address, bit delimiter  
(××)  
××H  
: Contents addressed by ××  
: Hexadecimal data  
17  
µPD75P336  
(3) Description of addressing area field symbols  
*1  
*2  
MB = MBE • MBS  
MB = 0  
MBS = 0, 1, 2, 15  
MBE = 0 : MB = 0 (000H to 07FH)  
MB = 15 (F80H to FFFH)  
Data Memory  
Addressing  
*3  
MBE = 1 : MB = MBS (MBS = 0, 1, 2, 15)  
MB = 15, fmem = FB0H to FBFH,  
FF0H to FFFH  
*4  
*5  
*6  
MB = 15, pmem = FC0H to FFFH  
addr = 0000H to 3F7FH  
addr = (Current PC) –15 to (Current PC) –1  
(Current PC) + 2 to (Current PC) + 16  
*7  
caddr = 0000H to 0FFFH (PC13,12 = 00B) or  
1000H to 1FFFH (PC13,12 = 01B) or  
2000H to 2FFFH (PC13,12 = 10B) or  
3000H to 3FFFH (PC13,12 = 11B)  
Program Memory  
Addressing  
*8  
*9  
faddr = 0000H to 07FFH  
taddr = 0020H to 007FH  
*10  
Remarks 1. MB indicates the accessible memory bank.  
2. MB=0 irrespective of MBE and MBS in *2.  
3. MB=15 irrespective of MBE and MBS in *4 and *5.  
4. *6 to *10 indicate accessible area.  
(4) Explanation of machine cycle column  
"S" indicates the number of machine cycles required when an instruction with a skip function performs a  
skip operation. The value of "s" is as follows:  
• When a skip is not performed ....................................................................................................................... S = 0  
• When the skipped instruction is a 1-byte or 2-byte instruction ................................................................ S = 1  
• When the skipped instruction is a 3-byte instruction (BR !addr or CALL !addr)................................... S = 2  
Note A GETI instruction is skipped in one machine cycle.  
One machine cycle is equivalent to one cycle (=tCY)of the CPU clock cycle Φ : any of four times can be  
selected according to the PCC setting.  
18  
µPD75P336  
Mne-  
Address-  
ing Area  
Operand  
Operation  
Skip Condition  
Stack A  
monic  
A, #n4  
1
2
2
2
2
1
1
1
1
2
1
2
2
2
2
2
2
2
2
2
1
1
1
1
2
2
2
1
2
1
1
1
2
2
2
2
1
A n4  
reg1, #n4  
XA, #n8  
HL, #n8  
reg1 n4  
XA n8  
HL n8  
rp2 n8  
A (HL)  
Stack A  
Stack B  
rp2, #n8  
A, @HL  
*1  
*1  
*1  
*2  
*1  
*1  
*1  
*3  
*3  
*3  
*3  
A, @HL+  
A, @HL–  
A, @rpa1  
XA, @HL  
@HL, A  
2 + S A (HL), then LL + 1  
2 + S A (HL), then LL – 1  
L = 0  
L = FH  
1
2
1
2
2
2
2
2
2
2
2
2
1
A (rpa1)  
XA (HL)  
(HL) A  
MOV  
@HL, XA  
A, mem  
XA, mem  
mem, A  
mem, XA  
A, reg  
(HL) XA  
A (mem)  
XA (mem)  
(mem) A  
(mem) XA  
A reg  
XA, rp'  
XA rp'  
reg1, A  
reg1 A  
rp'1, XA  
A, @HL  
rp'1 XA  
A (HL)  
*1  
*1  
*1  
*2  
*1  
*3  
*3  
A, @HL+  
A, @HL–  
A, @rpa1  
XA, @HL  
A, mem  
XA, mem  
A,reg1  
2 + S A (HL), then LL + 1  
2 + S A (HL), then LL –1  
L = 0  
L = FH  
1
2
2
2
1
2
3
3
A (rpa1)  
XCH  
XA (HL)  
A (mem)  
XA (mem)  
A reg1  
XA, rp'  
XA rp'  
XA, @PCDE  
XA, @PCXA  
XA (PC13–8 + DE)ROM  
XA (PC13–8 + XA)ROM  
MOVT  
Note 1. Instruction Group  
2. Table reference  
19  
µPD75P336  
Mne-  
Address-  
ing Area  
Operand  
Operation  
Skip Condition  
monic  
CY, fmem.bit  
CY, pmem.@L  
CY, @H + mem.bit  
fmem.bit, CY  
pmem.@L, CY  
@H + mem.bit, CY  
A, #n4  
2
2
2
2
2
2
1
2
1
2
2
1
2
2
1
2
2
1
2
2
2
1
2
2
2
1
2
2
2
1
2
2
2
*4  
*5  
*1  
*4  
*5  
*1  
CY (fmem.bit)  
2
CY (pmem7–2 + L3–2.bit (L1–0))  
CY (H + mem3-0.bit)  
(fmem.bit)CY  
(pmem7–2 + L3–2.bit (L1–0)) CY  
(H + mem3-0.bit) CY  
A A + n4  
2
MOV1  
2
2
2
carry  
1 + S  
XA, #n8  
carry  
carry  
carry  
carry  
2 + S  
XA XA + n8  
A, @HL  
1 + S  
ADDS  
*1  
*1  
*1  
*1  
A A + (HL)  
XA, rp'  
2 + S  
XA XA + rp'  
rp'1, XA  
A, @HL  
2 + S  
rp'1rp'1 + XA  
A, CY A + (HL) + CY  
XA, CY XA + rp' + CY  
rp'1, CY rp'1 + XA + CY  
A A (HL)  
1
XA, rp'  
2
ADDC  
SUBS  
rp'1, XA  
A, @HL  
2
borrow  
borrow  
borrow  
1 + S  
XA, rp'  
2 + S  
XA XA rp'  
rp'1, XA  
A, @HL  
2 + S  
rp'1rp'1 XA  
A , CYA (HL) CY  
XA, CYXA rp' CY  
rp'1, CY rp'1 XA CY  
AA n4  
1
2
2
2
1
2
2
2
1
2
2
2
1
2
2
XA, rp'  
SBUC  
AND  
rp'1, XA  
A, #n4  
A, @HL  
*1  
*1  
*1  
AA (HL)  
XA, rp'  
XA XA rp'  
rp'1, XA  
A, #n4  
rp'1rp'1 XA  
AA n4  
A, @HL  
AA (HL)  
OR  
XA, rp'  
XA XA rp'  
rp'1, XA  
A, #n4  
rp'1rp'1 XA  
AA n4  
A, @HL  
AA (HL)  
XOR  
XA, rp'  
XA XA rp'  
rp'1, XA  
rp'1rp'1 XA  
Note Instruction Group  
20  
µPD75P336  
Mne-  
Address-  
ing Area  
Operand  
Operation  
Skip Condition  
monic  
RORC  
NOT  
A
1
2
1
1
2
2
1
2
2
2
1
2
2
2
1
1
1
1
1
2
CY A0, A3 CY, An–1 An  
A A  
A
reg  
rp1  
1 + S reg reg + 1  
1 + S rp1 rp1 + 1  
2 + S (HL) (HL) + 1  
2 + S (mem) (mem) + 1  
1 + S reg reg – 1  
2 + S rp' rp' – 1  
reg = 0  
INCS  
rp1 = 00H  
(HL) = 0  
@HL  
*1  
*3  
mem  
reg  
(mem) = 0  
reg = FH  
rp' = FFH  
reg = n4  
(HL) = n4  
A = (HL)  
XA = (HL)  
A = reg  
DECS  
rp'  
reg, #n4  
@HL, #n4  
A, @HL  
XA, @HL  
A, reg  
XA, rp'  
CY  
2 + S Skip if reg = n4  
2 + S Skip if (HL) = n4  
1 + S Skip if A = (HL)  
2 + S Skip if XA = (HL)  
2 + S Skip if A = reg  
2 + S Skip if XA = rp'  
*1  
*1  
*1  
SKE  
XA = rp'  
1
1
CY 1  
CY 0  
SET1  
CLR1  
SKT  
CY  
CY  
1 + S Skip if CY = 1  
CY CY  
CY = 1  
NOT1  
CY  
1
Note 1. Instruction Group  
2. Accumulator operation  
3. Increment and decrement  
4. Carry flag manipulation  
21  
µPD75P336  
Address-  
ing Area  
Mne-  
Operand  
Operation  
Skip Condition  
monic  
mem.bit  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
(mem.bit) 1  
(fmem.bit) 1  
*3  
*4  
*5  
*1  
*3  
*4  
*5  
*1  
*3  
*4  
*5  
*1  
*3  
*4  
*5  
*1  
*4  
*5  
*1  
*4  
*5  
*1  
*4  
*5  
*1  
*4  
*5  
*1  
SET1  
CLR1  
SKT  
fmem.bit  
pmem.@L  
(pmem7–2 + L3–2.bit (L1–0)) 1  
(H + mem3–0.bit) 1  
(mem.bit) 0  
@H + mem.bit  
mem.bit  
fmem.bit  
(fmem.bit) 0  
pmem.@L  
(pmem7–2 + L3–2.bit (L1–0)) 0  
(H + mem3–0.bit) 0  
@H + mem.bit  
mem.bit  
2 + S Skip if (mem.bit) = 1  
(mem.bit) = 1  
fmem.bit  
2 + S Skip if (fmem.bit) = 1  
(fmem.bit) = 1  
(pmem.@L) = 1  
(@H + mem.bit) = 1  
(mem.bit) = 0  
pmem.@L  
2 + S Skip if (pmem7–2 + L3–2.bit (L1–0)) = 1  
2 + S Skip if (H + mem3–0.bit) = 1  
2 + S Skip if (mem.bit) = 0  
@H + mem.bit  
mem.bit  
SKF  
fmem.bit  
2 + S Skip if (fmem.bit) = 0  
(fmem.bit) = 0  
(pmem.@L) = 0  
(@H + mem.bit) = 0  
(fmem.bit) = 1  
(pmem.@L) = 1  
(@H + mem.bit) = 1  
pmem.@L  
