UPD75P316BKK-T [NEC]

4-BIT SINGLE-CHIP MICROCOMPUTER; 4位单片机
UPD75P316BKK-T
型号: UPD75P316BKK-T
厂家: NEC    NEC
描述:

4-BIT SINGLE-CHIP MICROCOMPUTER
4位单片机

微控制器和处理器 外围集成电路 计算机 可编程只读存储器 时钟
文件: 总46页 (文件大小:400K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
MOS INTEGRATED CIRCUIT  
µPD75P316B  
4-BIT SINGLE-CHIP MICROCOMPUTER  
DESCRIPTION  
The µPD75P316B is a product of the µPD75316B with its built-in ROM having been replaced with the one-  
time PROM.  
It is most suitable for test production during system development and for production in small amounts since  
it can operate under the same supply voltage as mask products.  
The one-time PROM product is capable of writing only once and is effective for production of many kinds of  
sets in small quantities and early startup.  
The EPROM product allows programs to be written and rewritten, making it ideal for system evaluation.  
Functions are described in detail in the following User'S Manual, which should be read when carrying out  
design work.  
µPD75308 User's Manual: IEM-5016  
FEATURES  
Compatible (excluding mask option) with the µPD75312B/75316B (mask products)  
Memory capacity  
• Program memory (PROM) : 16256 × 8 bits  
• Data memory (RAM)  
: 1024 × 4 bits  
• Ideal for small set as camera, etc.  
ORDERING INFORMATION  
Ordering Code  
Package  
Internal ROM  
One-time PROM  
One-time PROM  
EPROM  
Quality Grade  
Standard  
µPD75P316BGC-3B9  
µPD75P316BGK-BE9  
µPD75P316BKK-T*  
80-pin plastic QFP (14 mm)  
80-pin plastic QFP (fine pitch) (12 mm)  
80-pin ceramic WQNF (LCC with window)  
Standard  
Not applicable  
(for function evaluation)  
*
Under Development  
Please refer to “Quality grade on NEC Semiconductor Devices” (Document number IEI-1209) published by  
NEC Corporation to know the specification of quality grade on the devices and its recommended applications.  
The µPD75P316B EPROM product does not provide a level of reliability suitable for use as a  
volume production product for customers' devices. The EPROM product should be used solely for  
function evaluation in experiments or preproduction.  
In descriptions common to one-time PROM products and EPROM products in this document, the term  
"PROM" is used.  
The information in this document is subject to change without notice.  
Document No. IC-3189  
The mark shows the major revised points.  
(O.D. No. IC-8696)  
Date Published January 1994P  
Printed in Japan  
© NEC Corporation 1994  
µPD75P316B  
PIN CONFIGURATION (Top View)  
• 80-pin plastic QFP (14 mm)  
• 80-pin plastic TQFP (fine pitch)(12 mm)  
• 80-pin ceramic WQFN (LCC with window)  
80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61  
1
2
3
4
5
6
7
8
9
P60/KR0  
S12  
S13  
S14  
S15  
S16  
S17  
60  
59  
58  
X2  
X1  
VPP*  
57  
56  
55  
54  
53  
52  
XT2  
XT1  
VDD  
µ
µ
µ
S18  
S19  
P33/MD3  
P32/MD2  
S20  
S21  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
P31/SYNC/MD1  
P30/LCDCL/MD0  
P23/BUZ  
S22  
S23  
P22/PCL  
S24/BP0  
S25/BP1  
S26/BP2  
S27/BP3  
P21  
P20/PTO0  
P13/TI0  
P12/INT2  
P11/INT1  
P10/INT0  
P03/SI/SB1  
S28/BP4  
S29/BP5  
S30/BP6  
S31/BP7  
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40  
*
In normal operation, VPP input should be the VDD level.  
P00-03  
P10-13  
P20-23  
P30-33  
P40-43  
P50-53  
P60-63  
P70-73  
BP0-7  
KR0-7  
SCK  
: Port 0  
VLC0-2  
BIAS  
LCDCL  
SYNC  
TI0  
: LCD Power Supply 0-2  
: LCD Power Supply Bias Control  
: LCD Clock  
: Port 1  
: Port 2  
: Port 3  
: LCD Synchronization  
: Timer Input 0  
: Port 4  
: Port 5  
PTO0  
BUZ  
: Programmable Timer Output 0  
: Buzzer Clock  
: Port 6  
: Port 7  
PCL  
: Programmable Clock  
: Bit Port  
INT0, 1, 4 : External Vectored Interrupt 0, 1, 4  
: Key Return  
: Serial Clock  
: Serial Input  
: Serial Output  
: Serial Bus 0, 1  
: Reset Input  
: Segment Output 0-31  
INT2  
X1, 2  
XT1, 2  
MD0-3  
VDD  
: External Test Input 2  
: Main System Clock Oscillation 1, 2  
: Subsystem Clock Oscillation 1, 2  
: Mode Selection  
SI  
SO  
SB0, 1  
RESET  
S0-31  
: Positive Power Supply  
: Ground  
VSS  
VPP  
: Programing/Verifying Power  
COM0-3 : Common Output 0-3  
2
BASIC  
INTERVAL  
TIMER  
PORT0  
P00-P03  
4
INTBT  
PROGRAM  
COUNTER (14)  
PORT1  
PORT2  
PORT3  
PORT4  
P10-P13  
P20-P23  
4
4
4
4
SP(8)  
CY  
ALU  
TIMER/EVENT  
COUNTER  
#0  
TI0/P13  
PTO0/P20  
P30-P33  
/MD0-MD3  
INTT0  
BANK  
P40-P43  
P50-P53  
P60-P63  
P70-P73  
WATCH  
TIMER  
BUZ/P23  
PORT5  
PORT6  
PORT7  
4
4
4
GENERAL REG.  
PROGRAM  
MEMORY  
INTW  
f
LCD  
DECODE  
AND  
CONTROL  
(PROM)  
SI/SB1/P03  
SO/SB0/P02  
SCK/P01  
DATA  
MEMORY  
(RAM)  
SERIAL BUS  
INTERFACE  
16256 × 8 BITS  
1024 × 4 BITS  
INTCSI  
24  
8
S0-S23  
INT0/P10  
INT1/P11  
INT2/P12  
S24/BP0  
–S31/BP7  
INTERRUPT  
CONTROL  
LCD  
CONTROL-  
LER  
4
COM0–COM3  
INT4/P00  
KR0/P60  
–KR7/P73  
f
/ 2N  
X
8
3
/DRIVER  
VLC0–VLC2  
SYSTEM CLOCK  
GENERATOR  
CLOCK  
OUTPUT  
CONTROL  
CLOCK  
DIVIDER  
STAND BY  
CONTROL  
CPU  
CLOCK  
BIT SEQ.  
BUFFER (16)  
SUB  
MAIN  
f
LCD  
BIAS  
µ
LCDCL/P30  
SYNC/P31  
PCL/P22  
XT1  
XT2  
X1 X2  
V
SS  
V
PP  
V
DD  
RESET  
µPD75P316B  
CONTENTS  
1. PIN FUNCTIONS ......................................................................................................................................... 5  
1.1 PORT PINS ........................................................................................................................................................... 5  
1.2 OTHER PINS ......................................................................................................................................................... 7  
1.3 PIN INPUT/OUTPUT CIRCUITS ......................................................................................................................... 9  
2. DIFFERENCES BETWEEN PRODUCTS IN SERIES ................................................................................11  
3. DATA MEMORY (RAM) ............................................................................................................................ 12  
4. PROGRAM MEMORY WRITE AND VERIFY............................................................................................ 14  
4.1 PROGRAM MEMORY WRITE/VERIFY OPERATING MODES ....................................................................... 14  
4.2 PROGRAM MEMORY WRITING PROCEDURE ...............................................................................................15  
4.3 PROGRAM MEMORY READING PROCEDURE...............................................................................................16  
4.4 ERASURE PROCEDURE(µPD75P316BKK-T-ONLY) ........................................................................................17  
5. ELECTRICAL SPECIFICATIONS ............................................................................................................... 18  
6. PACKAGE INFORMATION ....................................................................................................................... 39  
7. RECOMMENDED SOLDERING CONDITIONS ........................................................................................ 42  
APPENDIX A. DEVELOPMENT TOOLS......................................................................................................... 43  
APPENDIX B. RELATED DOCUMENTS ........................................................................................................ 44  
4
µPD75P316B  
1. PIN FUNCTIONS  
1.1 PORT PINS (1/2)  
Dual-Function  
Pin  
I/O Circuit  
Type*1  
Pin Name  
Afer Reset  
Input/Output  
Function  
8-bit I/O  
P00  
P01  
Input  
INT4  
SCK  
B
4-bit input port (PORT0)  
Input/output  
Input/output  
Input/output  
F
F
- A  
- B  
Internal pull-up resistor specification by  
software is possible for P01 to P03 as a 3-bit  
unit.  
×
Input  
Input  
Input  
Input  
P02  
SO/SB0  
SI/SB1  
INT0  
P03  
M - C  
With noise elimination circuit  
P10  
P11  
INT1  
4-bit input port (PORT1)  
