MC9328MX21DVH [MOTOROLA]

i.MX family of microprocessors; i.MX系列微处理器
MC9328MX21DVH
型号: MC9328MX21DVH
厂家: MOTOROLA    MOTOROLA
描述:

i.MX family of microprocessors
i.MX系列微处理器

外围集成电路 微处理器 时钟
文件: 总106页 (文件大小:1937K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MC9328MX21/D  
Rev. 1.1, 09/29/2004  
Freescale Semiconductor  
Product Preview  
MC9328MX21  
Package Information  
(MAPBGA–289)  
MC9328MX21  
Ordering Information: See Table 1 on page 4  
Contents  
1 Introduction  
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1  
2 Signal Descriptions. . . . . . . . . . . . . . . . . . . . . . . .5  
3 Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
4 Package Information. . . . . . . . . . . . . . . . . . . . .102  
5 Document Revision History . . . . . . . . . . . . . . .105  
Freescale’s i.MX family of microprocessors has  
demonstrated leadership in the portable handheld  
market. Building on the success of the MX (Media  
Extensions) series, the i.MX21 (MC9328MX21)  
provides a leap in performance with an ARM926EJ-S™  
microprocessor core that provides native security and  
accelerated Java support in addition to highly integrated  
system functions. The i.MX products specifically  
address the needs of the smartphone and portable  
product markets with their intelligent integrated  
peripherals, advanced processor core, and power  
management capabilities.  
The i.MX21 features the advanced and power-efficient  
ARM926EJ-S core operating at speeds up to 266 MHz  
and is part of a growing family of Smart Speed products  
that offer high performance processing optimized for  
lowest power consumption. On-chip modules such as a  
video accelerator module, LCD controller, USB On-The-  
Go, CMOS sensor interface, and two synchronous serial  
interfaces offer designers a rich suite of peripherals that  
can enhance any product seeking to provide a rich  
This document contains information on a product under development. Freescale reserves the right to change or discontinue this  
product without notice.  
© Freescale Semiconductor, Inc., 2004. All rights reserved.  
Introduction  
multimedia experience. In addition, the i.MX21 provides optional hardware enabled security features  
including high assurance boot mode, unique processor IDs, secret key support, secure RAM, and a security  
monitor. These optional features enable secure e-commerce, digital rights management (DRM),  
information encryption, and secure software downloads.  
For cost sensitive applications, the NAND Flash controller allows the use of low-cost NAND Flash  
devices to be used as primary or secondary non-volatile storage. The on-chip error correction code (ECC)  
and parity checking circuitry of the NAND Flash controller frees the CPU for other tasks. WLAN,  
Bluetooth and expansion options are provided through PCMCIA/CF, USB, and MMC/SD host controllers.  
The i.MX21 is packaged in a 289-pin MAPBGA.  
i.MX21  
Figure 1. i.MX21 Functional Block Diagram  
MC9328MX21 Product Preview, Rev. 1.1  
2
Freescale Semiconductor  
Introduction  
1.1  
Conventions  
This document uses the following conventions:  
OVERBAR is used to indicate a signal that is active when pulled low: for example, RESET.  
Logic level one is a voltage that corresponds to Boolean true (1) state.  
Logic level zero is a voltage that corresponds to Boolean false (0) state.  
To set a bit or bits means to establish logic level one.  
To clear a bit or bits means to establish logic level zero.  
A signal is an electronic construct whose state conveys or changes in state convey information.  
A pin is an external physical connection. The same pin can be used to connect a number of signals.  
Asserted means that a discrete signal is in active logic state.  
Active low signals change from logic level one to logic level zero.  
Active high signals change from logic level zero to logic level one.  
Negated means that an asserted discrete signal changes logic state.  
Active low signals change from logic level zero to logic level one.  
Active high signals change from logic level one to logic level zero.  
LSB means least significant bit or bits, and MSB means most significant bit or bits. References to low and  
high bytes or words are spelled out.  
Numbers preceded by a percent sign (%) are binary. Numbers preceded by a dollar sign ($) or 0x are  
hexadecimal.  
1.2  
Target Applications  
The i.MX21 is targeted for advanced information appliances, smart phones, Web browsers, digital MP3 audio  
players, handheld computers based on the popular Palm OS platform, and messaging applications.  
1.3  
Reference Documentation  
The following documents are required for a complete description of the i.MX21 and are necessary to design  
properly with the device. Especially for those not familiar with the ARM926EJ-S processor or previous  
DragonBall products, the following documents are helpful when used in conjunction with this manual.  
ARM Architecture Reference Manual (ARM Ltd., order number ARM DDI 0100)  
ARM7TDMI Data Sheet (ARM Ltd., order number ARM DDI 0029)  
ARM920T Technical Reference Manual (ARM Ltd., order number ARM DDI 0151C)  
MC9328MX21 Product Brief (order number MC9328MX21P/D)  
MC9328MX21 Reference Manual (order number MC9328MX21RM/D)  
MC9328MX1 Product Brief (order number MC9328MX1P/D)  
MC9328MX1 Data Sheet (order number MC9328MX1/D)  
MC9328MX1 Reference Manual (order number MC9328MX1RM/D)  
The Freescale manuals are available on the Freescale Semiconductor Web site at http://www.freescale.com. These  
documents may be downloaded directly from the Freescale Web site, or printed versions may be ordered. The  
ARM Ltd. documentation is available from http://www.arm.com.  
MC9328MX21 Product Preview, Rev. 1.1  
Freescale Semiconductor  
3
Introduction  
1.4  
Ordering Information  
Table 1 provides ordering information for the i.MX21.  
Table 1. i.MX21 Ordering Information  
Marking  
Package Size  
Package Type  
Operating range  
MC9328MX21VG  
289-lead MAPBGA  
0.65mm, 14mm x 14mm  
Lead  
0°C–70°C  
MC9328MX21VK  
MC9328MX21VH  
MC9328MX21VM  
MC9328MX21DVG  
MC9328MX21DVK  
MC9328MX21DVH  
MC9328MX21DVM  
MC9328MX21CVG  
MC9328MX21CVK  
MC9328MX21CVH  
MC9328MX21CVM  
289-lead MAPBGA  
0.65mm, 14mm x 14mm  
Lead-free  
Lead  
0°C–70°C  
0°C–70°C  
289-lead MAPBGA  
0.8mm, 17mm x 17mm  
289-lead MAPBGA  
0.8mm, 17mm x 17mm  
Lead-free  
Lead  
0°C–70°C  
289-lead MAPBGA  
0.65mm, 14mm x 14mm  
-30°C–70°C  
-30°C–70°C  
-30°C–70°C  
-30°C–70°C  
-40°C–85°C  
-40°C–85°C  
-40°C–85°C  
-40°C–85°C  
289-lead MAPBGA  
0.65mm, 14mm x 14mm  
Lead-free  
Lead  
289-lead MAPBGA  
0.8mm, 17mm x 17mm  
289-lead MAPBGA  
0.8mm, 17mm x 17mm  
Lead-free  
Lead  
289-lead MAPBGA  
0.65mm, 14mm x 14mm  
289-lead MAPBGA  
0.65mm, 14mm x 14mm  
Lead-free  
Lead  
289-lead MAPBGA  
0.8mm, 17mm x 17mm  
289-lead MAPBGA  
0.8mm, 17mm x 17mm  
Lead-free  
1.5  
Features  
The i.MX21 boasts a robust array of features that can support a wide variety of applications. Below is a brief  
description of i.MX21 features.  
ARM926EJ-S Core Complex  
enhanced Multimedia Accelerator (eMMA)  
Optional Security System  
Display and Video Modules  
— LCD Controller (LCDC)  
— Smart LCD Controller (SLCDC)  
— CMOS Sensor Interface (CSI)  
Bus Master Interface (BMI)  
MC9328MX21 Product Preview, Rev. 1.1  
4
Freescale Semiconductor  
Signal Descriptions  
Wireless Connectivity  
— Fast Infra-Red Interface (Fast IR)  
Wired Connectivity  
— USB On-The-Go (USBOTG) Controller  
— Four Universal Asynchronous Receiver/Transmitters (UART1, UART2, UART3, and UART4)  
— Two Configurable Serial Peripheral Interfaces (CSPI1 and CSPI2) for High Speed Data Transfer  
— Inter-IC (I2C) Bus Module  
— Two Synchronous Serial Interfaces (SSI) with Inter-IC Sound (I2S)  
— Digital Audio Mux  
— One-Wire Controller  
— Keypad Interface  
Memory Expansion and I/O Card Support  
— Two Multimedia Card and Secure Digital (MMC/SD) Host Controller Modules  
Memory Interface  
— External Interface Module (EIM)  
— SDRAM Controller (SDRAMC)  
— NAND Flash Controller (NFC)  
— PCMCIA/CF Interface  
Standard System Resources  
— Clock Generation Module (CGM) and Power Control Module  
— Three General-Purpose 32-Bit Counters/Timers  
— Watchdog Timer  
— Real-Time Clock/Sampling Timer (RTC)  
— Pulse-Width Modulator (PWM) Module  
— Direct Memory Access Controller (DMAC)  
— General-Purpose I/O (GPIO) Ports  
— Debug Capability  
2 Signal Descriptions  
This section identifies and describes the i.MX21 signals and their pin assignments. The i.MX21 signals are listed in  
Table 2.  
Table 2. i.MX21 Signal Descriptions  
Signal Name  
Function/Notes  
External Bus/Chip Select (EIM)  
A [25:0]  
Address bus signals  
Data bus signals  
D [31:0]  
EB0  
MSB Byte Strobe—Active low external enable byte signal that controls D [31:24], shared with  
SDRAM DQM0.  
EB1  
Byte Strobe—Active low external enable byte signal that controls D [23:16], shared with SDRAM  
DQM1.  
MC9328MX21 Product Preview, Rev. 1.1  
Freescale Semiconductor  
5
Signal Descriptions  
Table 2. i.MX21 Signal Descriptions (Continued)  
Function/Notes  
Signal Name  
EB2  
Byte Strobe—Active low external enable byte signal that controls D [15:8], shared with SDRAM  
DQM2 and PCMCIA PC_REG.  
EB3  
LSB Byte Strobe—Active low external enable byte signal that controls D [7:0], shared with SDRAM  
DQM3 and PCMCIA PC_IORD.  
OE  
Memory Output Enable—Active low output enables external data bus, shared with PCMCIA  
PC_IOWR.  
CS [5:0]  
Chip Select—The chip select signals CS [3:2] are multiplexed with CSD [1:0] and are selected by  
the Function Multiplexing Control Register (FMCR) in the System Control chapter. By default CSD  
[1:0] is selected. DTACK is multiplexed with CS4.  
ECB  
LBA  
Active low input signal sent by flash device to the EIM whenever the flash device must terminate an  
on-going burst sequence and initiate a new (long first access) burst sequence.  
Active low signal sent by flash device causing the external burst device to latch the starting burst  
address.  
BCLK  
RW  
Clock signal sent to external synchronous memories (such as burst flash) during burst mode.  
RW signal—Indicates whether external access is a read (high) or write (low) cycle. This signal is  
also shared with the PCMCIA PC_WE.  
DTACK  
DTACK signal—External input data acknowledge signal, multiplexed with CS4.  
Bootstrap  
BOOT [3:0]  
System Boot Mode Select—The operational system boot mode of the i.MX21 upon system reset is  
determined by the settings of these pins.  
SDRAM Controller  
SDBA [4:0]  
SDIBA [3:0]  
SDRAM non-interleave mode bank address signals. These signals are multiplexed with address  
signals A[20:16].  
SDRAM interleave addressing mode bank address signals. These signals are multiplexed with  
address signals A[24:21].  
MA [11:0]  
DQM [3:0]  
SDRAM address signals. MA[9:0] are multiplexed with address signals A[10:1].  
SDRAM data qualifier mask multiplexed with EB[3:0]. DQM3 corresponds to D[31:24], DQM2  
corresponds to D[23:16], DQM1 corresponds to D[15:8], and DQM0 corresponds to D[7:0].  
CSD0  
CSD1  
SDRAM Chip Select signal. This signal is multiplexed with the CS2 signal. This signal is selectable  
by programming the Function Multiplexing Control Register in the System Control chapter.  
SDRAM Chip Select signal. This signal is multiplexed with the CS3 signal. This signal is selectable  
by programming the Function Multiplexing Control Register in the System Control chapter.  
RAS  
SDRAM Row Address Select signal  
SDRAM Column Address Select signal  
SDRAM Write Enable signal  
SDRAM Clock Enable 0  
CAS  
SDWE  
SDCKE0  
SDCKE1  
SDCLK  
SDRAM Clock Enable 1  
SDRAM Clock  
MC9328MX21 Product Preview, Rev. 1.1  
6
Freescale Semiconductor  
Signal Descriptions  
Table 2. i.MX21 Signal Descriptions (Continued)  
Function/Notes  
Signal Name  
Clocks and Resets  
EXTAL26M  
Crystal input (26MHz), or a 16 MHz to 32 MHz oscillator (or square-wave) input when internal  
oscillator circuit is shut down.  
XTAL26M  
EXTAL32K  
XTAL32K  
CLKO  
Oscillator output to external crystal  
32 kHz crystal input  
Oscillator output to 32 kHz crystal  
Clock Out signal selected from internal clock signals. Please refer to clock controller for internal  
clock selection.  
EXT_48M  
EXT_266M  
RESET_IN  
This is a special factory test signal. To ensure proper operation, connect this signal to ground.  
This is a special factory test signal. To ensure proper operation, connect this signal to ground.  
Master Reset—External active low Schmitt trigger input signal. When this signal goes active, all  
modules (except the reset module, SDRAMC module, and the clock control module) are reset.  
RESET_OUT  
POR  
Reset Out—Internal active low output signal from the Watchdog Timer module and is asserted  
from the following sources: Power-on reset, External reset (RESET_IN), and Watchdog time-out.  
Power On Reset—Active low Schmitt trigger input signal. The POR signal is normally generated by  
an external RC circuit designed to detect a power-up event.  
CLKMODE[1:0]  
These are special factory test signals. To ensure proper operation, leave these signals as no  
connects.  
OSC26M_TEST  
TEST_WB[2:0]  
This is a special factory test signal. To ensure proper operation, leave this signal as a no connect.  
These are special factory test signals. However, these signals are also multiplexed with GPIO  
PORT E as well as alternate keypad signals. If not utilizing these signals for GPIO functionality or  
for it’s other multiplexed function, then configure as GPIO input with pull up enabled, and leave as  
a no connect.  
TEST_WB[4:3]  
WKGD  
These are special factory test signals. To ensure proper operation, leave these signals as no  
connects.  
Battery indicator input used to qualify the walk-up process. Also multiplexed with TIN.  
JTAG  
TRST  
TDO  
TDI  
Test Reset Pin—External active low signal used to asynchronously initialize the JTAG controller.  
Serial Output for test instructions and data. Changes on the falling edge of TCK.  
Serial Input for test instructions and data. Sampled on the rising edge of TCK.  
Test Clock to synchronize test logic and control register access through the JTAG port.  
TCK  
TMS  
Test Mode Select to sequence the JTAG test controller’s state machine. Sampled on the rising  
edge of TCK.  
JTAG_CTRL  
RTCK  
JTAG Controller select signal—JTAG_CTRL is sampled during the rising edge of TRST. Must be  
pulled to logic high for proper JTAG interface to debugger. Pulling JTAG_CRTL low is for internal  
test purposes only.  
JTAG Return Clock used to enhance stability of JTAG debug interface devices. This signal is  
multiplexed with OWIRE, hence utilizing OWIRE will render RTCK unusable and vice versa.  
MC9328MX21 Product Preview, Rev. 1.1  
Freescale Semiconductor  
7
Signal Descriptions  
Signal Name  
Table 2. i.MX21 Signal Descriptions (Continued)  
Function/Notes  
CMOS Sensor Interface  
CSI_D [7:0]  
CSI_MCLK  
CSI_VSYNC  
CSI_HSYNC  
CSI_PIXCLK  
Sensor port data  
Sensor port master clock  
Sensor port vertical sync  
Sensor port horizontal sync  
Sensor port data latch clock  
LCD Controller  
LD [17:0]  
LCD Data Bus—All LCD signals are driven low after reset and when LCD is off. LD[15:0] signals  
are multiplexed with SLCDC1_DAT[15:0] from SLCDC1 and BMI_D[15:0]. LD[17] signal is  
multiplexed with BMI_WRITE of BMI. LD[16] signal is multiplexed with BMI_READ_REQ of BMI  
and EXT_DMAGRANT signals.  
FLM_VSYNC  
(or simply referred  
to as VSYNC)  
Frame Sync or Vsync—This signal also serves as the clock signal output for gate  
driver (dedicated signal SPS for Sharp panel HR-TFT). This signal is multiplexed with  
BMI_RXF_FULL and BMI_WAIT of the BMI.  
LP_HSYNC (or simply  
referred to as HSYNC)  
Line Pulse or HSync  
LSCLK  
Shift Clock. This signal is multiplexed with the BMI_CLK_CS from BMI.  
Alternate Crystal Direction/Output Enable.  
OE_ACD  
CONTRAST  
This signal is used to control the LCD bias voltage as contrast control. This signal is multiplexed  
with the BMI_READ from BMI.  
SPL_SPR  
PS  
Sampling start signal for left and right scanning. This signal is multiplexed with the SLCDC1_CLK.  
Control signal output for source driver (Sharp panel dedicated signal). This signal is multiplexed  
with the SLCDC1_CS.  
CLS  
REV  
Start signal output for gate driver. This signal is invert version of PS (Sharp panel dedicated  
signal). This signal is multiplexed with the SLCDC1_RS.  
Signal for common electrode driving signal preparation (Sharp panel dedicated signal). This signal  
is multiplexed with SLCDC1_D0.  
Smart LCD Controller  
SLCDC1_CLK  
SLCDC1_CS  
SLCDC1_RS  
SLCDC1_D0  
SLCDC Clock output signal. This signal is multiplexed and available at 2 alternate locations. These  
are SPL_SPR and SD2_CLK signals of LCDC and SD2, respectively.  
SLCDC Chip Select output signal. This signal is multiplexed and available at 2 alternate signal  
locations. These are PS and SD2_CMD signals of LCDC and SD2, respectively.  
