MP2623GR [MPS]

Stand-Alone, 2A, 1- or2-Cell Switching LiFePO4 Battery Charger;
MP2623GR
型号: MP2623GR
厂家: MONOLITHIC POWER SYSTEMS    MONOLITHIC POWER SYSTEMS
描述:

Stand-Alone, 2A, 1- or2-Cell Switching LiFePO4 Battery Charger

电池
文件: 总16页 (文件大小:457K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MP2623  
Stand-Alone, 2A, 1- or2-Cell  
Switching LiFePO4 Battery Charger  
The Future of Analog IC Technology  
DESCRIPTION  
FEATURES  
The MP2623 is a monolithic, DC-DC, step-  
down, switching charger for a 1-or-2-cell serial  
LiFePO4 battery. It has an integrated high-side  
power MOSFET that can output up to a 2A  
charge current. It also has peak-current–mode  
control for fast loop response and easy  
compensation.  
Charges 1- and 2-Cell LiFePO4 Battery  
Packs  
Wide Operating-Input Range  
Programmable Charging Current of up to 2A  
±0.75% VBATT Accuracy  
0.2Integrated Power MOSFET  
Up to 90% Efficiency  
Fixed 1.1MHz Frequency  
Preconditioning for Fully-Depleted Batteries  
Charging Status Indicator  
Input Supply Fault Indicator  
Thermal Shutdown  
Cycle-by-Cycle Over-Current Protection  
Battery Temperature Monitor and Protection  
The MP2623 uses a sense resistor to control a  
programmable charge current, and accurately  
regulates the charge current and the charge  
voltage using two control loops.  
The MP2623 has multiple fault-condition  
protections that include cycle-by-cycle current  
limiting and thermal shutdown. Other safety  
features include battery temperature monitoring  
and protection, charge status indication and a  
programmable timer to halt charging after a set  
time period.  
APPLICATIONS  
Power Tools and Portable Equipment  
Handheld Terminals  
LiFePO4 Battery Chargers  
The MP2623 requires a minimal number of  
readily-available external components.  
All MPS parts are lead-free and adhere to the RoHS directive. For MPS green  
status, please visit MPS website under Quality Assurance. “MPS” and “The  
Future of Analog IC Technology” are Registered Trademarks of Monolithic  
Power Systems, Inc.  
The MP2623 is available in a 4mm×4mm 16-pin  
QFN package.  
TYPICAL APPLICATION  
D1  
VIN  
5.5V to 24V  
CIN  
C1  
4.7  
10  
L
RS1  
VIN  
SW  
4.7  
VREF33  
C7  
0.1  
100 m  
C3  
D2  
MP2623  
1-2 Cell  
LiFePO4  
1
R1  
R2  
VCC  
BST  
C2  
22  
CHGOK  
CSP  
ACOK  
BATT  
R3  
R5 750  
10k  
CELLS  
COMPI  
COMPV  
TMR  
NTC  
EN  
R4 2.5k  
GND  
RNTC  
10k  
ON  
OFF  
C6  
0.1  
C4  
C5  
2.2nF  
2.2nF  
MP2623 Rev. 1.0  
3/16/2012  
www.MonolithicPower.com  
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.  
© 2012 MPS. All Rights Reserved.  
1
MP2623 – 2A, 24V INPUT, 1.1MHz 1- OR 2-CELL SWITCHING LIFEPO4 BATTERY CHARGER  
ORDERING INFORMATION  
Part Number*  
Package  
Top Marking  
MP2623GR  
QFN16 (4×4mm)  
MP2623  
*For Tape & Reel, add suffix –Z (e.g. MP2623GR–Z)  
PACKAGE REFERENCE  
TOP VIEW  
PIN 1 ID  
VIN  
SW  
BST TMR  
16  
15  
14 13  
VCC  
NTC  
1
2
3
4
12 GND  
11  
CSP  
ACOK  
CHGOK  
10 BATT  
9
COMPI  
5
6
7
8
VREF33 EN CELLS COMPV  
EXPOSED PAD  
ON BACKSIDE  
ABSOLUTE MAXIMUM RATINGS (1)  
Supply Voltage VCC, VIN ............................ 26V  
Thermal Resistance (4)  
QFN16 (4x4mm).....................46...... 10... °C/W  
θJA  
θJC  
V
V
V
SW..................................... -0.3V to (VIN + 0.3V)  
BST ...................................................... VSW + 6V  
CSP, VBATT, ...................................-0.3V to +18V  
Notes:  
1) Exceeding these ratings may damage the device.  
2) The maximum allowable power dissipation is a function of the  
maximum junction temperature TJ(MAX), the junction-to-  
ambient thermal resistance θJA, and the ambient temperature  
TA. The maximum allowable continuous power dissipation at  
VACOK, VCHGOK, ..............................-0.3V to +26V  
All Other Pins..................................-0.3V to +6V  
(2)  
any  
ambient  
temperature  
is  
calculated  
by  
Continuous Power Dissipation  
(TA = 25°C)  