2 + S Skip if (pmem7–2 + L3–2.bit (L1–0))= 0  
2 + S Skip if (H + mem3–0.bit) = 0  
2 + S Skip if (fmem.bit) = 1 and clear  
2 + S Skip if (pmem7–2 + L3–2.bit (L1–0)) = 1 and clear  
2 + S Skip if (H + mem3–0.bit) = 1 and clear  
@H + mem.bit  
fmem.bit  
pmem.@L  
SKTCLR  
AND1  
OR1  
@H+mem.bit  
CY, fmem.bit  
CY, pmem.@L  
CY, @H + mem.bit  
CY, fmem.bit  
CY, pmem.@L  
CY, @H + mem.bit  
CY, fmem.bit  
CY, pmem.@L  
CY, @H + mem.bit  
2
2
2
2
2
2
2
2
2
CY CY (fmem.bit)  
CY CY  
CY CY  
(pmem7–2 + L3–2.bit (L1–0))  
(H + mem3-0.bit)  
CY CY (fmem.bit)  
CY CY  
CY CY  
(pmem7–2 + L3–2.bit (L1–0))  
(H + mem3-0.bit)  
CY CY (fmem.bit)  
XOR1  
BR  
CY CY  
CY CY  
(pmem7–2 + L3–2.bit (L1–0))  
(H + mem3-0.bit)  
PC13–0 addr  
(The assembler selects the optimum instruction  
from among the BRCB !caddr, and BR $addr  
instructions.)  
addr  
*6  
BR  
PC13–0 addr  
*6  
*8  
*7  
3
3
!addr  
!caddr  
BRCB  
BR  
PC13–0 PC 13.12 + caddr11–0  
PC13–0 addr  
2
1
2
2
2
3
$addr  
PCDE  
PC13–0 PC 13-8 + DE  
PC13–0 PC 13-8 + XA  
BR  
2
3
PCXA  
Note Instruction Group  
22  
µPD75P336  
Address-  
ing Area  
Mne-  
Operand  
Operation  
Skip Condition  
monic  
(SP – 4) (SP – 1) (SP – 2) PC11–0  
(SP – 3) MBE, RBE, PC13.12  
PC13–0 addr, SP SP – 4  
*6  
*9  
3
2
1
3
2
3
CALL  
CALLF  
RET  
!addr  
(SP – 4) (SP – 1) (SP – 2) PC11–0  
(SP – 3) MBE, RBE, PC13.12  
!faddr  
PC13–0 000 + faddr, SP SP – 4  
MBE, RBE, PC13.12 (SP + 1)  
PC11–0 (SP) (SP + 3) (SP + 2)  
SP SP + 4  
MBE, RBE, PC13.12 (SP + 1)  
PC11–0 (SP) (SP + 3) (SP + 2)  
SP SP + 4  
1
1
3 + S  
Unconditional  
RETS  
RETI  
the skip unconditionally  
×, ×, PC13.12 (SP + 1)  
3
PC11–0 (SP) (SP + 3) (SP + 2)  
PSW (SP + 4) (SP + 5), SP SP + 6  
1
2
1
2
2
2
2
2
2
2
2
2
2
2
1
2
2
1
2
1
2
2
2
2
2
2
2
2
2
2
2
1
2
2
(SP – 1) (SP – 2) rp, SP SP – 2  
(SP – 1) MBS, (SP – 2) RBS, SP SP – 2  
rp (SP + 1) (SP), SP SP + 2  
MBS (SP + 1), RBS (SP), SP SP + 2  
IME (IPS.3) 1  
rp  
PUSH  
POP  
EI  
BS  
rp  
BS  
IE × × × ← 1  
IE× × ×  
IME (IPS.3) 0  
DI  
IE × × × ← 0  
IE× × ×  
A PORTn  
(n = 0–8)  
A, PORTn  
XA, PORTn  
PORTn, A  
PORTn, XA  
IN*1  
OUT*1  
XA PORTn+1, PORTn  
PORTn A  
(n = 4, 6)  
(n = 2–8)  
(n =4, 6)  
*10  
PORTn+1, PORTn XA  
Set HALT Mode (PCC.2 1)  
Set STOP Mode (PCC.3 1)  
No Operation  
HALT  
STOP  
NOP  
RBS n  
(n = 0–3)  
RBn  
SEL  
MBS n  
(n = 0,1,2,15)  
MBn  
• TBR Instruction  
PC13–0 (taddr) 5–0 + (taddr + 1)  
-----------------------------------------------------------------------  
-----------------------------  
• TCALL Instruction  
(SP – 4) (SP – 1) (SP – 2) PC11–0  
(SP – 3) MBE, RBE, PC13, 12  
PC13–0 (taddr) 5–0 (taddr + 1)  
1
3
GETI*2 taddr  
SP SP – 4  
-----------------------------------------------------------------------  
• Other than TBR and TCALL Instruction  
-----------------------------  
Conforms to  
Execution of an instruction addressed at  
(taddr) and (taddr + 1)  
referenced  
instruction.  
23  
µPD75P336  
*
1. At IN/OUT instruction execution, MBE = 0 or MBE = 1, MBS = 15 must be set in advance.  
2. TBR and TCALL instructions are assembler pseudo-instructions for table definition.  
Note 1. Instruction Group  
2. Interruput control  
3. CPU control  
24  
µPD75P336  
4. ONE-TIME PROM (PROGRAM MEMORY) WRITE AND VERIFY OPERATIONS  
The program memory incorporated in the µPD75P336 is 32640 × 8-bit electrically writable one-time PROM.  
Write/verify operations on this one-time PROM are executed using the pins shown in the table below.  
Address updating is performed by means of clock input from the X1 pin rather than by address input.  
Pin Name  
Function  
Voltage applecation pin for program memory write/verify  
(normally VDD potential).  
PP  
V
Address update clock inputs for program memory write/verify.  
Inverse of X1 pin signal is input to X2 pin.  
X1, X2  
MD0 to MD3  
Operating mode selection pin for program memory write/verify.  
8-bit data input/output pins for progrm memory write/verify.  
P40 to P43 (low-order 4 bits)  
P50 to P53 (high-order 4 bits)  
Supply voltage application pin.  
VDD  
Applies 2.7 to 6.0 V in normal operation, and 6 V for program  
memory write/verify.  
Note 1. Pins not used in a program memory write/verify operation are handled as follows:  
• Pins other than XT2.......... Connect to VSS with a pull-down resistor  
• XT2 pins ............................. Leave open  
2. Since the µPD75P336 is not provided with an erase window, program memory contents cannot be  
erased with ultra-violet light.  
4.1 PROGRAM MEMORY WRITE/VERIFY OPERATING MODES  
When +6 V is applied to the VDD pin and +12.5 V to the VPP pin, the µPD75P336 enters the program memory write/  
verify mode. This mode comprises one of the operating modes shown below according to the setting of pins MD0  
to MD3.  
Operating Mode Setting  
Operating Mode  
VPP  
VDD  
MD1  
MD2 MD3  
MD0  
L
H
L
H
H
H
H
L
H
H
H
L
Program memory address zero-clear  
Write mode  
+12.5 V  
+6V  
L
Verify mode  
X
H
Program inhibit mode  
H
X: L or H  
25  
µPD75P336  
4.2 PROGRAM MEMORY WRITE PROCEDURE  
The procedure for writing to program memory is as shown below, allowing high-speed writing.  
(1) Unused pins are connected to VSS with a pull-down resistor. The X1 pin is driven low.  
(2) 5 V is supplied to the VDD and VPP pins.  
(3) 10 µs wait.  
(4) Program memory address zero-clear mode.  
(5) 6 V is supplied to VDD, 12.5 V to VPP.  
(6) Program inhibit mode.  
(7) Data is written in 1 ms write mode.  
(8) Program inhibit mode.  
(9) Verify mode. If write is successful go to (10), otherwise repeat (7) to (9).  
(10) (Number of times written in (7) to (9): X) × 1 ms additional writes.  
(11) Program inhibit mode.  
(12) Program memory address is updated (+1) by inputting 4 pulses to the X1 pin.  
(13) Steps (7) to (12) are repeated until the last address.  
(14) Program memory address zero-clear mode.  
(15) VDD / VPP pin voltage is changed to 5 V.  
(16) Power-off.  
Steps (2) to (12) of this procedure are shown in the figure below.  
Repeated X Times  
Address  
Increment  
Additional  
Write  
Write  
Verify  
V
V
PP  
V
PP  
DD  
V
DD + 1  
V
DD  
VDD  
X1  
P40-P43  
P50-P53  
Data Output  
Data Input  
Data Input  
MD0  
(P30)  
MD1  
(P31)  
MD2  
(P32)  
MD3  