SLCDC Register Select output signal. This signal is multiplexed and available at 2 alternate signal  
locations. These are CLS and SD2_D3 signals of LCDC and SD2, respectively.  
SLCDC serial data output signal. This signal is multiplexed and available at 2 alternate signal  
locations. These are and REV and SD2_D2 signals of LCDC and SD2, respectively. This signal is  
inactive when a parallel data interface is used.  
MC9328MX21 Product Preview, Rev. 1.1  
8
Freescale Semiconductor  
Signal Descriptions  
Table 2. i.MX21 Signal Descriptions (Continued)  
Function/Notes  
Signal Name  
SLCDC1_DAT[15:0]  
SLCDC Data output signals for connection to a parallel SLCD panel interface. These signals are  
multiplexed with LD[15:0] while an alternate 8-bit SLCD muxing is available on LD[15:8]. Further  
alternate muxing of these signals are available on some of the USB OTG and USBH1 signals.  
SLCDC2_CLK  
SLCDC2_CS  
SLCDC2_RS  
SLCDC2_D0  
SLCDC Clock input signal for pass through to SLCD device. This signal is multiplexed with  
SSI3_CLK signal from SSI3.  
SLCDC Chip Select input signal for pass through to SLCD device. This signal is multiplexed with  
SSI3_TXD signal from SSI3.  
SLCDC Register Select input signal for pass through to SLCD device. This signal is multiplexed  
with SSI3_RXD signal from SSI3.  
SLCD Data input signal for pass through to SLCD device. This signal is multiplexed with SSI3_FS  
signal from SSI3.  
Bus Master Interface (BMI)  
BMI_D[15:0]  
BMI bidirectional data bus. Bus width is programmable between 8-bit or 16-bit.These signals are  
multiplexed with LD[15:0] and SLCDC_DAT[15:0].  
BMI_CLK_CS  
BMI_WRITE  
BMI bidirectional clock or chip select signal.This signal is multiplexed with LSCLK of LCDC.  
BMI bidirectional signal to indicate read or write access. This is an input signal when the BMI is a  
slave and an output signal when BMI is the master of the interface. BMI_WRITE is asserted for  
write and negated for read.This signal is muxed with LD[17] of LCDC.  
BMI_READ  
BMI output signal to enable data read from external slave device. This signal is not used and  
driven high when BMI is slave.This signal is multiplexed with CONTRAST signal of LCDC.  
BMI_READ_REQ  
BMI Read request output signal to external bus master. This signal is active when the data in the  
TXFIFO is larger or equal to the data transfer size of a single external BMI access.This signal is  
muxed with LD[16] of LCDC.  
BMI_RXF_FULL  
BMI_WAIT  
BMI Receive FIFO full active high output signal to reflect if the RxFIFO reaches water mark  
value.This signal is muxed with VSYNC of the LCDC.  
BMI Wait—Active low signal to wait for data ready (read cycle) or accepted (write_cycle). Also  
multiplexed with VSYNC.  
External DMA  
EXT_DMAREQ  
External DMA Request input signal. This signal is multiplexed with CSPI1_RDY.  
External DMA Grant output signal. This signal is multiplexed with LD[16].  
EXT_DMAGRANT  
NAND Flash Controller  
NF_CLE  
NAND Flash Command Latch Enable output signal. This signal is multiplexed with PC_POE of  
PCMCIA.  
NF_CE  
NF_WP  
NF_ALE  
NAND Flash Chip Enable output signal. This signal is multiplexed with PC_CE1 of PCMCIA.  
NAND Flash Write Protect output signal. This signal is multiplexed with PC_CE2 of PCMCIA.  
NAND Flash Address Latch Enable output signal. This signal is multiplexed with PC_OE of  
PCMCIA.  
NF_RE  
NAND Flash Read Enable output signal. This signal is multiplexed with PC_RW of PCMCIA.  
MC9328MX21 Product Preview, Rev. 1.1  
Freescale Semiconductor  
9
Signal Descriptions  
Signal Name  
Table 2. i.MX21 Signal Descriptions (Continued)  
Function/Notes  
NF_WE  
NAND Flash Write Enable output signal. This signal is multiplexed with and PC_BVD2 of PCMCIA.  
NAND Flash Ready Busy input signal. This signal is multiplexed with PC_RST of PCMCIA.  
NF_RB  
NF_IO[15:0]  
NAND Flash Data input and output signals. NF_IO[15:7] signals are multiplexed with A[25:21] and  
A[15:13]. NF_IO[7:0] signals are multiplexed with several PCMCIA signals.  
PCMCIA Controller  
PC_A[25:0]  
PC_D[15:0]  
PC_CD1  
PCMCIA Address signals. These signals are multiplexed with A[25:0].  
PCMCIA Data input and output signals. These signals are multiplexed with D[15:0].  
PCMCIA Card Detect1 input signal. This signal is multiplexed with NFIO[7] signal of NF.  
PCMCIA Card Detect2 input signal. This signal is multiplexed with NFIO[6] signal of NF.  
PC_CD2  
PC_WAIT  
PCMCIA Wait input signal to extend current access This signal is multiplexed with NFIO[5] signal  
of NF.  
PC_READY  
PCMCIA Ready input signal to indicate card is ready for access. This signal is multiplexed with  
NFIO[4] signal of NF.  
PC_RST  
PC_OE  
PCMCIA Reset output signal. This signal is multiplexed with NFRB signal of NF.  
PCMCIA Memory Read Enable output signal asserted during common or attribute memory read  
cycles. This signal is multiplexed with NFALE signal of NF.  
PC_WE  
PCMCIA Memory Write Enable output signal asserted during common or attribute memory cycles.  
This signal is shared with RW of the EIM.  
PC_VS1  
PCMCIA Voltage Sense1 input signal. This signal is multiplexed with NFIO[2] signal of NF  
PCMCIA Voltage Sense2 input signal. This signal is multiplexed with NFIO[1] signal of NF  
PCMCIA Battery Voltage Detect1 input signal. This signal is multiplexed with NFIO[0] signal of NF  
PCMCIA Battery Voltage Detect2 input signal. This signal is multiplexed with NF_WE signal of NF  
PCMCIA Speaker Out output signal. This signal is multiplexed with PWMO signal.  
PCMCIA Register Select output signal. This signal is shared with EB2 of EIM.  
PC_VS2  
PC_BVD1  
PC_BVD2  
PC_SPKOUT  
PC_REG  
PC_CE1  
PCMCIA Card Enable1 output signal. This signal is multiplexed with NFCE signal of NF.  
PCMCIA Card Enable2 output signal. This signal is multiplexed with NFWP signal of NF.  
PCMCIA IO Read output signal. This signal is shared with EB3 of EIM.  
PC_CE2  
PC_IORD  
PC_IOWR  
PC_WP  
PCMCIA IO Write output signal. This signal is shared with OE signal of EIM.  
PCMCIA Write Protect input signal. This signal is multiplexed with NFIO[3] signal of NF.  
PC_POE  
PCMCIA Output Enable signal to enable voltage translation buffers and transceivers. This signal is  
multiplexed with NFCLE signal of NF.  
PC_RW  
PCMCIA Read Write output signal to control external transceiver direction. Asserted high for read  
access and negated low for write access. This signal is multiplexed with NFRE signal of NF.  
PC_PWRON  
PCMCIA input signal to indicate that the card power has been applied and stabilized.  
MC9328MX21 Product Preview, Rev. 1.1  
10  
Freescale Semiconductor  
Signal Descriptions  
Table 2. i.MX21 Signal Descriptions (Continued)  
Signal Name  
Function/Notes  
CSPI  
CSPI1_MOSI  
Master Out/Slave In signal  
Master In/Slave Out signal  
CSPI1_MISO  
CSPI1_SS[2:0]  
CSPI1_SCLK  
CSPI1_RDY  
Slave Select (Selectable polarity) signal. CSPI1_SS2 is also multiplexed with USBG_RXDAT.  
Serial Clock signal  
Serial Data Ready signal. Also multiplexed with EXT_DMAREQ.  
CSPI2_MOSI  
CSPI2_MISO  
CSPI2_SS[2:0]  
Master Out/Slave In signal. This signal is multiplexed with USBH2_TXDP signal of USB OTG.  
Master In/Slave Out signal. This signal is multiplexed with USBH2_TXDM signal of USB OTG.  
Slave Select (Selectable polarity) signals. These signals are multiplexed with USBH2_FS,  
USBH2_RXDP and USBH2_RXDM signal of USB OTG  
CSPI2_SCLK  
CSPI3_MOSI  
CSPI3_MISO  
CSPI3_SS  
Serial Clock signal. This signal is multiplexed with USBH2_OE signal of USB OTG  
Master Out/Slave In signal. This signal is multiplexed with SD1_CMD.  
Master In/Slave Out signal. This signal is multiplexed with SD1_D0.  
Slave Select (Selectable polarity) signal multiplexed with SD1_D3.  
Serial Clock signal. This signal is multiplexed with SD1_CLK.  
CSPI3_SCLK  
General Purpose Timers  
TIN  
Timer Input Capture or Timer Input Clock—The signal on this input is applied to all 3 timers  
simultaneously. This signal is muxed with the Walk-up Guard Mode WKGD signal in the PLL,  
Clock, and Reset Controller module.  
TOUT1 (or simply TOUT) Timer Output signal from General Purpose Timer1 (GPT1). This signal is multiplexed with  
SSI1_MCLK and SSI2_MCLK signal of SSI1 and SSI2. The pin name of this signal is simply  
TOUT.  
TOUT2  
TOUT3  
Timer Output signal from General Purpose Timer1 (GPT2). This signal is multiplexed with PWMO.  
Timer Output signal from General Purpose Timer1 (GPT3). This signal is multiplexed with PWMO.  
USB On-The-Go  
USB_BYP  
USB Bypass input active low signal.  
USB_PWR  
USB Power output signal  
USB_OC  
USB Over current input signal  
USBG_RXDP  
USBG_RXDM  
USBG_TXDP  
USBG_TXDM  
USBG_RXDAT  
USBG_OE  
USB OTG Receive Data Plus input signal. This signal is muxed with SLCDC1_DAT15.  
USB OTG Receive Data Minus input signal. This signal is muxed with SLCDC1_DAT14.  
USB OTG Transmit Data Plus output signal. This signal is muxed with SLCDC1_DAT13.  
USB OTG Transmit Data Minus output signal. This signal is muxed with SLCDC1_DAT12.  
USB OTG Transceiver differential data receive signal. Multiplexed with CSPI1_SS2.  
USB OTG Output Enable signal. This signal is muxed with SLCDC1_DAT11.  
MC9328MX21 Product Preview, Rev. 1.1  
Freescale Semiconductor  
11  
Signal Descriptions  
Signal Name  
Table 2. i.MX21 Signal Descriptions (Continued)  
Function/Notes  
USBG_ON  
USBG_FS  
USB OTG Transceiver ON output signal. This signal is muxed with SLCDC1_DAT9.  
USB OTG Full Speed output signal. This signal is multiplexed with external transceiver  
USBG_TXR_INT signal of USB OTG. This signal is muxed with SLCDC1_DAT10.  
USBH1_RXDP  
USB Host1 Receive Data Plus input signal. This signal is multiplexed with UART4_RXD and  
SLCDC1_DAT6. It also provides an alternative multiplex for UART4_RTS, where this signal is  
selectable by programming the Function Multiplexing Control Register in the System Control  
chapter.  
USBH1_RXDM  
USBH1_TXDP  
USB Host1 Receive Data Minus input signal. This signal is muxed with SLCDC1_DAT5. It also  
provides an alternative multiplex for UART4_CTS.  
USB Host1 Transmit Data Plus output signal. This signal is multiplexed with UART4_CTS and  
SLCDC1_DAT4. It also provides an alternative multiplex for UART4_RXD, where this signal is  
selectable by programming the Function Multiplexing Control Register in the System Control  
chapter.  
USBH1_TXDM  
USB Host1 Transmit Data Minus output signal. This signal is multiplexed with UART4_TXD and  
SLCDC1_DAT3.  
USBH1_RXDAT  
USBH1_OE  
USB Host1 Transceiver differential data receive signal. Multiplexed with USBH1_FS.  
USB Host1 Output Enable signal. This signal is muxed with SLCDC1_DAT2.  
USBH1_FS  
USB Host1 Full Speed output signal. This signal is multiplexed with UART4_RTS and  
SLCDC1_DAT1 and USBH1_RXDAT.  
USBH_ON  
USB Host transceiver ON output signal. This signal is muxed with SLCDC1_DAT0.  
USBH2_RXDP  
USBH2_RXDM  
USB Host2 Receive Data Plus input signal. This signal is multiplexed with CSPI2_SS[1] of CSPI2.  
USB Host2 Receive Data Minus input signal. This signal is multiplexed with CSPI2_SS[2] of  
CSPI2.  
USBH2_TXDP  
USBH2_TXDM  
USB Host2 Transmit Data Plus output signal. This signal is multiplexed with CSPI2_MOSI of  
CSPI2.  
USB Host2 Transmit Data Minus output signal. This signal is multiplexed with CSPI2_MISO of  
CSPI2.  
USBH2_OE  
USBH2_FS  
USB Host2 Output Enable signal. This signal is multiplexed with CSPI2_SCLK of CSPI2.  
USB Host2 Full Speed output signal. This signal is multiplexed with CSPI2_SS[0] of CSPI2.  
USB OTG I2C Clock Output signal. This signal is multiplexed with SLCDC1_DAT8.  
USB OTG I2C Data Input/Output signal. This signal is multiplexed with SLCDC1_DAT7.  
USB OTG transceiver Interrupt input. Multiplexed with USBG_FS.  
USBG_SCL  
USBG_SDA  
USBG_TXR_INT  
Secure Digital Interface  
SD1_CMD  
SD1_CLK  
SD Command bidirectional signal—If the system designer does not want to make use of the  
internal pull-up, via the Pull-up enable register, a 4.7K–69K external pull up resistor must be  
added. This signal is multiplexed with CSPI3_MOSI.  
SD Output Clock. This signal is multiplexed with CSPI3_SCLK.  
MC9328MX21 Product Preview, Rev. 1.1  
12  
Freescale Semiconductor  
Signal Descriptions  
Table 2. i.MX21 Signal Descriptions (Continued)  
Function/Notes  
Signal Name  
SD1_D[3:0]  
SD Data bidirectional signals—If the system designer does not want to make use of the internal  
pull-up, via the Pull-up enable register, a 50 K–69K external pull up resistor must be added.  
SD1_D[3] is muxed with CSPI3_SS while SD1_D[0] is muxed with CSPI3_MISO.  
SD2_CMD  
SD Command bidirectional signal. This signal is multiplexed with SLCDC1_CS signal from  
SLCDC1.  
SD2_CLK  
SD Output Clock signal. This signal is multiplexed with SLCDC1_CLK signal from SLCDC1.  
SD2_D[3:0]  
SD Data bidirectional signals. SD2_D[3:2] are which are multiplexed with SLCDC1_RS and  
SLCDC_D0 signals from SLCDC1.  
UARTs – IrDA/Auto-Bauding  
UART1_RXD  
UART1_TXD  
UART1_RTS  
UART1_CTS  
UART2_RXD  
UART2_TXD  
UART2_RTS  
UART2_CTS  
UART3_RXD  
UART3_TXD  
UART3_RTS  
UART3_CTS  
UART4_RXD  
UART4_TXD  
UART4_RTS  
UART4_CTS  
Receive Data input signal  
Transmit Data output signal  
Request to Send input signal  
Clear to Send output signal  
Receive Data input signal. This signal is multiplexed with KP_ROW6 signal from KPP.  
Transmit Data output signal. This signal is multiplexed with KP_COL6 signal from KPP.  
Request to Send input signal. This signal is multiplexed with KP_ROW7 signal from KPP.  
Clear to Send output signal. This signal is multiplexed with KP_COL7 signal from KPP.  
Receive Data input signal. This signal is multiplexed with IR_RXD from FIRI.  
Transmit Data output signal. This signal is multiplexed with IR_TXD from FIRI.  
Request to Send input signal  
Clear to Send output signal  
Receive Data input signal which is multiplexed with USBH1_RXDP and USBH1_TXDP.  
Transmit Data output signal which is multiplexed with USBH1_TXDM.  
Request to Send input signal which is multiplexed with USBH1_FS and USBH1_RXDP.  
Clear to Send output signal which is multiplexed with USBH1_TXDP and USBH1_RXDM.  
Serial Audio Port – SSI (configurable to I2S protocol and AC97)  
SSI1_CLK  
SSI1_TXD  
SSI1_RXD  
SSI1_FS  
Serial clock signal which is output in master or input in slave  
Transmit serial data  
Receive serial data  
Frame Sync signal which is output in master and input in slave  
SSI1 master clock. Multiplexed with TOUT.  
Serial clock signal which is output in master or input in slave.  
Transmit serial data signal  
SSI1_MCLK  
SSI2_CLK  
SSI2_TXD  
SSI2_RXD  
Receive serial data  
MC9328MX21 Product Preview, Rev. 1.1  
Freescale Semiconductor  
13  
Signal Descriptions  
Signal Name  
Table 2. i.MX21 Signal Descriptions (Continued)  
Function/Notes  
SSI2_FS  
Frame Sync signal which is output in master and input in slave.  
SSI2 master clock. Multiplexed with TOUT.  
SSI2_MCLK  
SSI3_CLK  
Serial clock signal which is output in master or input in slave. This signal is multiplexed with  
SLCDC2_CLK  
SSI3_TXD  
SSI3_RXD  
SSI3_FS  
Transmit serial data signal which is multiplexed with SLCDC2_CS  
Receive serial data which is multiplexed with SLCDC2_RS  
Frame Sync signal which is output in master and input in slave. This signal is multiplexed with  
SLCDC2_D0.  
SAP_CLK  
SAP_TXD  
SAP_RXD  
SAP_FS  
Serial clock signal which is output in master or input in slave.  
Transmit serial data  
Receive serial data  
Frame Sync signal which is output in master and input in slave.  