PD(MAX)=(TJ(MAX)-TA)/θJA. Exceeding the maximum  
allowable power dissipation will cause excessive die  
temperature, and the regulator will go into thermal shutdown.  
Internal thermal shutdown circuitry protects the device from  
permanent damage.  
............................................................. 2.7W  
Junction Temperature...............................150°C  
Lead Temperature ....................................260°C  
Storage Temperature............... -65°C to +150°C  
3) The device is not guaranteed to function outside of its  
operating conditions.  
4) Measured on JESD51-7 4-layer board.  
Recommended Operating Conditions (3)  
Supply Voltage VIN ..............................5V to 24V  
Operating Junction Temp. (TJ) -40°C to +125°C  
MP2623 Rev. 1.0  
3/16/2012  
www.MonolithicPower.com  
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.  
© 2012 MPS. All Rights Reserved.  
2
MP2623 – 2A, 24V INPUT, 1.1MHz 1- OR 2-CELL SWITCHING LIFEPO4 BATTERY CHARGER  
ELECTRICAL CHARACTERISTICS  
VIN = 19V, TA = 25°C, CELLS=0V, unless otherwise noted.  
Parameters  
Symbol Condition  
Min  
Typ  
3.6  
7.2  
1
Max  
3.627  
7.254  
Units  
CELLS=0V  
VBATT  
3.573  
7.146  
Battery-terminal voltage  
V
CELLS=Float  
CSPBATT current  
Switch-on resistance  
Switch leakage  
ICSP,IBATT Charging disabled  
µA  
RDS(ON)  
0.2  
0
1
μA  
EN= 4V, VSW = 0V  
CC(5)  
4.1  
2
A
A
Peak-current limit  
TRICKLE  
CC current  
ICC  
ITRICKLE  
VTC  
RS1=100mΩ  
1.8  
5%  
2.0  
2.2  
A
Trickle-charge current  
Trickle-charge voltage threshold  
Trickle-charge hysteresis  
Termination current threshold  
10%  
2.52  
300  
10%  
ICC  
V/cell  
mV/cell  
ICC  
IBF  
15%  
230  
CELLS=0V,  
VBATT =3.2V  
Oscillator frequency  
fSW  
1100  
350  
kHz  
Fold-back frequency  
Maximum duty cycle  
VBATT =0V  
kHz  
%
90  
Maximum current-sense voltage  
(CSP to BATT)  
Minimum ON time (5)  
VSENSE  
tON  
170  
200  
100  
3.3  
mV  
ns  
V
Under-voltage lockout threshold,  
rising  
VIN  
3.1  
5
3.5  
Under-voltage lockout threshold,  
hysteresis  
300  
1000  
mV  
mA  
min  
Open-drain sink current  
VDRAIN =0.3V  
In trickle mode  
CTMR=0.1μF  
Dead battery indicator  
30  
Recharge threshold for VBATT  
Recharge hysteresis  
VRECHG  
3.42  
100  
V/cell  
mV  
%of  
VREF33  
NTC low-temp rising threshold  
NTC high-temp falling threshold  
RNTC=NCP18X103, 0°C  
70.5  
27.5  
73.5  
29.5  
180  
76.5  
31.5  
R
NTC=NCP18X103,  
%of  
VREF33  
50°C  
VIN min. head-room (reverse  
blocking)  
VINVBATT  
mV  
MP2623 Rev. 1.0  
3/16/2012  
www.MonolithicPower.com  
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.  
© 2012 MPS. All Rights Reserved.  
3
MP2623 – 2A, 24V INPUT, 1.1MHz 1- OR 2-CELL SWITCHING LIFEPO4 BATTERY CHARGER  
ELECTRICAL CHARACTERISTICS (continued)  
VIN = 19V, TA = 25°C, CELLS=0V, unless otherwise noted.  
Parameters  
Symbol Condition  
Min  
Typ  
Max  
Units  
0.4  
V
EN input low voltage  
EN input high voltage  
1.8  
V
4
EN  
EN  
=4V  
=0V  
μA  
mA  
EN input current  
0.2  
0.5  
EN=4V  
EN=4V,  
Supply current (shutdown)  
Supply current (quiescent)  
Thermal shutdown (5)  
VREF33 output voltage  
VREF33 load regulation  
Consider VREF33 pin  
output current,  
R3=10k,RNTC=10k  
0.665  
mA  
2.0  
mA  
EN=0V, CELLS=0V  
150  
3.3  
30  
°C  
V
ILOAD =0 to 10mA  
mV  
Notes:  
5) Guaranteed by design.  
MP2623 Rev. 1.0  
3/16/2012  
www.MonolithicPower.com  
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.  
© 2012 MPS. All Rights Reserved.  
4
MP2623 – 2A, 24V INPUT, 1.1MHz 1- OR 2-CELL SWITCHING LIFEPO4 BATTERY CHARGER  
PIN FUNCTIONS  
Pin #  
Name Description  
1
VCC  
IC Supply Voltage.  
Thermistor Input. Connect a resistor from this pin to VREF33, and the thermistor from this  
pin to ground.  
2
3
NTC  
Valid Input Supply Indicator. Open drain output. Add a pull-up resistor. Logic LOW indicates  
the presence of a valid input supply.  
ACOK  
Charging Status Indicator. Open drain output. Add a pull-up resistor. Logic LOW indicates  