Internal pull-up resistor specification by  
software is possible as a 4-bit unit.  
Input  
×
×
×
B - C  
P12  
INT2  
P13  
TI0  
P20  
PTO0  
P21  
4-bit input/output port (PORT2)  
Internal pull-up resistor specification by  
software is possible as a 4-bit unit.  
Input/output  
Input/output  
E - B  
P22  
PCL  
P23  
BUZ  
P30 *2  
P31 *2  
P32 *2  
P33 *2  
LCDCL MD0  
SYNC MD1  
MD2  
Programmable 4-bit input/output port (PORT3)  
Input/output settable bit-wise.  
Internal pull-up resistor specification by  
software is possible as a 4-bit unit.  
E - B  
MD3  
N-ch open-drain 4-bit input/output port (PORT  
4).  
Data input/output pins for program memory  
(PROM) write/verify (low-order 4 bits).  
P40 to P43*2  
P50 to P53 *2  
Input/output  
Input/output  
High impedance  
High impedance  
M - A  
M - A  
N-ch open-drain 4-bit input/output port (PORT  
5)  
Data input/output pins for program memory  
(PROM) write/verify (high-order 4 bits).  
P60  
P61  
P62  
P63  
P70  
P71  
P72  
P73  
KR0  
KR1  
KR2  
KR3  
KR4  
KR5  
KR6  
KR7  
Programmable 4-bit input/output port (PORT6).  
Input/output settable bit-wise.  
Internal pull-up resistor specification by  
software is possible as a 4-bit unit.  
Input/output  
Input/output  
Input  
Input  
F - A  
4-bit input/output port (PORT7).  
Internal pull-up resistor specification by  
software is possible as a 4-bit unit.  
F
- A  
* 1.  
: Indicates a Schmitt-triggered input.  
2 . Direct LED drive capability.  
5
µPD75P316B  
1.1 PORT PINS (2/2)  
Dual-  
Function Pin  
I/O Circuit  
TYPE  
Pin Name  
Input/Output  
Output  
Function  
8-bit I/O  
After Reset  
BP0  
BP1  
BP2  
BP3  
BP4  
BP5  
BP6  
BP7  
S24  
S25  
S26  
S27  
S28  
S29  
S30  
S31  
1-bit output port (BIT PORT)  
Dual-function as segment output pins.  
×
*
G - C  
Output  
*
For BP0 to BP7, VLC1 is selected as the input source. The output level depends on BP0 to BP7 and the  
VLC1 external circuit, however.  
6
µPD75P316B  
1.2 OTHER PINS  
Dual-  
Function Pin  
I/O Circuit  
Type *1  
Pin Name  
After Reset  
Function  
Input/Output  
Input  
output  
P13  
P20  
P22  
B
- C  
External event pulse input pin for timer/event counter.  
Timer/event counter output pin  
Clock output pin  
TI0  
PTO0  
PCL  
Input  
Input  
E - B  
E - B  
Input/output  
Fixed frequency output pin (for buzzer or system clock  
trimming)  
Input/output  
Input/output  
Input/output  
P23  
P01  
P02  
Input  
BUZ  
E - B  
Serial clock input/output pin  
F
- A  
- B  
Input  
Input  
SCK  
Serial data output pin  
Serial bus input/output pin  
SO/SB0  
F
Serial data input pin  
Serial bus input/output pin  
M - C  
B
Input  
SI/SB1  
INT4  
Input/output  
Input  
P03  
P00  
Edge-detected vectored interrupt input pin (rising or  
falling edge detection).  
INT0  
INT1  
P10  
P11  
Edge-detected vectored interrupt input pin (detection  
edge selectable)  
Input  
B
- C  
Input  
Input/output  
Input/output  
Output  
B
F
F
- C  
- A  
- A  
Edge-detected testable input pin (rising edge detection)  
Testable Input/output pins (parallel falling edge detection)  
Testable Input/output pins (parallel falling edge detection)  
Segment signal output pins  
INT2  
P12  
Input  
Input  
KR0 to KR3  
KR4 to KR7  
S0 to S23  
S24 to S31  
COM0 to COM3  
P60 to P63  
P70 to P73  
*3  
G - A  
G - A  
G - B  
Output  
*3  
BP0 to 7  
Segment signal output pins  
Output  
Common signal output pins  
*3  
V
LC0 to VLC2  
LCD drive power supply pins  
BIAS  
External split cutting output pin  
High impedance  
Input  
LCDCL*2  
SYNC*2  
Input/output  
P30  
External extension driver drive clock output pin  
E - B  
External extension driver synchronization clock output  
pin  
P31  
Input/output  
Input  
Input  
E - B  
Main system clock oscillation crystal/ceramic connection  
pins. When an external clock is used, the clock is input  
to X1 and the inverted clock to X2.  
X1, X2  
Subsystem clock oscillation crystal connection pins  
When an external clock is used, the clock is input to XT1  
and the inverted clock toXT2. XT1 can be used as a 1-bit  
input (test) pin.  
Input  
XT1, XT2  
Input  
System reset input pin (low-level active).  
RESET  
B
Mode selection pin for program memory (PROM) write/  
verify.  
E - B  
Input  
MD0 to MD3  
Input/output  
P30 to P33  
Program voltage application pin for program memory  
(PROM) write/verify . Connected to VDD in normal  
operation. Applies +12.5 V in program memory write/  
verify.  
VPP  
Positive power supply pin  
GND potential pin  
VDD  
VSS  
7
µPD75P316B  
*
1.  
: Indicates a Schmitt-triggered input.  
2. Pins provided for future system expansion. Currently used only as pins 30 and 31.  
3. VLCX shown below can be selected for display outputs.  
S0 to S31: VLC1, COM0 to COM2: VLC2 , COM3: VLC0  
However, display output levels depend on the display output and VLCX external circuit.  
8
µPD75P316B  
1.3 PIN INPUT/OUTPUT CIRCUITS  
The input/output circuits for each of the pin µPD75P316B are shown below in partially simplified form.  
TYPE D (For TYPE E-B, F-A)  
TYPE A (For TYPE E-B)  
V
DD  
VDD  
data  
P-ch  
P-ch  
OUT  
IN  
output  
disable  
N-ch  
N-ch  
Push-pull output that can be made high-impedance output  
(P-ch and N-ch OFF)  
CMOS Standard Input Buffer  
TYPE B  
TYPE E-B  
VDD  
P.U.R.  
P.U.R.  
enable  
P-ch  
data  
IN/OUT  
IN  
Type D  
Type A  
output  
disable  
P.U.R.  
:
Pull-Up Resistor  
Schmitt-Trigger Input with Hysteresis Characteristic  
TYPE B-C  
TYPE F-A  
VDD  
P.U.R.  
VDD  
P.U.R.  
enable  
P.U.R.  
P-ch  
P.U.R.  
enable  
data  
P-ch  
IN/OUT  
Type D  
Type B  
output  
disable  
IN  
P.U.R. : Pull-Up Resistor  
P.U.R.  
:
Pull-Up Resistor  
9
µPD75P316B  
TYPE F-B  
TYPE G-O  
V
DD  
VDD  
P.U.R.  
P-ch  
P.U.R.  
enable  
P-ch  
V
LC0  
V
DD  
output  
disable  
(P)  
P-ch  
VLC1  
IN/OUT  
data  
P-ch  
output  
disable  
SEG data/  
Bit Port data  
N-ch  
OUT  
N-ch  
output  
disable  
(N)  
VLC2  
N-ch  
P.U.R.  
:
Pull-Up Resistor  
TYPE G-A  
TYPE M-A  
IN/OUT  
VLC0  
P-ch  
N-ch  
(+10 V  
data  
VLC1  
Withstand  
Voltage)  
output  
disable  
P-ch  
SEG  
data  
OUT  
N-ch  
VLC2  
N-ch  
Middle-High Voltage Input Buffer  
(+10 V Withstand Voltage)  
TYPE G-B  
TYPE M-C  
VDD  
V
LC0  
P.U.R.  
P-ch  
IN/OUT  
P-ch  
P.U.R.  
enable  
VLC1  
N-ch  
P-ch  
data  
OUT  
N-ch  
COM  
data  
output  
disable  
N-ch P-ch  
VLC2  
N-ch  
P.U.R.  
:
Pull-Up Resistor  
10  
µPD75P316B  
2. DIFFERENCES BETWEEN PRODUCTS IN SERIES  
The µPD75P316B is a version of the µPD75316B with its built-in mask ROM replaced with the one-time PROM  
or EPROM. When performing debugging or preproduction of an application system using PROM and then  
volume production using a mask ROM product, etc., these differences should be taken into account in the  
transition. Table 2-1 shows the differences from the other products in series.  
For the details of the CPU functions and the built-in hardware, please refer to the µPD75308 User's Manual  
(IEM-5016).  
Table 2-1 Differences between Products in Series  
Product Name  
µPD75P316A  
µPD75P316B  
µPD75312B/75316B  
• Mask ROM  
Comparison Item  
Program memory (bytes)  
• EPROM/one-time PROM • One-time PROM  
• 16256  
• EPROM  
• 16256  
• 12160/16256  
Data memory (x 4 bits)  
1024  
Incorporation specifiable  
by mask option  
Pull-up resistors of ports 4 and 5  
None  
LCD driving power supplying split  
resistor  
Incorporation specifiable  
by mask option  
None  
No.50 to 55  
P30/MD0 to P33/MD3  
VPP  
P30 to P33  
IC  
Pin connection  
No.57  
The mask ROM products and PROM products have different consumption  
currents, etc. See the Electrical Specifications section in the relevant Data Sheets  
for details.  
Electrical specifications  
Power supply voltage range  
2.7 to 6.0 V  
2.0 to 5.5 V  
• 80-pin plastic QFP  
• 80-pin plastic QFP  
(14 mm)  
• 80-pin plastic QFP  
(14 × 20 mm)  
• 80-pin ceramic WQNF  
(LCC with window)  
(14 mm)  