I2C  
I2C_CLK  
I2C Clock  
I2C Data  
I2C_DATA  
1-Wire  
OWIRE  
PWMO  
One wire input and output signal. This signal is multiplexed with JTAG RTCK.  
PWM  
PWM Output. This signal is multiplexed with PC_SPKOUT of PCMCIA, as well as TOUT2 and  
TOUT3 of the General Purpose Timer module.  
Keypad  
KP_COL[7:0]  
KP_ROW[7:0]  
Keypad Column selection signals. KP_COL[7:6] are multiplexed with UART2_CTS and  
UART2_TXD respectively. Alternatively, KP_COL6 is also available on the internal factory test  
signal TEST_WB2. The Function Multiplexing Control Register in the System Control chapter must  
be used in conjunction with programming the GPIO multiplexing (to select the alternate signal  
multiplexing) to choose which signal KP_COL6 is available.  
Keypad Row selection signals. KP_ROW[7:6] are multiplexed with UART2_RTS and UART2_RXD  
signals respectively. Alternatively, KP_ROW7 and KP_ROW6 are available on the internal factory  
test signals TEST_WB0 and TEST_WB1 respectively. The Function Multiplexing Control Register  
in the System Control chapter must be used in conjunction with programming the GPIO  
multiplexing (to select the alternate signal multiplexing) to choose which signals KP_ROW6 and  
KP_ROW7 are available.  
Noisy Supply Pins  
NVDD  
NVSS  
Noisy Supply for the I/O pins. There are six (6) I/O voltage rings, NVDD1 through NVDD6.  
Noisy Ground for the I/O pins  
MC9328MX21 Product Preview, Rev. 1.1  
14  
Freescale Semiconductor  
Specifications  
Table 2. i.MX21 Signal Descriptions (Continued)  
Function/Notes  
Signal Name  
Supply Pins – Analog Modules  
VDDA  
Supply for analog blocks  
(formally AVDD)  
QVSS (internally  
Quiet GND for analog blocks (QVSS and AVSS are synonymous)  
connected to AVSS)  
Internal Power Supply  
QVDD  
QVSS  
Power supply pins for silicon internal circuitry  
Quiet GND pins for silicon internal circuitry  
QVDDX  
Power supply pin for the ARM core, connect directly to QVDD  
3 Specifications  
This section contains the electrical specifications and timing diagrams for the i.MX21 processor.  
3.1  
Maximum Ratings  
Table 3 provides information on maximum ratings.  
Table 3. Maximum Ratings  
Rating  
Symbol  
Minimum  
Maximum  
Unit  
Supply voltage  
Vdd  
TA  
-0.3  
- 40 / -30 / 0  
-55  
3.3  
70 / 85  
150  
V
Maximum operating temperature range of i.MX21  
Storage temperature  
°C  
°C  
Test  
3.2  
Recommended Operating Range  
Table 4 provides the recommended operating ranges for the supply voltages. The i.MX21 processor has multiple  
pairs of VDD and VSS power supply and return pins. QVDD, QVDDx, and QVSS pins are used for internal logic.  
All other VDD and VSS pins are for the I/O pads voltage supply, and each pair of VDD and VSS provides power  
to the enclosed I/O pads. This design allows different peripheral supply voltage levels in a system.  
Because AVDD pins are supply voltages to the analog pads, it is recommended to isolate and noise-filter the  
AVDD pins from other VDD pins.  
For more information about I/O pads grouping per VDD, please refer to Table 4 on page 15.  
Table 4. Recommended Operating Range  
Rating  
Symbol  
Minimum  
Maximum  
Unit  
I/O supply voltage  
I/O supply voltage  
NVDD 2, 3, 4, 5, 6  
NVDD 1  
2.70  
1.70  
3.30  
3.30  
V
V
MC9328MX21 Product Preview, Rev. 1.1  
Freescale Semiconductor  
15  
Specifications  
Table 4. Recommended Operating Range (Continued)  
Rating  
Symbol  
Minimum  
Maximum  
Unit  
Internal supply voltage (Core = 266 MHz)  
Analog supply voltage  
QVDD, QVDDx  
AVDD  
1.45  
1.70  
1.65  
3.30  
V
V
3.3  
DC Electrical Characteristics  
Table 5 contains both maximum and minimum DC characteristics of the i.MX21.  
Table 5. Maximum and Minimum DC Characteristics  
Number  
or Symbol  
Parameter  
Minimum  
Typical  
Maximum  
Unit  
Iop  
Full running operating current  
120mA  
mA  
QVDD & QVDDx=1.65V, NVDD1=1.8V, NVDD2-  
6 & AVDD=3.1V,  
(QVDD+QVDDx),  
Full run: Core=266MHz, System=133MHz,  
Doze: Core=266MHz, System=53MHz,  
MPEG4 Playback (QVGA) from MMC/SD card,  
30fps, 44.1kHz audio)  
8mA  
(NVDD1)  
6.6mA  
(NVDD2-6+AVDD)  
Sidd  
Standby current (QVDD, QVDDx= 1.55V)  
Input high voltage  
360  
µA  
V
V
0.7NVDD  
NVDD  
IH  
V
Input low voltage  
0
0.3NVDD  
V
IL  
V
Output high voltage  
0.8NVDD  
V
OH  
V
Output low voltage  
0.2NVDD  
V
OL  
Vit+  
Positive input threshold voltage, Vi =Vih  
Negative input threshold voltage, Vi =Vil  
Hysteresis (Vit+ Vit-) = Vih  
Input low leakage current  
2.15  
V
Vit-  
0.75  
1
V
Vhys  
0.3  
I
µA  
IL  
(V = GND, no pull-up or pull-down)  
IN  
I
Input high leakage current  
1
µA  
mA  
mA  
µA  
IH  
(V = V , no pull-up or pull-down)  
IN  
DD  
I
Output high current  
VO = VOH  
Slow Pad: -6  
Fast Pad: -5  
OH  
I
Output low current  
VO = VOL  
Slow Pad: 6  
Fast Pad: 5  
OL  
OZ  
I
Output leakage current  
5
(V = V , output is tri-stated)  
out  
DD  
C
Input capacitance  
Output capacitance  
5
5
pF  
pF  
i
C
o
MC9328MX21 Product Preview, Rev. 1.1  
16  
Freescale Semiconductor  
Specifications  
3.4  
AC Electrical Characteristics  
The AC characteristics consist of output delays, input setup and hold times, and signal skew times. All  
signals are specified relative to an appropriate edge of other signals. All timing specifications are specified  
at a system operating frequency from 0 MHz to 133 MHz (core operating frequency 266 MHz) with an  
operating supply voltage from V  
timing is measured at 30 pF loading.  
to V  
under an operating temperature from T to T . All  
L
H
DD min  
DD max  
Table 6. Tri-State Signal Timing  
Pin  
Parameter  
Minimum  
Maximum  
Unit  
TRISTATE  
Time from TRISTATE activate until I/O becomes Hi-Z  
20.8  
ns  
Table 7. 32k/26M Oscillator Signal Timing  
Parameter  
Minimum  
RMS  
Maximum  
Unit  
EXTAL32k input jitter (peak to peak) for both System PLL and MCUPLL  
EXTAL32k input jitter (peak to peak) for MCUPLL only  
EXTAL32k startup time  
5
5
20  
100  
ns  
ns  
800  
ms  
Table 8. CLKO Rise/Fall Time (at 30pF Loaded)  
Best Case Typical Worst Case Units  
Rise Time  
Fall Time  
0.80  
0.74  
1.00  
1.08  
1.40  
1.67  
ns  
ns  
MC9328MX21 Product Preview, Rev. 1.1  
Freescale Semiconductor  
17  
Specifications  
3.5  
DPLL Timing Specifications  
Parameters of the DPLL are given in Table 9. In this table, T is a reference clock period after the  
ref  
predivider and T is the output double clock period.  
dck  
Table 9. DPLL Specifications  
Parameter  
Test Conditions  
Minimum Typical Maximum  
Unit  
Reference clock frequency range  
Vcc = 1.5V  
16  
16  
320  
32  
MHz  
MHz  
Pre-divider output clock frequency  
range  
Vcc = 1.5V  
Double clock frequency range  
Pre-divider factor (PD)  
Vcc = 1.5V  
160  
1
560  
16  
MHz  
Total multiplication factor (MF)  
Includes both integer  
and fractional parts  
5
15  
MF integer part  
MF numerator  
MF denominator  
5
0
15  
Should be less than the denominator  
1022  
1023  
450  
1
Frequency lock-in time after  
full reset  
FOL mode for non-integer MF  
(does not include pre-multi lock-in time)  
350  
400  
T
ref  
Frequency lock-in time after  
partial reset  
FOL mode for non-integer MF (does not  
include pre-multi lock-in time)  
220  
480  
360  
280  
530  
410  
330  
580  
460  
T
ref  
Phase lock-in time after  
full reset  
FPL mode and integer MF (does not  
include pre-multi lock-in time)  
T
ref  
Phase lock-in time after  
partial reset  
FPL mode and integer MF (does not  
include pre-multi lock-in time)  
T
ref  
Frequency jitter (p-p)  
Phase jitter (p-p)  
0.02  
1.0  
0.03  
1.5  
2•Tdck  
ns  
Integer MF, FPL mode, Vcc=1.5V  
Power dissipation  
FOL mode, integer MF,  
1.5  
mW  
fdck = 560 MHz, Vcc = 1.5V  
(Avg)  
MC9328MX21 Product Preview, Rev. 1.1  
18  
Freescale Semiconductor  
Specifications  
3.6  
Reset Module  
The timing relationships of the Reset module with the POR and RESET_IN are shown in Figure 2 and  
Figure 3 on page 20. Be aware that NVDD must ramp up to at least 1.7V for NVDD1 and 2.7V for  
NVDD2-6 before QVDD is powered up to prevent forward biasing.  
1
POR  
Can be adjusted depending on the crystal  
start-up time 32KHz or 32.768KHz  
2
RESET_POR  
Exact 300ms  
3
7 cycles @ CLK32  
RESET_DRAM  
4
14 cycles @ CLK32  
HRESET  
RESET_OUT  
CLK32  
HCLK  
Figure 2. Timing Relationship with POR  
MC9328MX21 Product Preview, Rev. 1.1  
Freescale Semiconductor  
19  
Specifications  
5
RESET_IN  
14 cycles @ CLK32  
4
HRESET  
RESET_OUT  
6
CLK32  
HCLK  
Figure 3. Timing Relationship with RESET_IN  
Table 10. Reset Module Timing Parameter Table  
1.8V +/- 0.10V  
Parameter  
3.0V +/- 0.30V  
Ref  
No.  
Unit  
Min  
Max  
Min  
Max  
1
2
Width of input POWER_ON_RESET  
800  
300  
800  
300  
ms  
ms  
Width of internal POWER_ON_RESET  
(CLK32 at 32 KHz)  
300  
300  
3
4
5
6
7K to 32K-cycle stretcher for SDRAM reset  
7
14  
4
7
14  
7
14  
4
7
14  
Cycles of  
CLK32  
14K to 32K-cycle stretcher for internal system reset  
HRESERT and output reset at pin RESET_OUT  
Cycles of  
CLK32  
Width of external hard-reset RESET_IN  
Cycles of  
CLK32  
4K to 32K-cycle qualifier  
4
4
4
4
Cycles of  
CLK32  
MC9328MX21 Product Preview, Rev. 1.1  
20  
Freescale Semiconductor  
Specifications  
3.7  
External DMA Request and Grant  
The External DMA request is an active low signal to be used by devices external to i.MX21 processor to request  
the DMAC for data transfer.  
After assertion of External DMA request the DMA burst will start when the channel on which the External request  
is the source (as per the RSSR settings) becomes the current highest priority channel. The external device using the  
External DMA request should keep its request asserted until it is serviced by the DMAC. One External DMA  
request will initiate one DMA burst.  
The output External Grant signal from the DMAC is an active-low signal.When the following conditions are true,  
the External DMA Grant signal is asserted with the initiation of the DMA burst.  
The DMA channel for which the DMA burst is ongoing has request source as external DMA Request (as  
per source select register setting).  
REN and CEN bit of this channel are set.  
External DMA Request is asserted.  
After the grant is asserted, the External DMA request will not be sampled until completion of the DMA burst. As  
the external request is synchronized, the request synchronization will not be done during this period. The priority of  
the external request becomes low for the next consecutive burst, if another DMA request signal is asserted.  
Worst case—that is, the smallest burst (1 byte read/write) timing diagrams are shown in Figure 4 and Figure 5 on  
page 21. Minimum and maximum timings for the External request and External grant signals are present in  
Table 11 on page 22.  
Figure 4 shows the minimum time for which the External Grant signal remains asserted when an External DMA  
request is de-asserted immediately after sensing grant signal active.  
Ext_DMAReq  
Ext_DMAGrant  
tmin_assert  
Figure 4. Assertion of DMA External Grant Signal  
Figure 5 shows the safe maximum time for which External DMA request can be kept asserted, after sensing grant  
signal active such that a new burst is not initiated.  
Ext_DMAReq  
Ext_DMAGrant  
tmax_req_assert  
Data read from  
External device  
tmax_read  
Data written to  
External device  
tmax_write  
NOTE: Assuming in worst case the data is read/written from/to External device as per the above waveform.  
Figure 5. Safe Maximum Timings for External Request De-Assertion  
MC9328MX21 Product Preview, Rev. 1.1  
Freescale Semiconductor  
21  
Specifications  
Table 11. DMA External Request and Grant Timing Parameter Table  
1.8 V  
3.0 V  
Parameter  
tmin_assert  
Description  
Unit  
WCS  
BCS  
WCS  
BCS  
Minimum assertion time of  
External Grant signal  
8 hclk + 8.6  
8 hclk + 2.74  
8 hclk + 7.17  
8 hclk + 3.25  
ns  
ns  
Maximum External request  
assertion time after assertion of  
Grant signal  
9 hclk - 20.66  
9 hclk - 6.7  
8 hclk - 0.77  
3 hclk - 8.83  
9 hclk - 17.96  
8 hclk - 5.84  
3 hclk - 15.9  
9 hclk - 8.16  
8 hclk - 0.66  
3 hclk - 9.12  
tmax_req_assert  
Maximum External request  
assertion time after first read  
completion  
8 hclk - 6.21  
ns  
ns  
tmax_read  
Maximum External request  
assertion time after completion of  
first write  
3 hclk - 15.87  
tmax_write  
3.8  
BMI Interface Timing Diagram  
3.8.1  
Connecting BMI to ATI MMD Devices  
3.8.1.1  
ATI MMD Devices Drive the BMI_CLK/CS  
In this mode MMD_MODE_SEL bit is set and MMD_CLKOUT bit is cleared. BMI_WRITE and  
BMI_CLK/CS are input signals to BMI driving by ATI MMD chip set. Output signal BMI_READ_REQ  
can be used as interrupt signal to inform MMD that data is ready in BMI TxFIFO for read access. MMD  
can write data to BMI RxFIFO anytime as CPU or DMA can move data out from RxFIFO much faster  
than the BMI interface. Overflow interrupt is generated if RxFIFO overflow is detected. Once this  
happens, the new coming data is ignored.  
3.8.1.1.1  
MMD Read BMI Timing  
Figure 6 shows the MMD read BMI timing when the MMD drives clock.  
On each rising edge of BMI_CLK/CS BMI checks the BMI_WRITE logic level to determine if the current  
cycle is a read cycle. It puts data into the data bus and enables the data out on the rising edge of BMI_CLK/  
CS if BMI_WRITE is logic high. The BMI_READ_REQ is negated one hclk cycle after the BMI_CLK/  
CS rising edge of last data read. The MMD cannot issues read command when BMI_READ_REQ is low  
(no data in TxFIFO).  
MC9328MX21 Product Preview, Rev. 1.1  
22  
Freescale Semiconductor  
Specifications  
1T  
BMI_CLK/CS  
Trh  
Tdh  
BMI_READ_REQ  
BMI_D[15:0]  
Tds  
TxD1  
TxD2  
Last TxD  
BMI_WRITE  
Ts  
Figure 6. MMD (ATI) Drives Clock, MMD Read BMI Timing  
(MMD_MODE_SEL=1, MASTER_MODE_SEL=0,MMD_CLKOUT=0)  
Table 12. MMD Read BMI Timing Table when MMD Drives Clock  
Item  
Symbol  
Minimum  
Typical  
Maximum  
Unit  
Clock period  
write setup time  
1T  
Ts  
33.3  
11  
6
-
ns  
ns  
ns  
ns  
ns  
read_req hold time  
transfer data setup time  
transfer data hold time  
Trh  
Tds  
Tdh  
24  
14  
14  
6
6
Note: All the timings assume that the hclk is running at 133 MHz.  
Note: The MIN period of the 1T is assumed that MMD latch data at falling edge.  
Note: If the MMD latch data at next rising edge, the ideally max clock can be as much as double, but because the BMI data pads  
are slow pads and it max frequency can only up to 18Mhz, the max clock frequency can only up to 36 MHz.  
3.8.1.1.2  
MMD Write BMI Timing  
Figure 7 on page 24 shows the MMD write BMI timing when MMD drives clock. On each falling edge of  
BMI_CLK/CS BMI checks the BMI_WRITE logic level to determine if the current cycle is a write cycle.  
If the BMI_ WRITE is logic low, it latches data into the RxFIFO on each falling edge of BMI_CLK/CS  
signal.  
MC9328MX21 Product Preview, Rev. 1.1  
Freescale Semiconductor  
23  
Specifications  
BMI_CLK/CS  
BMI_READ_REQ  
Can be asserted any time  
Can be asserted any time  
Last RxD  
BMI_D[15:0]  
BMI_WRITE  
RxD1  
Tds  
RxD2  
Th  
Ts  
Figure 7. MMD (ATI) Drives Clock, MMD Write BMI Timing  
(MMD_MODE_SEL=1, MASTER_MODE_SEL=0, MMD_CLKOUT=0)  
Table 13. MMD Write BMI Timing  
Item  
Symbol  
Minimum  
Typical  
Maximum  
Unit  
write setup time  
write hold time  
Ts  
Th  
11  
0
ns  
ns  
ns  
receive data setup time  
Tds  
5
Note: All timings assume that the hclk is running at 133 MHz.  