normal charging. Logic HIGH indicates either a completed charge process or a fault-  
suspended process.  
4
CHGOK  
VREF33  
Internal Linear Regulator, 3.3V Reference Output. Bypass to GND with a 1μF ceramic  
capacitor.  
5
6
On/Off Control Input.  
EN  
Command Input. Indicates the number of LiFePO4 battery cells. Connect to VREF33 or float  
for 2-cell operation. Ground for 1-cell operation.  
7
CELLS  
V-LOOP Compensation. Decouple this pin with a capacitor and a resistor.  
I-LOOP Compensation. Decouple this pin with a capacitor and a resistor.  
Positive Battery Terminal.  
8
COMPV  
COMPI  
BATT  
9
10  
Battery-Charge Current-Sense–Positive Input. Connect a resistor RS1 between CSP and  
200mV  
11  
CSP  
I
CHG   
A   
BATT. The full charge current is:  
.
RS1  
m  
Ground. Voltage reference for the regulated output voltage. Place this node outside of the  
path of the switching diode (D2) to the input ground to prevent switching current spikes from  
inducing voltage noise.  
12  
13  
GND  
TMR  
Set-Safe–Time Period. A 0.1µA current charges and discharges the external capacitor  
decoupled to GND. The capacitor value programs the time period.  
Bootstrap. Requires a charged capacitor to drive the power switch’s gate above the supply  
voltage. Connect a capacitor between SW and BST pins to form a floating supply across the  
power switch driver.  
14  
15  
16  
BST  
SW  
VIN  
Switch Output.  
Regulator Input Voltage. The MP2623 regulates a 5V-to-24V input to a voltage suitable for  
charging either a 1- or 2-cell LiFePO4 battery. Requires capacitors to prevent large voltage  
spikes from appearing at the input.  
MP2623 Rev. 1.0  
3/16/2012  
www.MonolithicPower.com  
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.  
© 2012 MPS. All Rights Reserved.  
5
MP2623 – 2A, 24V INPUT, 1.1MHz 1- OR 2-CELL SWITCHING LIFEPO4 BATTERY CHARGER  
TYPICAL PERFORMANCE CHARACTERISTICS  
VIN=5V/ 9V, C1=4.7μF, C2=22μF, L=4.7μH, RS1=100m, Real/Simulation Battery Load, TA=25°C,  
unless otherwise noted.  
1 Cell Charge Current vs.  
Battery Voltage  
1 Cell Battery Charge Curve  
2 Cells Battery Charge Curve  
Battery Simulator  
3.62  
3.57  
3.52  
3.47  
3.42  
3.37  
3.32  
3.27  
2.5  
2.5  
7.3  
7.2  
2.4  
2
I
CHG  
ICHG  
2
2
VIN=24V  
VIN=5V  
7.1  
7
1.6  
1.2  
1.5  
1
1.5  
6.9  
V
BATT  
1
6.8  
6.7  
6.6  
6.5  
VBATT  
0.8  
0.5  
0
0.5  
0
0.4  
0
0
10  
20  
30  
40  
50  
0
1
2
3
4
60  
0
5
10  
15  
20  
25  
TIMES(MIN)  
BATTERY VOLTAGE(V)  
TIMES(MIN)  
Breakdown Voltage  
2 Cells Charge Current vs.  
Battery Voltage  
NTC Control Window  
Battery Simulator  
16  
14  
12  
10  
8
2.4  
2
3
2.5  
2
Low Temp Off  
Low Temp On  
1.6  
1.2  
0.8  
0.4  
0
1.5  
1
High Temp On  
High Temp Off  
6
4
VIN=24  
VIN=9V  
0.5  
0
2
0
0
1
2
3
4
5
6
7
8
0
10  
20  
30  
40  
8
12  
16  
20  
24  
28  
BATTERY VOLTAGE(V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
Efficiency vs.  
Battery Voltage  
1 Cell, ICHG=2A  
Efficiency vs. I  
1 Cell, VBATT=3.6V  
Efficiency vs. V  
CHG  
IN  
1 Cell, VBATT=3.4V, ICHG=2A  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
VIN=9V  
VIN=5  
VIN=5V  
VIN=19V  
80  
70  
VIN=9V  
VIN=19V  
VIN=24V  
60  
50  
40  
30  
20  
10  
VIN=24V  
2.5 2.7 2.9 3.1 3.3 3.5 3.7  
BATTERY VOLTAGE(V)  
0
500 1000 1500 2000 2500  
CHARGE CURRENT(A)  
0
5
10  
15  
20  
25  
INPUT VOLTAGE (V)  
MP2623 Rev. 1.0  
3/16/2012  
www.MonolithicPower.com  
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.  
© 2012 MPS. All Rights Reserved.  
6
MP2623 – 2A, 24V INPUT, 1.1MHz 1- OR 2-CELL SWITCHING LIFEPO4 BATTERY CHARGER  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
VIN=5V/ 9V, C1=4.7μF, C2=22μF, L=4.7μH, RS1=100m, Real/Simulation Battery Load, TA=25°C,  
unless otherwise noted.  
BATT Float Voltage vs. V  
1 Cell  
BATT Charge Full Voltage  
vs. Temperature  
BATT Charge Full Voltage  
vs. Temperature  
IN  
V
=19V  
IN  
1 Cell  
2 Cells  
7.3  
V
=19V  