(P33)  
26  
µPD75P336  
4.3 PROGRAM MEMORY READ PROCEDURE  
µPD75P336 program memory contents can be read using the following procedure.  
(1) Unused pins are connected to VSS with a pull-down resistor. The X1 pin is driven low.  
(2) 5 V is supplied to the VDD and VPP pins.  
(3) 10 µs wait.  
(4) Program memory address zero-clear mode.  
(5) 6 V supplied to VDD, and 12.5 V to VPP.  
(6) Program inhibit mode.  
(7) Verify mode. When clock pulses are input to the X1 pin, data is output sequentially, one address per  
4-pulse-input cycle.  
(8) Program inhibit mode.  
(9) Program memory address zero-clear mode.  
(10) VDD / VPP pin voltage is changed to 5 V.  
(11) Power-off.  
Steps (2) to (9) of this procedure are shown in the figure below.  
VPP  
VPP  
VDD  
VDD + 1  
VDD  
V
DD  
X1  
P40-P43  
P50-P53  
Data Output  
Data Output  
MD0  
(P30)  
MD1  
(P31)  
MD2  
(P32)  
MD3  
(P33)  
27  
µPD75P336  
P336  
µPD75304B  
5. ELECTRICAL SPECIFICATIONS  
ABSOLUTE MAXIMUM RATINGS (Ta = 25 °C)  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
Open-drain  
RATING  
UNIT  
–0.3 to +7.0  
VDD  
V
V
Power supply voltage  
VPP  
–0.3 to +13.5  
–0.3 to VDD +0.3  
V
Except ports 4, 5  
VI1  
VI2  
Input voltage  
Ports 4, 5  
–0.3 to +11  
V
Output voltage  
–0.3 to VDD +0.3  
VO  
IOH  
V
–15  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
°C  
1 pin  
Output current high  
–30  
All pins  
30  
Peak value  
1 pin  
15  
100  
Effective value  
Peak value  
Output current low  
Total of ports 0, 2, 3, 5, 18  
Total of ports 4, 6, 7  
IOL*  
60  
Effective value  
Peak value  
100  
60  
Effective value  
Operating temperature  
Storage temperature  
Topt  
Tstg  
–40 to +85  
–65 to +150  
°C  
*
Rms value is calculated from [effective value] = [peak value] × √duty  
CAPACITANCE (Ta = 25 °C, VDD = 0 V)  
PARAMETER  
Input capacitance  
Output capacitance  
I/O capacitance  
SYMBOL  
CIN  
TEST CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
pF  
15  
15  
15  
f = 1 MHz  
Unmeasured pins returned to 0 V.  
COUT  
pF  
CIO  
pF  
28  
µPD75P336  
P336  
µPD75304B  
MAIN SYSTEM CLOCK OSCILLATOR CHARACTERISTICS (Ta = –40 to +85 °C, VDD = 2.7 to 6.0 V)  
TEST  
CONDITIONS  
RECOMMENDED  
CONSTANT  
ESONATOR  
PARAMETER  
MIN.  
1.0  
TYP.  
MAX.  
UNIT  
MHz  
Oscillator  
frequency (fx)*1  
5.0*3  
X1  
X1  
Ceramic  
resonator  
After VDD  
reached the  
MIN. of the  
oscillator  
voltage  
Oscillation  
stabilization  
time*2  
4
ms  
C1  
C2  
VDD  
range.  
Oscillator  
frequency (fx)*1  
1.0  
4.19  
5.0*3  
10  
MHz  
ms  
X1  
X1  
Crystal  
resonator  
VDD = 4.5  
to 6.0 V  
Oscillation  
stabilization  
time*2  
C1  
C2  
30  
ms  
VDD  
X1 input  
frequency (fx)*1  
1.0  
5.0*3  
MHz  
ns  
X1  
X2  
External  
clock  
X1 input  
high-/low-level  
width (tXH, tXL)  
100  
500  
µPD74HCU04  
*
1. Shows the oscillator characteristics only. For the instruction execution time, see the AC characteristics.  
2. Time necessary for oscillation to stabilize after VDD applied or STOP mode released.  
3. When the oscillator frequency is “4.19 MHz < fX 5.0 MHz”, it is impossible to select of “PCC = 0011” with  
1 machine cycle of less than 0.95 µs as instruction execution time.  
29  
µPD75P336  
P336  
µPD75304B  
(Ta = –40 to +85 °C, VDD = 2.7 to 6.0 V)  
SUBSYSTEM CLOCK OSCILLATOR CHARACTERISTICS  
RECOMMENDED  
TEST  
RESONATOR  
PARAMETER  
MIN.  
32  
TYP.  
MAX.  
UNIT  
CONSTANT  
CONDITIONS  
Oscillator  
frequency (fXT)  
32.768  
1.0  
35  
2
kHz  
s
XT1  
XT2  
VDD = 4.5  
to 6.0 V  
Crystal  
R
resonator  
Oscillation  
stabilization time  
C3  
C4  
10  
s
VDD  
XT1 input  
frequency (fXT)  
32  
5
100  
15  
kHz  
XT1  
XT2  
External  
clock  
Leave  
Open  
XT1 input high-/  
low-level width  
(tXTH,tXTL)  
µs  
Note When the main system clock and subsystem clock oscillation circuit are used, area inside doted lines in  
the figure should be wired as follows to prevent influence from the wiring capacitance, etc..  
• Wiring should be as short as possible.  
• Do not cross other signal lines, and do not place the oscillator close to line in which varying high  
current flows.  
• Potential at the oscillator capacitor connecting point should always be the same as VDD. Do not  
connect to the power supply pattern in which high current flows.  
• Do not fetch signals from the oscillator.  
In the subsystem clock oscillator, which is designed to be a circuit with low amplification ratio to suppress  
consumption current, misoperation due to noise occurs more often than in the main system clock  
oscillator. Therefore, when using the subsystem clock, special care should be taken in the wiring method.  
30  
µPD75P336  
P336  
µPD75304B  
DC CHARACTERISTICS (Ta = –40 to +85 °C, VDD = 2.7 to 6.0 V) (1/3)  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
Ports 2, 3, 8  
Ports 0, 1, 6, 7, RESET  
MIN.  
TYP.  
MAX.  
UNIT  
VDD  
VDD  
0.7 VDD  
V
V
V
V
V
V
V
VIH1  
VIH2  
VIH3  
VIH4  
VIL1  
VIL2  
VIL3  
0.8 VDD  
Input voltage  
high  
10  
0.7 VDD  
Ports 4 and 5  
Open-drain  
VDD  
X1, X2, XT1  
VDD –0.5  
0.3 VDD  
0.2 VDD  
0.4  
0
0
0
Ports 2, 3, 4, 5, 8  
Ports 0, 1, 6, 7 RESET  
Input voltage  
low  
X1, X2, XT1  
VDD = 4.5 to  
6.0 V  
IOH = –1 mA  
V
V
V
V
VDD –1.0  
VDD –0.5  
VDD –2.0  
VDD –1.0  
Ports  
0, 2, 3, 6, 7, 8  
BIAS  
VOH1  
VOH2  
IOH = –100 µA  
Output voltage  
high  
VDD = 4.5 to  
6.0 V  
IOH = –100 µA  
BP0 to BP7  
(IOH 2 outputs)  
IOH = –50 µA  
31  
µPD75P336  
P336  
µPD75304B  
DC CHARACTERISTICS  
(Ta = –40 to +85 °C, VDD = 2.7 to 6.0 V) (2/3)  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
Ports 3, 4, 5  
MIN.  
TYP.  
0.4  
MAX.  
UNIT  
V
VDD = 4.5 to  
6.0 V  
2.0  
IOL = 15 mA  
Ports  
0, 2, 3, 4, 5, 6  
7, 8  
VDD = 4.5 to  
6.0 V  
0.4  
0.5  
V
V
V
VOL1  
IOL = 1.6 mA  
Output voltage  
low  
IOL = 400 µA  
Open-drain  
pull-up  
0.2 VDD  
SB0, 1  
resistor 1 kΩ  
VDD = 4.5 to  
6.0 V  
IOL = 100 µA  
1.0  
1.0  
V
V
BP0 to BP7  
(IOL 2 outputs)  
VOL2  
IOL = 50 µA  
Other than  
below  
ILIH1  
ILIH2  
ILIH3  
3
µA  
µA  
VIN = VDD  
X1, X2, XT1  
20  
Input leakage  
current high  
Ports 4, 5  
(when open-  
drain)  
20  
µA  
VIN = 10 V  
Other than  
below  
–3  
µA  
µA  
ILIL1  