• 80-pin plastic TQFP  
(fine pitch)(12 mm)  
• 80-pin plastic TQFP  
(fine pitch)(12 mm)  
• 80-pin ceramic QWFN  
(LCC with window)  
Package  
Other  
The mask ROM products and PROM products have different circuit scales and  
mask layouts, and therefore differ in terms of noise resistance and noise radiation.  
*
Noise resistance and noise radiation differs between the PROM products and mask ROM products. When  
investigating a switch from PROM product to mask PROM product in the transition from preproduction to  
volume production, thorough evaluation should be carried out with the mask ROM CS product (not the ES  
product).  
11  
µPD75P316B  
3. DATA MEMORY (RAM)  
Fig. 3-1 shows the data memory configuration. It consists of a data area and a peripheral hardware area.  
The data area consists of memory banks 0 to 3 with each bank consisting of 256 words x 4 bits.  
Peripheral hardware has been assigned to the area of memory bank 15.  
(1) Data area  
The data area comprises a static RAM. It is used to store program data and as a subroutine, interrupt  
execution stack memory. Even if the CPU operation is stopped in the standby mode, it is possible to hold the  
memory content for a long time by battery backup, etc. The data area is operated by memory manipulation  
instructions.  
The static RAM has been mapped to memory banks 0, 1, 2 and 3 by 256 x 4 bits each. Bank 0 has been  
mapped as a data area but is also available as a general register area (000H to 007H) and a stack area (000H  
to 0FFH) (banks 1, 2 and 3 are available only as a data area).  
In the static RAM, 1 address consists of 4 bits. It can be operated in units of 8 bits by 8-bit memory ma-  
nipulation instructions or in bits by bit manipulation instructions, however. In an 8-bit manipulation instruc-  
tion, an even address should be specified.  
(a) General register area  
The general register area can be operated either by general register operation instructions or by memory  
manipulation instructions. Up to eight 4-bit registers are available. That part of the 8 general registers  
which is not used in the program is available as a data area or a stack area.  
(b) Stack area  
The stack area is set by an instruction. It is available as a subroutine execution or interrupt service  
execution save area.  
(2) Peripheral hardware area  
The peripheral hardware area has been mapped to F80H to FFFH of memory bank 15.  
It is operated by memory manipulation instructions just as the static RAM. In the peripheral hardware,  
however, the operable bit unit differs from one address to another. An address to which peripheral hardware  
has not been assigned is inaccessible since no data memory is built in.  
12  
µPD75P316B  
Fig. 3-1 Data Memory Map  
Data Memory  
Memory Bank  
000H  
General  
Register Area  
(8 × 4)  
007H  
008H  
Stack  
Area  
0
256 × 4  
0FFH  
100H  
Data Area  
Static RAM  
(1024 × 4)  
256 × 4  
256 × 4  
1
2
3
1FFH  
200H  
2FFH  
300H  
256 × 4  
3FFH  
Not On-Chip  
F80H  
FFFH  
15  
128 × 4  
Peripheral Hardware Area  
13  
µPD75P316B  
4. PROGRAM MEMORY WRITE AND VERIFY  
The ROM built into the µPD75P316B is a 16256 x 8-bit electrically writable one-time PROM. The table below  
shows the pins used to program this PROM. There is no address input; instead, a method to update the ad-  
dress by the clock input via the X1 pin is adopted.  
Pin Name  
Function  
Voltage applecation pin for program memory write/verify  
(normally VDD potential).  
VPP  
Address update clock inputs for program memory write/  
verify. Inverse of X1 pin signal is input to X2 pin.  
X1, X2  
Operating mode selection pin for program memory write/  
verify.  
MD0 to MD3  
8-bit data input/output pins for progrm memory write/  
verify.  
P40 to P43 (low-order 4 bits)  
P50 to P53 (high-order 4 bits)  
Supply voltage application pin.  
VDD  
Applies 2.0 to 5.5 V in normal operation, and 6 V for  
program memory write/verify.  
4.1 PROGRAM MEMORY WRITE/VERIFY OPERATING MODES  
The µPD75P316B assumes the program memory write/verify mode when +6 V and +12.5 V are applied  
respectively to the VDD and VPP pins. The table below shows the operating modes available by the MD0 to MD3  
pin setting in this mode. All the remaining pins are at the VSS potential by the pull-down resistor.  
Operating Mode Setting  
Operating Mode  
VPP  
VDD  
MD1 MD2 MD3  
MD0  
L
H
L
H
H
H
H
L
H
L
Program memory address zero-clear  
Write mode  
H
H
H
+12.5 V  
+6 V  
L
Verify mode  
X
H
Program inhibit mode  
X: L or H  
14  
µPD75P316B  
4.2 PROGRAM MEMORY WRITING PROCEDURE  
The program memory writing procedure is shown below. High-speed write is possible.  
(1) Pull down a pin which is not used to VSS via the resistor. The X1 pin is at the low level.  
(2) Supply 5 V to the VDD and VPP pins.  
(3) 10 µs wait.  
(4) The program memory address 0 clear mode.  
(5) Supply 6 V and 12.5 V respectively to VDD and VPP.  
(6) The program inhibit mode.  
(7) Write data in the 1-ms write mode.  
(8) The program inhibit mode.  
(9) The verify mode. If written, proceed to (10); if not written, repeat (7) to (9).  
(10) (Number of times written in (7) to (9): X) x 1-ms additional write.  
(11) The program inhibit mode.  
(12) Update (+1) the program memory address by inputting 4 pulses to the X1 pin.  
(13) Repeat (7) to (12) up to the last address.  
(14) The program memory address 0 clear mode.  
(15) Change the VDD and VPP pins voltage to 5 V.  
(16) Power off.  
The diagram below shows the procedure of the above (2) to (12).  
Repeated X Times  
Address  
Increment  
Additional  
Write  
Write  
Verify  
V
V
PP  
V
V
PP  
DD  
V
DD + 1  
DD  
V
DD  
X1  
P40-P43  
P50-P53  
Data Output  
Data Input  
Data Input  
MD0  
(P30)  
MD1  
(P31)  
MD2  
(P32)  
MD3  
(P33)  
15  
µPD75P316B  
4.3 PROGRAM MEMORY READING PROCEDURE  
The µPD75P316B can read the content of the program memory in the following procedure. It reads in the  
verify mode.  
(1) Pull down a pin which is not used to VSS via the resistor. The X1 pin is at the low level.  
(2) Supply 5 V to the VDD and VPP pins.  
(3) 10 µs wait.  
(4) The program memory address 0 clear mode.  
(5) Supply 6 V and 12.5 V respectively to VDD and VPP.  
(6) The program inhibit mode.  
(7) The verify mode. If clock pulses are input to the X1 pin, data is output sequentially 1 address at a time at  
the period of inputting 4 pulses.  
(8) The program inhibit mode.  
(9) The program memory address 0 clear mode.  
(10) Change the VDD and VPP pins voltage to 5 V.  
(11) Power off.  
The diagram below shows the procedure of the above (2) to (9).  
VPP  
VPP  
VDD  
VDD + 1  
VDD  
VDD  
X1  
P40-P43  
P50-P53  
Data Output  
Data Output  
MD0  
(P30)  
"L"  
MD1  
(P31)  
MD2  
(P32)  
MD3  
(P33)  
16  
µPD75P316B  
4.4 ERASURE PROCEDURE (µPD75P316BKK-T ONLY)  
The data programmed in the µPD75P316B can be erased by exposure to ultraviolet radiation through the  
window in the top of the package.  
Erasure is possible using ultraviolet light with a wavelength of approximately 250 nm. The exposure re-  
quired for complete erasure is 15 W.s/cm2 (UV intensity x erasure time).  
Erasure takes aproximately 15 to 20 minutes using a commercially available UV lamp (254 nm wavelength,  
12 mW/cm2 intensity).  
Note 1. Program contents may also be erased by extended exposure to direct sunlight or fluorescent light.  
The contents should therefore be protected by masking the window in the top of the package with  
light-shielding film.  
The light-shielding film provided with NEC's UV EPROM products should be used.  
2. Erasure should normally be carried out at a distance of 2.5 cm or less from the UV lamp.  
Remarks The erasure time may be increased due to deterioration of the UV lamp or dirt on the package  
window.  
17  
µPD75P316B  
5. ELECTRICAL SPECIFICATIONS  
ABSOLUTE MAXIMUM RATINGS (Ta = 25 °C)  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
RATING  
UNIT  
Supply voltage  
VDD  
VI1  
VI2  
VO  
–0.3 to + 7.0  
V
