MP28303EN-Z [MPS]

Switching Regulator, Current-mode, 6A, 380kHz Switching Freq-Max, PDSO8, SOIC-8;
MP28303EN-Z
型号: MP28303EN-Z
厂家: MONOLITHIC POWER SYSTEMS    MONOLITHIC POWER SYSTEMS
描述:

Switching Regulator, Current-mode, 6A, 380kHz Switching Freq-Max, PDSO8, SOIC-8

开关 光电二极管
文件: 总11页 (文件大小:400K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TM  
MP28303  
3A, 28V, 340KHz Synchronous Rectified  
Step-Down Converter  
TM  
The Future of Analog IC Technology  
DESCRIPTION  
FEATURES  
The MP28303 is a monolithic synchronous buck  
regulator. The device integrates 120m  
MOSFETS that provide 3A continuous load  
current over a wide operating input voltage of  
4.75V to 28V. Current mode control provides  
fast transient response and cycle-by-cycle  
current limit.  
3A Output Current  
Wide 4.75V to 28V Operating Input Range  
Integrated 120mPower MOSFET Switches  
Output Adjustable from 0.8V to 25V  
Up to 95% Efficiency  
Programmable Soft-Start  
Stable with Low ESR Ceramic Output Capacitors  
Fixed 340KHz Frequency  
Cycle-by-Cycle Over Current Protection  
Input Under Voltage Lockout  
Thermally Enhanced 8-Pin SOIC Package  
An adjustable soft-start prevents inrush current  
at turn-on. In shutdown mode, the supply  
current drops to 1μA.  
This device, available in an 8-pin SOIC  
package, provides a very compact system  
solution with minimal reliance on external  
components.  
APPLICATIONS  
Distributed Power Systems  
Pre-Regulator for Linear Regulators  
Notebook Computers  
“MPS” and “The Future of Analog IC Technology” are Trademarks of Monolithic  
Power Systems, Inc.  
TYPICAL APPLICATION  
Efficiency vs  
Load Current  
C1  
10nF  
100  
V
IN = 5V  
1
2
8
7
BS  
IN  
SS  
EN  
90  
80  
70  
60  
50  
VIN  
4.75V-28V  
MP28303  
SW  
6
5
3
4
COMP  
C3  
4.7nF  
V
IN = 12V  
V
IN = 24V  
GND  
FB  
C10  
470pF  
V
OUT = 3.3V  
VOUT  
3.3V/3A  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5  
LOAD CURRENT (A)  
MP28303_TAC01  
MP28303-EC01  
MP28303 Rev. 0.1  
12/13/2007  
www.MonolithicPower.com  
MPS Proprietary Information. Unauthorized Photocopy and Duplication Prohibited.  
© 2007 MPS. All Rights Reserved.  
1
TM  
MP28303 – 3A, 28V, 340KHz SYNCHRONOUS RECTIFIED, STEP-DOWN CONVERTER  
PACKAGE REFERENCE  
ABSOLUTE MAXIMUM RATINGS (1)  
Supply Voltage VIN.......................0.3V to +32V  
Switch Voltage VSW................. –1V to VIN + 0.3V  
Boost Voltage VBS..........VSW – 0.3V to VSW + 6V  
All Other Pins.................................0.3V to +6V  
Junction Temperature...............................150°C  
Lead Temperature....................................260°C  
Storage Temperature .............–65°C to +150°C  
Recommended Operating Conditions (2)  
Input Voltage VIN............................ 4.75V to 28V  
Output Voltage VOUT ........................ 0.8V to 25V  
Ambient Operating Temperature ... –20°C to +85°C  
TOP VIEW  
BS  
IN  
1
2
3
4
8
7
6
5
SS  
EN  
SW  
GND  
COMP  
FB  
MP28303_PD01_SOIC8N  
Thermal Resistance (3)  
θJA  
θJC  
SOIC8N ..................................50...... 10... °C/W  
Part Number*  
Package  
SOIC8N  
(Exposed Pad)  
Temperature  
Notes:  
MP28303EN  
–20°C to +85°C  
1) Exceeding these ratings may damage the device.  
2) The device is not guaranteed to function outside of its  
operating conditions.  
For Tape & Reel, add suffix –Z (eg. MP28303EN–Z)  
For Lead Free, add suffix –LF (eg. MP28303EN–LF–Z)  
*