IN  
3.65  
3.6  
3.65  
3.6  
7.2  
7.1  
7
3.55  
3.5  
3.55  
3.5  
6.9  
3.45  
3.45  
6.8  
80  
0
5
10 15 20  
25 30  
-40 -20  
0
20 40 60 80  
-40 -20  
0
20 40 60  
o
o
INPUT VOLTAGE(V)  
TEMPERATURE ( C)  
TEMPERATURE ( C)  
Constant Current Charge  
vs. Temperature  
VREF33 vs. Temperature  
RDS_ON vs. Temperature  
V
=19V  
IN  
1 Cell ICHG=500mA  
0.35  
0.3  
3.5  
3.4  
3.3  
3.2  
3.1  
3.0  
500  
490  
480  
470  
460  
450  
0.25  
0.2  
0.15  
0.1  
-40 -20  
0
20 40 60 80  
o
-40 -20  
0
20 40 60 80  
o
-40 -20  
0
20 40 60 80  
o
TEMPERATURE( C)  
TEMPERATURE ( C)  
TEMPERATURE ( C)  
MP2623 Rev. 1.0  
3/16/2012  
www.MonolithicPower.com  
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.  
© 2012 MPS. All Rights Reserved.  
7
MP2623 – 2A, 24V INPUT, 1.1MHz 1- OR 2-CELL SWITCHING LIFEPO4 BATTERY CHARGER  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
VIN=5V/ 9V, C1=4.7μF, C2=22μF, L=4.7μH, RS1=100m, Real/Simulation Battery Load, TA=25°C,  
unless otherwise noted.  
Steady State Waveform  
Steady State Waveform  
Steady State Waveform  
1 Cell, V  
=2V  
BATT  
1 Cell, V  
=3.2V  
BATT  
1 Cell, V  
=3.6V  
BATT  
V
V
IN  
IN  
2V/div.  
V
2V/div.  
IN  
2V/div.  
V
V
BATT  
BATT  
V
BATT  
2V/div.  
2V/div.  
1V/div.  
V
V
SW  
V
SW  
SW  
2V/div.  
2V/div.  
2V/div.  
I
CHG  
1A/div.  
I
CHG  
I
CHG  
1A/div.  
1A/div.  
400ns/div.  
400ns/div.  
Power On Waveform  
Power Off Waveform  
EN On Waveform  
1 Cell, I  
=2A,V  
=3V  
1 Cell, I  
=2A,V  
=3V  
1 Cell, I  
CHG  
=2A,V =3V  
BATT  
CHG  
BATT  
CHG  
BATT  
V
EN  
5V/div.  
V
V
IN  
IN  
2V/div.  
2V/div.  
V
BATT  
2V/div.  
V
BATT  
2V/div.  
V
SW  
V
SW  
2V/div.  
5V/div.  
V
V
SW  
BATT  
1V/div.  
2V/div.  
I
CHG  
I
I
2A/div.  
CHG  
CHG  
2A/div.  
1A/div.  
4ms/div.  
100ms/div.  
EN Off Waveform  
NTC Control  
1 Cell, ICHG=2A, V  
Battery Simulator  
,
Timer Out  
1 Cell, I  
=2A,V  
=3V  
=2.5V,  
1 Cell,I  
CHG  
=2A, V =3.5V,  
BATT  
CHG  
BATT  
BATT  
C
=47pF, Battery Simulator  
TIMER  
V
V
NTC  
EN  
5V/div.  
5V/div.  
V
TMR  
500mV/div.  
V
BATT  
V
BATT  
2V/div.  
2V/div.  
V
V
SW  
V
SW  
SW  
2V/div.  
2V/div.  
5V/div.  
V
BATT  
1V/div.  
I
CHG  
I
CHG  
2A/div.  
1A/div.  
I
CHG  
1A/div.  
200ms/div.  
MP2623 Rev. 1.0  
3/16/2012  
www.MonolithicPower.com  
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.  
© 2012 MPS. All Rights Reserved.  
8
MP2623 – 2A, 24V INPUT, 1.1MHz 1- OR 2-CELL SWITCHING LIFEPO4 BATTERY CHARGER  
FUNCTIONAL BLOCK DIAGRAM  
VIN  
VCC  
Current Sense  
A1  
1100kHz  
OSC  
BST  
PRE_REGS  
EN  
Regulator  
Current Limit  
Comparator  
M1  
5 bit trim  
S
Q
VREF  
IREF  
Drive  
R
R
CTRL  
SW  
3 bit trim  
PWM  
Comparator  
D2  
Mini Refresh  
L
LDO  
Charge  
Current Sense  
VBATT  
VREF33  
CSP  
x6  
FB  
cells  
RS1  
A2  
GMI  
GMV  
BATT  
NTC  
COMP  
0.12V  
or 1.2V  
1.2V  
1- or 2- cell  
LiFePO Battery  
4
TC/CC  
Charge Comparator  
CTRL  
FB  
COMPI  
0.83V  
Max Trickle Time  
Max Reflesh Time  
Max Charge Time  
TMR  
Timer  
Charge Control  
Logic  
FB  
1.11V  
COMPV  
Recharge Comparator  
VIN  
0.12V  
Charge  
Current Sense  
BF  
Comparator  
ACOK  
BATT+300mV  
GND  
CELLS  
ACOK  
CHGOK  
Figure 1: Functional Block Diagram  
MP2623 Rev. 1.0  
3/16/2012  
www.MonolithicPower.com  
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.  
© 2012 MPS. All Rights Reserved.  
9
MP2623 – 2A, 24V INPUT, 1.1MHz 1- OR 2-CELL SWITCHING LIFEPO4 BATTERY CHARGER  
(10% of the RS1-programmed constant-charge  
current, ICC) until the battery voltage reaches VTC.  
OPERATION  
The MP2623 is a peak-current–mode controlled  
switching charger for use with LiFePO4 batteries.  
If the charge stays in the trickle-charge mode  
until the time-out condition triggers, charging  
terminates and will not resume until either the  
input power or the EN signal refreshes.  
Otherwise, GMI regulates the charge current to  
the level set by RS1. The charger operates in  
constant-current–charging mode. The COMPI  