ILIL2  
Input leakage  
current low  
VIN = 0 V  
X1, X2, XT1  
–20  
Other than  
below  
3
µA  
µA  
ILOH1  
ILOH2  
VOUT = VDD  
Output leakage  
current high  
Ports 4 and 5  
(when open-  
drain)  
20  
VOUT = 10 V  
Output leakage  
current low  
–3  
80  
µA  
kΩ  
ILOL  
RL1  
VOUT = 0 V  
VDD = 5.0 V  
15  
30  
2.5  
40  
±10%  
Ports 0, 1, 2, 3, 6  
7, 8 (Except P00)  
VIN = 0 V  
Built-in Pull-up  
resistor  
VDD = 3.0 V  
300  
kΩ  
±10%  
LCD drive voltage  
VDD  
V
VLCD  
32  
µPD75P336  
P336  
µPD75304B  
DC CHARACTERISTICS  
(Ta = –40 to +85 °C, VDD = 2.7 to 6.0 V) (3/3)  
SYMBOL  
VODC  
TEST CONDITION  
MIN.  
0
TYP.  
PARAMETER  
UNIT  
V
MAX.  
LCD output  
voltage  
deviation*1  
(common)  
VLCD0 = VLCD  
VLCD1 =  
IO = ±5 µA  
IO = ±1 µA  
±0.2V  
VLCD × 2/3  
VLCD2 =  
VLCD × 1/3  
2.7 V VLCD  
VDD  
LCD output  
voltage  
deviation*1  
(segment)  
VODS  
V
±0.2V  
0
VDD = 5 V  
±10 %*4  
15  
3
5
1
mA  
mA  
IDD1  
VDD = 3 V  
±10 %*5  
4.19 MHz  
crystal  
oscillation  
C1= C2 = 22 pF*3  
VDD =  
5 V  
±10 %  
500  
1500  
µA  
HALT  
mode  
IDD2  
VDD =  
3 V  
±10 %  
900  
300  
60  
300  
100  
20  
µA  
µA  
Power supply  
current  
*2  
VDD =  
3 V  
±10 %  
Operat-  
IDD3  
IDD4  
ing  
mode  
32 kHz  
crystal  
oscillation*6  
VDD =  
3 V  
±10 %  
HALT  
mode  
µA  
µA  
VDD = 5 V ±10 %  
0.5  
0.1  
0.1  
20  
10  
XT1 = 0 V  
STOP mode  
IDD5  
VDD =  
3 V  
±10 %  
µA  
µA  
Ta =  
25 °C  
5
*
1. The voltage deviation means a difference between the ideal value of segment or common output (VLCDn;  
n = 0, 1, 2) and the output voltage.  
2. Current flowing in the built-in pull-up resistor and the LCD split resistor is not include.  
3. Including the case where the subsystem clock is operating.  
4. When the processor clock control register (PCC) is set to 0011 and operated in high-speed mode.  
5. When PCC is set to 0000 and operated in the low-speed mode.  
6. The case where the system clock control register (SCC) is set to 1001, the main system clock oscillatio stopped  
and the device is operated on the subsystem clock.  
33  
µPD75P336  
P336  
µPD75304B  
A/D CONVERTER CHARACTERISTICS (Ta = –40 to +85 °C, VDD = 2.7 to 6.0 V, AVSS = VSS = 0 V)  
SYMBOL  
TEST CONDITION  
MIN.  
8
TYP.  
8
PARAMETER  
Resolution  
UNIT  
bit  
MAX.  
8
–10 Ta ≤  
±1.5  
±2.0  
+ 85 oC  
2.5 V AVREF VDD  
AVREF 0.6 VDD  
–40 Ta <  
o
–10 C  
Absolute  
–10 ≤  
accuracy*1  
Ta ≤  
±1.5  
±2.0  
±3.0  
LSB  
+ 85 oC  
tCY ≥  
1.91 µs  
–40 ≤  
2.5 V AVREF VDD  
AVREF < 0.6 VDD  
Ta ≤  
– 10 oC  
–40 ≤  
Ta ≤  
tCY <  
1.91 µs  
+ 85 oC  
s
s
Conversion time  
Sampling time  
tCONV  
*2  
*3  
168/fx  
44x  
tSAMP  
Analog input  
voltage  
AVSS  
AVREF  
V
VIAN  
Analog input  
impedance  
RAN  
IREF  
MΩ  
1000  
1.0  
AVREF current  
2.0  
mA  
*
1. Absolute accuracy excluding quantization (±1/2LSB) error.  
2. Time up to end of conversion (EOC = 1) after execution of the conversion start instruction.  
(40.1 µs: fx = 4.19 MHz operation)  
3. Time up to end of sampling after execution of the conversion start instruction.  
(10.5 µs: fx = 4.19 MHz operation)  
34  
µPD75P336  
P336  
µPD75304B  
(Ta = –40 to +85 °C, VDD = 2.7 to 6.0 V)  
AC CHARACTERISTICS  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN.  
0.95  
3.8  
TYP.  
MAX.  
UNIT  
µs  
Operated  
by main  
system  
VDD = 4.5  
to 6.0 V  
64  
64  
CPU clock cycle  
time (minimum  
instruction  
tCY  
clock  
µs  
execution time = 1  
machine cycle)*1  
Operated  
by subsystem  
clock  
114  
122  
125  
µs  
VDD = 4.5 to 6.0 V  
0
0
1
MHz  
kHz  
µs  
TI0, 1 input  
frequency  
fTI  
275  
tTIH,  
tTIL  
VDD = 4.5 to 6.0 V  
0.48  
1.8  
*2  
10  
10  
TI0, 1 input high/  
low level width  
µs  
INT0  
µs  
tINTH,  
tINTL  
Interrupt input high/  
low level width  
INT1, 2, 4  
KR0 to KR7  
µs  
µs  
RESET low  
level width  
tRSL  
10  
µs  
t
cy vs VDD  
* 1. The CPU clock (Φ) cycle time is determined by the  
oscillator frequency of the connected resonator  
and the system clock control register (SCC) and  
the processor clock control register (PCC). The  
figure below shows the main system clock opera-  
tion power supply voltage VDD vs cycle time tCY  
characteristics.  
(Operating on Main System Clock)  
70  
64  
30  
6
5
Operating Guaranteed  
Range  
4
3
2. Becomes 2tCY or 128/fX depending on the  
interrupt mode register (IM0) setting.  
µ
2
1
0.5  
0
1
2
3
4
5
6
Supply Voltage VDD [V]  
35  
µPD75P336  
P336  
µPD75304B  
SERIAL TRANSFER OPERATION  
2-wired and 3-wired serial I/O modes (SCK ... Internal clock output)  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
VDD = 4.5 to 6.0 V  
MIN.  
1600  
TYP.  
MAX.  
UNIT  
ns  
tKCY1  
SCK cycle time  
3800  
ns  
ns  
tKCY1  
/2-50  
VDD = 4.5 to 6.0 V  
tKL1  
tKH1  
SCK high/low  
level width  
tKCY1  
/2-150  
ns  
ns  
ns  
SI setup time  
(to SCK)  
150  
400  
tSIK1  
tKSI1  
SI hold time  
(from SCK)  
VDD = 4.5  
to 6.0 V  
ns  
ns  
SO output  
delay time  
from SCK↓  
250  
RL = 1 k,  
CL = 100 pF*  
tKSO1  
1000  
2-wired and 3-wired serial I/O modes (SCK ... External clock input)  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
VDD = 4.5 to 6.0 V  
MIN.  
800  
TYP.  
MAX.  
UNIT  
ns  
tKCY2  
SCK cycle time  
3200  
400  
ns  
ns  
ns  
VDD = 4.5 to 6.0 V  
SCK high/low  
level width  
tKL2  
tKH2  
1600  
SI setup time  
(to SCK)  
tSIK2  
tKSI2  
100  
400  
ns  
SI hold time  
(from SCK )  
ns  
ns  
VDD = 4.5  
to 6.0 V  
300  
SO output  
delay time  
from SCK↓  
RL = 1 k,  
CL = 100 pF*  
tKSO2  
1000  
ns  
*
RL and CL are the SO output line load resistance and load capacitance, respectively.  
36  
µPD75P336  
P336  
µPD75304B  
SBI mode (SCK ... Internal clock output (master))  
PARAMETER  
UNIT  
SYMBOL  
TEST CONDITIONS  
VDD = 4.5 to 6.0 V  
TYP.  
MAX.  
MIN.  
1600  
ns  
ns  
tKCY3  
SCK cycle time  
3800  
tKCY3  
/2-50  
ns  
tKL3  
tKH3  
VDD = 4.5 to 6.0 V  
SCK high/low  
level width  
tKCY3  
/2-150  
ns  
ns  
SB0,1 setup time  
(to SCK)  
150  
tSIK3  
tKSI3  
SB0,1 hold time  
(from SCK)  
ns  
tKCY3/2  
SB0,1 output  
VDD = 4.5 to 6.0 V  
250  
ns  
ns  
0
0
RL = 1 k,  
CL = 100 pF*  
tKSO3  
delay time  
from SCK↓  
1000  
SB0,1 ↓  
from SCK↑  
tKSB  
tSBK  
tKCY3  