Except ports 4 & 5  
–0.3 to VDD + 0.3  
V
Input voltage  
Ports 4 & 5  
–0.3 to + 11  
V
Output voltage  
Output current high  
–0.3 to VDD + 0.3  
V
1 pin  
–15  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
°C  
I
OH  
All pins  
–30  
Peak value  
R.m.s. value  
Peak value  
R.m.s. value  
Peak value  
R.m.s. value  
30  
1 pin  
15  
100  
Output current low  
I
OH*  
Total for ports 0, 2, 3, 5  
Total for ports 4, 6, 7  
60  
100  
60  
Operating temperature  
Storage temperature  
Topt  
–40 to + 85  
–65 to + 150  
Tstg  
°C  
*
The r.m.s. value should be calculated as follows [R.m.s. value] = [Peak value] x Duty  
Note Product quality may suffer if the absolute maximum rating is exceeded for even a single parameter, or even  
momentarily. In other words, the absolute maximum ratings are rated values at which the product is on the  
verge of suffering physical damage, and therefore the product must be used under conditions which ensure  
that the absolute maximum ratings are not exceeded.  
CAPACITANCE (Ta = 25 °C, VDD = 0 V)  
PARAMETER  
Input capacitance  
Output capacitance  
I/O capacitance  
TEST CONDITIONS  
SYMBOL  
CIN  
MIN.  
TYP.  
MAX.  
15  
UNIT  
pF  
f=1 MHz  
Unmeasured pins returned to 0 V.  
15  
pF  
COUT  
CIO  
15  
pF  
18  
µPD75B316B  
MAIN SYSTEM CLOCK OSCILLATOR CHARACTERISTICS (Ta = –40 to +85°C, VDD = 2.0 to 6.0 V)  
MIN.  
1.0  
TEST CONDITIONS  
TYP.  
MAX. UNIT  
RESONATOR  
PARAMETER  
RECOMENDED CONSTANT  
Oscillation frequency  
X1  
X2  
5.0*3 MHz  
(fXX)*1  
Ceramic  
resonator*3  
C2  
C1  
Oscillation stabilization  
After VDD has reached MIN.  
of oscillation voltage range.  
4
ms  
time*2  
VDD  
Oscillation frequency  
X1  
X2  
1.0  
5.0*3 MHz  
4.19  
(fXX)*1  
Crystal*3  
C2  
C1  
VDD=4.5 to 6.0 V  
10  
30  
ms  
ms  
Oscillation stabilization  
time*2  
VDD  
X1 input frequency  
1.0  
5.0*3 MHz  
X1  
X2  
(fX)*1  
External  
clock  
X1 input high-/low-level  
width (tXH, tXL)  
µPD74HCU04  
100  
500  
ns  
*
1. The oscillation frequency and X1 input frequency are only indications of the oscillator characteristics. See  
the AC characteristics for instruction execution times.  
2. The oscillation stabilization time is the time required for oscillation to stabilize after VDD reaches the MIN.  
value of the oscillation voltage range, or the STOP mode is released.  
3. When the oscillation frequency is 4.19 MHz < fXX <= 5.0MHz, PCC = 0011 should not be selected as the  
instruction execution time. If PCC = 0011 is selected, one machine cycle will be less than 0.95 us, and the MIN.  
value of 0.95 us in the specification will not be achieved.  
Note When the main system clock oscillator is used, the following should be noted concerning wiring in the area  
in the figure enclosed by a dotted line to prevent the influence of wiring capacitance, etc.  
• The wiring should be kept as short as possible.  
• No other signal lines should be crossed. Keep away from lines carrying a high fluctuating current.  
• The oscillator capacitor grounding point should always be at the same potential as VDD. Do not connect  
to a ground pattern carrying a high current.  
• A signal should not be taken from the oscillator.  
19  
µPD75P316B  
SUBSYSTEM CLOCK OSCILLATOR CHARACTERISTICS (Ta = –40 to +85°C, VDD = 2.0 to 6.0 V)  
RESONATOR  
MIN.  
RECOMENDED CONSTANT  
TEST CONDITIONS  
TYP.  
PARAMETER  
MAX. UNIT  
Oscillation frequency  
(fXT)  
XT1  
XT2  
R
32 32.768  
35  
kHz  
Crystal  
C2  
C1  
resonator  
VDD=4.5 to 6.0 V  
2
s
s
1.0  
Oscillation stabilization  
time*  
10  
VDD  
XT1 input frequency  
(fXT)  
32  
5
100 kHz  
XT1  
XT2  
External  
clock  
Open  
XT1 input high-/low-  
level width (tXTH, tXTL)  
µs  
15  
*
This is the time required for oscillation to stabilize after VDD reaches the MIN. value of the oscillation voltage  
range.  
Note When the subsystem clock oscillator is used, the following should be noted concerning wiring in the area  
in the figure enclosed by a dotted line to prevent the influence of wiring capacitance, etc.  
• The wiring should be kept as short as possible.  
• No other signal lines should be crossed. Keep away from lines carrying a high fluctuating current.  
• The oscillator capacitor grounding point should always be at the same potential as VDD. Do not connect  
to a ground pattern carrying a high current.  
• A signal should not be taken from the oscillator.  
The subsystem clock oscillator is a low-amplitude circuit in order to achieve a low consumption current,  
and is more prone to misoperation due to noise than the main system clock oscillator. Particular care is  
therefore required with the wiring method when the subsystem clock is used.  
20  
µPD75B316B  
(1) VDD=2.7 to 6.0 V  
DC CHARACTERISTICS (Ta = –40 to +85 °C, VDD = 2.7 to 6.0 V)  
PARAMETER  
SYMBOL  
VIH1  
TEST CONDITIONS  
MIN.  
0.7 VDD  
0.8 VDD  
0.7 VDD  
VDD –0.5  
0
TYP.  
MAX.  
VDD  
UNIT  
Ports 2 and 3  
V
V
V
V
V
V
V
VIH2  
Ports 0, 1, 6, 7 and RESET  
Ports 4 and 5  
VDD  
Input voltage  
high  
VIH3  
10  
VIH4  
X1, X2, XT1  
VDD  
VIL1  
Ports 2, 3, 4, 5  
0.3 VDD  
0.2 VDD  
0.4  
Input voltage  
low  
VIL2  
Ports 0, 1, 6, 7 and RESET  
X1, X2, XT1  
0
VIL3  
0
VDD = 4.5 to 6.0 V  
VDD –1.0  
VDD –0.5  
V
V
Ports 0, 2, 3, 6, 7,  
and BIAS  
IOH = –1 mA  
VOH1  
VOH2  
IOH = -100 µA  
Output voltage  
high  
VDD = 4.5 to 6.0 V  
VDD –2.0  
VDD –1.0  
V
V
BP0 to BP7  
(with 2 IOH outputs)  
IOH = –100 µA  
IOH = –30 µA  
Ports 3, 4, 5  
VDD = 4.5 to 6.0 V  
IOL = 15 mA  
0.7  
2.0  
V
Ports  
0, 2, 3, 4, 5, 6, 7  
VDD = 4.5 to 6.0 V  
IOL = 1.6 mA  
0.4  
0.5  
V
V
V
VOL1  
Output voltage  
low  
IOL = 400 µA  
Open–drain  
pull-up resistor 1 kΩ  
SB0, 1  
0.2 VDD  
VDD = 4.5 to 6.0 V  
1.0  
V
BP0 to BP7  
(with 2 IOL outputs)  
IOL = 100 µA  
VOL2  
IL1H1  
IOL = 50 µA  
Other than below  
X1, X2, XT1  
1.0  
3
V
µA  
VIN = VDD  
Input leakage  
current high  
ILIH2  
ILIH3  
20  
20  
µA  
µA  
VIN = 10 V  
Ports 4 and 5  
ILIL1  
Other than below  
X1, X2, XT1  
–3  
µA  
Input leakage  
current low  
VIN = 0 V  
ILIL2  
–20  
3
µA  
µA  
µA  
ILOH1  
ILOH2  
VOUT = VDD  
Other than below  
Ports 4 and 5  
Output leakage  
current high  
VOUT = 10 V  
20  
Output leakage  
current low  
ILOL  
VOUT = 0 V  
–3  
µA  
21  
µPD75P316B  
DC CHARACTERISTICS (Ta = –40 to +85 °C, VDD = 2.7 to 6.0 V)  
PARAMETER  
SYMBOL  
RL  
TEST CONDITIONS  
MIN.  
15  
TYP.  
40  
MAX.  
80  
UNIT  
kΩ  
Ports 0, 1, 2, 3, 6, 7  
VDD = 5.0 V ±10%  
VDD = 3.0 V ±10%  
Internal pull-up  
resistor  
(Except P00)  
VIN = 0 V  
30  
200  
VDD  
kΩ  
LCD drive voltage  
VLCD  
2.0  
V
LCD output voltage  
deviation*1  
(common)  
VODC  
IO = ±5 µA  
IO = ±1 µA  
0
0
±0.2  
±0.2  
V
V
VLCD0 = VLCD  
VLCD1 = VLCD × 2/3  
VLCD2 = VLCD × 1/3  
2.7 V VLCD VDD  
LCD output voltage  
deviation  
VODS  
(segment)  
VDD = 5 V ±10%*4  
VDD = 3 V ±10%*5  
DD  
4.0  
0.5  
12  
mA  
mA  
IDDI  
4.19 MHz*3  
crystal oscillation  
C1 = C2 = 22 pF  
1.5  
V
V
= 5 V ±10%  
1
3
mA  
HALT  
mode  
IDD2  
DD  
= 3 V ±10%  
300  
30  
900  
90  
µA  
µA  
IDD3  
IDD4  
VDD = 3 V ±10%  
Supply current*2  
32 kHz*6  
crystal oscillation  
HALT  
mode  
DD  
V
= 3 V ±10%  
7
21  
µA  
VDD = 5 V ±10%  
1
25  
15  
5
µA  
µA  
µA  
XT1 = 0 V  
STOP mode  
IDD5  
0.5  
0.5  
VDD =  
3 V ±10%  
Ta = 25 °C  
* 1. The voltage deviation is the difference between the output voltage and the ideal value of the common output  
(VLCDn; n = 0, 1, 2).  
2. Excluding the current flowing in the internal pull-up resistor.  
3. Including the case where the subsystem clock is oscillated.  
4. When the processor clock control register (PCC) is set to 0011 for operation in high-speed mode.  
5. When PCC is set to 0000 for operation in low-speed mode.  
6. When the system clock control register (SCC) is set to 1001, main system clock oscillation is stopped, and  
the device is operated on the subsystem clock.  
22  
µPD75B316B  
AC CHARACTERISTICS (Ta = –40 to +85 °C, VDD = 2.7 to 6.0 V)  