voltage—regulated by GMI—determines the  
switching duty cycle.  
At the beginning of each cycle, M1 is off and the  
COMP voltage exceeds the output of the current-  
sense amplifier (A1). The PWM comparator’s  
output is low, and the rising edge of the 1.1MHz  
CLK signal sets the RS flip-flop that turns on M1;  
this connects the SW pin and the inductor to the  
input supply.  
A1 senses and amplifies the inductor current:  
The PWM comparator then compares the sum of  
this signal and the ramp compensator signal  
against the COMP signal. When the sum of the  
A1 output and the ramp compensator exceeds  
the COMP voltage, the RS flip-flop resets and  
turns M1 off. The external switching diode (D2)  
then conducts the inductor current. If the sum of  
the A1 output and the ramp compensator does  
not exceed the COMP voltage, then the falling  
edge of the CLK resets the flip-flop.  
When the battery voltage triggers constant-  
voltage mode, GMV regulates the COMP pin and  
the duty cycle. When the charge current drops to  
the battery-full threshold, IBF (typically 10% ICC),  
the battery is defined as fully-charged, the  
charger stops charging, and CHGOK goes high  
to indicate the charge-full condition. If the total  
charge time exceeds the timer period, charging  
terminates at once and will resume when either  
the input power or EN signal can restart the  
charger.  
The MP2623 uses COMP to select the smaller  
value of GMI and GMV to implement either  
current-loop control or voltage-loop control.  
Current-loop control triggers when the battery  
voltage goes low, which results in the GMV  
output saturating. The GMI compares the charge  
current (as a voltage sensed through RS1)  
against the reference voltage to regulate the  
charge current to a constant value. When the  
battery voltage charges up to the reference  
voltage, the output of GMV goes low and initiates  
voltage loop control to control the duty cycle to  
regulate the output voltage.  
Figure 2 shows the typical charge profile of the  
MP2623.  
CV charge  
Threshold  
Constant  
Charge  
Current  
ICHG  
VBATT  
CC charge  
Threshold  
IBF  
Trickle  
Charge  
Current  
Trickle charge  
CC charge  
CV charge  
Charge Full  
Figure 2: Li-Ion Battery Charging Profile  
Automatic Recharge  
The MP2623 has an internal linear regulator—  
VREF33—to power internal circuitry. It can also  
power external circuitry as long as the load does  
not exceed the maximum current (30mA).  
Connect a 1μF bypass capacitor from VREF33 to  
GND to ensure stability.  
After the battery completely recharges, the  
charger removes all the blocks besides the  
battery voltage monitor to reduce the leakage  
current from the input or the battery. If the battery  
voltage drops below 3.42V/Cell, the circuit will  
automatically recharge the battery using soft-start.  
The timer will then restart to avoid triggering a  
false fault.  
Charge Cycle (Mode change: TrickleCC  
CV)  
At the start of a charging cycle, the MP2623  
monitors VBATT. If VBATT is lower than the trickle-  
charge threshold, VTC (typically 2.52V/cell), the  
charging cycle will start in trickle-charge mode  
MP2623 Rev. 1.0  
3/16/2012  
www.MonolithicPower.com  
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.  
© 2012 MPS. All Rights Reserved.  
10  
MP2623 – 2A, 24V INPUT, 1.1MHz 1- OR 2-CELL SWITCHING LIFEPO4 BATTERY CHARGER  
Charger Status Indication  
MP2623 has two open-drain status outputs:  
CHGOK  
when the IC supply voltage (VCC) exceeds the  
under-voltage lockout threshold and the  
regulated voltage VIN is 300mV higher than VBATT  
to make sure the regulator can operate normally.  
to the NTC pin, and connect the thermistor from  
the NTC pin to GND. A resistor divider  
determines the voltage on the NTC pin as a  
function of the battery temperature. Charging  
halts when the NTC voltage falls below the lower  
NTC window threshold. Charging resumes when  