Note: At this mode, the maximum frequency of the BMI_CLK/CS can be up to 36 MHz (doubles as maximum data pad speed).  
3.8.1.2  
BMI Drives the BMI_CLK/CS  
In this mode MMD_MODE_SEL and MMD_CLKOUT are both set. The software must know which  
mode it is now (READ or WRITE). When the BMI_WRITE is high, BMI drives BMI_CLK/CS out if the  
TxFIFO is not emptied. When BMI_WRITE is low, user can write a 1 to READ bit of control register1 to  
issue a write cycle (MMD write BMI).  
3.8.1.3  
MMD Read BMI Timing  
Figure 13 on page 29 shows the MMD read BMI timing when BMI drives the BMI_CLK/CS. When the  
BMI_WRITE is high, the BMI drives BMI_CLK/CS out if data is written to TxFIFO (BMI_READ_REQ  
become high), BMI puts data into data bus and enable data out on the rising edge of BMI_CLK/CS. The  
MMD devices can latch the data on each falling edge of BMI_CLK/CS.  
It is recommended that the MMD do not change the BMI_WRITE signal from high to low when the  
BMI_READ_REQ is asserted. If user writes data to the TxFIFO when the BMI_WRITE is low, the BMI  
will drive BMI_CLK/CS out once the BMI_WRITE is changed from low to high.  
MC9328MX21 Product Preview, Rev. 1.1  
24  
Freescale Semiconductor  
Specifications  
1T  
BMI_CLK/CS  
Trh  
BMI_READ_REQ  
Tdh  
Tds  
BMI_D[15:0]  
BMI_WRITE  
TxD1  
TxD2  
Last TxD  
DMA or CPU write data to TxFIFO  
Figure 8. BMI Drives Clock, MMD Read BMI Timing  
(MASTER_MODE_SEL=0, MMD_MODE_SEL=1, MMD_CLKOUT=1)  
Table 14. MMD Read BMI Timing Table when BMI Drives Clock  
Item  
Symbol  
MIN  
TYP  
MAX  
Unit  
transfer data setup time  
transfer data hold time  
read_req hold time  
Tds  
Tdh  
Trh  
2
2
2
8
8
ns  
ns  
ns  
18  
Note: In this mode, the max frequency of the BMI_CLK/CS can be up to 36Mhz(double as max data pad speed).  
Note: The BMI_CLK/CS can only be divided by 2,4,8,16 from HCLK.  
3.8.1.4  
MMD Write BMI Timing  
Figure on page 26 shows the MMD write BMI timing when BMI drives BMI_CLK/CS.  
When the BMI_WRITE signal is asserted, the BMI can write a 1 to READ bit of control register to issue  
a WRITE cycle. This bit is cleared automatically when the WRITE operation is completed. In a WRITE  
burst the MMD will write COUNT+1 data to the BMI. The user can issue another WRITE operation if the  
MMD still has data to write after the first operation completed.  
The BMI can latch the data either at falling edge or the next rising edge of the BMI_CLK/CS according to  
the DATA_LATCH bit. When the DATA_LATCH bit is set, the BMI latch data at the next rising edge and  
latch the last data using the internal clock.  
BMI_WRITE signal can not be negated when the WRITE operation is proceeding.  
MC9328MX21 Product Preview, Rev. 1.1  
Freescale Semiconductor  
25  
Specifications  
Total has COUNT+1 clocks in one burst  
BMI_CLK/CS  
BMI_READ_REQ  
BMI_D[15:0]  
Can be asserted any time  
Can be asserted any time  
RxD2  
RxD1  
Tds1  
Last RxD  
Tds2  
BMI_WRITE  
A 1 is written to READ bit of control register  
Figure 9. BMI Drives Clock, MMD Write BMI Timing  
(MASTER_MODE_SEL=0, MMD_MODE_SEL=1, MMD_CLKOUT=1)  
Table 15. MMD Write BMI Timing Table when BMI Drives Clock  
Item  
Symbol  
Minimum  
Typical  
Maximum  
Unit  
receive data setup time1  
receive data setup time2  
Tds1  
Tds2  
14  
14  
ns  
ns  
Note: The BMI_CLK/CS can only be up to 30Mhz if BMI latch data at the falling edge and can be up to 36Mhz (double as max  
data pad speed) if BMI latch data at the next rising edge.  
Note: Tds1 is the receive data setup time when BMI latch data at the falling edge.  
Note: Tds2 is the receive data setup time when BMI latch data at the next rising edge.  
3.8.2  
Connecting BMI to External Bus Master Devices  
In this mode both MASTER_SEL bit and MMD_MODE_SEL bit are cleared and the MMD_CLKOUT  
bit is no useful. BMI_WRITE and BMI_CLK/CS are input signals driving by the external bus master. The  
Output signal BMI_READ_REQ can be used as an interrupt signal to inform external bus master that data  
is ready in the BMI TxFIFO for a read access. The external bus master can write data to the BMI RxFIFO  
anytime since the CPU or DMA can move data out from RxFIFO much faster than the BMI interface. An  
overflow interrupt is generated if RxFIFO overflow is detected. Once this happens, the new coming data  
is ignored.  
Each falling edge of BMI_CLK/CS will determine if the current cycle is read or write cycle. It drives data  
and enables data out if BMI_WRITE is logic high. The D_EN signal remains active only while BMI_CLK/  
CS is logic low and BMI_WRITE is logic high.  
Each rising edge of BMI_CLK/CS will determine if data should be latched to RxFIFO from the data bus.  
MC9328MX21 Product Preview, Rev. 1.1  
26  
Freescale Semiconductor  
Specifications  
BMI_CLK/CS  
Trh  
Ttds  
TxD  
BMI_READ_REQ  
BMI_D[15:0]  
Trdh  
Ttdh  
Ts  
RxD  
Last TxD  
Ts  
BMI_WRITE  
Th  
Write  
BMI  
Read  
BMI  
Read  
BMI  
Figure 10. Memory Interface Slave Mode, External Bus Master Read/Write to BMI Timing  
(MMD_MODE_SEL=0, MASTER_MODE_SEL=0)  
Table 16. External Bus Master Read/Write to BMI Timing Table  
Item  
write setup time  
Symbol  
Minimum  
Typical  
Maximum  
Unit  
Ts  
Th  
11  
0
ns  
ns  
ns  
ns  
ns  
ns  
write hold time  
receive data hold time  
transfer data setup time  
transfer data hold time  
read_req hold time  
Trdh  
Ttds  
Ttdh  
Trh  
3
6
14  
14  
24  
6
6
Note: All the timings are assumed that the hclk is running at 133 MHz.  
3.8.3  
Connecting BMI to External Bus Slave Devices  
In this mode the BMI_WRITE, BMI_READ and BMI_CLK/CS are output signals driving by the BMI  
module. The output signal BMI_READ_REQ is still driving active-in on a write cycle, but it can be  
ignored in this case. Instead, it is used to trigger internal logic to generate the read or write signals. Data  
write cycles are continuously generated when TxFIFO is not emptied.  
To issue a read cycle, the user can write a value of 1 to the READ bit of control register. This bit is cleared  
automatically when the read operation is completed. A read cycle reads COUNT+1 data from the external  
bus slave. The user can write a 1 to the READ bit while there is still data in the TxFIFO, but the read cycle  
will not start until all data in the TxFIFO is emptied. If the read cycle begins, the write operation also  
cannot begin until this read cycle complete.  
In this master mode operation, Int_Clk is derived from HCLK through an integer divider DIV of BMI  
control register and it is used to control the read/write cycle timing by generate WRITE and CLK/CS  
signals.  
MC9328MX21 Product Preview, Rev. 1.1  
Freescale Semiconductor  
27  
Specifications  
3.8.3.1  
Memory Interface Master Mode Without WAIT Signal  
The WAIT control bit (BMICTLR1[29]) is used in this mode. When this bit is cleared (default), the  
BMI_WAIT signal is ignored and the CS cycle is terminated by Wait State (WS) control bits. Figure 11  
shows the BMI timing when the WAIT bit is cleared.  
1+ws  
1+ws  
1+ws  
1+ws  
Int_Clk  
(reference only)  
Int_write  
(reference only)  
BMI_CLK/CS  
BMI_READ_REQ  
BMI_D[15:0]  
Last TxD  
TxD1  
TxD2  
RxD1  
RxD2  
Tdh  
BMI_WRITE  
BMI_READ  
BMI write  
BMI write  
BMI write  
A 1 is written to READ bit of control reg1  
DMA or CPU write data to TxFIFO  
On the next Int_Clk BMI issues a write cycle  
BMI_READ_REQ is still logic high, BMI issues next write cycle  
Figure 11. Memory Interface Master Mode, BMI Read/Write to External Slave Device Timing without Wait  
Signal (MMD_MODE_SEL=0, MASTER_MODE_SEL=1)  
3.8.3.2  
Memory Interface Master Mode with WAIT Signal  
When the WAIT control bit is set, the BMI_WAIT signal is used and the CS cycle is terminated upon  
sampling a logic high BMI_WAIT signal. Figure 12 shows the BMI write timing when the WAIT bit is set.  
When the BMI_WRITE is asserted, the BMI will detect the BMI_WAIT signal on every falling edge of  
the Int_Clk. When it detected the high level of the BMI_WAIT, the BMI_WRITE will be negated after  
1+WS Int_Clk period. If the BMI_WAIT is always high or already high before BMI_WRITE is asserted,  
this timing will same as without WAIT signal. So the BMI_WRITE will be asserted at least for 1+WS  
Int_Clk period.  
MC9328MX21 Product Preview, Rev. 1.1  
28  
Freescale Semiconductor  
Specifications  
1+ws  
1+ws  
Int_Clk  
(reference only)  
BMI_CLK/CS  
BMI_D[15:0]  
TXD_a  
TXD_b  
BMI_READ  
BMI_WRITE  
BMI_WAIT  
Figure 12. Memory Interface Master Mode, BMI Write to External Slave Device Timing with Wait Signal  
(MMD_MODE_SEL=0, MASTER_MODE_SEL=1,WAIT=1)  
Figure 13 shows the BMI read timing when the WAIT bit is set. As write timing, when the BMI_READ is  
asserted, the BMI will detect the BMI_WAIT signal on every falling edge of the Int_Clk. When it detected  
the high level of the BMI_WAIT, the BMI_READ will be negated after 1+WS Int_Clk period. If the  
BMI_WAIT is always high or already high before BMI_READ is asserted, this timing will same as  
without WAIT signal. So the BMI_READ will be asserted at least for 1+WS Int_Clk period.  
1+ws  
1+ws  
Int_Clk  
(reference only)  
BMI_CLK/CS  
BMI_D[15:0]  
BMI_WRITE  
BMI_READ  
RXD_a  
RXD_b  
BMI_WAIT  
Figure 13. Memory Interface Master Mode, BMI Read to External Slave Device Timing with Wait Signal  
(MMD_MODE_SEL=0, MASTER_MODE_SEL=1,WAIT=1)  
3.9  
SPI Timing Diagrams  
To use the internal transmit (TX) and receive (RX) data FIFOs when the SPI 1 module is configured as a  
master, two control signals are used for data transfer rate control: the SS signal (output) and the SPI_RDY  
signal (input). The SPI 1 Sample Period Control Register (PERIODREG1) and the SPI 2 Sample Period  
Control Register (PERIODREG2) can also be programmed to a fixed data transfer rate for either SPI 1 or  
SPI 2. When the SPI 1 module is configured as a slave, the user can configure the SPI 1 Control Register  
(CONTROLREG1) to match the external SPI master’s timing. In this configuration, SS becomes an input  
MC9328MX21 Product Preview, Rev. 1.1  
Freescale Semiconductor  
29  
Specifications  
signal, and is used to latch data into or load data out to the internal data shift registers, as well as to  
increment the data FIFO.  
.
2
5
3
SS  
1
4
SPIRDY  
SCLK, MOSI, MISO  
Figure 14. Master SPI Timing Diagram Using SPI_RDY Edge Trigger  
SS  
SPIRDY  
SCLK, MOSI, MISO  
Figure 15. Master SPI Timing Diagram Using SPI_RDY Level Trigger  
SS (output)  
SCLK, MOSI, MISO  
Figure 16. Master SPI Timing Diagram Ignore SPI_RDY Level Trigger  
SS (input)  
SCLK, MOSI, MISO  
Figure 17. Slave SPI Timing Diagram FIFO Advanced by BIT COUNT  
SS (input)  
6
7
SCLK, MOSI, MISO  
Figure 18. Slave SPI Timing Diagram FIFO Advanced by SS Rising Edge  
MC9328MX21 Product Preview, Rev. 1.1  
30  
Freescale Semiconductor  
Specifications  
Table 17. Timing Parameter Table for Figure 14 through Figure 18  
Ref  
No.  
Parameter  
Minimum  
Maximum  
Unit  
1
2
3
4
5
6
7
SPI_RDY to SS output low  
SS output low to first SCLK edge  
Last SCLK edge to SS output high  
SS output high to SPI_RDY low  
SS output pulse width  
2T 1  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
3·Tsclk 2  
2·Tsclk  
0
Tsclk + WAIT 3  
SS input low to first SCLK edge  
SS input pulse width  
T
T
1. T = CSPI system clock period (PERCLK2).  
2. Tsclk = Period of SCLK.  
3. WAIT = Number of bit clocks (SCLK) or 32.768 KHz clocks per Sample Period Control  
Register.  
3.10 LCD Controller  
This section includes timing diagrams for the LCD controller. For detailed timing diagrams of the LCD  
controller with various display configurations, refer to the LCD controller chapter of the i.MX21 Reference  
Manual.  
T1  
LSCLK  
LD[17:0]  
T2  
T3  
Figure 19. SCLK to LD Timing Diagram  
Table 18. LCDC SCLK Timing Parameter Table  
3.0 +/- 0.3V  
Unit  
Symbol  
Parameter  
Minimum  
Maximum  
T1  
T2  
T3  
SCLK period  
23  
2000  
ns  
ns  
ns  
Pixel data setup time  
Pixel data up time  
11  
11  
The pixel clock is equal to LCDC_CLK / (PCD + 1).  
When it is in CSTN, TFT or monochrome mode with bus width = 1, SCLK is equal to the pixel clock.  
When it is in monochrome with other bus width settings, SCLK is equal to the pixel clock divided by bus width.  
The polarity of SCLK and LD can also be programmed.  
Maximum frequency of SCLK is HCLK / 3 for TFT and CSTN, otherwise LD output will be incorrect.  
MC9328MX21 Product Preview, Rev. 1.1  
Freescale Semiconductor  
31  
Specifications  
Display region  
Non-display region  
T3  
T1  
T4  
VSYN  
T2  
HSYN  
OE  
Line Y  
Line 1  
Line Y  
LD[17:0]  
T5  
T6  
XMAX  
T7  
HSYN  
SCLK  
OE  
(0,1)  
(0,2)  
LD[15:0]  
(0,X-1)  
Figure 20. 4/8/12/16/18 Bit/Pixel TFT Color Mode Panel Timing  
Table 19. 4/8/12/16/18 Bit/Pixel TFT Color Mode Panel Timing  
Symbol  
Description  
Minimum  
Value  
Unit  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
End of OE to beginning of VSYN  
HSYN period  
T5+T6+T7-1  
(VWAIT1·T2)+T5+T6+T7-1  
XMAX+T5+T6+T7  
VWIDTH·T2  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
T2  
1
VSYN pulse width  
End of VSYN to beginning of OE  
HSYN pulse width  
(VWAIT2·T2)+1  
HWIDTH+1  
1
End of HSYN to beginning to OE  
End of OE to beginning of HSYN  
3
HWAIT2+3  
1
HWAIT1+1  
Note:  
• Ts is the SCLK period.  
• VSYN, HSYN and OE can be programmed as active high or active low. In Figure 20, all 3 signals are active low.  
• SCLK can be programmed to be deactivated during the VSYN pulse or the OE deasserted period. In Figure 20, SCLK is  
always active.  
• XMAX is defined in number of pixels in one line.  
MC9328MX21 Product Preview, Rev. 1.1  
32  
Freescale Semiconductor  
Specifications  
XMAX  
SCLK  
D1  
LD  
D2  
D320  
D320  
SPL_SPR  
HSYN  
T1  
T3  
T2  
T2  
T4  
T4  
CLS  
PS  
T5  
T6  
T7  
T7  
REV  
Figure 21. Sharp TFT Panel Timing  
Table 20. Sharp TFT Panel Timing  
Symbol  
Description  
Minimum  
Value  
Unit  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
SPL/SPR pulse width  
1
4
3
1
0
1
1
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
End of LD of line to beginning of HSYN  
End of HSYN to beginning of LD of line  
CLS rise delay from end of LD of line  
CLS pulse width  
HWAIT1+1  
HWAIT2 + 4  
CLS_RISE_DELAY+1  
CLS_HI_WIDTH+1  
PS_RISE_DELAY  
REV_TOGGLE_DELAY+1  
PS rise delay from CLS negation  
REV toggle delay from last LD of line  
Note:  
Falling of SPL/SPR aligns with first LD of line.  
Falling of PS aligns with rising edge of CLS.  
REV toggles in every HSYN period.  
MC9328MX21 Product Preview, Rev. 1.1  
Freescale Semiconductor  
33  
Specifications  
T1  
T1  
VSYN  
T3  
T4  
T2  
T2  
XMAX  
HSYN  
SCLK  
Ts  
LD[15:0]  
Figure 22. Non-TFT Mode Panel Timing  
Table 21. Non-TFT Mode Panel Timing  
Symbol  
Description  
Minimum  
Value  
Unit  
T1  
T2  
HSYN to VSYN delay  
HSYN pulse width  
VSYN to SCLK  
2
1
1
HWAIT2+2  
HWIDTH+1  
0 T3 Ts  
HWAIT1+1  
Tpix  
Tpix  
T3  
T4  
SCLK to HSYN  
Tpix  
Note:  
• Ts is the SCLK period while Tpix is the pixel clock period.  
• VSYN, HSYN and SCLK can be programmed as active high or active low. In Figure 67 on page 83, all these 3  
signals are active high.  
• When it is in CSTN mode or monochrome mode with bus width = 1, T3 = Tpix = Ts.  