3) Measured on approximately 1” square of 1 oz copper.  
ELECTRICAL CHARACTERISTICS  
VIN = 12V, TA = +25°C, unless otherwise noted.  
Parameter  
Symbol Condition  
Min  
Typ (4)  
0.3  
Max  
3.0  
Units  
μA  
Shutdown Supply Current  
Supply Current  
VEN = 0V  
VEN = 2.7V, VFB = 1.0V  
1.3  
1.5  
mA  
4.75V VIN 28V,  
Feedback Voltage  
VFB  
0.78  
0.95  
0.80  
0.82  
1.05  
V
V
COMP < 2V  
Feedback Overvoltage Threshold  
Error Amplifier Voltage Gain  
1.0  
400  
820  
120  
120  
0
V
V/V  
μA/V  
mΩ  
mΩ  
μA  
AEA  
Error Amplifier Transconductance  
High Side Switch On Resistance  
Low Side Switch On Resistance  
High Side Switch Leakage Current  
Upper Switch Current Limit  
GEA  
550  
1100  
10  
ΔIC = ±10μA  
RDS(ON)1  
RDS(ON)2  
VEN = 0V, VSW = 0V  
5.0  
6.0  
A
Lower Switch Current Limit  
From Drain to Source  
1.25  
A
COMP to Current Sense  
Transconductance  
GCS  
5
6
A/V  
Oscillation Frequency  
Fosc1  
Fosc2  
300  
340  
110  
90  
380  
1.5  
KHz  
KHz  
%
Short Circuit Oscillation Frequency  
Maximum Duty Cycle  
VFB = 0V  
DMAX VFB = 0.7V  
Minimum On Time  
220  
1.3  
ns  
EN Shutdown Threshold Voltage  
VEN Rising  
1.1  
V
EN Shutdown Threshold Voltage  
Hysteresis  
220  
mV  
MP28303 Rev. 0.1  
12/13/2007  
www.MonolithicPower.com  
MPS Proprietary Information. Unauthorized Photocopy and Duplication Prohibited.  
© 2007 MPS. All Rights Reserved.  
2
TM  
MP28303 – 3A, 28V, 340KHz SYNCHRONOUS RECTIFIED, STEP-DOWN CONVERTER  
ELECTRICAL CHARACTERISTICS (continued)  
VIN = 12V, TA = +25°C, unless otherwise noted.  
Parameter  
Symbol Condition  
Min  
Typ (4)  
2.5  
Max  
Units  
V
EN Lockout Threshold Voltage  
EN Lockout Hysteresis  
2.2  
2.7  
210  
mV  
Input Under Voltage Lockout  
Threshold  
VIN Rising  
3.80  
4.05  
210  
4.30  
V
Input Under Voltage Lockout  
Threshold Hysteresis  
mV  
Soft-Start Current  
Soft-Start Period  
Thermal Shutdown  
VSS = 0V  
6
μA  
ms  
°C  
CSS = 0.1μF  
15  
160  
Note:  
4) Guaranteed by design, not tested.  
PIN FUNCTIONS  
Pin # Name Description  
High-Side Gate Drive Boost Input. BS supplies the drive for the high-side N-Channel MOSFET  
switch. Connect a 0.01μF or greater capacitor from SW to BS to power the high side switch.  
Power Input. IN supplies the power to the IC, as well as the step-down converter switches.  
Drive IN with a 4.5V to 28V power source. Bypass IN to GND with a suitably large capacitor to  
eliminate noise on the input to the IC. See Input Capacitor.  
1
2
BS  
IN  
Power Switching Output. SW is the switching node that supplies power to the output. Connect  
the output LC filter from SW to the output load. Note that a capacitor is required from SW to  
BS to power the high-side switch.  
3
4
5
SW  
GND Ground (Connect Exposed Pad to Pin 4)  
Feedback Input. FB senses the output voltage to regulate that voltage. Drive FB with a  
resistive voltage divider from the output voltage. The feedback reference voltage is 0.8V. See  
FB  
Setting the Output Voltage.  
Compensation Node. COMP is used to compensate the regulation control loop. Connect a  
series RC network from COMP to GND to compensate the regulation control loop. In some  
cases, an additional capacitor from COMP to GND is required. See Compensation  
Components.  
6
COMP  
Enable Input. EN is a digital input that turns the regulator on or off. Drive EN high to turn on  
the regulator, drive it low to turn it off. Pull up with 100kresistor for automatic startup.  