the voltage is within the NTC window range.  
ACOK and  
. The ACOK pin goes low  
Application with Power Selector  
CHGOK  
indicates charge status. Table 1  
MP2623 is a stand-alone, switching charger.  
Typically, VIN receives power from the adapter  
input, VIN, through a diode that blocks the battery  
voltage to VCC. For power selector application,  
however, VIN powers the system and charges the  
battery simultaneously so the user can start-up a  
device with a drained battery when it is  
connected to an adapter. Replace the diode from  
the stand-alone switching charger circuit with a  
MOSFET to improve system efficiency and  
reduce voltage drop of the block device.  
CHGOK  
different charge conditions.  
describes ACOK and  
outputs under  
Table 1Charging Status Indication  
Charger Status  
ACOK  
CHGOK  
low  
low  
In charging  
End of charge, NTC  
fault, timer out, thermal  
low  
high  
high  
shutdown, EN disable  
VIN–VBATT<0.3V.  
VCC<UVLO,  
high  
An additional MOSFET between VIN and the  
battery allows the battery to charge even in the  
absence of an adapter or connection to an invalid  
adapter. Figure 3 shows a typical application  
circuit with power-path management. When the  
adapter input is invalid or absent, the block diode  
Timer Operation  
MP2623 uses an internal timer to limit the charge  
period during both the trickle charge and the total  
charge cycle. The MP2623 terminates charging  
once the charge time exceeds the time limit. A  
good battery should fully recharge within the  
allotted time period; otherwise the battery has a  
fault. An external capacitor at the TMR pin  
programs the time period.  
is replaced by a MOSFET controlled by ACOK  
signal.  
The trickle mode charge time is:  
CTMR  
tTRICKLE _ TMR 30mins  
0.1F  
The total charge time is:  
CTMR  
tTOTAL _ TMR 3hours   
0.1F  
When time-out occurs, the charger is suspended.  
Only refreshing the input power or EN signal can  
restart the charge cycle.  
Negative Thermal Coefficient (NTC)  
Thermistor  
The MP2623 has a built-in NTC-resistance  
window comparator that allows the MP2623 to  
sense the battery temperature through the  
thermistor included in the battery pack. Connect  
a resistor with an appropriate value from VREF33  
MP2623 Rev. 1.0  
3/16/2012  
www.MonolithicPower.com  
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.  
© 2012 MPS. All Rights Reserved.  
11  
MP2623 – 2A, 24V INPUT, 1.1MHz 1- OR 2-CELL SWITCHING LIFEPO4 BATTERY CHARGER  
M1  
VIN  
VSYS  
5V to 24V  
C8  
22  
R6  
M2  
C1  
4. 7  
L
RS1  
VIN  
SW  
4.7  
VREF33  
C7  
0.1  
100 m  
C3  
1
1- or 2- cell  
LiFePO Battery  
MP2623  
R1  
R2  
VCC  
BST  
C2  
22  
D2  
4
CHGOK  
CSP  
ACOK  
CELLS  
NTC  
BATT  
R3  
10k  
R5 750  
COMPI  
COMPV  
TMR  
R4 2.5k  
GND  
EN  
RNTC  
10k  
ON  
OFF  
C6  
0.1  
C4  
2.2nF  
C5  
2.2nF  
Figure 3: MP2623 with Power Selector  
MP2623 Rev. 1.0  
3/16/2012  
www.MonolithicPower.com  
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.  
© 2012 MPS. All Rights Reserved.  
12  
MP2623 – 2A, 24V INPUT, 1.1MHz 1- OR 2-CELL SWITCHING LIFEPO4 BATTERY CHARGER  
OPERATION FLOW CHART  
Figure 4: Normal Charging Operation Flow Chart  
MP2623 Rev. 1.0  
3/16/2012  
www.MonolithicPower.com  
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.  
© 2012 MPS. All Rights Reserved.  
13  
MP2623 – 2A, 24V INPUT, 1.1MHz 1- OR 2-CELL SWITCHING LIFEPO4 BATTERY CHARGER  
OPERATION FLOW CHART (continued)  
Figure 5: Fault-Protection Flow Chart  
MP2623 Rev. 1.0  
3/16/2012  
www.MonolithicPower.com  
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.  
© 2012 MPS. All Rights Reserved.  
14  
MP2623 – 2A, 24V INPUT, 1.1MHz 1- OR 2-CELL SWITCHING LIFEPO4 BATTERY CHARGER  
APPLICATION INFORMATION  
Setting the Charge Current  
R6//RNTC _Hot  
VTH_High  
(5)  
29.5%  
R3 R6//RNTC _Hot VREF33  
RS1 sets the MP2623 charge current (See  
Typical Application). Determine the current with  
the following equation:  