• When it is in monochrome mode with bus width = 2, 4, and 8, T3 = 1, 2 and 4 Tpix respectively.  
MC9328MX21 Product Preview, Rev. 1.1  
34  
Freescale Semiconductor  
Specifications  
3.11 Smart LCD Controller  
T2  
T3  
T1  
LCD_CS  
LCD_CLK (LCD_DATA[6])  
T4  
T5  
T7  
LSB  
SDATA (LCD_DATA[7])  
RS  
MSB  
T6  
RS=0 command data, RS=1display data  
SCKPOL = 1, CSPOL = 0  
T2  
T3  
T1  
LCD_CS  
LCD_CLK (LCD_DATA[6])  
T4  
T5  
T7  
LSB  
SDATA (LCD_DATA[7])  
RS  
MSB  
T6  
RS=0 command data, RS=1display data  
SCKPOL = 0, CSPOL = 0  
T2  
T3  
LCD_CS  
T1  
LCD_CLK (LCD_DATA[6])  
T4  
T5  
T7  
LSB  
SDATA (LCD_DATA[7])  
RS  
MSB  
T6  
RS=0 command data, RS=1display data  
SCKPOL = 1, CSPOL = 1  
T2  
T3  
LCD_CS  
T1  
LCD_CLK (LCD_DATA[6])  
T4  
T5  
T7  
LSB  
SDATA (LCD_DATA[7])  
RS  
MSB  
T6  
RS=0 command data, RS=1display data  
SCKPOL = 0, CSPOL = 1  
Figure 23. SLCDC Serial Transfer Timing  
MC9328MX21 Product Preview, Rev. 1.1  
Freescale Semiconductor  
35  
Specifications  
Table 22. SLCDC Serial Transfer Timing  
Symbol  
Description  
Pixel clock period  
Minimum  
Maximum  
Unit  
T1  
T2  
T3  
T4  
T4  
T6  
T7  
42  
5
962  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Chip select setup time  
Chip select hold time  
Data setup time  
5
5
Data hold time  
5
Register select setup time  
Register select hold time  
5
5
LCD_CLK  
T4  
T2  
T5  
LCD_RS  
LCD_CS  
T1  
T3  
command data  
display data  
LCD_DATA[15:0]  
CSPOL=0  
LCD_CLK  
T5  
T4  
T2  
LCD_RS  
LCD_CS  
T1  
T3  
command data  
display data  
LCD_DATA[15:0]  
CSPOL=1  
Figure 24. SLCDC Parallel Transfers Timing  
MC9328MX21 Product Preview, Rev. 1.1  
36  
Freescale Semiconductor  
Specifications  
Unit  
Table 23. SLCDC Parallel Transfers Timing  
Symbol  
Description  
Pixel clock period  
Minimum  
Maximum  
T1  
T2  
T3  
T4  
T5  
23  
5
962  
ns  
ns  
ns  
ns  
ns  
Data setup time  
Data hold time  
5
Register select setup time  
Register select hold time  
5
5
3.12 Multimedia Card/Secure Digital Host Controller  
The DMA interface block controls all data routing between the external data bus (DMA access), internal  
MMC/SD module data bus, and internal system FIFO access through a dedicated state machine that  
monitors the status of FIFO content (empty or full), FIFO address, and byte/block counters for the MMC/  
SD module (inner system) and the application (user programming).  
3a  
1
2
4b  
3b  
Bus Clock  
4a  
5b  
5a  
Valid Data  
CMD_DAT Input  
Valid Data  
7
CMD_DAT Output  
Valid Data  
Valid Data  
6a  
6b  
Figure 25. Chip-Select Read Cycle Timing Diagram  
Table 24. SDHC Bus Timing Parameter Table  
1.8V +/- 0.10V  
3.0V +/- 0.30V  
Ref  
No.  
Parameter  
Unit  
Min  
Max  
Min  
Max  
1
CLK frequency at Data transfer Mode (PP)110/30 cards  
CLK frequency at Identification Mode2  
Clock high time110/30 cards  
0
0
25/5  
0
0
25/5  
400  
MHz  
KHz  
ns  
2
400  
3a  
3b  
4a  
4b  
6/33  
15/75  
10/50  
10/50  
Clock low time110/30 cards  
ns  
Clock fall time110/30 cards  
10/50 (5.00)3  
14/67 (6.67)3  
10/50  
10/50  
ns  
Clock rise time110/30 cards  
ns  
MC9328MX21 Product Preview, Rev. 1.1  
Freescale Semiconductor  
37  
Specifications  
Table 24. SDHC Bus Timing Parameter Table (Continued)  
1.8V +/- 0.10V  
3.0V +/- 0.30V  
Ref  
No.  
Parameter  
Unit  
Min  
Max  
Min  
Max  
5a  
5b  
6a  
6b  
7
Input hold time310/30 cards  
5.7/5.7  
5.7/5.7  
5.7/5.7  
5.7/5.7  
0
5/5  
5/5  
5/5  
5/5  
0
ns  
ns  
ns  
ns  
ns  
Input setup time310/30 cards  
Output hold time310/30 cards  
Output setup time310/30 cards  
Output delay time3  
16  
14  
1. CL 100 pF / 250 pF (10/30 cards)  
2. CL 250 pF (21 cards)  
3. CL 25 pF (1 card)  
3.12.1 Command Response Timing on MMC/SD Bus  
The card identification and card operation conditions timing are processed in open-drain mode. The card  
response to the host command starts after exactly N clock cycles. For the card address assignment,  
ID  
SET_RCA is also processed in the open-drain mode. The minimum delay between the host command and  
card response is NCR clock cycles as illustrated in Figure 26. The symbols for Figure 26 through  
Figure 30 are defined in Table 25.  
Table 25. State Signal Parameters for Figure 26 through Figure 30  
Card Active  
Definition  
Host Active  
Definition  
Symbol  
Symbol  
Z
High impedance state  
Data bits  
S
T
Start bit (0)  
D
Transmitter bit  
(Host = 1, Card = 0)  
*
Repetition  
P
E
One-cycle pull-up (1)  
End bit (1)  
CRC  
Cyclic redundancy check bits (7 bits)  
MC9328MX21 Product Preview, Rev. 1.1  
38  
Freescale Semiconductor  
Specifications  
N
ID cycles  
Host Command  
CID/OCR  
Content  
CMD  
CMD  
Content  
CRC  
******  
ST  
E Z  
Z S T  
Z Z Z  
Identification Timing  
N
CR cycles  
Host Command  
CID/OCR  
Content  
CRC  
******  
Content  
SET_RCA Timing  
ST  
E Z  
Z S T  
Z Z Z  
Figure 26. Timing Diagrams at Identification Mode  
After a card receives its RCA, it switches to data transfer mode. As shown on the first diagram in Figure 27  
on page 39, SD_CMD lines in this mode are driven with push-pull drivers. The command is followed by  
a period of two Z bits (allowing time for direction switching on the bus) and then by P bits pushed up by  
the responding card. The other two diagrams show the separating periods N and N  
.
RC  
CC  
NCR cycles  
Host Command  
Response  
Content  
CRC  
E Z Z Z  
CMD  
Content  
CRC  
******  
ST  
E Z Z P  
P S T  
Command response timing (data transfer mode)  
NRC cycles  
Response  
Content  
Host Command  
Content  
CRC  
E Z Z Z  
CMD  
CRC  
******  
ST  
E Z  
Z S T  
Timing response end to next CMD start (data transfer mode)  
NCC cycles  
Host Command  
Host Command  
Content  
CRC  
E Z Z Z  
CMD  
Content  
CRC  
E Z  
******  
ST  
Z S T  
Timing of command sequences (all modes)  
Figure 27. Timing Diagrams at Data Transfer Mode  
Figure 28 on page 40 shows basic read operation timing. In a read operation, the sequence starts with a  
single block read command (which specifies the start address in the argument field). The response is sent  
on the SD_CMD lines as usual. Data transmission from the card starts after the access time delay N  
,
AC  
beginning from the last bit of the read command. If the system is in multiple block read mode, the card  
sends a continuous flow of data blocks with distance N until the card sees a stop transmission command.  
AC  
The data stops two clock cycles after the end bit of the stop command.  
MC9328MX21 Product Preview, Rev. 1.1  
Freescale Semiconductor  
39  
Specifications  
NCR cycles  
Host Command  
Response  
Content  
CRC  
E Z  
CMD  
DAT  
Content  
CRC  
******  
******  
ST  
E Z Z P  
P S T  
Z****Z  
*****  
Z Z P  
P S DDDD  
Read Data  
Timing of single block read  
NAC cycles  
NCR cycles  
Host Command  
Response  
Content  
CRC  
E Z  
CMD  
DAT  
Content  
CRC  
******  
ST  
E Z Z P  
Z Z P  
P S T  
Z****Z  
******  
*****  
Read Data  
*****  
*****  
Read Data  
P S DDDD  
P
P S DDDD  
NAC cycles  
NAC cycles  
Timing of multiple block read  
NCR cycles  
Host Command  
Response  
CMD  
Content  
CRC  
******  
Content  
CRC  
E Z  
ST  
E Z Z P  
P S T  
NST  
DAT  
*****  
*****  
DDDD  
DDDD E Z Z Z  
Timing of stop command  
(CMD12, data transfer mode)  
Valid Read Data  
Figure 28. Timing Diagrams at Data Read  
Figure 29 on page 41 shows the basic write operation timing. As with the read operation, after the card  
response, the data transfer starts after N cycles. The data is suffixed with CRC check bits to allow the  
WR  
card to check for transmission errors. The card sends back the CRC check result as a CC status token on  
the data line. If there was a transmission error, the card sends a negative CRC status (101); otherwise, a  
positive CRC status (010) is returned. The card expects a continuous flow of data blocks if it is configured  
to multiple block mode, with the flow terminated by a stop transmission command.  
MC9328MX21 Product Preview, Rev. 1.1  
40  
Freescale Semiconductor  
Specifications  
Figure 29. Timing Diagrams at Data Write  
The stop transmission command may occur when the card is in different states. Figure 30 shows the  
different scenarios on the bus.  
MC9328MX21 Product Preview, Rev. 1.1  
Freescale Semiconductor  
41  
Specifications  
Figure 30. Stop Transmission During Different Scenarios  
Table 26. Timing Values for Figure 26 through Figure 30  
Parameter  
Symbol  
Minimum  
Maximum  
Unit  
MMC/SD bus clock, CLK (All values are referred to minimum (VIH) and maximum (VIL)  
Command response cycle  
Identification response cycle  
NCR  
NID  
2
5
64  
5
Clock cycles  
Clock cycles  
MC9328MX21 Product Preview, Rev. 1.1  
42  
Freescale Semiconductor  
Specifications  
Unit  
Table 26. Timing Values for Figure 26 through Figure 30 (Continued)  
Parameter  
Symbol  
Minimum  
Maximum  
Access time delay cycle  
Command read cycle  
NAC  
NRC  
NCC  
NWR  
NST  
2
8
8
2
2
TAAC + NSAC  
Clock cycles  
Clock cycles  
Clock cycles  
Clock cycles  
Clock cycles  
2
Command-command cycle  
Command write cycle  
Stop transmission cycle  
TAAC: Data read access time -1 defined in CSD register bit[119:112]  
NSAC: Data read access time -2 in CLK cycles (NSAC·100) defined in CSD register bit[111:104]  
3.12.2 SDIO-IRQ and ReadWait Service Handling  
In SDIO, there is a 1-bit or 4-bit interrupt response from the SDIO peripheral card. In 1-bit mode, the  
interrupt response is simply that the SD_DAT[1] line is held low. The SD_DAT[1] line is not used as data  
in this mode. The memory controller generates an interrupt according to this low and the system interrupt  
continues until the source is removed (SD_DAT[1] returns to its high level).  
In 4-bit mode, the interrupt is less simple. The interrupt triggers at a particular period called the Interrupt  
Period during the data access, and the controller must sample SD_DAT[1] during this short period to  
determine the IRQ status of the attached card. The interrupt period only happens at the boundary of each  
block (512 bytes).  
CMD  
Content  
CRC  
Response  
******  
ST  
E Z Z P S  
E Z Z Z  
Z Z Z  
DAT[1]  
Interrupt Period  
IRQ  
IRQ  
Block Data  
Block Data  
S
E
S
E
For 4-bit  
L H  
DAT[1]  
Interrupt Period  
For 1-bit  
Figure 31. SDIO IRQ Timing Diagram  
ReadWait is another feature in SDIO that allows the user to submit commands during the data transfer. In  
this mode, the block temporarily pauses the data transfer operation counter and related status, yet keeps  
the clock running, and allows the user to submit commands as normal. After all commands are submitted,  
the user can switch back to the data transfer operation and all counter and status values are resumed as  
access continues.  
MC9328MX21 Product Preview, Rev. 1.1  
Freescale Semiconductor  
43  
Specifications  
CMD  
******  
CMD52 CRC  
******  
P S T  
E Z Z Z  
DAT[1]  
Block Data  
Block Data  
S
S
E Z Z L H  
S
E
E
For 4-bit  
DAT[2]  
Block Data  
Block Data  
E Z Z L L L L L L L L L L L L L L L L L L L L L H Z S  
For 4-bit  
Figure 32. SDIO ReadWait Timing Diagram  
3.13 NAND-Flash Controller Interface  
The timing diagrams Figure 33 through Figure 36shows the timing of the NAND Flash controller.  
Table 27 on page 46 provides the relative timing requirement for the different signals of NFC at the  
i.MX21 module level.  
NFCLE  
tCLH  
tCLS  
tCS  
tCH  
NFCE  
tWP  
NFWE  
NFALE  
tALS  
tALH  
tDS  
tDH  
NFIO7:0  
command  
Figure 33. Command Latch Cycle Timing  
MC9328MX21 Product Preview, Rev. 1.1  
44  
Freescale Semiconductor  
Specifications  
NFCLE  
NFCE  
tCLS  
tCS  
tCH  
tWC  
tWH  
tWP  
tDS  
NFWE  
NFALE  
tALH  
tDH  
tALS  
NFIO7:0  
Address  
Figure 34. Address Latch Cycle Timing  
NFCLE  
NFCE  
tCLS  
tCS  
tWC  
tWH  
tWP  
NFWE  
NFALE  
tALH  
tDH  
tALS  
tDS  
NFIO15:0  
Data to NF  
Figure 35. Input Data Latch Cycle Timing  
MC9328MX21 Product Preview, Rev. 1.1  
Freescale Semiconductor  
45  
Specifications  
NFCLE  
NFCE  
tRC  
tREH  
tRP  
NFRE  
tREA  
tRHZ  
NFALE  
NFIO15:0  
NFCE  
Data from NF  
tRR  
Figure 36. Output Data Latch Cycle Timing  
Note: The data shown in Figure 36 is generated using the NAND Flash device and sampled with IPP_FLASH_CLK.  
Table 27. Timing Characteristics  
Timing  
Parameter  
Number  
Minimum  
Maximum  
1
2
tCLS  
tCLH  
tCS  
0
10  
0
3
4
tCH  
10  
25  
0
5
tWP  
tALS  
tALH  
tDS  
6
7
10  
20  
10  
45  
15  
10  
10  
20  
25  
8
9
tDH  
10  
11  
12  
13  
14  
15  
16  
tWC  
tWH  
tAR  
tCLR  
tRR  
tRP  
tWB  
100  
MC9328MX21 Product Preview, Rev. 1.1  
46  
Freescale Semiconductor  
Specifications  
Table 27. Timing Characteristics (Continued)  
Timing  
Number  
Minimum  
Maximum  
Parameter  
17  
18  
19  
20  
21  
22  
23  
24  
25  
tRC  
tCEA  
tREA  
tRHZ  
tCHZ  
tOH  
50  
45  
30  
30  
20  
15  
15  
0
tREH  
tIR  
tWHR  
60  
3.14 Pulse-Width Modulator  
The PWM can be programmed to select one of two clock signals as its source frequency. The selected  
clock signal is passed through a divider and a prescaler before being input to the counter. The output is  
available at the pulse-width modulator output (PWMO) external pin.  
1
2a  
3b  
System Clock  
2b  
4b  
3a  
4a  
PWM Output  
Figure 37. PWM Output Timing Diagram  
Table 28. PWM Output Timing Parameter Table  
1.8V +/- 0.10V  
3.0V +/- 0.30V  
Ref  
No.  
Parameter  
Unit  
Minimum  
Maximum  
Minimum  
Maximum  
1
System CLK frequency1  
Clock high time1  
Clock low time1  
0
12.29  
9.91  
45  
0
12.29  
9.91  
45  
MHz  
ns  
2a  
2b  
3a  
3b  
ns  
Clock fall time1  
0.5  
0.5  
0.5  
0.5  
ns  
Clock rise time1  
ns  
MC9328MX21 Product Preview, Rev. 1.1  
Freescale Semiconductor  
47  
Specifications  
Table 28. PWM Output Timing Parameter Table (Continued)  
1.8V +/- 0.10V 3.0V +/- 0.30V  
Ref  
No.  
Parameter  
Unit  
Minimum  
Maximum  
Minimum  
Maximum  
4a  
4b  
Output delay time1  
Output setup time1  
9.37  
8.71  
3.61  
3.03  
ns  
ns  
1. CL of PWMO = 30 pF  
3.15 SDRAM Memory Controller  
The following figures (Figure 38 through Figure 41 on page 52) and their associated tables specify the  
timings related to the SDRAMC module in the i.MX21.  
1
SDCLK  
2
3S  
3
CS  
RAS  
CAS  
3H  
3S  
3S  
3H  
3S  
3H  
3H  
4H  
WE  
ADDR  
DQ  
4S  
ROW/BA  
COL/BA  
5
8
6
Data  
7
3S  
DQM  
Note: CKE is high during the read/write cycle.  
3H  
Figure 38. SDRAM Read Cycle Timing Diagram  
MC9328MX21 Product Preview, Rev. 1.1  
48  
Freescale Semiconductor  
Specifications  
Table 29. SDRAM Timing Parameter Table  
1.8V  
3.0V +/-10%  
Minimum Maximum  
Ref  
No.  