Soft-start Control Input. SS controls the soft-start period. Connect a capacitor from SS to GND  
to set the soft-start period. A 0.1μF capacitor sets the soft-start period to 15ms. To disable the  
soft-start feature, leave SS unconnected.  
7
8
EN  
SS  
MP28303 Rev. 0.1  
12/13/2007  
www.MonolithicPower.com  
MPS Proprietary Information. Unauthorized Photocopy and Duplication Prohibited.  
© 2007 MPS. All Rights Reserved.  
3
TM  
MP28303 – 3A, 28V, 340KHz SYNCHRONOUS RECTIFIED, STEP-DOWN CONVERTER  
TYPICAL PERFORMANCE CHARACTERISTICS  
VIN = 12V, VO = 3.3V, L = 10µH, CIN = 10µF, COUT = 22µF x 2, TA = +25°C, unless otherwise noted.  
Steady State Test  
Rising Edge Dead Time  
Falling Edge Dead Time  
V
= 12V, V  
OUT  
= 3.3V, I  
OUT  
= 1A  
V
= 12V, V  
OUT  
= 3.3V, I  
OUT  
= 2A  
V = 12V, V  
IN OUT  
= 3.3V, I = 1A  
OUT  
IN  
IN  
V
IN  
200mV/div.  
I
L
500mA/div.  
V
OUT  
AC Coupled  
10mV/div.  
V
V
SW  
SW  
2V/div.  
2V/div.  
20ns/div.  
20ns/div.  
MP28303-TPC01  
MP28303-TPC02  
MP28303-TPC03  
Load Transient Test  
V
I
= 24V, V = 3.3V,  
OUT  
Power Up  
Power Off through Enable  
IN  
= 0A-1A step with C = 470pF  
V
= 24V, V  
OUT  
= 3.3V, I  
OUT  
= 2A  
V
= 24V, V  
IN OUT  
= 3.3V, I = 2A  
OUT  
OUT  
FF  
IN  
V
OUT  
1V/div.  
V
COMP  
200mV/div.  
V
OUT  
V
100mV/div.  
EN  
5V/div.  
V
OUT  
1V/div.  
I
L
1A/div.  
I
L
1A/div.  
I
L
V
SW  
1A/div.  
10V/div.  
V
SW  
20V/div.  
4ms/div.  
MP28303-TPC04  
MP28303-TPC05  
MP28303-TPC06  
Short Circuit Entry  
Short Circuit Recovery  
V
= 24V, V  
OUT  
= 3.3V, I  
OUT  
= 0A  
V
= 24V, V  
IN OUT  
= 3.3V, I = 0A  
OUT  
IN  
V
OUT  
V
OUT  
1V/div.  
1V/div.  
V
COMP  
V
COMP  
1V/div.  
1V/div.  
I
L
I
L
2A/div.  
1A/div.  
MP28303-TPC07  
MP28303-TPC08  
MP28303 Rev. 0.1  
12/13/2007  
www.MonolithicPower.com  
MPS Proprietary Information. Unauthorized Photocopy and Duplication Prohibited.  
© 2007 MPS. All Rights Reserved.  
4
TM  
MP28303 – 3A, 28V, 340KHz SYNCHRONOUS RECTIFIED, STEP-DOWN CONVERTER  
BLOCK DIAGRAM  
+
CURRENT  
SENSE  
2
IN  
OVP  
AMPLIFIER  
+
--  
--  
+
1.0V  
0.3V  
0.8V  
5V  
RAMP  
CLK  
OSCILLATOR  
110KHz/340KHz  
5
8
FB  
SS  
1
3
BS  
--  
S
Q
Q
--  
+
--  
+
+
SW  
R
CURRENT  
COMPARATOR  
ERROR  
AMPLIFIER  
6
7
COMP  
EN  
4
GND  
--  
EN OK  
OVP  
IN < 4.05V  
1.2V  
LOCKOUT  
COMPARATOR  
2.5V  
1.3V  
+
+
IN  
INTERNAL  
REGULATORS  
--  
SHUTDOWN  
COMPARATOR  
MP28303_BD01  
Figure 1—Functional Block Diagram  
OPERATION  
The converter uses internal N-Channel  
MOSFET switches to step-down the input  
voltage to the regulated output voltage. Since  
the high side MOSFET requires a gate voltage  
greater than the input voltage, a boost capacitor  
connected between SW and BS is needed to  
drive the high side gate. The boost capacitor is  
charged from the internal 5V rail when SW is low.  
FUNCTIONAL DESCRIPTION  
The MP28303 is a synchronous rectified,  
current-mode, step-down regulator. It regulates  
input voltages from 4.75V to 28V down to an  
output voltage as low as 0.8V, and supplies up  
to 3A of load current.  
The MP28303 uses current-mode control to  
regulate the output voltage. The output voltage  
is measured at FB through a resistive voltage  
divider and amplified through the internal  
transconductance error amplifier. The voltage at  
COMP pin is compared to the switch current  
measured internally to control the output  
voltage.  