PARAMETER  
CPU clock  
cycle time*1  
(minimum  
instruction  
execution time  
= 1 machine cycle)  
SYMBOL  
TEST CONDITIONS  
VDD = 4.5 to 6.0 V  
MIN.  
0.95  
3.8  
TYP.  
122  
MAX.  
64  
UNIT  
µs  
Operating on main  
system clock  
64  
µs  
tCY  
Operating on  
114  
125  
µs  
subsystem clock  
VDD = 4.5 to 6.0 V  
0
0
1
MHz  
kHz  
µs  
TI0 input  
frequency  
fTI  
275  
VDD = 4.5 to 6.0 V  
0.48  
1.8  
*2  
10  
10  
tTIH,  
tTIL  
TI0 input high-/low-  
level width  
µs  
INT0  
µs  
Interrupt input  
high-/low-level  
width  
tINTH,  
tINTL  
INT1, 2, 4  
KR0 to KR7  
µs  
µs  
RESET low-level  
width  
tRSL  
10  
µs  
* 1. The CPU clock (Φ) cycle time (minimum instruc-  
tion execution time) is determined by the oscil-  
lation frequency of the connected resonator, the  
system clock control register (SCC), and the  
processor control register (PCC).  
t
CY vs VDD  
(Operating on Main System Clock)  
70  
64  
30  
The graph on the right shows the characteristic  
of the cycle time tCY against the supply current  
VDD in the case of main system clock operation.  
2. 2tCY or 128/fX depending on the setting of the  
interrupt mode register (IM0).  
6
5
Guaranteed  
Operation Range  
4
3
2
1
0.5  
0
1
2
3
4
5
6
Supply Voltage VDD [V]  
23  
µPD75P316B  
SERIAL TRANSFER OPERATIONS  
2-Wired and 3-Wired Serial I/O Modes (SCK ... Internal clock output): (Ta = –40 to +85 °C, VDD = 2.7 to 6.0 V)  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
VDD = 4.5 to 6.0 V  
MIN.  
1600  
TYP.  
MAX.  
UNIT  
ns  
SCK cycle time  
tKCY1  
3800  
ns  
VDD = 4.5 to 6.0 V  
tKCY1/2-50  
tKCY1/2-150  
ns  
tKL1  
tKH1  
SCK high-/low-level  
width  
ns  
SI setup time  
(to SCK)  
tSIK1  
tKSI1  
150  
400  
ns  
ns  
SI hold time  
(from SCK)  
*
SO output  
delay time  
from SCK↓  
VDD = 4.5 to 6.0 V  
250  
ns  
ns  
RL = 1 k,  
CL = 100 pF  
tKSO1  
1000  
2-Wired and 3-Wired Serial I/O Modes (SCK ... External clock input): (Ta = -40 to +85 °C, VDD = 2.7 to 6.0 V)  
PARAMETER  
SYMBOL  
tKCY2  
TEST CONDITIONS  
VDD = 4.5 to 6.0 V  
MIN.  
800  
TYP.  
MAX.  
UNIT  
ns  
SCK cycle time  
3200  
400  
ns  
VDD = 4.5 to 6.0 V  
ns  
tKL2  
tKH2  
SCK high-/low-level  
width  
1600  
ns  
SI setup time  
(to SCK)  
tSIK2  
tKSI2  
100  
400  
ns  
ns  
SI hold time  
(from SCK )  
*
SO output  
delay time  
from SCK↓  
VDD = 4.5 to 6.0 V  
300  
ns  
ns  
RL = 1 k,  
CL = 100 pF  
tKSO2  
1000  
*
RL and CL are the SO output line load resistance and load capacitance.  
24  
µPD75B316B  
SBI Mode (SCK ... Internal clock output (Master)): (Ta = –40 to +85 °C, VDD = 2.7 to 6.0 V)  
PARAMETER  
SYMBOL  
tKCY3  
TEST CONDITIONS  
VDD = 4.5 to 6.0 V  
MIN.  
1600  
TYP.  
MAX.  
UNIT  
ns  
SCK cycle time  
3800  
ns  
VDD = 4.5 to 6.0 V  
tKCY3/2-50  
tKCY3/2-150  
ns  
tKL3  
tKH3  
SCK high-/low-level  
width  
ns  
SB0, 1 setup time  
(to SCK )  
tSIK3  
tKSI3  
150  
ns  
ns  
SB0, 1 hold time  
(from SCK )  
tKCY3/2  
SB0, 1 output  
delay time from  
SCK ↓  
VDD = 4.5 to 6.0 V  
0
250  
ns  
ns  
ns  
ns  
RL = 1 k,  
CL = 100 pF  
*
tKSO3  
0
1000  
SB0, 1 from SCK ↑  
SCK from SB0, 1 ↓  
tKSB  
tKCY3  
tKCY3  
tSBK  
SB0, 1 low-level  
width  
SBL  
KCY3  
t
t
ns  
ns  
SB0, 1 high-level  
width  
tSBH  
tKCY3  
SBI Mode (SCK ... External clock input (Slave)): (Ta = –40 to +85 °C, VDD = 2.7 to 6.0 V)  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
VDD = 4.5 to 6.0 V  
MIN.  
800  
TYP.  
MAX.  
UNIT  
ns  
SCK cycle time  
tKCY4  
3200  
400  
ns  
ns  
VDD = 4.5 to 6.0 V  
tKL4  
tKH4  
SCK high-/low-level  
width  
1600  
100  
ns  
ns  
SB0, 1 setup time  
(to SCK )  
tSIK4  
tKSI4  
SB0, 1 hold time  
(from SCK )  
tKCY4/2  
ns  
SB0, 1 output  
delay time from  
SCK ↓  
VDD = 4.5 to 6.0 V  
0
0
300  
ns  
ns  
RL = 1 k,  
CL = 100 pF  
*
tKSO4  
1000  
SB0, 1 from SCK ↑  
SCK from SB0, 1 ↓  
tKSB  
tSBK  
tKCY4  
tKCY4  
ns  
ns  
SB0, 1 low-level  
width  
tSBL  
tSBH  
tKCY4  
tKCY4  
ns  
ns  
SB0, 1 high-level  
width  
*
RL and CL are the SB0, 1 output line load resistance and load capacitance.  
25  
µPD75P316B  
(2) VDD=2.7 to 6.0 V  
DC CHARACTERISTICS (Ta = –40 to +85 °C, VDD = 2.0 to 6.0 V)  
PARAMETER  
SYMBOL  
VIH1  
TEST CONDITIONS  
Ports 2 and 3  
MIN.  
0.8 VDD  
0.8 VDD  
0.8VDD  
VDD –0.3  
0
TYP.  
MAX.  
VDD  
UNIT  
V
V
V
V
V
V
V
VIH2  
Ports 0, 1, 6, 7 and RESET  
Ports 4 and 5  
VDD  
Input voltage  
high  
VIH3  
10  
VIH4  
X1, X2, XT1  
VDD  
VIL1  
Ports 2, 3, 4, 5  
0.2 VDD  
0.2 VDD  
0.25  
Input voltage  
low  
VIL2  
Ports 0, 1, 6, 7 and RESET  
X1, X2, XT1  
0
VIL3  
0
Ports 0, 2, 3, 6, 7  
and BIAS  
VOH1  
IOH = –100 µA  
VDD –0.5  
VDD –0.4  
V
V
Output voltage  
high  
BP0 to BP7 (with  
2 IOH outputs)  
VOH2  
IOH = –10 µA  
IOL = 400 µA  
Ports 0, 2, 3, 4, 5  
6, 7  
0.5  
V
VOL1  
Output voltage  
low  
Open–drain,  
pull-up resistor 1 kΩ  
SB0, 1  
0.2 VDD  
0.4  
V
V
BP0 to BP7  
(with 2 IOL outputs)  
VOL2  
IOL = 10 µA  
ILIH1  
ILIH2  
ILIH3  
Other than below  
X1, X2, XT1  
3
µA  
µA  
µA  
VIN = VDD  
Input leakage  
current high  
20  
20  
VIN = 10 V  
Ports 4 and 5  
ILIL1  
ILIL2  
Other than below  
X1, X2, XT1  
–3  
–20  
3
µA  
µA  
µA  
µA  
Input leakage  
current low  
VIN = 0 V  
ILOH1  
ILOH2  
VOUT = VDD  
Other than below  
Ports 4 and 5  
Output leakage  
current high  
VOUT = 10 V  
20  
Output leadage  
current low  
ILOL  
VOUT = 0 V  
–3  
µA  
Ports 0, 1, 2, 3, 6, 7  
(Except P00)  
VIN = 0 V  
Internal pull-up  
resistor  
RL  
VDD = 2.5 V ±10%  
50  
600  
kΩ  
LCD drive voltage  
VLCD  
2.0  
VDD  
V
26  
µPD75B316B  
DC CHARACTERISTICS (Ta = –40 to +85 °C, VDD = 2.0 to 6.0 V)  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN.  
0
TYP.  
MAX.  
UNIT  
V
LCD output voltage  
deviation *1  
(common)  
VODC  
IO = ±5 µA  
IO = ±1 µA  
±0.2  
VLCDO = VLCD  
VLCD1 = VLCD × 2/3  
VLCD2 = VLCD × 1/3  
2.0 V VLCD VDD  
LCD output  
voltage deviation  
(segment)  
VODS  
0
±0.2  
V
VDD = 3 V ±10%*4  
0.5  
0.4  
300  
200  
40  
1.5  
1.2  
900  
600  
90  
75  
21  
12  
15  
5
mA  
mA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
IDDI  
4.19 MHz*3  
VDD = 2.5 V ±10%*4  
HALT VDD = 3 V ±10%  
mode VDD = 2.5 V ±10%  
VDD = 3 V ±10%  
crystal oscillation  
C1 = C2 = 22 pF  
low-speed mode  
IDD2  
IDD3  
IDD4  
Supply current*2  
VDD = 2.5 V ±10%  
25  
32 kHz*5  
crystal oscillation  
HALT VDD = 3 V ±10%  
mode VDD = 2.5 V ±10%  
7
4
0.5  
0.5  
0.4  
0.4  
VDD = 3 V ±10%  
Ta = 25°C  
XT1 = 0 V  
STOP mode  
IDD5  
15  
5
VDD = 2.5 V  
±10%  
Ta = 25°C  
* 1. The voltage deviation is the difference between the output voltage and the ideal value of the common  
output (VLCDn; n = 0, 1, 2).  
2. Excluding the current flowing in the internal pull-up resistor.  
3. Including the case where the subsystem clock is oscillated.  
4. When PCC is set to 0000 for operation in low-speed mode.  
5. When the system clock control register (SCC) is set to 1001, main system clock oscillation is stopped, and  
the device is operated on the subsystem clock.  
27  
µPD75P316B  
AC CHARACTERISTICS (Ta = –40 to +85 °C, VDD = 2.0 to 6.0 V)  
PARAMETER SYMBOL TEST CONDITIONS  
VDD = 2.7 to 6.0 V  
MIN.  
3.8  
5
TYP.  
MAX.  
64  
UNIT  
µs  
CPU clock  
cycle time  
(minimum instruc-  
tion execution time  
= 1 machine  
Operating on main  
system clock  
VDD = 2.0 to 6.0 V  
64  
µs  
tCY  
Ta = –40 to + 60 °C  
VDD = 2.2 to 6.0 V  
3.4  
64  
µs  
µs  
cycle)*1  
Operating on  
114  
122  
125  
subsystem clock  
TI0 input  
frequency  
fTI  
0
275  
kHz  
TI0 input high-/low-  
level width  
tTIH,  
tTIL  
1.8  
µs  
INT0  
*2  
10  
10  
µs  
µs  
µs  
Interrupt input  
high-/low-level  
width  
tINTH,  
tINTL  
INT1, 2, 4  
KR0 to KR7  
RESET low-level  
width  
RSL  
t
10  
µs  
* 1. The CPU clock (Φ ) cycle time (minimum instruc-  
tion execution time) is determined by the oscil-  
lation frequency of the connected resonator,  
the system clock control register (SCC), and the  
processor clock control register (PCC).  
t