tKCY3  
tKCY3  
ns  
ns  
ns  
SCK from SB0, 1 ↓  
SB0,1 low  
level width  
tSBL  
tSBH  
SB0,1 high  
level width  
tKCY3  
ns  
*
RL and CL are the SB0 and SB1 output line load resistance and load capacitance, respectively.  
37  
µPD75P336  
P336  
µPD75304B  
SBI mode (SCK ... External clock input (slave))  
PARAMETER  
UNIT  
SYMBOL  
TYP.  
MAX.  
TEST CONDITIONS  
VDD = 4.5 to 6.0 V  
MIN.  
800  
ns  
ns  
tKCY4  
SCK cycle time  
3200  
400  
ns  
tKL4  
tKH4  
VDD = 4.5 to 6.0 V  
SCK high/low  
level width  
ns  
ns  
ns  
1600  
SB0,1 setup time  
(to SCK)  
tSIK4  
tKSI4  
100  
SB0,1 hold time  
(from SCK)  
tKCY4/2  
0
0
SB0,1 output  
VDD = 4.5 to 6.0 V  
300  
ns  
ns  
RL = 1 k,  
CL = 100 pF*  
tKSO4  
tKSB  
delay time  
from SCK↓  
1000  
SB0,1 ↓  
from SCK↑  
tKCY4  
ns  
ns  
SCKfrom SB0, 1 ↓  
tSBK  
tKCY4  
tKCY4  
SB0,1 low  
level width  
ns  
ns  
tSBL  
tSBH  
SB0,1 high  
level width  
tKCY4  
*
RL and CL are the SB0 and SB1 output line load resistance and load capacitance, respectively.  
38  
µPD75P336  
P336  
µPD75304B  
AC Timing Test Point(Exculuding X1 and XT1 Inputs)  
0.8 VDD  
0.8 VDD  
0.2 VDD  
Test Points  
0.2 VDD  
Clock Timings  
1/fX  
t
XL  
tXH  
VDD -0.5 V  
0.4 V  
X1 Input  
1/fXT  
t
XTL  
t
XTH  
VDD -0.5 V  
0.4 V  
XT1 Input  
TI0 Timing  
1/fTI  
t
TIL  
tTIH  
TI0  
39  
µPD75P336  
P336  
µPD75304B  
Serial Transfer Timing  
3-wired serial I/O mode:  
t
KCY1  
tKL1  
tKH1  
SCK  
tSIK1  
t
KSI1  
Input Data  
SI  
tKSO1  
SO  
Output Data  
2-wired serial I/O mode:  
t
KCY2  
t
KL2  
t
KH2  
SCK  
tSIK2  
t
KSI2  
SB0,1  
tKSO2  
40  
µPD75P336  
P336  
µPD75304B  
Serial Transfer Timing  
Bus release signal transfer:  
t
KCY3,4  
t
KL3,4  
t
KH3,4  
SCK  
t
SIK3,4  
t
KSB  
tSBL  
t
SBH  
t
SBK  
tKSI3,4  
SB0,1  
tKSO3,4  
Command signal transfer:  
tKCY3,4  
t
KL3,4  
tKH3,4  
SCK  
t
SIK3,4  
tKSB  
tSBK  
t
KSI3,4  
SB0,1  
tKSO3,4  
Interrupt Input Timing  
tINTL  
t
INTH  
INT0,1,2,4  
KR0-7  
RESET Input Timing  
t
RSL  
RESET  
41  
µPD75P336  
P336  
µPD75304B  
DATA MEMORY STOP MODE LOW SUPPLY VOLTAGE DAT RETENTION CHARACTERISTICS (Ta = –40 to 85 °C)  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN.  
2.0  
TYP.  
MAX.  
6.0  
UNIT  
V
Data retention  
supply voltage  
VDDDR  
Data retention  
supply current*1  
VDDDR = 2.0 V  
0.1  
10  
µA  
µs  
IDDDR  
tSREL  
tWAIT  
Release signal  
set time  
0
Oscillation  
stabilization  
wait time*2  
Release by RESET  
217/fx  
ms  
ms  
Release by interrupt request  
*3  
*
1. Current flng in the built-in pull-up resistor is not included.  
2. The oscillation stabilization wait time is the time CPU operation is stopped to prevent unstable operation at  
start of oscillation.  
3. Depends on the basic interval timer mode register (BTM) setting (table below).  
Waite Time  
BTM3  
BTM2  
BTM1  
BTM0  
(Figures in parentheses are for operation at fxx = 4.19 MHz)  
0
0
1
1
0
1
0
1
0
1
1
1
220/fxx (approx. 250 ms)  
217/fxx (approx. 31.3 ms)  
215/fxx (approx. 7.82 ms)  
213/fxx (approx. 1.95 ms)  
42  
µPD75P336  
P336  
µPD75304B  
Data Retention Timing (STOP Mode Release by RESET)  
Internal Reset Operation  
HALT Mode  
STOP Mode  
Operating  
Mode  
Data Retention Mode  
V
DD  
V
DDDR  
t
SREL  
STOP Instruction Execution  
RESET  
tWAIT  
Data Retention Timing (Standby Release Signal: STOP Mode Release by Interrupt Signal)  
HALT Mode  
STOP Mode  
Operating  
Mode  
Data Retention Mode  
V
DD  
VDDDR  
t
SREL  
STOP Instruction Execution  
Standby Release Signal  
(Interrupt Request)  
t
WAIT  
43  
µPD75P336  
P336  
µPD75304B  
D/C PROGRAMING CHARACTERISTICS (Ta = 25 ± 5 °C, VDD = 6.0 ± 0.25 V, VPP = 12.5 ± 0.3 V, VSS = 0 V)  
MAX.  
PARAMETER  
MIN.  
UNIT  
SYMBOL  
TEST CONDITION  
Except X1, X2  
TYP.  
VDD  
0.7VDD  
V
V
V
VIH1  
VIH2  
VIL1  
VIL2  
VL1  
Input voltage  
high  
VDD -0.5  
X1, X2  
VDD  
Except X1, X2  
0.3VDD  
0
0
Input voltage  
low  
0.4  
10  
V
X1, X2  
Input leakage  
current  
µA  
VIN = VIL or VIH  
Output voltage  
high  
VDD -1.0  
IOH = –1 mA  
IOL = 1.6 mA  
V
VOH  
VOL  
Output voltage  
low  
0.4  
30  
V
VDD power supply  
current  
IDD  
IPP  
mA  
mA  
VPP power supply  
current  
30  
MD0 = VIL , MD1 = VIH  
* 1. VPP must not exceed +13.5 V including overshoot.  
2. VDD should be applied before VPP and cut after VPP.  
A/D PROGRAMING CHARACTERISTICS (Ta = 25 ± 5 °C, VDD = 6.0 ± 0.25 V, VPP = 12.5 ± 0.3 V, VSS = 0 V) (1/2)  
UNIT  
µs  
PARAMETER  
MAX.  
SYMBOL  
TYP.  
TEST CONDITION  
MIN.  
2
*1  
Address setup time *2  
(to MD0)  
tAS  
tAS  
MD1 setup time  
µs  
tMIS  
tDS  
tAH  
tDH  
tOES  
tDS  
tAH  
tDH  
2
2
(to MD0)  
Data setup time  
µs  
(to MD0)  
Address hold time *2  
(from MD0)  
µs  
µs  
µs  
2
Data hold time  
2
0
2
2
(from MD0)  
Data output float  
130  
tDF  
tDF  
delay time from MD0↑  
VPP setup time  
tVPS  
tVPS  
µs  
µs  
(to MD3)  
VDD setup time  
tVDS  
tPW  
tVCS  
tPW  
(to MD3)  
Initial program  
pulse width  
ms  
1.05  
0.95  
1.0  
*
1. Symbol of the corresponding µPD27C256.  
2. The internal address signal is incremented (+1) at the rising edge of the forth X1 input. The signal is not  
connected to pins.  
44  
µPD75P336  
P336  
µPD75304B  
A/D PROGRAMING CHARACTERISTICS (Ta = 25 ± 5 °C, VDD = 6.0 ± 0.25 V, VPP = 12.5 ± 0.3 V, VSS = 0 V) (2/2)  
UNIT  
ms  
PARAMETER  
MAX.  
21.0  
SYMBOL  
TYP.  
TEST CONDITION  
MIN.  
0.95  
*1  
Additional program  
pulse width  
tOPW  
tOPW  
MD0 setup time  
µs  
tMOS  
tDV  
tCES  
tDV  
2
(to MD1)  
Data output delay time  
µs  
1
MD0 = MD1 = VIL  
from MD0↓  
MD1 hold time  
tM1H  
tM1R  
tOEH  
tOR  
µs  
µs  
µs  
2
(from MD0)  
tM1H + tM1R 50 µs  
MD1 recover time  
2
(from MD0)  
Program conuter  
reset time  
10  
tPCR  
X1 input  
0.125  
tXH, tXL  
µs  
high/low width  
X1 input frequency  
Initial mode set time  
fx  
tI  
MHz  
4.19  
µs  
µs  
2
2
MD3 setup time  
tM3S  
(to MD1)  
MD3 hold time  
tM3H  
tM3SR  
tDAD  
2
2
µs  
µs  
(to MD1)  
MD3 setup time  
Program memory read  
(to MD0 )  
Data output delay time  
tACC  
µs  
µs  
µs  
µs  
2
Program memory read  
Program memory read  
from address *2  
Data output hold time  
0
2
130  
tHAD  
tM3HR  
tDFR  
tOH  
from address *2  
MD3 hold time  