When the MP28303 FB pin exceeds 20% of the  
nominal regulation voltage of 0.8V, the over  
voltage comparator is tripped; the COMP pin  
and the SS pin are discharged to GND, forcing  
the high-side switch off.  
MP28303 Rev. 0.1  
12/13/2007  
www.MonolithicPower.com  
MPS Proprietary Information. Unauthorized Photocopy and Duplication Prohibited.  
© 2007 MPS. All Rights Reserved.  
5
TM  
MP28303 – 3A, 28V, 340KHz SYNCHRONOUS RECTIFIED, STEP-DOWN CONVERTER  
APPLICATIONS INFORMATION  
Choose an inductor that will not saturate under  
the maximum inductor peak current. The peak  
inductor current can be calculated by:  
COMPONENT SELECTION  
Setting the Output Voltage  
The output voltage is set using a resistive  
voltage divider from the output voltage to FB pin.  
The voltage divider divides the output voltage  
down to the feedback voltage by the ratio:  
VOUT  
VOUT  
VIN  
ILP = ILOAD  
+
× 1−  
2× fS ×L  
Where ILOAD is the load current.  
R2  
VFB = VOUT  
R1+ R2  
Optional Schottky Diode  
During the transition between high-side switch  
and low-side switch, the body diode of the low-  
side power MOSFET conducts the inductor  
current. The forward voltage of this body diode  
is high. An optional Schottky diode may be  
paralleled between the SW pin and GND pin to  
improve overall efficiency. Table 2 lists example  
Schottky diodes and their Manufacturers.  
Thus the output voltage is:  
R1+ R2  
VOUT = 0.8 ×  
R2  
Where VFB is the feedback voltage and VOUT is  
the output voltage.  
A typical value for R2 can be as high as 100k,  
but a typical value is 10k. Using that value, R1  
is determined by:  
Table 2—Diode Selection Guide  
Voltage/Current  
R1 = 12.5 × (VOUT 0.8)(kΩ)  
Part Number  
B130  
Rating  
30V, 1A  
30V, 1A  
Vendor  
For example, for a 3.3V output voltage, R2 is  
10k, and R1 is 31.3k.  
Diodes, Inc.  
Diodes, Inc.  
SK13  
International  
Rectifier  
Inductor  
MBRS130  
30V, 1A  
The inductor is required to supply constant  
current to the output load while being driven by  
the switched input voltage. A larger value  
inductor will result in less ripple current that will  
result in lower output ripple voltage. However,  
the larger value inductor will have a larger  
physical size, higher series resistance, and/or  
lower saturation current. A good rule for  
determining the inductance to use is to allow  
the peak-to-peak ripple current in the inductor  
to be approximately 30% of the maximum  
switch current limit. Also, make sure that the  
peak inductor current is below the maximum  
switch current limit. The inductance value can  
be calculated by:  
Input Capacitor  
The input current to the step-down converter is  
discontinuous, therefore a capacitor is required  
to supply the AC current to the step-down  
converter while maintaining the DC input  
voltage. Use low ESR capacitors for the best  
performance. Ceramic capacitors are preferred,  
but tantalum or low-ESR electrolytic capacitors  
may also suffice. Choose X5R or X7R  
dielectrics when using ceramic capacitors.  
Since the input capacitor absorbs the input  
switching current it requires an adequate ripple  
current rating. The RMS current in the input  
capacitor can be estimated by:  
VOUT  
VOUT  
L =  
× 1−  
VOUT  
VOUT  
IC1 = ILOAD  
×
× 1−  
fS × ΔI  
V
IN  
V
V
IN  
IN  
Where VIN is the input voltage, fS is the 340KHz  
switching frequency, and ΔIL is the peak-to-  