CY vs VDD  
(Operating on Main System Clock)  
70  
64  
30  
6
5
The graph on the right shows the characteristic  
of the cycle time tCY against the supply current  
VDD in the case of main system clock operation.  
2. 2tCY or 128/fX depending on the setting of the  
interrupt mode register (IMO).  
Guaranteed  
4
3
Operation Range  
2
1
0.5  
0
1
2
3
4
5
6
Supply Voltage VDD [V]  
28  
µPD75B316B  
SERIAL TRANSFER OPERATIONS  
2-Wired and 3-Wired Serial I/O Mode (SCK ... Internal clock output): (Ta = –40 to +85 °C, VDD = 2.0 to 6.0 V)  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
VDD = 4.5 to 6.0 V  
MIN.  
1600  
TYP.  
MAX.  
UNIT  
ns  
SCK cycle time  
tKCY1  
3800  
ns  
VDD = 4.5 to 6.0 V  
tKCY1/2-50  
tKCY1/2-150  
ns  
tKL1  
tKH1  
SCK high-/low-  
level width  
ns  
SI setup time  
(to SCK )  
tSIK1  
250  
400  
ns  
ns  
SI hold time  
(from SCK )  
tKSI1  
SO output  
delay time  
from SCK ↓  
VDD = 4.5 to 6.0 V  
250  
ns  
ns  
RL = 1 k,  
CL = 100 pF*  
tKSO1  
1000  
2-Wired and 3-Wired Serial I/O Mode (SCK ... External clock input): (Ta = –40 to +85 °C, VDD = 2.0 to 6.0 V)  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
VDD = 4.5 to 6.0 V  
MIN.  
800  
TYP.  
MAX.  
UNIT  
ns  
SCK cycle time  
tKCY2  
3200  
400  
ns  
VDD = 4.5 to 6.0 V  
ns  
tKL2  
tKH2  
SCK high-/low-  
level width  
1600  
ns  
SI setup time  
(to SCK)  
tSIK2  
tKSI2  
100  
400  
ns  
ns  
SI hold time  
(from SCK)  
SO output  
delay time  
from SCK↓  
VDD = 4.5 to 6.0 V  
300  
ns  
ns  
RL = 1 k,  
CL = 100 pF*  
tKSO2  
1000  
*
RL and CL are the SO output line load resistance and load capacitance.  
29  
µPD75P316B  
SBI Mode (SCK ... Internal clock output (Master)): (Ta = –40 to +85 °C, VDD = 2.0 to 6.0 V)  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
VDD = 4.5 to 6.0 V  
MIN.  
1600  
TYP.  
MAX.  
UNIT  
ns  
SCK cycle time  
tKCY3  
3800  
ns  
VDD = 4.5 to 6.0 V  
tKCY3/2-50  
tKCY3/2-150  
ns  
tKL3  
tKH3  
SCK high-/low-  
level width  
ns  
SB0, 1 setup  
time (to SCK)  
tSIK3  
tKSI3  
250  
ns  
ns  
SB0, 1 hold  
time (from SCK)  
tKCY3/2  
SB0, 1 output  
delay time  
from SCK↓  
VDD = 4.5 to 6.0 V  
0
250  
ns  
ns  
ns  
ns  
RL = 1 k,  
CL = 100 pF*  
tKSO3  
0
1000  
SB0, 1 from SCK↑  
SCK from SB0, 1 ↓  
tKSB  
tSBK  
tKCY3  
tKCY3  
SB0, 1 low-level  
width  
tSBL  
tKCY3  
tKCY3  
ns  
ns  
SB0, 1 high-level  
width  
tSBH  
SBI Mode (SCK ... External clock input (Slave)): (Ta = –40 to +85 °C, VDD = 2.0 to 6.0 V)  
PARAMETER  
SYMBOL  
tKCY4  
TEST CONDITIONS  
VDD = 4.5 to 6.0 V  
MIN.  
800  
TYP.  
MAX.  
UNIT  
ns  
SCK cycle time  
3200  
400  
ns  
VDD = 4.5 to 6.0 V  
ns  
tKL4  
tKH4  
SCK high-/low-  
level width  
1600  
ns  
SB0, 1 setup  
time (to SCK )  
tSIK4  
tKSI4  
100  
ns  
ns  
SB0, 1 hold  
time (from SCK )  
tKCY4/2  
SB0, 1  
output delay  
time from SCK ↓  
VDD = 4.5 to 6.0 V  
0
300  
ns  
ns  
ns  
ns  
RL = 1 k,  
CL = 100 pF*  
tKSO4  
0
1000  
SB0, 1 from SCK ↑  
SCKfrom SB0, 1 ↓  
tKSB  
tSBK  
tKCY4  
tKCY4  
SB0, 1 low-level  
width  
tSBL  
tSBH  
tKCY4  
tKCY4  
ns  
ns  
SB0, 1 high-level  
width  
*
RL and CL are the SBO, 1 output line load resistance and load capacitance.  
30  
µPD75B316B  
AC Timing Test Points (Except X1 and XT1 inputs)  
0.8 VDD  
0.8 VDD  
0.2 VDD  
Test Points  
0.2 VDD  
Clock Timings  
1/fX  
t
XL  
tXH  
VDD -0.5 V  
0.4 V  
X1 Input  
1/fXT  
t
XTL  
t
XTH  
VDD -0.5 V  
0.4 V  
XT1 Input  
TI0 Timing  
1/fTI  
t
TIL  
tTIH  
TI0  
31  
µPD75P316B  
Serial Transfer Timing  
3-wired serial I/O mode:  
t
KCY1  
t
KL1  
t
KH1  
SCK  
t
SIK1  
t
KSI1  
Input Data  
SI  
t
KSO1  
SO  
Output Data  
2-wired serial I/O mode:  
tKCY2  
tKL2  
tKH2  
SCK  
tSIK2  
tKSI2  
SB0,1  
t
KSO2  
32  
µPD75B316B  
Serial Transfer Timing  
Bus release signal transfer:  
t
KCY3,4  
t
KL3,4  
t
KH3,4  
SCK  
t
SIK3,4  
t
KSB  
t
SBL  
t
SBH  
t
SBK  
t
KSI3,4  
SB0,1  
t
KSO3,4  
Command signal transfer:  
tKCY3,4  
t
KL3,4  
tKH3,4  
SCK  
t
SIK3,4  
tKSB  
tSBK  
t
KSI3,4  
SB0,1  
tKSO3,4  
Interrupt Input Timing  
tINTL  
t
INTH  
INT0,1,2,4  
KR0-7  
RESET Input Timing  
t
RSL  
RESET  
33  
µPD75P316B  
DATA MEMORY STOP MODE LOW SUPPLY VOLTAGE DATA RETENTION CHARACTERISTICS (Ta = –40 to +85 °C)  
PARAMETER  
SYMBOL  
VDDDR  
TEST CONDITIONS  
MIN.  
2.0  
TYP.  
0.3  
MAX.  
6.0  
UNIT  
V
Data retention supply voltage  
Data retention supply current*1  
Release signal setting time  
IDDDR  
VDDDR = 2.0 V  
15  
µA  
µs  
tSREL  
0
Release by RESET  
217/fx  
ms  
ms  
Oscillation stabilization  
wait time*2  
tWAIT  
Release by interrupt request  
*3  
* 1. Excluding current flowing in the internal pull-up resistor.  
2. The oscillation stabilization time is the time during which the CPU operation is stopped to prevent unstable  
operation when oscillation is started.  
3. Depends on the basic interval timer mode register (BTM) setting ( see table below).  
WAIT TIME  
(Figure in ( ) is for fx = 4.19 MHz)  
BTM3  
BTM2  
BTM1  
BTM0  
0
0
1
1
0
1
0
1
0
1
1
1
220/fx (Approx. 250 ms)  
217/fx (Approx. 31.3 ms)  
215/fx (Approx. 7.82 ms)  
213/fx (Approx. 1.95 ms)  
34  
µPD75B316B  
Data Retention Timing (STOP mode release by RESET)  
Internal Reset Operation  
HALT Mode  
STOP Mode  
Operating  
Mode  
Data Retention Mode  
V
DD  
V
DDDR  
t
SREL  
STOP Instruction Execution  
RESET  
tWAIT  
Data Retention Timing (Standby release signal: STOP mode release by interrupt signal)  
HALT Mode  
STOP Mode  
Operating  
Mode  
Data Retention Mode  
V
DD  
VDDDR  
t
SREL  
STOP Instruction Execution  
Standby Release Signal  
(Interrupt Request)  
t
WAIT  
35  
µPD75P316B  
DC PROGRAMMING CHARACTERISTICS (Ta = 25 ± 5 °C, VDD = 6.0 ± 0.25 V, VPP = 12.5 ± 0.3 V, VSS = 0 V)  
PARAMETER  
SYMBOL  
VIH1  
TEST CONDITIONS  
Except X1, X2  
MIN.  
0.7 VDD  
VDD –0.5  
0
TYP.  
MAX.  
VDD  
UNIT  
V
V
V
V
Input voltage  
high  
VIH2  
X1, X2  
VDD  
VIL1  
Except X1, X2  
X1, X2  
0.3 VDD  
0.4  
Input voltage  
low  
VIL2  
0
Input leakage  
current  
IL1  
VIN = VIL or VIH  
IOH = –1 mA  
10  
µA  
Output voltage  
high  
VOH  
VDD –1.0  
V
Outputvoltage  
low  
VOH  
IOL = 1.6 mA  
0.4  
30  
30  
V
VDD supply  
current  
DD  
I
mA  
mA  
VDD supply  
current  
PP  
IL  
IH  
I
MD0 = V , MDI = V  
Note 1. Ensure that VPP does not exeed +13.5 V including overshoot.  
2. VDD must be applied before VPP, and cut after VPP.  
36  
µPD75B316B  
DC PROGRAMMING CHARACTERISTICS (Ta = 25 ± 5 °C, VDD = 6.0 ± 0.25 V, VPP = 12.5 ± 0.3 V, VSS = 0 V)  
PARAMETER  
Address setup time*2 (to MD0)  
MD1 setup time (to MD0)  
SYMBOL  
tAS  
*1  
TEST CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
µs  
tAS  
2
2
tM1S  
tDS  
tOES  
tDS  
µs  
Data setup time (to MD0)  
2
µs  
Address hold time*2 (from MD0)  
Data hold time (from MD0)  
Data output float delay time from MD0↑  
VPP setup time (to MD3)  
tAH  
tAH  
2
µs  
tDH  
tDH  
2
µs  
tDF  
tDF  
0
130  
ns  
µs  
tVPS  
tVDS  
tPW  
tVPS  
tVCS  
tPW  
tOPW  
tCES  
tDV  
2
VDD setup time (to MD3)  
2
µs  
Initial program pulse width  
Additional program pulse width  
MD0 setup time (to MD1)  
0.95  
0.95  
2
1.0  
1.05  
21.0  
ms  
ms  
µs  
tOPW  
tMOS  
tDV  
Data output delay time from MD0↓  
MD1 hold time (from MD0)  
MD1 recovery time (from MD0)  
Program counter reset time  
X1 input high-/low-level width  
X1 input frequency  
MD0=MD1=VIL  
1
µs  
tM1H  
tM1R  
tPCR  
tXH, tXL  
fX  
tOEH  
tOR  
2
2
µs  
tM1H+tM1R 50 µs  
µs  
10  
µs  
0.125  
µs  
4.19  
MHz  
µs  
Initial mode setting time  
tI  
2
2
2
2
2
0
2
2
MD3 setup time (to MD1)  
tM3S  
tM3H  
tM3SR  
tDAD  
tHAD  
tM3HR  
tDFR  
µs  
MD3 hold time (from MD1)  
MD3 setup time (to MD0)  
µs  
Program memory read  
Program memory read  
Program memory read  
Program memory read  
Program memory read  
µs  
Data output delay time from address*2  
Data output hold time from address*2  
MD3 hold time (from MD0)  
Data output float delay time from MD3↓  
tACC  
tOH  
µs  
130  
µs  
µs  
µs  