Program memory read  
Program memory read  
(from MD0)  
Data output float  
delay time from MD3 ↓  
2
*
1. Symbol of the corresponding µPD27C256.  
2. The internal address signal is incremented (+1) at the rising edge of the fourth X1 input. The signal is not  
connected to pins.  
45  
µPD75P336  
P336  
µPD75304B  
Program Memory Write Timing mode:  
tVPS  
VPP  
VPP  
VDD  
tVDS  
VDD + 1  
VDD  
tXH  
VDD  
X1  
tXL  
P40-P43  
P50-P53  
Data Output  
Data Input  
Data Input  
Data Input  
tDH  
tDS  
tI  
tDS  
tAS  
tAH  
tOH  
tDV  
tDF  
MD0  
tPW  
tM1R  
tM0S  
tOPW  
MD1  
MD2  
tPCR  
tM1S  
tM1H  
tM3H  
tM3S  
MD3  
Program Memory Read Timing mode:  
tVPS  
V
V
PP  
VPP  
DD  
tVDS  
V
DD + 1  
VDD  
V
DD  
t
XH  
X1  
tXL  
t
DAD  
tHAD  
P40-P43  
P50-P53  
Data Output  
Data Output  
tDFR  
tDV  
tI  
tM3HR  
MD0  
MD1  
MD2  
tPCR  
t
M3SR  
MD3  
46  
µPD75P336  
6. PACKAGE INFORMATION  
80 PIN PLASTIC QFP ( 14)  
A
B
60  
61  
41  
40  
detail of lead end  
21  
20  
80  
1
G
M
I
H
J
K
N
L
S80GC-65-3B9-3  
INCHES  
NOTE  
ITEM  
A
MILLIMETERS  
Each lead centerline is located within 0.13  
mm (0.005 inch) of its true position (T.P.) at  
maximum material condition.  
±
±
17.2 0.4  
0.677 0.016  
+0.009  
±
B
14.0 0.2  
0.551  
–0.008  
+0.009  
±
C
14.0 0.2  
0.551  
–0.008  
±
±
D
F
0.677 0.016  
17.2 0.4  
0.8  
0.8  
0.031  
G
H
I
0.031  
+0.004  
±
0.30 0.10  
0.012  
–0.005  
0.13  
0.005  
J
0.65 (T.P.)  
0.026 (T.P.)  
±
±
K
1.6 0.2  
0.063 0.008  
+0.009  
±
0.031  
L
0.8 0.2  
–0.008  
+0.10  
+0.004  
0.15  
M
N
P
0.006  
–0.05  
–0.003  
0.10  
2.7  
0.004  
0.106  
±
Q
S
0.1 0.1  
±
0.004 0.004  
3.0 MAX.  
0.119 MAX.  
47  
µPD75P336  
80 PIN PLASTIC TQFP (FINE PITCH) ( 12)  
A
B
60  
41  
61  
40  
detail of lead end  
80  
21  
1
20  
G
M
I
J
H
K
N
L
NOTE  
ITEM MILLIMETERS  
INCHES  
Each lead centerline is located within 0.10 mm (0.004 inch) of  
its true position (T.P.) at maximum material condition.  
+0.009  
0.551  
A
B
C
D
14.0±0.2  
12.0±0.2  
12.0±0.2  
14.0±0.2  
–0.008  
+0.009  
0.472  
–0.008  
+0.009  
0.472  
–0.008  
+0.009  
0.551  
–0.008  
F
1.25  
1.25  
0.049  
0.049  
G
+0.05  
0.22  
H
0.009±0.002  
–0.04  
I
0.10  
0.004  
J
0.5 (T.P.)  
0.020 (T.P.)  
+0.009  
0.039  
K
L
1.0±0.2  
0.5±0.2  
–0.008  
+0.008  
0.020  
–0.009  
+0.055  
M
0.145  
0.006±0.002  
–0.045  
N
P
Q
R
S
0.10  
1.05  
0.004  
0.041  
0.05±0.05  
5°±5°  
0.002±0.002  
5°±5°  
1.27 MAX.  
0.050 MAX.  
P80GK-50-BE9-4  
48  
µPD75P336  
7. RECOMMENDED SOLDERING CONDITIONS  
This product should be soldered and mounted under the conditions in the table below.  
For detail of recommended soldering conditions, refer to the information document"Surface Mount Technology  
Manual" (IEI-1207).  
For soldering methods and conditions other than those recommended below, contact our salesman.  
Table 7-1 Soldering Conditions  
(1) µPD75P336GC-3B9 : 80-pin plastic QFP ( 14mm)  
Recommended  
Solderring Method  
Wave soldering  
Solderring Conditions  
Condition Symbol  
Solder bath temperature: 260 °C. max., Duration: 10 sec. max.,  
Number of times: Once,  
WS60-202-1  
Time limit: 2 days* (thereafter 20 hours prebaking required at 125 °C)  
Preheat temperature: 120 °C max. (package surface temperature)  
Package Peak temperature: 230 °C, Duration: 30 sec. max., (at 210 °C or above),  
Number of times: Once,  
IR30-202-1  
VP15-202-1  
Infrared reflow  
Time limit: 2 days* (thereafter 20 hours prebaking required at 125 °C)  
Package Peak temperature: 215 °C, Duration: 40 sec. max., (at 200 °C or above),  
Number of times: Once,  
VPS reflow  
Time limit: 2 days* (thereafter 20 hours prebaking required at 125 °C)  
Pin part temperature: 300 °C or below,  
Pin part heating  
Duration: 3 sec. max. (per device side)  
(2) µPD75P336GK-BE9 : 80-pin plastic TQFP (fine pitch) ( 12mm)  
Recommended  
Solderring Method  
Infrared reflow  
Solderring Conditions  
Condition Symbol  
Package Peak temperature: 235 °C, Duration: 30 sec. max., (at 210 °C or above),  
Number of times: Once,  
IR35-101-1  
VP15-101-1  
Time limit: 1 day* (thereafter 10 hours prebaking required at 125 °C)  
Package Peak temperature: 215 °C, Duration: 40 sec. max., (at 200 °C or above),  
Number of times: Once,  
VPS reflow  
Time limit: 1 day* (thereafter 10 hours prebaking required at 125 °C)  
Pin part temperature: 300 °C or below,  
Pin part heating  
Duration: 3 sec. max. (per device side)  
*
For the storage period after dry-pack decapsulation, storage conditions are max. 25 °C, 65 % RH.  
Note Use of more than one soldering method should be avoided (except in the case of pin part heating).  
49  
µPD75P336  
P336  
µPD75304B  
µPD75304B  
APPENDIX A. LIST OF FUNCTIONS  
Name  
µPD75P336  
µPD75328  
µPD75336  
Item  
75X-Standard  
8064 (mask ROM)  
512  
CPU core  
75X-High End  
16256 (PROM)  
ROM (bytes)  
16256 (mask ROM)  
RAM ( × 4 bits)  
General registers  
768  
4 bits × 8 × 1 bank  
4 bits × 8 × 4 banks  
Main system  
0.95 µs, 1.91 µs, 15.3 µs  
0.95 µs, 1.91 µs, 3.81 µs, 15.3 µs  
clock  
(at 4.19 MHz operation)  
Instruction  
cycle  
(at 4.19 MHz operation)  
122 µs (at 32.768 KHz operation)  
Subsystem clock  
CMOS input  
8
20  
8
Internal pull-up resistor specifiable by software  
Dual function as segment pins  
CMOS input/output  
Input/  
output  
ports  
44  
CMOS output  
8 (10 V withstand  
voltage, mask option  
pull-up capability)  
8 (10 V, withstand voltage  
mask option pull-up  
capability)  
N-ch open-drain  
input/output  
Same as at left  
(but no pull-up resistor)  
LCD controller/driver  
Max.20 × 4 segment drive, variable duty: static, 1/2, 1/3, 1/4  
8-bit resolution × 6-ch  
(successive approxima-  
tion type)  
8-bit resolution × 8-ch (successive approximation  
type)  
A/D converter  
Low-voltage operation  
capability: VDD = 3.5 to  
6.0 V  
Low-voltage operation capability: VDD = 2.7 to 6.0 V  
Basic interval timer × 1  
Timer/event counter × 1  
Watch timer × 1  
Basic interval timer × 1  
Timer/event counter × 2  
Watch timer × 1  
Timer/counter  
Serial Interface  
NEC standard serial interface (SBI)  
Clocked serial interface  
Vectored interrupt  
Test input  
External: 3 Internal: 3  
External: 1 Internal: 1  
External: 3 Internal: 4  