peak inductor ripple current.  
The worst-case condition occurs at VIN = 2VOUT  
,
where IC1 = ILOAD/2. For simplification, choose  
the input capacitor whose RMS current rating  
greater than half of the maximum load current.  
MP28303 Rev. 0.1  
12/13/2007  
www.MonolithicPower.com  
MPS Proprietary Information. Unauthorized Photocopy and Duplication Prohibited.  
© 2007 MPS. All Rights Reserved.  
6
TM  
MP28303 – 3A, 28V, 340KHz SYNCHRONOUS RECTIFIED, STEP-DOWN CONVERTER  
The input capacitor can be electrolytic, tantalum  
or ceramic. When using electrolytic or tantalum  
capacitors, a small, high quality ceramic  
capacitor, i.e. 0.1μF, should be placed as close  
to the IC as possible. When using ceramic  
capacitors, make sure that they have enough  
capacitance to provide sufficient charge to  
prevent excessive voltage ripple at input. The  
input voltage ripple caused by capacitance can  
be estimated by:  
Compensation Components  
MP28303 employs current mode control for  
easy compensation and fast transient response.  
The system stability and transient response are  
controlled through the COMP pin. COMP pin is  
the output of the internal transconductance  
error amplifier. A series capacitor-resistor  
combination sets a pole-zero combination to  
control the characteristics of the control system.  
The DC gain of the voltage feedback loop is  
given by:  
ILOAD  
VOUT  
VIN  
VOUT  
VIN  
ΔVIN  
=
×
× 1−  
VFB  
fS × C1  
AVDC = RLOAD × GCS × AVEA  
×
VOUT  
Where AVEA is the error amplifier voltage gain,  
400V/V; GCS is the current sense  
Where C1 is the input capacitance value.  
Output Capacitor  
transconductance, 6.0A/V; RLOAD is the load  
resistor value.  
The output capacitor is required to maintain the  
DC output voltage. Ceramic, tantalum, or low  
ESR electrolytic capacitors are recommended.  
Low ESR capacitors are preferred to keep the  
output voltage ripple low. The output voltage  
ripple can be estimated by:  
The system has 2 poles of importance. One is  
due to the compensation capacitor (C3) and the  
output resistor of error amplifier, and the other  
is due to the output capacitor and the load  
resistor. These poles are located at:  
GEA  
VOUT  
VOUT  
VIN  
1
ΔVOUT  
=
× 1−  
× RESR  
+
fS × L  
8 × fS × C2  
fP1  
=
2π× C3× AVEA  
Where C2 is the output capacitance value and  
RESR is the equivalent series resistance (ESR)  
value of the output capacitor.  
1
fP2  
GEA  
=
2π × C2× RLOAD  
Where,  
is  
the  
error  
amplifier  
In the case of ceramic capacitors, the  
impedance at the switching frequency is  
dominated by the capacitance. The output  
voltage ripple is mainly caused by the  
capacitance. For simplification, the output  
voltage ripple can be estimated by:  
transconductance, 820μA/V, and RLOAD is the load  
resistor value.  
The system has one zero of importance, due to the  
compensation  
capacitor  
(C3)  
and  
the  
compensation resistor (R3). This zero is located at:  
1
VOUT  
8 × fS2 × L × C2  
VOUT  
fZ1  
=
ΔVOUT  
=
× 1−  
2π × C3×R3  
V
IN  
The system may have another zero of  
importance, if the output capacitor has a large  
capacitance and/or a high ESR value. The zero,  
due to the ESR and capacitance of the output  
capacitor, is located at:  
In the case of tantalum or electrolytic capacitors,  
the ESR dominates the impedance at the  
switching frequency. For simplification, the  
output ripple can be approximated to:  