According to equation (4) and equation (5), R3 =  
9.63k and R6 = 505k.  
200mV  
Simplifying, select R3=10k and R6 no connect to  
approximate the estimate.  
ICHG  
A   
(1)  
RS1  
mΩ  
Selecting the Inductor  
Use 1µH-to-10µH inductor for most  
applications. Calculate the inductance value from  
the following equation.  
a
VREF33  
Low Temp Threshold  
VOUT (V VOUT  
)
R3  
IN  
VTH_Low  
L   
(2)  
NTC  
V  IL fOSC  
IN  
Where ΔIL is the inductor ripple current. Choose  
ΔIL to be approximately 30% of the maximum  
charge current, 2A. VOUT is the 1- or 2-cell battery  
voltage.  
RNTC  
R6  
High Temp Threshold  
VTH_High  
The maximum inductor peak current is:  
Figure 6: NTC function block  
Selecting the Input Capacitor  
IL  
2
IL(MAX) ICHG  
(3)  
The input capacitor reduces the surge current  
drawn from the input and the switching noise  
from the device. Chose an input capacitor with an  
impedance at the switching frequency less than  
the input source impedance to prevent a high-  
frequency switching current. Use ceramic  
capacitors with X5R or X7R dielectrics with low  
ESR and small temperature coefficients. A 4.7µF  
capacitor is sufficient for most applications.  
Under light-load conditions (below 100mA), use a  
larger inductor value to improve efficiency.  
Select an inductor with a DC resistance of less  
than 200mto optimize efficiency.  
NTC Function  
Figure 6 shows that the low temperature  
threshold and high-temperature threshold are  
preset internally to 73.5%·VREF33 and  
29.5%·VREF33, respectively, using a resistor  
divider. For a given NTC thermistor, we can  
select appropriate R3 and R6 resistors to set the  
NTC window.  
Selecting the Output Capacitor  
The output capacitor limits output voltage ripple  
and ensures regulator-loop stability. The output  
capacitor impedance should be low at the  
switching frequency. Use ceramic capacitors with  
X5R or X7R dielectrics.  
For the thermistor (NCP18XH103) noted in the  
electrical characteristic previous,  
PC Board Layout  
At 0°C, RNTC_Cold = 27.445k;  
At 50°C, RNTC_Hot = 4.1601k.  
Connect the high frequency and high current  
paths (GND, IN, and SW) to the device with  
short, wide, and direct traces. Place the input  
capacitor as close as possible to the IN and GND  
pins. Place the external feedback resistors next  
to the FB pin. Keep the switching node SW short  
and away from the feedback network.  
Assuming that the NTC window is between 0°C  
and 50°C, we can derive the following equations:  
R6//RNTC _ Cold  
VTH_Low  
(4)  
73.5%  
R3 R6//RNTC _ Cold VREF33  
MP2623 Rev. 1.0  
3/16/2012  
www.MonolithicPower.com  
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.  
© 2012 MPS. All Rights Reserved.  
15  
MP2623 – 2A, 24V INPUT, 1.1MHz 1- OR 2-CELL SWITCHING LIFEPO4 BATTERY CHARGER  
PACKAGE INFORMATION  
QFN16 (4 x 4mm)  
3.90  
4.10  
2.15  
2.45  
0.50  
0.70  
PIN 1 ID  
SEE DETAIL A  
13  
16  
PIN 1 ID  
MARKING  
0.25  
12  
1
4
0.35  
2.15  
2.45  
3.90  
4.10  
0.65  
BSC  
PIN 1 ID  
INDEX AREA  
9
8
5
TOP VIEW  
BOTTOM VIEW  
PIN 1 ID OPTION A  
0.45x45º TYP.  
PIN 1 ID OPTION B  
R0.25 TYP.  
0.80  
1.00  
0.20 REF  
0.00  
0.05  
DETAIL A  
SIDE VIEW  
3.80  
2.30  
NOTE:  
1) ALL DIMENSIONS ARE IN MILLIMETERS.  
2) EXPOSED PADDLE SIZE DOES NOT INCLUDE MOLD FLASH.  
3) LEAD COPLANARITY SHALL BE0.10 MILLIMETER MAX.  
4) JEDEC REFERENCE IS MO-220, VARIATION VGGC.  
5) DRAWING IS NOT TO SCALE.  
1.00  
0.35  
0.65  
RECOMMENDED LAND PATTERN  
NOTICE: The information in this document is subject to change without notice. Please contact MPS for current specifications.  
Users should warrant and guarantee that third party Intellectual Property rights are not infringed upon when integrating MPS  
products into any application. MPS will not assume any legal responsibility for any said applications.  
MP2623 Rev. 1.0  
3/16/2012  
www.MonolithicPower.com  
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.  
© 2012 MPS. All Rights Reserved.  
16  