* 1. Symbol of corresponding µPD27C256A  
2. The internal address signal is incremented by 1 on the 4th rise of the X1 input, and is not connected to a pin.  
37  
µPD75P316B  
Program Memory Write Timing  
t
VPS  
V
PP  
V
PP  
VDD  
t
VDS  
V
V
DD + 1  
DD  
VDD  
t
XH  
X1  
t
XL  
P40 - P43  
P50 - P53  
Data Input  
D
ataOutput  
Data  
Input  
Data Input  
t
DS  
tDH  
t
1
t
DS  
t
DH  
t
DV  
t
DF  
t
AH  
t
AS  
MD0  
MD1  
MD2  
MD3  
t
PW  
t
M1R  
t
M0S  
t
OPW  
t
PCR  
tM1S  
t
M1H  
t
M3H  
t
M3S  
Program Memory Read Timing  
tVPS  
VPP  
VPP  
VDD  
tVDS  
VDD + 1  
VDD  
VDD  
tXH  
X1  
t
tXL  
tDHAADD  
P40 - P43  
P50 - P53  
Data Output  
Data Output  
t
DFR  
tDV  
t1  
t
M3HR  
MD0  
MD1  
tPCR  
MD2  
MD3  
tM3SR  
38  
µPD75P316B  
6. PACKAGE INFORMATION  
80 PIN PLASTIC QFP ( 14)  
A
B
60  
61  
41  
40  
detail of lead end  
21  
20  
80  
1
G
M
I
H
J
K
N
L
S80GC-65-3B9-3  
INCHES  
NOTE  
ITEM  
A
MILLIMETERS  
Each lead centerline is located within 0.13  
mm (0.005 inch) of its true position (T.P.) at  
maximum material condition.  
±
±
17.2 0.4  
0.677 0.016  
+0.009  
±
B
14.0 0.2  
0.551  
–0.008  
+0.009  
±
C
14.0 0.2  
0.551  
–0.008  
±
±
D
F
0.677 0.016  
17.2 0.4  
0.8  
0.8  
0.031  
G
H
I
0.031  
+0.004  
±
0.30 0.10  
0.012  
–0.005  
0.13  
0.005  
J
0.65 (T.P.)  
0.026 (T.P.)  
±
±
K
1.6 0.2  
0.063 0.008  
+0.009  
±
0.031  
L
0.8 0.2  
–0.008  
+0.10  
+0.004  
0.15  
M
N
P
0.006  
–0.05  
–0.003  
0.10  
2.7  
0.004  
0.106  
±
Q
S
0.1 0.1  
±
0.004 0.004  
3.0 MAX.  
0.119 MAX.  
39  
µPD75P316B  
80 PIN PLASTIC TQFP (FINE PITCH) ( 12)  
A
B
60  
41  
61  
40  
detail of lead end  
80  
21  
1
20  
G
M
I
J
H
K
N
L
NOTE  
ITEM MILLIMETERS  
INCHES  
Each lead centerline is located within 0.10 mm (0.004 inch) of  
its true position (T.P.) at maximum material condition.  
+0.009  
A
B
C
D
14.0±0.2  
12.0±0.2  
12.0±0.2  
14.0±0.2  
0.551  
0.472  
0.472  
0.551  
–0.008  
+0.009  
–0.008  
+0.009  
–0.008  
+0.009  
–0.008  
F
1.25  
1.25  
0.049  
0.049  
G
+0.05  
0.22  
H
0.009±0.002  
–0.04  
I
0.10  
0.004  
J
0.5 (T.P.)  
0.020 (T.P.)  
+0.009  
0.039  
K
L
1.0±0.2  
0.5±0.2  
–0.008  
+0.008  
0.020  
–0.009  
+0.055  
M
0.145  
0.006±0.002  
–0.045  
N
P
Q
R
S
0.10  
1.05  
0.004  
0.041  
0.05±0.05  
5°±5°  
0.002±0.002  
5°±5°  
1.27 MAX.  
0.050 MAX.  
P80GK-50-BE9-4  
40  
µPD75P316B  
80 PIN CERAMIC WQFN  
A
B
Q
K
T
80  
1
M
J
H
I
U
R
Z
X80KW-65A-1  
NOTE  
ITEM  
A
MILLIMETERS  
INCHES  
Each lead centerline is located within 0.06  
mm (0.003 inch) of its true position (T.P.) at  
maximum material condition.  
±
±
14.0 0.2  
0.551 0.008  
B
13.6  
13.6  
0.535  
0.535  
C
±
±
D
F
0.551 0.008  
14.0 0.2  
1.84  
0.072  
G
H
I
3.6 MAX.  
0.142 MAX.  
+0.004  
–0.005  
±
0.45 0.10  
0.018  
0.06  
0.003  
J
0.65 (T.P.)  
0.024 (T.P.)  
+0.007  
–0.006  
±
1.0 0.15  
0.039  
K
C 0.3  
0.825  
0.825  
R 2.0  
9.0  
C 0.012  
0.032  
Q
R
S
0.032  
T
R 0.079  
0.354  
U
U1  
W
Z
2.1  
0.083  
+0.006  
–0.007  
±
0.030  
0.75 0.15  
0.10  
0.004  
41  
µPD75P316B  
7. RECOMMENDED SOLDERING CONDITIONS  
This product should be soldered and mounted under the conditions recommended in the table below.  
For details of recommended soldering conditions for the surface mounting type, refer to the information  
document "Surface Mount Technology Manual (IEI 1207)".  
For soldering methods and conditions other than those recommended below, contact our salesman.  
Table 7-1 Recommended Soldering Conditions  
µPD75P316BGC-3B9: 80-Pin Plastic QFP (14 mm)  
Soldering Method  
Infrared reflow  
Recommended Soldering Conditions  
Package peak temperature: 230°C;  
Recommended Condition Symbol  
IR35-00-1  
Duration: 30 sec. max. (at 210°C or above);  
Number of times: once;  
Pin part temperature: 300°C max.;  
Pin part heating  
Duration: 3 sec. max. (per device side)  
µPD75P316BGK-ΒΕ9: 80-Pin Plastic QFP (12 mm)  
Soldering Method  
Recommended Soldering Conditions  
Recommended Condition Symbol  
IR35-00-1  
Package peak temperature: 235°C;  
Duration: 30 sec. max. (at 210°C or above);  
Infrared reflow  
Number of times: once;  
Timelimit: 7 days*(thereafter 10 hours prebaking required  
at 125°C)  
Pin part temperature: 300°C max.;  
Pin part heating  
Duration: 3 sec. max. (per device side)  
*
For the storage period after dry-pack decapsulation, storage conditions are max. 25°C, 65% RH.  
Note Use of more than one soldering method should be avoided (except in the case of pin part heating).  
42  
µPD75P316B  
APPENDIX A. DEVELOPMENT TOOLS  
The following development tools are available for system development using the µPD75P316B.  
IE-75000-R*1  
75X series in-circuit emulator  
IE-75001-R  
IE-7500-R-EM*2  
Emulation board for IE-75000-R and IE-75001-R  
EP-75308BGC-R  
Emulation probe for µPD75P316BGC.  
Provided with EV-9200GC-80, 80-pin conversion socket.  
EV-9200GC-80  
EP-75308BGK-R  
µPD75P316BGK emulation probe.  
Provided with EV-9200GK-80, 80-pin conversion socket.  
EV-9500GK-80  
PROM programmer  
PG-1500  
µPD75P316BGC programmer adapter. Connected with PG-1500.  
µPD75P316BGK programmer adapter. Connected with PG-1500.  
PA-75P316BGC  
PA-75P316BGK  
IE control program  
Host Machine  
PG-1500 controller  
PC-9800 series (MS-DOS™ Ver.3.30 to Ver.5.00A*3)  
IBM PC/AT™ (PC DOS™ Ver.3.1)  
RA75X relocatable assembler  
*
1. Maintenance product  
2. Not incorporated in the IE-75001-R.  
3. The task swap function, which is provided with Ver.5.00/5.00A, is not available with this software.  
43  
µPD75P316B  
APPENDIX B. RELATED DOCUMENTS  
Device Related Documents  
Document Name  
User's Manual  
Document Number  
IEM-5016  
Instruction Application Table  
IEM-994  
IEM-5035  
IEM-5041  
IF-151  
Application Note  
75X Series Selection Guide  
Development Tools Documents  
Document Name  
Document Number  
IE-75000-R/IE-75001-R User's Manual  
IE-75000-R-EM User's Manual  
EP-75308BGC-R User's Manual  
EP-75308BGK-R User's Manual  
PG-1500 User's Manual  
EEU-846  
EEU-673  
EEU-825  
EEU-838  
EEU-651  
EEU-731  
EEU-730  
EEU-704  
Operation  
Language  
RA75X Assembler Package User's Manual  
PG-1500 Controller User's Manual  
Other Documents  
Document Name  
Document Number  
Package Manual  
IEI-635  
IEI-1207  
IEI-1209  
IEM-5068  
MEM-539  
MEI-603  
MEI-604  
Surface Mount Technology Manual  
Quality Grande on NEC Semiconductor Device  
NEC Semiconductor Device Reliability & Quality Control  
Electrostatic Discharge(ESD) Test  
Semiconductor Devices Quality Guarantee Guide  
Microcomputer Related Products Guide Other Manufacturers Volume  
*
The contents of the above related documents are subject to change without notice. The latest documents  
should be used for design, etc.  
44  
µPD75P316B  
45  
µPD75P316B  
[MEMO]  
No part of this document may be copied or reproduced in any form or by any means without the prior written  
consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this  
document.  
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual  
property rights of third parties by or arising from use of a device described herein or any other liability arising  
from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights  
or other intellectual property rights of NEC Corporation or others.  
The devices listed in this document are not suitable for use in aerospace equipment, submarine cables, nuclear  
reactor control systems and life support systems. If customers intend to use NEC devices for above applications  
or they intend to use "Standard" quality grade NEC devices for applications not intended by NEC, please contact  
our sales people in advance.  
Application examples recommended by NEC Corporation  
Standard : Computer, Office equipment, Communication equipment, Test and Measurement equipment,  
Machine tools, Industrial robots, Audio and Visual equipment, Other consumer products, etc.  
Special  
:
Automotive and Transportation equipment, Traffic control systems, Antidisaster systems,  
Anticrime systems, etc.  
M4 92.6  