Parameter  
Unit  
Minimum  
Maximum  
1
2
SDRAM clock high-level width  
SDRAM clock low-level width  
SDRAM clock cycle time  
3.00  
3.00  
11.1  
4.78  
3.03  
3.67  
2.95  
4
4
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
3
7.5  
3
3S  
3H  
4S  
4H  
5
CS, RAS, CAS, WE, DQM setup time  
CS, RAS, CAS, WE, DQM hold time  
Address setup time  
2
3
Address hold time  
2
5.4  
6.0  
5.4  
6.0  
SDRAM access time (CL = 3)  
SDRAM access time (CL = 2)  
SDRAM access time (CL = 1)  
Data out hold time  
5
5
3.0  
3.0  
6
1
1
7
Data out high-impedance time (CL = 3)  
tHZ  
tHZ  
1
1
7
Data out high-impedance time (CL = 2)  
ns  
tHZ  
tHZ  
7
8
Data out high-impedance time (CL = 1)  
ns  
ns  
2
2
Active to read/write command period (RC = 1)  
tRCD  
tRCD  
1. tHZ = SDRAM data out high-impedance time, external SDRAM memory device dependent parameter.  
2. tRCD = SDRAM clock cycle time. The tRCD setting can be found in the i.MX21 reference manual.  
MC9328MX21 Product Preview, Rev. 1.1  
Freescale Semiconductor  
49  
Specifications  
SDCLK  
1
3
2
CS  
RAS  
CAS  
6
WE  
ADDR  
DQ  
4
5
7
/ BA  
ROW/BA  
COL/BA  
DATA  
8
9
DQM  
Figure 39. SDRAM Write Cycle Timing Diagram  
Table 30. SDRAM Write Timing Parameter Table  
1.8V  
3.0V +/-10%  
Ref  
No.  
Parameter  
Unit  
Minimum  
Maximum  
Minimum  
Maximum  
1
2
3
4
5
6
7
8
SDRAM clock high-level width  
SDRAM clock low-level width  
SDRAM clock cycle time  
Address setup time  
3.00  
3.00  
11.1  
3.67  
2.95  
4
4
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
7.5  
3
Address hold time  
2
2
2
Precharge cycle period1  
Active to read/write command delay  
Data setup time  
tRP  
tRP  
tRCD  
2
2
2
tRCD  
3.41  
MC9328MX21 Product Preview, Rev. 1.1  
50  
Freescale Semiconductor  
Specifications  
Table 30. SDRAM Write Timing Parameter Table (Continued)  
1.8V 3.0V +/-10%  
Maximum  
Ref  
No.  
Parameter  
Unit  
Minimum  
Minimum  
Maximum  
9
Data hold time  
2.45  
2
ns  
1. Precharge cycle timing is included in the write timing diagram.  
2. tRP and tRCD = SDRAM clock cycle time. These settings can be found in the i.MX21 reference manual.  
SDCLK  
1
3
2
CS  
RAS  
CAS  
6
7
7
WE  
ADDR  
DQ  
4
5
BA  
ROW/BA  
DQM  
Figure 40. SDRAM Refresh Timing Diagram  
Table 31. SDRAM Refresh Timing Parameter Table  
1.8V 3.0V +/-10%  
Ref  
No.  
Parameter  
Unit  
Minimum  
Maximum  
Minimum  
Maximum  
1
2
3
SDRAM clock high-level width  
SDRAM clock low-level width  
SDRAM clock cycle time  
3.00  
3.00  
11.1  
4
4
ns  
ns  
ns  
7.5  
MC9328MX21 Product Preview, Rev. 1.1  
Freescale Semiconductor  
51  
Specifications  
Table 31. SDRAM Refresh Timing Parameter Table (Continued)  
1.8V 3.0V +/-10%  
Ref  
No.  
Parameter  
Unit  
Minimum  
Maximum  
Minimum  
Maximum  
4
5
6
7
Address setup time  
3.67  
2.95  
3
2
ns  
ns  
ns  
ns  
Address hold time  
1
1
Precharge cycle period  
Auto precharge command period  
tRP  
tRP  
1
1
tRC  
tRC  
1. tRP and tRC = SDRAM clock cycle time. These settings can be found in the i.MX21 reference manual.  
SDCLK  
CS  
RAS  
CAS  
WE  
ADDR  
BA  
DQ  
DQM  
CKE  
Figure 41. SDRAM Self-Refresh Cycle Timing Diagram  
3.16 Synchronous Serial Interface  
The transmit and receive sections of the SSI can be synchronous or asynchronous. In synchronous mode,  
the transmitter and the receiver use a common clock and frame synchronization signal. In asynchronous  
MC9328MX21 Product Preview, Rev. 1.1  
52  
Freescale Semiconductor  
Specifications  
mode, the transmitter and receiver each have their own clock and frame synchronization signals.  
Continuous or gated clock mode can be selected. In continuous mode, the clock runs continuously. In gated  
clock mode, the clock functions only during transmission. The internal and external clock timing diagrams  
are shown in Figure 42 through Figure 45 on page 54.  
Normal or network mode can also be selected. In normal mode, the SSI functions with one data word of  
I/O per frame. In network mode, a frame can contain between 2 and 32 data words. Network mode is  
typically used in star or ring-time division multiplex networks with other processors or codecs, allowing  
interface to time division multiplexed networks without additional logic. Use of the gated clock is not  
allowed in network mode. These distinctions result in the basic operating modes that allow the SSI to  
communicate with a wide variety of devices.  
The SSI can be connected to 4 set of ports, SAP, SSI1, SSI2 and SSI3.  
1
CK Output  
4
2
FS (bl) Output  
FS (wl) Output  
6
8
12  
10  
11  
32  
STXD Output  
31  
SRXD Input  
Note: SRXD input in synchronous mode only.  
Figure 42. SSI Transmitter Internal Clock Timing Diagram  
1
CK Output  
3
5
FS (bl) Output  
FS (wl) Output  
7
9
13  
14  
SRXD Input  
Figure 43. SSI Receiver Internal Clock Timing Diagram  
MC9328MX21 Product Preview, Rev. 1.1  
Freescale Semiconductor  
53  
Specifications  
15  
16  
17  
CK Input  
18  
20  
FS (bl) Input  
FS (wl) Input  
24  
22  
28  
27  
34  
26  
STXD Output  
SRXD Input  
33  
Note: SRXD Input in Synchronous mode only  
Figure 44. SSI Transmitter External Clock Timing Diagram  
15  
16  
17  
CK Input  
19  
21  
FS (bl) Input  
FS (wl) Input  
25  
23  
30  
29  
SRXD Input  
Figure 45. SSI Receiver External Clock Timing Diagram  
Table 32. SSI to SAP Ports Timing Parameter Table  
1.8V +/- 0.10V  
3.0V +/- 0.30V  
Minimum Maximum  
Ref  
No.  
Parameter  
Unit  
Minimum  
Maximum  
Internal Clock Operation1 (SAP Ports)  
1
2
3
(Tx/Rx) CK clock period1  
(Tx) CK high to FS (bl) high  
(Rx) CK high to FS (bl) high  
90.91  
-3.30  
-3.93  
90.91  
-2.98  
-4.18  
ns  
ns  
ns  
-1.16  
-1.34  
-1.10  
-1.43  
MC9328MX21 Product Preview, Rev. 1.1  
54  
Freescale Semiconductor  
Specifications  
Table 32. SSI to SAP Ports Timing Parameter Table (Continued)  
1.8V +/- 0.10V 3.0V +/- 0.30V  
Ref  
No.  
Parameter  
Unit  
Minimum  
Maximum  
Minimum  
Maximum  
4
5
(Tx) CK high to FS (bl) low  
-3.30  
-3.93  
-3.30  
-3.93  
-3.30  
-3.93  
-2.44  
-2.44  
-2.44  
-2.67  
23.68  
0
-1.16  
-1.34  
-1.16  
-1.34  
-1.16  
-1.34  
-0.60  
-0.60  
-0.60  
-0.99  
-2.98  
-4.18  
-2.98  
-4.18  
-2.98  
-4.18  
-2.65  
-2.65  
-2.65  
-2.65  
22.09  
0
-1.10  
-1.43  
-1.10  
-1.43  
-1.10  
-1.43  
-0.98  
-0.98  
-0.98  
-0.98  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
(Rx) CK high to FS (bl) low  
6
(Tx) CK high to FS (wl) high  
7
(Rx) CK high to FS (wl) high  
8
(Tx) CK high to FS (wl) low  
9
(Rx) CK high to FS (wl) low  
10  
11a  
11b  
12  
13  
14  
(Tx) CK high to STXD valid from high impedance  
(Tx) CK high to STXD high  
(Tx) CK high to STXD low  
(Tx) CK high to STXD high impedance  
SRXD setup time before (Rx) CK low  
SRXD hold time after (Rx) CK low  
External Clock Operation (SAP Ports)  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27a  
(Tx/Rx) CK clock period1  
90.91  
36.36  
36.36  
10.24  
10.89  
10.24  
10.89  
10.24  
10.89  
10.24  
10.89  
12.08  
10.80  
90.91  
36.36  
36.36  
7.16  
7.63  
7.16  
7.63  
7.16  
7.63  
7.16  
7.63  
7.71  
7.71  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
(Tx/Rx) CK clock high period  
(Tx/Rx) CK clock low period  
(Tx) CK high to FS (bl) high  
(Rx) CK high to FS (bl) high  
(Tx) CK high to FS (bl) low  
(Rx) CK high to FS (bl) low  
(Tx) CK high to FS (wl) high  
(Rx) CK high to FS (wl) high  
(Tx) CK high to FS (wl) low  
(Rx) CK high to FS (wl) low  
(Tx) CK high to STXD valid from high impedance  
(Tx) CK high to STXD high  
19.50  
21.27  
19.50  
21.27  
19.50  
21.27  
19.50  
21.27  
19.36  
19.36  
8.65  
9.12  
8.65  
9.12  
8.65  
9.12  
8.65  
9.12  
9.20  
9.20  
MC9328MX21 Product Preview, Rev. 1.1  
Freescale Semiconductor  
55  
Specifications  
Table 32. SSI to SAP Ports Timing Parameter Table (Continued)  
1.8V +/- 0.10V 3.0V +/- 0.30V  
Ref  
No.  
Parameter  
Unit  
Minimum  
Maximum  
Minimum  
Maximum  
27b  
28  
(Tx) CK high to STXD low  
10.80  
12.08  
0.37  
0
19.36  
19.36  
7.71  
7.71  
0.42  
0
9.20  
9.20  
ns  
ns  
ns  
ns  
(Tx) CK high to STXD high impedance  
SRXD setup time before (Rx) CK low  
SRXD hole time after (Rx) CK low  
29  
30  
Synchronous Internal Clock Operation (SAP Ports)  
31  
32  
SRXD setup before (Tx) CK falling  
SRXD hold after (Tx) CK falling  
23.00  
0
21.41  
0
ns  
ns  
Synchronous External Clock Operation (SAP Ports)  
33  
34  
SRXD setup before (Tx) CK falling  
SRXD hold after (Tx) CK falling  
1.20  
0
0.88  
0
ns  
ns  
1. All the timings for the SSI are given for a non-inverted serial clock polarity (TSCKP/RSCKP = 0) and a non-inverted frame sync  
(TFSI/RFSI = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timing remains valid by inverting  
the clock signal STCK/SRCK and/or the frame sync STFS/SRFS shown in the tables and in the figures.  
Table 33. SSI to SSI1 Ports Timing Parameter Table  
1.8V +/- 0.10V  
Minimum Maximum  
Internal Clock Operation1 (SSI1 Ports)  
3.0V +/- 0.30V  
Minimum Maximum  
Ref  
No.  
Parameter  
Unit  
1
2
3
4
5
6
7
8
9
(Tx/Rx) CK clock period1  
90.91  
-0.68  
-0.96  
-0.68  
-0.96  
-0.68  
-0.96  
-0.68  
-0.96  
90.91  
-0.68  
-0.96  
-0.68  
-0.96  
-0.68  
-0.96  
-0.68  
-0.96  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
(Tx) CK high to FS (bl) high  
(Rx) CK high to FS (bl) high  
(Tx) CK high to FS (bl) low  
(Rx) CK high to FS (bl) low  
(Tx) CK high to FS (wl) high  
(Rx) CK high to FS (wl) high  
(Tx) CK high to FS (wl) low  
(Rx) CK high to FS (wl) low  
-0.15  
-0.27  
-0.15  
-0.27  
-0.15  
-0.27  
-0.15  
-0.27  
-0.15  
-0.27  
-0.15  
-0.27  
-0.15  
-0.27  
-0.15  
-0.27  
MC9328MX21 Product Preview, Rev. 1.1  
56  
Freescale Semiconductor  
Specifications  
Table 33. SSI to SSI1 Ports Timing Parameter Table (Continued)  
1.8V +/- 0.10V 3.0V +/- 0.30V  
Ref  
No.  
Parameter  
Unit  
Minimum  
Maximum  
Minimum  
Maximum  
10  
11a  
11b  
12  
(Tx) CK high to STXD valid from high impedance  
(Tx) CK high to STXD high  
-1.68  
-1.68  
-1.68  
-1.58  
20.41  
0
-0.36  
-0.36  
-0.36  
-0.31  
-1.68  
-1.68  
-1.68  
-1.58  
20.41  
0
-0.36  
-0.36  
-0.36  
-0.31  
ns  
ns  
ns  
ns  
ns  
ns  
(Tx) CK high to STXD low  
(Tx) CK high to STXD high impedance  
SRXD setup time before (Rx) CK low  
SRXD hold time after (Rx) CK low  
13  
14  
External Clock Operation (SSI1 Ports)  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27a  
27b  
28  
29  
30  
(Tx/Rx) CK clock period1  
90.91  
36.36  
36.36  
10.22  
10.79  
10.22  
10.79  
10.22  
10.79  
10.22  
10.79  
10.05  
10.00  
10.00  
10.05  
0.78  
90.91  
36.36  
36.36  
8.82  
9.39  
8.82  
9.39  
8.82  
9.39  
8.82  
9.39  
8.66  
8.61  
8.61  
8.66  
0.47  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
(Tx/Rx) CK clock high period  
(Tx/Rx) CK clock low period  
(Tx) CK high to FS (bl) high  
(Rx) CK high to FS (bl) high  
(Tx) CK high to FS (bl) low  
17.63  
19.67  
17.63  
19.67  
17.63  
19.67  
17.63  
19.67  
15.75  
15.63  
15.63  
15.75  
16.24  
18.28  
16.24  
18.28  
16.24  
18.28  
16.24  
18.28  
14.36  
14.24  
14.24  
14.36  
(Rx) CK high to FS (bl) low  
(Tx) CK high to FS (wl) high  
(Rx) CK high to FS (wl) high  
(Tx) CK high to FS (wl) low  
(Rx) CK high to FS (wl) low  
(Tx) CK high to STXD valid from high impedance  
(Tx) CK high to STXD high  
(Tx) CK high to STXD low  
(Tx) CK high to STXD high impedance  
SRXD setup time before (Rx) CK low  
SRXD hole time after (Rx) CK low  
0
Synchronous Internal Clock Operation (SSI1 Ports)  
SRXD setup before (Tx) CK falling 19.90  
31  
19.90  
ns  
MC9328MX21 Product Preview, Rev. 1.1  
Freescale Semiconductor  
57  
Specifications  
Table 33. SSI to SSI1 Ports Timing Parameter Table (Continued)  
1.8V +/- 0.10V 3.0V +/- 0.30V  
Minimum Maximum  
Ref  
No.  
Parameter  
Unit  
Minimum  
Maximum  
32  
SRXD hold after (Tx) CK falling  
0
0
ns  
Synchronous External Clock Operation (SSI1 Ports)  
33  
34  
SRXD setup before (Tx) CK falling  
SRXD hold after (Tx) CK falling  
2.59  
0
2.28  
0
ns  
ns  
1. All the timings for the SSI are given for a non-inverted serial clock polarity (TSCKP/RSCKP = 0) and a non-inverted frame sync  
(TFSI/RFSI = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timing remains valid by inverting  
the clock signal STCK/SRCK and/or the frame sync STFS/SRFS shown in the tables and in the figures.  
Table 34. SSI to SSI2 Ports Timing Parameter Table  
1.8V +/- 0.10V  
Minimum Maximum  
Internal Clock Operation1 (SSI2 Ports)  
3.0V +/- 0.30V  
Minimum Maximum  
Ref  
No.  
Parameter  
Unit  
1
2
(Tx/Rx) CK clock period1  
90.91  
0.01  
-0.21  
0.01  
-0.21  
0.01  
-0.21  
0.01  
-0.21  
0.34  
0.34  
0.34  
0.34  
21.50  
0
90.91  
0.01  
-0.21  
0.01  
-0.21  
0.01  
-0.21  
0.01  
-0.21  
0.34  
0.34  
0.34  
0.34  
21.50  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
(Tx) CK high to FS (bl) high  
0.15  
0.05  
0.15  
0.05  
0.15  
0.05  
0.15  
0.05  
0.72  
0.72  
0.72  
0.48  
0.15  
0.05  
0.15  
0.05  
0.15  
0.05  
0.15  
0.05  
0.72  
0.72  
0.72  
0.48  
3
(Rx) CK high to FS (bl) high  
4
(Tx) CK high to FS (bl) low  
5
(Rx) CK high to FS (bl) low  
6
(Tx) CK high to FS (wl) high  
(Rx) CK high to FS (wl) high  
(Tx) CK high to FS (wl) low  
7
8
9
(Rx) CK high to FS (wl) low  
10  
11a  
11b  
12  
13  
14  
(Tx) CK high to STXD valid from high impedance  
(Tx) CK high to STXD high  
(Tx) CK high to STXD low  
(Tx) CK high to STXD high impedance  
SRXD setup time before (Rx) CK low  
SRXD hold time after (Rx) CK low  
MC9328MX21 Product Preview, Rev. 1.1  
58  
Freescale Semiconductor  
Specifications  
Table 34. SSI to SSI2 Ports Timing Parameter Table (Continued)  
1.8V +/- 0.10V 3.0V +/- 0.30V  
Minimum Maximum  
External Clock Operation (SSI2 Ports)  
Ref  
No.  