相关型号:

MP2624

I2C Controlled 4.5A Single Cell USB / Adaptor Charger with Narrow VDC Power Path Management USB OTG and Shipping Mode
MPS

MP2624A

4.5A, I2C-Controlled, Single-Cell USB/Adaptor Charger with Narrow VDC Power-Path Management USB OTG and SYS Reset Function
MPS

MP2624AGL

4.5A, I2C-Controlled, Single-Cell USB/Adaptor Charger with Narrow VDC Power-Path Management USB OTG and SYS Reset Function
MPS

MP2624GL

I2C Controlled 4.5A Single Cell USB / Adaptor Charger with Narrow VDC Power Path Management USB OTG and Shipping Mode
MPS

MP2625

2A Switching Charger with NVDC Power Path Management For Single Cell Li Battery
MPS

MP2625B

2A Switching Charger with NVDC Power Path Management For Single Cell Li Battery
MPS

MP2625BGL

2A Switching Charger with NVDC Power Path Management For Single Cell Li Battery
MPS

MP2625GL

2A Switching Charger with NVDC Power Path Management For Single Cell Li Battery
MPS

MP2626

USB-Compliant Single Cell Li-ion Switching Charger with USB-OTG Boost
MPS

MP2626GR

USB-Compliant Single Cell Li-ion Switching Charger with USB-OTG Boost
MPS

MP2631

28V, 1A, Li-lon, Linear Battery Charger with 10mA High Voltage LDO
MPS

MP2631DQ

28V, 1A, Li-lon, Linear Battery Charger with 10mA High Voltage LDO
MPS