相关型号:

UPD75P316GF

4-Bit, Single-Chip Microcontrollers With LCD Controller/Driver
NEC

UPD75P316GF3B9

Microcontroller
ETC

UPD75P3216

4-BIT SINGLE-CHIP MICROCONTROLLER
NEC

UPD75P3216GT

4-BIT SINGLE-CHIP MICROCONTROLLER
NEC

UPD75P3216GT

4-BIT, OTPROM, 6MHz, MICROCONTROLLER, PDSO48, 0.375 INCH, 0.65 MM PITCH, PLASTIC, SSOP-48
RENESAS

UPD75P3216GT-A

Microcontroller, 4-Bit, OTPROM, 6MHz, MOS, PDSO48, 0.375 INCH, 0.65 MM PITCH, LEAD FREE, PLASTIC, SSOP-48
NEC

UPD75P328

4 BIT SINGLE CHIP MICRO COMPUTER WITH LCD CONTROLLER/ DRIVER AND A/D CONVERTER
NEC

UPD75P328GC

4 BIT SINGLE CHIP MICRO COMPUTER WITH LCD CONTROLLER/ DRIVER AND A/D CONVERTER
NEC

UPD75P328GC-3B9

4-Bit Microcontroller
ETC

UPD75P336

4-BIT SINGLE-CHIP MICROCOMPUTER
NEC

UPD75P336GC-3B9

4-BIT SINGLE-CHIP MICROCOMPUTER
NEC

UPD75P336GK-BE9

4-BIT SINGLE-CHIP MICROCOMPUTER
NEC