Parameter  
Unit  
Minimum  
Maximum  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27a  
27b  
28  
29  
30  
(Tx/Rx) CK clock period1  
90.91  
36.36  
36.36  
10.40  
11.00  
10.40  
11.00  
10.40  
11.00  
10.40  
11.00  
9.59  
90.91  
36.36  
36.36  
8.67  
9.28  
8.67  
9.28  
8.67  
9.28  
8.67  
9.28  
7.86  
7.86  
7.86  
7.86  
2.52  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
(Tx/Rx) CK clock high period  
(Tx/Rx) CK clock low period  
(Tx) CK high to FS (bl) high  
17.37  
19.70  
17.37  
19.70  
17.37  
19.70  
17.37  
19.70  
17.08  
17.08  
17.08  
16.84  
15.88  
18.21  
15.88  
18.21  
15.88  
18.21  
15.88  
18.21  
15.59  
15.59  
15.59  
15.35  
(Rx) CK high to FS (bl) high  
(Tx) CK high to FS (bl) low  
(Rx) CK high to FS (bl) low  
(Tx) CK high to FS (wl) high  
(Rx) CK high to FS (wl) high  
(Tx) CK high to FS (wl) low  
(Rx) CK high to FS (wl) low  
(Tx) CK high to STXD valid from high impedance  
(Tx) CK high to STXD high  
9.59  
(Tx) CK high to STXD low  
9.59  
(Tx) CK high to STXD high impedance  
SRXD setup time before (Rx) CK low  
SRXD hole time after (Rx) CK low  
9.59  
2.52  
0
Synchronous Internal Clock Operation (SSI2 Ports)  
31  
32  
SRXD setup before (Tx) CK falling  
SRXD hold after (Tx) CK falling  
20.78  
0
20.78  
0
ns  
ns  
Synchronous External Clock Operation (SSI2 Ports)  
33  
34  
SRXD setup before (Tx) CK falling  
SRXD hold after (Tx) CK falling  
4.42  
0
4.42  
0
ns  
ns  
1. All the timings for the SSI are given for a non-inverted serial clock polarity (TSCKP/RSCKP = 0) and a non-inverted frame sync  
(TFSI/RFSI = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timing remains valid by inverting  
the clock signal STCK/SRCK and/or the frame sync STFS/SRFS shown in the tables and in the figures.  
MC9328MX21 Product Preview, Rev. 1.1  
Freescale Semiconductor  
59  
Specifications  
Table 35. SSI to SSI3 Ports Timing Parameter Table  
1.8V +/- 0.10V  
Parameter  
3.0V +/- 0.30V  
Minimum Maximum  
Ref  
No.  
Unit  
Minimum  
Maximum  
Internal Clock Operation1 (SSI3 Ports)  
1
2
(Tx/Rx) CK clock period1  
90.91  
-2.09  
-2.74  
-2.09  
-2.74  
-2.09  
-2.74  
-2.09  
-2.74  
-1.73  
-2.87  
-2.87  
-1.73  
22.77  
0
90.91  
-2.09  
-2.74  
-2.09  
-2.74  
-2.09  
-2.74  
-2.09  
-2.74  
-1.73  
-2.87  
-2.87  
-1.73  
22.77  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
(Tx) CK high to FS (bl) high  
-0.66  
-0.84  
-0.66  
-0.84  
-0.66  
-0.84  
-0.66  
-0.84  
-0.26  
-0.80  
-0.80  
-0.26  
-0.66  
-0.84  
-0.66  
-0.84  
-0.66  
-0.84  
-0.66  
-0.84  
-0.26  
-0.80  
-0.80  
-0.26  
3
(Rx) CK high to FS (bl) high  
4
(Tx) CK high to FS (bl) low  
5
(Rx) CK high to FS (bl) low  
6
(Tx) CK high to FS (wl) high  
7
(Rx) CK high to FS (wl) high  
(Tx) CK high to FS (wl) low  
8
9
(Rx) CK high to FS (wl) low  
10  
11a  
11b  
12  
13  
14  
(Tx) CK high to STXD valid from high impedance  
(Tx) CK high to STXD high  
(Tx) CK high to STXD low  
(Tx) CK high to STXD high impedance  
SRXD setup time before (Rx) CK low  
SRXD hold time after (Rx) CK low  
External Clock Operation (SSI3 Ports)  
15  
16  
17  
18  
19  
20  
21  
22  
23  
(Tx/Rx) CK clock period1  
(Tx/Rx) CK clock high period  
(Tx/Rx) CK clock low period  
(Tx) CK high to FS (bl) high  
(Rx) CK high to FS (bl) high  
(Tx) CK high to FS (bl) low  
(Rx) CK high to FS (bl) low  
(Tx) CK high to FS (wl) high  
(Rx) CK high to FS (wl) high  
90.91  
36.36  
36.36  
9.62  
90.91  
36.36  
36.36  
7.90  
8.58  
7.90  
8.58  
7.90  
8.58  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
17.10  
19.54  
17.10  
19.54  
17.10  
19.54  
15.61  
18.05  
15.61  
18.05  
15.61  
18.05  
10.30  
9.62  
10.30  
9.62  
10.30  
MC9328MX21 Product Preview, Rev. 1.1  
60  
Freescale Semiconductor  
Specifications  
Table 35. SSI to SSI3 Ports Timing Parameter Table (Continued)  
1.8V +/- 0.10V 3.0V +/- 0.30V  
Ref  
No.  
Parameter  
Unit  
Minimum  
Maximum  
Minimum  
Maximum  
24  
25  
(Tx) CK high to FS (wl) low  
9.62  
10.30  
9.02  
8.48  
8.48  
9.02  
1.49  
0
17.10  
19.54  
16.46  
15.32  
15.32  
16.46  
7.90  
8.58  
7.29  
6.75  
6.75  
7.29  
1.49  
0
15.61  
18.05  
14.97  
13.83  
13.83  
14.97  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
(Rx) CK high to FS (wl) low  
26  
(Tx) CK high to STXD valid from high impedance  
(Tx) CK high to STXD high  
27a  
27b  
28  
(Tx) CK high to STXD low  
(Tx) CK high to STXD high impedance  
SRXD setup time before (Rx) CK low  
SRXD hole time after (Rx) CK low  
29  
30  
Synchronous Internal Clock Operation (SSI3 Ports)  
31  
32  
SRXD setup before (Tx) CK falling  
SRXD hold after (Tx) CK falling  
21.99  
0
21.99  
0
ns  
ns  
Synchronous External Clock Operation (SSI3 Ports)  
33  
34  
SRXD setup before (Tx) CK falling  
SRXD hold after (Tx) CK falling  
3.80  
0
3.80  
0
ns  
ns  
1. All the timings for the SSI are given for a non-inverted serial clock polarity (TSCKP/RSCKP = 0) and a non-inverted frame sync  
(TFSI/RFSI = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timing remains valid by inverting  
the clock signal STCK/SRCK and/or the frame sync STFS/SRFS shown in the tables and in the figures.  
3.17 1-Wire Interface Timing  
3.17.1 Reset Sequence with Reset Pulse Presence Pulse  
To begin any communications with the DS2502, it is required that an initialization procedure be issued. A  
reset pulse must be generated and then a presence pulse must be detected. The minimum reset pulse length  
is 480 us. The bus master (one-wire) will generate this pulse, then after the DS2502 detects a rising edge  
on the one-wire bus, it will wait 15-60 us before it will transmit back a presence pulse. The presence pulse  
will exist for 60-240 us.  
The timing diagram for this sequence is shown in Figure 46.  
MC9328MX21 Product Preview, Rev. 1.1  
Freescale Semiconductor  
61  
Specifications  
Reset and Presence Pulses  
AutoClear RPP  
Control Bit  
DS2502  
Set RPP  
waits  
DS2502 Tx  
“presence pulse”  
60-240us  
511 us  
15-60us  
one-wire  
BUS  
512us  
One-Wire samples (set PST)  
68us  
Figure 46. 1-Wire Initialization  
The reset pulse begins the initialization sequence and it is initiated when the RPP control register bit is set.  
When the presence pulse is detected, this bit will be cleared. The presence pulse is used by the bus master  
to determine if at least one DS2502 is connected. Software will determine if more than one DS2502 exists.  
The one-wire will sample for the DS2502 presence pulse. The presence pulse is latched in the one-wire  
control register PST. When the PST bit is set to a one, it means that a DS2502 is present; if the bit is set to  
a zero, then no device was found.  
3.17.2 Write 0  
The Write 0 function simply writes a zero bit to the DS2502. The sequence takes 117 us. The one-wire bus  
is held low for 100us.  
AutoClear WR0  
Set WR0  
Write 0 Slot 128us  
17us  
100us  
one-wire  
BUS  
Figure 47. Write 0 Timing  
The Write 0 pulse sequence is initiated when the WR0 control bit register is set. When the write is  
complete, the WR0 register will be auto cleared.  
3.17.3 Write 1/Read Data  
The Write 1 and Read timing is identical. The time slot is first driven low. According to the DS2502  
documentation, the DS2502 has a delay circuit which is used to synchronize the DS2502 with the bus  
master (one-wire). This delay circuit is triggered by the falling edge of the data line and is used to decide  
when the DS2502 should sample the line. In the case of a write 1 or read 1, after a delay, a 1 will be  
transmitted / received. When a read 0 slot is issued, the delay circuit will hold the data line low to override  
the 1 generated by the bus master (one-wire).  
For the Write 1 or Read, the control register WR1/RD is set and auto-cleared when the sequence has been  
completed. After a Read, the control register RDST bit is set to the value of the read.  
MC9328MX21 Product Preview, Rev. 1.1  
62  
Freescale Semiconductor  
Specifications  
Auto Clear WR1/R  
Set WR1/RD  
Write “1” Slot 117us  
5us  
Figure 48. Write 1 Timing  
Set WR1/RD  
Auto Clear WR1/RD Set WR1/RD  
Auto Clear WR1/R  
Read Timing  
Read “0” Slot 117us  
60us  
Read “1” Slot 117us  
one-wire  
BUS  
5us  
13us  
5us  
13us  
One-Wire samples  
(set RDST)  
One-Wire samples  
(set RDST)  
Figure 49. Read Timing  
The precision of the generated clock is very important to get a proper behavior of the one-wire module.  
This module is based on a state machine which undertakes actions at defined times.  
Table 36. System Timing Requirements  
Values  
(Microsec)  
Minimum  
(Microsec)  
Maximum  
(microsec)  
Absolute  
Precision  
Relative  
Precision  
Times  
RSTL  
PST  
511  
68  
480  
60  
480  
60  
1
75  
31  
7
0.0645  
0.1  
RSTH  
512  
100  
5
32  
20  
4
0.0645  
0.2  
LOW0  
120  
15  
15  
LOWR  
0.8  
READ_sample  
13  
2
0.15  
The most stringent constraint is 0.0645 as a relative time imprecision.  
The time relative precision is directly derived from the frequency of the derivative clock (f):  
Time relative precision = 1/f -1 = divider/clock (MHz) - 1  
The Table 37 gathers relative time precision for different main clock frequencies.  
MC9328MX21 Product Preview, Rev. 1.1  
Freescale Semiconductor  
63  
Specifications  
Table 37. System Clock Requirements  
Main Clock Frequency (MHz)  
13  
16.8  
19.44  
Clock divide ratio  
13  
1
17  
19  
Generated frequency (MHz)  
Relative time imprecision  
0.9882  
0.0117  
1.023  
0.023  
0
This shows that the user should take care of the main clock frequency when using the one-wire module. If  
the main clock is an exact integer multiple of 1 MHz, then the generated frequency will be exactly 1 MHz.  
NOTE:  
A main clock frequency below 10 MHz might cause a misbehavior of the module.  
3.18 USB On-The-Go  
Four types of data transfer modes exist for the USB module: control transfers, bulk transfers, isochronous  
transfers and interrupt transfers. From the perspective of the USB module, the interrupt transfer type is  
identical to the bulk data transfer mode, and no additional hardware is supplied to support it. This section  
covers the transfer modes and how they work from the ground up.  
Data moves across the USB in packets. Groups of packets are combined to form data transfers. The same  
packet transfer mechanism applies to bulk, interrupt, and control transfers. Isochronous data is also moved  
in the form of packets, but because isochronous pipes are given a fixed portion of the USB bandwidth at  
all times, there is no end-of-transfer.  
MC9328MX21 Product Preview, Rev. 1.1  
64  
Freescale Semiconductor  
Specifications  
USB_ON  
(Output)  
t TXDM_OEB  
4
t OEB_TXDP  
1
USB_OE  
(Output)  
6
3
tPERIOD  
tTXDP_OEB  
USB_TXDP  
(Output)  
USB_TXDM  
(Output)  
tOEB_TXDM  
tFEOPT  
2
5
USB_VP  
(Input)  
USB_VM  
(Input)  
Figure 50. USB Timing Diagram for Data Transfer to USB Transceiver (TX)  
Table 38. USB Timing Parameter Table for Data Transfer to USB Transceiver (TX)  
3.0 +/- 0.3V  
Ref  
No.  
Parameter  
Unit  
Minimum  
Maximum  
1
2
3
4
5
6
tOEB_TXDP; USBD_OE active to USBD_TXDP low  
83.14  
81.55  
83.54  
248.9  
160  
83.47  
81.98  
83.8  
ns  
ns  
tOEB_TXDM; USBD_OE active to USBD_TXDM high  
tTXDP_OEB; USBD_TXDP high to USBD_OE deactivated  
tTXDM_OEB; USBD_TXDM low to USBD_OE deactivated (includes SE0)  
ns  
249.13  
175  
ns  
t
FEOPT; SE0 interval of EOP  
PERIOD; Data transfer rate  
ns  
t
11.97  
12.03  
Mb/s  
MC9328MX21 Product Preview, Rev. 1.1  
Freescale Semiconductor  
65  
Specifications  
USB_ON  
(Output)  
USB_OE  
(Output)  
USB_TXDP  
(Output)  
USB_TXDM  
(Output)  
1
tFEOPR  
USB_RXDP  
(Input)  
USB_RXDM  
(Input)  
Figure 51. USB Timing Diagram for Data Transfer from USB Transceiver (RX)  
Table 39. USB Timing Parameter Table for Data Transfer from USB Transceiver (RX)  
3.0 +/- 0.3V  
Ref No.  
Parameter  
Unit  
Minimum  
Maximum  
1
tFEOPR; Receiver SE0 interval of EOP  
82  
ns  
2
The USBOTG I C communication protocol consists of six components: START, Data Source/Recipient,  
Data Direction, Slave Acknowledge, Data, Data Acknowledge, and STOP.  
USBG_SDA  
5
3
4
USBG_SCL  
2
6
1
2
Figure 52. USB Timing Diagram for Data Transfer from USB Transceiver (I C)  
MC9328MX21 Product Preview, Rev. 1.1  
66  
Freescale Semiconductor  
Specifications  
2
Table 40. USB Timing Parameter Table for Data Transfer from USB Transceiver (I C)  
1.8 +/- 0.10V  
Ref No.  
Parameter  
Unit  
Minimum  
Maximum  
1
2
3
4
5
6
Hold time (repeated) START condition  
Data hold time  
188  
0
188  
ns  
ns  
ns  
ns  
ns  
ns  
Data setup time  
88  
HIGH period of the SCL clock  
LOW period of the SCL clock  
Setup time for STOP condition  
500  
500  
185  
3.19 External Interface Module (EIM)  
The External Interface Module (EIM) handles the interface to devices external to the i.MX21, including  
generation of chip-selects for external peripherals and memory. The timing diagram for the EIM is shown  
in Figure 53, and Table 41 on page 68 defines the parameters of signals.  
MC9328MX21 Product Preview, Rev. 1.1  
Freescale Semiconductor  
67  
Specifications  
(HCLK) Bus Clock  
Address  
1a  
2a  
3a  
1b  
2b  
3b  
Chip-select  
Read (Write)  
4a  
5a  
4b  
5b  
OE (rising edge)  
4c  
5c  
4d  
OE (falling edge)  
EB (rising edge)  
EB (falling edge)  
5d  
6b  
6a  
6a  
LBA (negated falling edge)  
LBA (negated rising edge)  
6c  
7a  
7b  
Burst Clock (rising edge)  
7c  
7d  
Burst Clock (falling edge)  
Read Data  
8b  
9a  
9a  
8a  
9b  
Write Data (negated falling)  
9c  
Write Data (negated rising)  
DTACK  
10a  
10a  
Figure 53. EIM Bus Timing Diagram  
Table 41. EIM Bus Timing Parameters  
1.8V +/- 0.1V  
3.0V +/- 0.3V  
Typical  
Ref No.  
Parameter  
Unit  
Min  
Typical  
Max  
Min  
Max  
1a  
1b  
2a  
2b  
3a  
Clock fall to address valid  
3.97  
3.93  
3.47  
3.39  
3.51  
6.02  
6.00  
5.59  
5.09  
5.56  
9.89  
9.86  
8.62  
8.27  
8.79  
3.83  
3.81  
3.30  
3.15  
3.39  
5.89  
5.86  
5.09  
4.85  
5.39  
9.79  
9.76  
8.45  
8.03  
8.51  
ns  
ns  
ns  
ns  
ns  
Clock fall to address invalid  
Clock fall to chip-select valid  
Clock fall to chip-select invalid  
Clock fall to Read (Write) Valid  
MC9328MX21 Product Preview, Rev. 1.1  
68  
Freescale Semiconductor  
Specifications  
Table 41. EIM Bus Timing Parameters (Continued)  
1.8V +/- 0.1V  
Parameter  
3.0V +/- 0.3V  
Typical  
Ref No.  