VOUT  
VOUT  
VIN  
ΔVOUT  
=
× ⎜1−  
×RESR  
1
fESR  
=
fS ×L  
2π × C2× RESR  
The characteristics of the output capacitor also  
affect the stability of the regulation system. The  
MP28303 can be optimized for a wide range of  
capacitance and ESR values.  
MP28303 Rev. 0.1  
12/13/2007  
www.MonolithicPower.com  
MPS Proprietary Information. Unauthorized Photocopy and Duplication Prohibited.  
© 2007 MPS. All Rights Reserved.  
7
TM  
MP28303 – 3A, 28V, 340KHz SYNCHRONOUS RECTIFIED, STEP-DOWN CONVERTER  
In this case (as shown in Figure 2), a third pole  
set by the compensation capacitor (C6) and the  
compensation resistor (R3) is used to  
compensate the effect of the ESR zero on the  
loop gain. This pole is located at:  
Table 3—Compensation Values for Typical  
Output Voltage/Capacitor Combinations  
VOUT  
L
C2  
R3  
C3  
C4  
1.8V 4.7μH  
100μF  
5.6k5.6nF None  
Ceramic  
1
2.5V 4.7μH - 47μF Ceramic 3.65k8.2nF None  
6.8μH  
fP3  
=
2π× C6×R3  
3.3V 6.8μH -  
10μH  
22μFx2  
Ceramic  
4.42k4.7nF None  
6.98k3.3nF None  
16.5k1.8nF None  
8.4k2.2nF None  
5.6k3.3nF None  
6.8k2.2nF None  
10k2.2nF None  
The goal of compensation design is to shape  
the converter transfer function to get a desired  
loop gain. The system crossover frequency  
where the feedback loop has the unity gain is  
important.  
5V  
10μH -  
15μH  
22μFx2  
Ceramic  
12V 15μH -  
22μH  
22μFx2  
Ceramic  
1.8  
4.7μH 100μF/100mΩ  
Lower crossover frequencies result in slower  
line and load transient responses, while higher  
crossover frequencies could cause system  
unstable. A good rule of thumb is to set the  
crossover frequency to approximately one-tenth  
of the switching frequency. Switching frequency  
for the MP28303 is 340KHz, so the desired  
crossover frequency is 34KHz.  
SP-CAP  
2.5V 4.7μH -  
6.8μH  
47μF  
SP-CAP  
3.3V 6.8μH -  
10μH  
47μF  
SP-CAP  
5V  
10μH -  
15μH  
47μF  
SP CAP  
2.5V 4.7μH -  
6.8μH  
560μF Al.  
30mESR  
10kΩ  
10kΩ  
12nF 1.8nF  
10nF 1.5nF  
Table 3 lists the typical values of compensation  
components for some standard output voltages  
with various output capacitors and inductors. The  
values of the compensation components have  
been optimized for fast transient responses and  
good stability at given conditions.  
3.3V 6.8μH -  
10μH  
560μF Al  
30mESR  
5V  
10μH -  
15μH  
470μF Al.  
30mESR  
15k8.2nF  
1nF  
12V 15μH -  
22μH  
220μF Al.  
30mESR  
15k10nF 390pF  
MP28303 Rev. 0.1  
12/13/2007  
www.MonolithicPower.com  
MPS Proprietary Information. Unauthorized Photocopy and Duplication Prohibited.  
© 2007 MPS. All Rights Reserved.  
8
TM  
MP28303 – 3A, 28V, 340KHz SYNCHRONOUS RECTIFIED, STEP-DOWN CONVERTER  
To optimize the compensation components for  
conditions not listed in Table 2, the following  
procedure can be used.  
External Bootstrap Diode  
It is recommended that an external bootstrap  
diode be added when the system has a 5V  
fixed input or the power supply generates a 5V  
output. This helps improve the efficiency of the  
regulator. The bootstrap diode can be a low  
cost one such as IN4148 or BAT54.  
1. Choose the compensation resistor (R3) to set  
the desired crossover frequency. Determine the  
R3 value by the following equation:  
2π × C2× fC VOUT  
5V  
R3 =  
×
GEA × GCS  
VFB  
Where fC is the desired crossover frequency,  
34KHz.  
BS  
10nF  
MP28303  
2. Choose the compensation capacitor (C3) to  
achieve the desired phase margin. For  