External: 1 Internal: 1  
Clock output (PCL)  
Buzzer output (BUZ)  
Φ, 524kHz, 262kHz, 65.5kHz (at 4.19MHz operation)  
2kHz, 4kHz, 32kHz  
2kHz  
Transfer, addition/subtraction, increment/decrement,  
comparison  
8-bit data processing  
Operating voltage  
Transfer  
VDD = 2.7 - 6.0 V  
80-pin plastic QFP ( 14 mm)  
Package  
80-pin plastic TQFP (fine pitch) ( 12mm)  
On-chip PROM product  
µPD75P336  
µPD75P328  
50  
µPD75P336  
µPD75P336  
P336  
µPD75304B  
PD75304B  
APPENDIX B. DEVELOPMENT TOOLS  
The following support tools are available for system development using the µPD75P336.  
Language Processor  
OS  
Ordering Code (Product Name)  
Host Machine  
Supply Medium  
MS-DOS™  
Ver. 3.30  
to  
µS5A13RA75X  
µS5A10RA75X  
3.5-inch 2HD  
5-inch 2HD  
PC-9800  
series  
RA75X relocatable  
assembler  
Ver. 5.00A*  
PC DOS™  
(Ver. 3.1)  
5-inch 2HC  
IBM PC/AT  
µS7B10RA75X  
Remarks Assembler operation is only guaranteed for the host machines and operating systems quoted above.  
PROM Write Tools  
PROM programmer which enables a single-chip microcomputer with on-chip PROM to be  
programmed in stand-alone mode or by operations from a host machine by connection of the  
PG-1500  
supplied board and a separately available programmer adapter.  
Typical PROMs from 256K bits to 4M bits can also be programmed.  
PA-75P328GC  
PA-75P336GK  
PROM programmer adapter for the µPD75P336GC, used connected to the PG-1500.  
PROM program adapter for the µPD75P336GK, used connect to the PG-1500.  
Controls the PG-1500 on the host machine, with the PG-1500 and host machine connected via a  
serial or parallel interface.  
Ordering Code (Product Name)  
µS5A13PG1500  
Host Machine  
Supply Medium  
3.5-inch 2HD  
5-inch 2HD  
OS  
PG-1500  
controller  
MS-DOS  
Ver. 3.30  
to  
PC-9800  
series  
µS5A10PG1500  
Ver. 5.00A*  
PC DOS  
µS7B10PG1500  
5-inch 2HC  
IBM PC/AT  
(Ver. 3.1)  
*
The task-swap function is provided with Ver.5.00/5.00A, but the function cannot be used with this software.  
Remarks PG-1500 controller operation is only guaranteed for the host machines and operating systems quoted  
above.  
51  
µPD75P336  
P336  
µPD75304B  
µPD75304B  
Debugging Tools  
The IE-75000-R is an in-circuit emulator which corresponds to the 75X series. For µPD75P336  
development the IE-75000-R is used in conjunction with an emulation probe.  
IE-75000-R*1  
Efficient debugging is possible by connection to a host machine and PROM programmer.  
Emulation board for the IE-75000-R and IE-75001-R. Incorporated in the IE-75000-R. Used in  
IE-75000-R-EM  
conjunction with the IE-75000-R or IE-75001-R to perform µPD75P336 evaluation.  
The IE-75001-R is an in-circuit emulator which corresponds to 75X series. For µPD75P336  
development the IE-75001-R is used in conjunction with an emulation board IE-75000-R-EM*2  
and emulation probe. Efficient debugging is possible by connection to a host machine and  
PROM programer.  
IE-75001-R  
Emulation probe for µPD75P336GC. Used connect with the IE-75000-R or IE-75001-R, IE-75000-R-  
EP-75338GC-R  
EV-9200G-80  
EM.  
An 80-pin LCC socket (EV-9200GC-80) is also available to simplify connection to the user system.  
Emulation probe for µPD75336GK. Used connected with the IE-75000-R or IE-75001-R, IE-75000-R-  
EM. An 80-pin conversion adapter (EV-9500GK-80 is also available to simplify connection to the  
user system.  
EP-75336GK-R  
EV-9500GK-80  
Connects the IE-75000-R or IE-75001-R to the host machine via by RS-232-C and contronix I/F and  
controls the IE-75000-R or IE-75001-R on the host machine.  
Host Machine  
Ordering Code (Product Name)  
Supply Medium  
3.5-inch 2HD  
OS  
µS5A13IE75X  
MS-DOS  
Ver. 3.30  
to  
IE control  
program  
PC-9800  
series  
µS5A10IE75X  
µS7B10IE75X  
5-inch 2HD  
5-inch 2HC  
Ver. 5.00A*3  
PC DOS  
IBM PC/AT  
(Ver. 3.1)  
*
1. Maintenance product  
2. IE-75000-R-EM sold sparately  
3. The task-swap function is provided with Ver.5.00/5.00A, but the function cannot be used with this software.  
Remarks Operations of the IE control program is only guaranteed for the host machines and operating systems  
quoted above.  
52  
Development Tools Configuration ★  
In-Circuit Emulator  
IE-75000-R  
Emulation Probe  
IE-75001-R*1  
Centronics I/F  
EP-75336GC-R  
EP-75336GK-R  
RS-232-C  
IE-75000-R-EM  
IE  
Control  
Program  
Host Machine  
*2  
PC-9800 Series  
IBM PC/AT  
User System  
(Symbolic Debugging  
Possible)  
PG-1500  
Controller  
Pruducts  
Incorporating  
PROM  
PROM Programmer  
PG-1500  
µPD75P336GC  
µPD75P336GK  
+
Relocatable  
Assembler  
*
1. The IE-75001-R does not incorporate the IE-75000-R-EM  
(Available separately.)  
Programmer Adapter  
PA-75P328GC  
PA-75P336GK  
2. EV-9200GC-80  
EV-9500GK-80  
µ
µ
µ
µ
µ
µ
µ
µPD75P336  
P336  
µPD75304B  
µPD75304B  
54  
µPD75P336  
µPD75P336  
P336  
µPD75304B  
PD75304B  
55  
µPD75P336  
[MEMO]  
No part of this document may be copied or reproduced in any form or by any means without the prior written  
consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this  
document.  
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual  
property rights of third parties by or arising from use of a device described herein or any other liability arising  
from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights  
or other intellectual property rights of NEC Corporation or others.  
The devices listed in this document are not suitable for use in aerospace equipment, submarine cables, nuclear  
reactor control systems and life support systems. If customers intend to use NEC devices for above applications  
or they intend to use "Standard" quality grade NEC devices for applications not intended by NEC, please contact  
our sales people in advance.  
Application examples recommended by NEC Corporation  
Standard : Computer, Office equipment, Communication equipment, Test and Measurement equipment,  
Machine tools, Industrial robots, Audio and Visual equipment, Other consumer products, etc.  
Special  
:
Automotive and Transportation equipment, Traffic control systems, Antidisaster systems,  
Anticrime systems, etc.  
M4 92.6  
MS-DOS is a trademark of MicroSoft Corporation.  
PC DOS and PC/AT is a trademark of IBM Corporation.  