applications with typical inductor values, setting  
the compensation zero, fZ1, below one forth of  
the crossover frequency provides sufficient  
phase margin. Determine the C3 value by the  
following equation:  
SW  
MP28303_F02  
Figure 2—External Bootstrap Diode  
This diode is also recommended for high duty  
VOUT  
cycle operation (when  
>65%) and high  
VIN  
output voltage (VOUT>12V) applications.  
4
C3 >  
2π × R3 × fC  
3. Determine if the second compensation  
capacitor (C6) is required. It is required if the  
ESR zero of the output capacitor is located at  
less than half of the 340KHz switching  
frequency, or the following relationship is valid:  
fS  
2
1
<
2π × C2× RESR  
If this is the case, then add the second  
compensation capacitor (C6) to set the pole fP3  
at the location of the ESR zero. Determine the  
C6 value by the equation:  
C2 × RESR  
C4 =  
R3  
MP28303 Rev. 0.1  
12/13/2007  
www.MonolithicPower.com  
MPS Proprietary Information. Unauthorized Photocopy and Duplication Prohibited.  
© 2007 MPS. All Rights Reserved.  
9
TM  
MP28303 – 3A, 28V, 340KHz SYNCHRONOUS RECTIFIED, STEP-DOWN CONVERTER  
TYPICAL APPLICATION CIRCUITS  
C5  
10nF  
INPUT  
4.75V to 28V  
1
2
IN  
EN  
BS  
SW  
OUTPUT  
2.5V  
3A  
7
3
5
MP28303  
8
SS  
GND  
FB  
COMP  
4
6
D1  
B130  
C3  
4.7nF  
(optional)  
C6  
(optional)  
MP28303_F03  
Figure 3—MP28303 with AVX 47μF, 6.3V Ceramic Output Capacitor  
C5  
10nF  
INPUT  
4.75V to 28V  
2
1
IN  
EN  
BS  
SW  
OUTPUT  
2.5V  
3A  
3
5
7
8
MP28303  
SS  
FB  
GND  
COMP  
4
6
D1  
C3  
3.3nF  
B130  
(optional)  
C6  
(optional)  
MP28303_F04  
Figure 4—MP28303 with Panasonic 47μF, 6.3V Solid Polymer Output Capacitor  
MP28303 Rev. 0.1  
12/13/2007  
www.MonolithicPower.com  
MPS Proprietary Information. Unauthorized Photocopy and Duplication Prohibited.  
© 2007 MPS. All Rights Reserved.  
10  
TM  
MP28303 – 3A, 28V, 340KHz SYNCHRONOUS RECTIFIED, STEP-DOWN CONVERTER  
B130  
INPUT  
6V  
C5  
10nF  
1
2
IN  
EN  
BS  
SW  
OUTPUT  
5V  
3A  
7
8
3
5
MP28303  
SS  
FB  
GND  
COMP  
4
6
D1  
B130  
(optional)  
C3  
3.3nF  
C6  
(optional)  
MP28303_F05  
Figure 5—MP28303 Application Circuit with VIN = 6V and VO = 5V  
PACKAGE INFORMATION  
SOIC8N (EXPOSED PAD)  
PIN 1 IDENT.  
0.229(5.820)  
0.244(6.200)  
0.0075(0.191)  
0.0098(0.249)  
0.150(3.810)  
0.157(4.000)  
SEE DETAIL "A"  
NOTE 2  
0.011(0.280)  
0.020(0.508)  
x 45o  
0.013(0.330)  
0.020(0.508)  
0.050(1.270)BSC  
0.189(4.800)  
0.197(5.004)  
0o-8o  
0.016(0.410)  
0.050(1.270)  
DETAIL "A"  
0.049(1.250)  
0.060(1.524)  
0.053(1.350)  
0.068(1.730)  
SEATING PLANE  
0.001(0.030)  
0.004(0.101)  
NOTE:  
1) Control dimension is in inches. Dimension in bracket is millimeters.  
2) Exposed Pad Option Only (N-Package) ; 2.55+/- 0.25mm 3.38 +/- 0.44mm.  
Recommended Solder Board Area: 2.80mm x 3.82mm = 10.7mm2 (16.6mil2)  
x
NOTICE: The information in this document is subject to change without notice. Please contact MPS for current specifications.  
Users should warrant and guarantee that third party Intellectual Property rights are not infringed upon when integrating MPS  
products into any application. MPS will not assume any legal responsibility for any said applications.  
MP28303 Rev. 0.1  
12/13/2007  
www.MonolithicPower.com  
MPS Proprietary Information. Unauthorized Photocopy and Duplication Prohibited.  
© 2007 MPS. All Rights Reserved.  
11  

相关型号:

MP28311DN

Switching Regulator, Current-mode, 6.3A, 380kHz Switching Freq-Max, PDSO8, MS-012BA, SOIC-8
MPS

MP28311DN-LF

Switching Regulator, Current-mode, 6.3A, 380kHz Switching Freq-Max, PDSO8, ROHS COMPLIANT, MS-012BA, SOIC-8
MPS

MP28311DN-LF-Z

Switching Regulator, Current-mode, 6.3A, 380kHz Switching Freq-Max, PDSO8, ROHS COMPLIANT, MS-012BA, SOIC-8
MPS

MP28311DN-Z

Switching Regulator, Current-mode, 6.3A, 380kHz Switching Freq-Max, PDSO8, MS-012BA, SOIC-8
MPS

MP28311DQ

Switching Regulator, Current-mode, 6.3A, 380kHz Switching Freq-Max, 3 X 3 MM, MO-229VEED-5, QFN-10
MPS

MP28311DQ-LF

Switching Regulator, Current-mode, 6.3A, 380kHz Switching Freq-Max, 3 X 3 MM, ROHS COMPLIANT, MO-229VEED-5, QFN-10
MPS

MP28311DQ-LF-Z

Switching Regulator, Current-mode, 6.3A, 380kHz Switching Freq-Max, 3 X 3 MM, ROHS COMPLIANT, MO-229VEED-5, QFN-10
MPS

MP28311DQ-Z

Switching Regulator, Current-mode, 6.3A, 380kHz Switching Freq-Max, 3 X 3 MM, MO-229VEED-5, QFN-10
MPS

MP28313

2A, 16V, 340KHz Synchronous Rectified Step-Down Converter
MPS

MP28313CS

2A, 16V, 340KHz Synchronous Rectified Step-Down Converter
MPS

MP28313CS-LF

Switching Regulator, Current-mode, 3.4A, 340kHz Switching Freq-Max, PDSO8, ROHS COMPLIANT, MS-012AA, SOIC-8
MPS

MP28313CS-LF-Z

Switching Regulator, Current-mode, 3.4A, 340kHz Switching Freq-Max, PDSO8, ROHS COMPLIANT, MS-012AA, SOIC-8
MPS