相关型号:

UPD75P336GK-BE9

4-BIT SINGLE-CHIP MICROCOMPUTER
NEC

UPD75P402C

Microcontroller, 4-Bit, OTPROM, 4.19MHz, CMOS, PDIP28, PLASTIC, DIP-28
NEC

UPD75P402CT

4-Bit Microcontroller
ETC

UPD75P402GB

Microcontroller, 4-Bit, OTPROM, 4.19MHz, CMOS, PQFP44, PLASTIC, QFP-44
NEC

UPD75P402GB-3B4

4-Bit Microcontroller
ETC

UPD75P4308

4-BIT SINGLE-CHIP MICROCONTROLLER
NEC

UPD75P4308GS

4-BIT SINGLE-CHIP MICROCONTROLLER
NEC

UPD75P4308GS-A

Microcontroller, 4-Bit, OTPROM, 6MHz, MOS, PDSO36, 0.300 INCH, SHRINK, PLASTIC, SOP-36
NEC

UPD75P516

4-BIT, SINGLE-CHIP CMOS MICROCOMPUTER WITH EXTENSIVE I/O AND A/D CONVERTER
NEC

UPD75P516GF

4-BIT, SINGLE-CHIP CMOS MICROCOMPUTER WITH EXTENSIVE I/O AND A/D CONVERTER
NEC

UPD75P516K

4-BIT, SINGLE-CHIP CMOS MICROCOMPUTER WITH EXTENSIVE I/O AND A/D CONVERTER
NEC

UPD75P518

4 BIT SINGLE-CHIP MICROCOMPUTER
NEC