Unit  
Max  
Min  
Typical  
Max  
Min  
3b  
4a  
4b  
4c  
4d  
5a  
5b  
5c  
5d  
6a  
6b  
6c  
7a  
7b  
7c  
7d  
8a  
8b  
9a  
9b  
9c  
10a  
Clock fall to Read (Write) Invalid  
Clock1 rise to Output Enable Valid  
Clock1 rise to Output Enable Invalid  
Clock1 fall to Output Enable Valid  
Clock1 fall to Output Enable Invalid  
Clock1 rise to Enable Bytes Valid  
Clock1 rise to Enable Bytes Invalid  
Clock1 fall to Enable Bytes Valid  
Clock1 fall to Enable Bytes Invalid  
Clock1 fall to Load Burst Address Valid  
Clock1 fall to Load Burst Address Invalid  
Clock1 rise to Load Burst Address Invalid  
Clock1 rise to Burst Clock rise  
Clock1rise to Burst Clock fall  
3.59  
3.62  
3.70  
3.60  
3.69  
3.69  
4.64  
3.52  
3.50  
3.65  
3.65  
3.66  
3.50  
3.49  
3.50  
3.49  
4.54  
0.5  
5.37  
5.49  
5.61  
5.48  
5.62  
5.46  
5.47  
5.06  
5.05  
5.28  
5.67  
5.69  
5.22  
5.19  
5.22  
5.19  
9.14  
8.98  
9.26  
8.77  
9.12  
8.71  
8.70  
8.39  
8.27  
8.69  
9.36  
9.48  
8.42  
8.30  
8.39  
8.29  
3.36  
3.46  
3.46  
3.44  
3.42  
3.46  
3.46  
3.41  
3.41  
3.30  
3.41  
3.33  
3.26  
3.31  
3.26  
3.31  
4.54  
0.5  
5.20  
5.33  
5.37  
5.30  
5.36  
5.25  
5.25  
5.18  
5.18  
5.23  
5.43  
5.47  
4.99  
5.03  
4.98  
5.02  
8.50  
9.02  
8.81  
8.88  
8.60  
8.54  
8.54  
8.36  
8.36  
8.81  
9.13  
9.25  
8.19  
8.17  
8.15  
8.12  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Clock1 fall to Burst Clock rise  
Clock1 fall to Burst Clock fall  
Read Data setup time  
Read Data hold time  
Clock1 rise to Write Data Valid  
Clock1 fall to Write Data Invalid  
Clock1 rise to Write Data Invalid  
DTACK setup time  
4.13  
4.10  
4.02  
2.65  
5.86  
5.79  
5.81  
4.63  
9.16  
9.15  
9.37  
8.40  
3.95  
4.04  
4.22  
2.64  
6.36  
6.27  
5.29  
4.61  
10.31  
9.16  
9.24  
8.41  
1. Clock refers to the system clock signal, HCLK, generated from the System DPLL  
3.19.1 EIM External Bus Timing Diagrams  
The following timing diagrams show the timing of accesses to memory or a peripheral.  
MC9328MX21 Product Preview, Rev. 1.1  
Freescale Semiconductor  
69  
Specifications  
hclk  
hselm_weim_cs[0]  
htrans  
Seq/Nonseq  
Read  
hwrite  
haddr  
hready  
V1  
weim_hrdata  
weim_hready  
Last Valid Data  
V1  
BCLK  
A[24:0]  
Last Valid Address  
V1  
CS[0]  
R/W  
Read  
LBA  
OE  
EB (EBC=0)  
EB (EBC=1)  
DATA_IN  
V1  
Figure 54. WSC = 1, A.HALF/E.HALF  
MC9328MX21 Product Preview, Rev. 1.1  
70  
Freescale Semiconductor  
Specifications  
hclk  
hselm_weim_cs[0]  
htrans  
Nonseq  
Write  
V1  
hwrite  
haddr  
hready  
hwdata  
Last Valid Data  
Write Data (V1)  
Unknown  
weim_hrdata  
Last Valid Data  
weim_hready  
BCLK  
A[24:0]  
Last Valid Address  
V1  
CS[0]  
R/W  
LBA  
OE  
Write  
EB  
D[31:0]  
Last Valid Data  
Write Data (V1)  
Figure 55. WSC = 1, WEA = 1, WEN = 1, A.HALF/E.HALF  
MC9328MX21 Product Preview, Rev. 1.1  
Freescale Semiconductor  
71  
Specifications  
hclk  
hselm_weim_cs[0]  
htrans  
Nonseq  
Read  
V1  
hwrite  
haddr  
hready  
weim_hrdata  
Last Valid Data  
V1 Word  
weim_hready  
BCLK  
A[24:0]  
Last Valid Addr  
Address V1  
Address V1 + 2  
CS[0]  
R/W  
LBA  
OE  
Read  
EB (EBC=0)  
EB (EBC=1)  
DATA_IN  
1/2 Half Word  
2/2 Half Word  
Figure 56. WSC = 1, OEA = 1, A.WORD/E.HALF  
MC9328MX21 Product Preview, Rev. 1.1  
72  
Freescale Semiconductor  
Specifications  
hclk  
hselm_weim_cs[0]  
htrans  
Nonseq  
Write  
V1  
hwrite  
haddr  
hready  
hwdata  
Last Valid Data  
Write Data (V1 Word)  
Last Valid Data  
weim_hrdata  
weim_hready  
BCLK  
A[24:0]  
Last Valid Addr  
Address V1  
Address V1 + 2  
CS[0]  
R/W  
LBA  
OE  
Write  
EB  
D[31:0]  
1/2 Half Word  
2/2 Half Word  
Figure 57. WSC = 1, WEA = 1, WEN = 1, A.WORD/E.HALF  
MC9328MX21 Product Preview, Rev. 1.1  
Freescale Semiconductor  
73  
Specifications  
hclk  
hselm_weim_cs[3]  
htrans  
Nonseq  
hwrite  
Read  
V1  
haddr  
hready  
weim_hrdata  
Last Valid Data  
V1 Word  
weim_hready  
BCLK  
A[24:0]  
Last Valid Addr  
Address V1  
Address V1 + 2  
CS[3]  
R/W  
LBA  
OE  
Read  
EB (EBC=0)  
EB (EBC=1)  
DATA_IN  
1/2 Half Word  
2/2 Half Word  
Figure 58. WSC = 3, OEA = 2, A.WORD/E.HALF  
MC9328MX21 Product Preview, Rev. 1.1  
74  
Freescale Semiconductor  
Specifications  
hclk  
hselm_weim_cs[3]  
htrans  
Nonseq  
hwrite  
Write  
V1  
haddr  
hready  
Last Valid  
Data  
hwdata  
Write Data (V1 Word)  
Last Valid Data  
weim_hrdata  
weim_hready  
BCLK  
A[24:0]  
Last Valid Addr  
Address V1  
Address V1 + 2  
CS[3]  
R/W  
LBA  
OE  
Write  
EB  
D[31:0]  
Last Valid Data  
1/2 Half Word  
2/2 Half Word  
Figure 59. WSC = 3, WEA = 1, WEN = 3, A.WORD/E.HALF  
MC9328MX21 Product Preview, Rev. 1.1  
Freescale Semiconductor  
75  
Specifications  
hclk  
hselm_weim_cs[2]  
htrans  
Nonseq  
Read  
V1  
hwrite  
haddr  
hready  
weim_hrdata  
Last Valid Data  
V1 Word  
weim_hready  
BCLK  
A[24:0]  
Last Valid Addr  
Address V1  
Read  
Address V1 + 2  
CS[2]  
R/W  
LBA  
OE  
EB (EBC=0)  
EB (EBC=1)  
DATA_IN  
1/2 Half Word  
2/2 Half Word  
Figure 60. WSC = 3, OEA = 4, A.WORD/E.HALF  
MC9328MX21 Product Preview, Rev. 1.1  
76  
Freescale Semiconductor  
Specifications  
hclk  
hselm_weim_cs[2]  
htrans  
Nonseq  
hwrite  
haddr  
Write  
V1  
hready  
hwdata  
Last Valid  
Data  
Write Data (V1 Word)  
Last Valid Data  
weim_hrdata  
weim_hready  
BCLK  
A[24:0] Last Valid Addr  
Address V1  
Address V1 + 2  
CS[2]  
R/W  
Write  
LBA  
OE  
EB  
D[31:0]  
Last Valid Data  
1/2 Half Word  
2/2 Half Word  
Figure 61. WSC = 3, WEA = 2, WEN = 3, A.WORD/E.HALF  
MC9328MX21 Product Preview, Rev. 1.1  
Freescale Semiconductor  
77  
Specifications  
hclk  
hselm_weim_cs[2]  
htrans  
Nonseq  
Read  
V1  
hwrite  
haddr  
hready  
weim_hrdata  
Last Valid Data  
V1 Word  
weim_hready  
BCLK  
A[24:0]  
Last Valid Addr  
Address V1  
Address V1 + 2  
CS[2]  
R/W  
Read  
LBA  
OE  
EB (EBC=0)  
EB (EBC=1)  
DATA_IN  
1/2 Half Word  
2/2 Half Word  
Figure 62. WSC = 3, OEN = 2, A.WORD/E.HALF  
MC9328MX21 Product Preview, Rev. 1.1  
78  
Freescale Semiconductor  
Specifications  
hclk  
hselm_weim_cs[2]  
htrans  
Nonseq  
Read  
V1  
hwrite  
haddr  
hready  
weim_hrdata  
Last Valid Data  
V1 Word  
weim_hready  
BCLK  
Last Valid Addr  
Address V1  
Address V1 + 2  
A[24:0]  
CS[2]  
R/W  
LBA  
Read  
OE  
EB (EBC=0)  
EB (EBC=1)  
DATA_IN  
1/2 Half Word  
2/2 Half Word  
Figure 63. WSC = 3, OEA = 2, OEN = 2, A.WORD/E.HALF  
MC9328MX21 Product Preview, Rev. 1.1  
Freescale Semiconductor  
79  
Specifications  
hclk  
hselm_weim_cs[2]  
htrans  
Nonseq  
Write  
V1  
hwrite  
haddr  
hready  
hwdata  
Last Valid  
Data  
Write Data (V1 Word)  
Last Valid Data  
Unknown  
weim_hrdata  
weim_hready  
BCLK  
A[24:0] Last Valid Addr  
Address V1  
Address V1 + 2  
CS[2]  
R/W  
Write  
LBA  
OE  
EB  
D[31:0]  
1/2 Half Word  
2/2 Half Word  
Last Valid Data  
Figure 64. WSC = 2, WWS = 1, WEA = 1, WEN = 2, A.WORD/E.HALF  
MC9328MX21 Product Preview, Rev. 1.1  
80  
Freescale Semiconductor  
Specifications  
hclk  
hselm_weim_cs[2]  
htrans  
Nonseq  
Write  
V1  
hwrite  
haddr  
hready  
hwdata  
Last Valid  
Data  
Write Data (V1 Word)  
Last Valid Data  
Unknown  
weim_hrdata  
weim_hready  
BCLK  
A[24:0]  
Last Valid Addr  
Address V1  
Address V1 + 2  
CS[2]  
R/W  
LBA  
OE  
Write  
EB  
D[31:0]  
1/2 Half Word  
2/2 Half Word  
Last Valid Data  
Figure 65. WSC = 1, WWS = 2, WEA = 1, WEN = 2, A.WORD/E.HALF  
MC9328MX21 Product Preview, Rev. 1.1  
Freescale Semiconductor  
81  
Specifications  
hclk  
hselm_weim_cs[2]  
htrans  
Nonseq  
Read  
V1  
Nonseq  
Write  
V8  
hwrite  
haddr  
hready  
hwdata  
Last Valid Data  
Write Data  
Read Data  
weim_hrdata  
weim_hready  
Last Valid Data  
BCLK  
A[24:0]  
Last Valid Addr  
Address V1  
Address V8  
CS[2]  
R/W  
LBA  
Read  
Write  
OE  
EB (EBC=0)  
EB (EBC=1)  
DATA_IN  
D[31:0]  
Read Data  
Last Valid Data  
Write Data  
Figure 66. WSC = 2, WWS = 2, WEA = 1, WEN = 2, A.HALF/E.HALF  
MC9328MX21 Product Preview, Rev. 1.1  
82  
Freescale Semiconductor  
Specifications  
Read  
Idle  
Write  
hclk  
hselm_weim_cs[2]  
htrans  
Nonseq  
Read  
V1  
Nonseq  
Write  
V8  
hwrite  
haddr  
hready  
hwdata  
Last Valid Data  
Write Data  
weim_hrdata  
weim_hready  
Last Valid Data  
Read Data  
BCLK  
A[24:0]  
Last Valid Addr  
Address V1  
Address V8  
CS[2]  
R/W  
Read  
Write  
LBA  
OE  
EB (EBC=0)  
EB (EBC=1)  
DATA_IN  
D[31:0]  
Read Data  
Last Valid Data  
Write Data  
Figure 67. WSC = 2, WWS = 1, WEA = 1, WEN = 2, EDC = 1, A.HALF/E.HALF  
MC9328MX21 Product Preview, Rev. 1.1  
Freescale Semiconductor  
83  
Specifications  
hclk  
hselm_weim_cs[4]  
htrans  
Nonseq  
Write  
V1  
hwrite  
haddr  
hready  
hwdata  
Last Valid  
Data  
Write Data (Word)  
Last Valid Data  
weim_hrdata  
weim_hready  
BCLK  
A[24:0]  
Last Valid Addr  
Address V1  
Address V1 + 2  
CS[3:0]  
R/W  
Write  
LBA  
OE  
EB  
D[31:0]  
Write Data (1/2 Half Word)  
Write Data (2/2 Half Word)  
Last Valid Data  
Figure 68. WSC = 2, CSA = 1, WWS = 1, A.WORD/E.HALF  
MC9328MX21 Product Preview, Rev. 1.1  
84  
Freescale Semiconductor  
Specifications  
hclk  
hselm_weim_cs[4]  
htrans  
Nonseq  
Read  
V1  
Nonseq  
Write  
V8  
hwrite  
haddr  
hready  
hwdata  
weim_hrdata  
weim_hready  
Last Valid Data  
Write Data  
Read Data  
Last Valid Data  
BCLK  
A[24:0] Last Valid Addr  
Address V1  
Address V8  
CS[4]  
R/W  
LBA  
OE  
Read  
Write  
EB (EBC=0)  
EB (EBC=1)  
DATA_IN  
D[31:0]  
Read Data  
Last Valid Data  
Write Data  
Figure 69. WSC = 3, CSA = 1, A.HALF/E.HALF  
MC9328MX21 Product Preview, Rev. 1.1  
Freescale Semiconductor  
85  
Specifications  
hclk  
hselm_weim_cs[4]  
htrans  
Nonseq  
Read  
V1  
Idle  
Seq  
Read  
V2  
hwrite  
haddr  
hready  
weim_hrdata  
weim_hready  
Last Valid Data  
Read Data (V1)  
Read Data (V2)  
BCLK  
A[24:0]  
Last Valid Addr  
Address V1  
Address V2  
CNC  
CS[4]  
R/W  
LBA  
Read  
OE  
EB (EBC=0)  
EB (EBC=1)  
DATA_IN  
Read Data  
(V1)  
Read Data  
(V2)  
Figure 70. WSC = 2, OEA = 2, CNC = 3, BCM = 1, A.HALF/E.HALF  
MC9328MX21 Product Preview, Rev. 1.1  
86  
Freescale Semiconductor  
Specifications  
hclk  
hselm_weim_cs[4]  
htrans  
Nonseq  
Read  
V1  
Idle  
Nonseq  
Write  
V8  
hwrite  
haddr  
hready  
hwdata  
Last Valid Data  
Write Data  
weim_hrdata  
Last Valid Data  
Read Data  
weim_hready  
BCLK  
A[24:0]  
Last Valid Addr  
Address V1  
Address V8  
CNC  
CS[4]  
R/W  
Read  
Write  
LBA  
OE  
EB (EBC=0)  
EB (EBC=1)  
DATA_IN  
D[31:0]  
Read Data  
Last Valid Data  
Write Data  
Figure 71. WSC = 2, OEA = 2, WEA = 1, WEN = 2, CNC = 3, A.HALF/E.HALF  
MC9328MX21 Product Preview, Rev. 1.1  
Freescale Semiconductor  
87  
Specifications  
hclk  
hselm_weim_cs[2]  
htrans  
Idle  
Nonseq  
Read  
V1  
Nonseq  
Read  
V5  
hwrite  
haddr  
hready  
weim_hrdata  
weim_hready  
BCLK  
A[24:0]  
Last Valid Addr  
Address V1  
Address V5  
CS[2]  
Read  
R/W  
LBA  
OE  
EB (EBC=0)  
EB (EBC=1)  
ECB  
V5 Word  
DATA_IN  
V6 Word  
V1 Word V2 Word  
Figure 72. WSC = 3, SYNC = 1, A.HALF/E.HALF  
MC9328MX21 Product Preview, Rev. 1.1  
88  
Freescale Semiconductor  
Specifications  
hclk  
hselm_weim_cs[2]  
htrans  
Nonseq  
Read  
V1  
Idle  
Seq  
Read  
V2  
Seq  
Read  
V3  
Seq  
Read  
V4  
hwrite  
haddr  
hready  
weim_hrdata  
weim_hready  
BCLK  
Last Valid Data  
V1 Word  
V2 Word  
V3 Word  
V4 Word  
A[24:0]  
Last Valid Addr  
Address V1  
CS[2]  
R/W  
Read  
LBA  
OE  
EB (EBC=0)  
EB (EBC=1)  
ECB  
DATA_IN  
V1 Word  
V2 Word  
V3 Word  
V4 Word  
Figure 73. WSC = 2, SYNC = 1, DOL = [1/0], A.WORD/E.WORD  
MC9328MX21 Product Preview, Rev. 1.1  
Freescale Semiconductor  
89  
Specifications  
hclk  
hselm_weim_cs[2]  
htrans  
Nonseq  
Seq  
Idle  
hwrite  
Read  
V1  
Read  
V2  
haddr  
hready  
weim_hrdata  
Last Valid Data  
V1 Word  
V2 Word  
weim_hready  
BCLK  
A[24:0]  
CS[2]  
R/W  
Last Valid Addr  
Address V1  
Address V2  
Read  
LBA  
OE  
EB (EBC=0)  
EB (EBC=1)  
ECB  
DATA_IN  
V1 1/2  
V1 2/2  
V2 1/2  
V2 2/2  
Figure 74. WSC = 2, SYNC = 1, DOL = [1/0], A.WORD/E.HALF  
MC9328MX21 Product Preview, Rev. 1.1  
90  
Freescale Semiconductor  
Specifications  
hclk  
hselm_weim_cs[2]  
Non  
seq  
Seq  
Read  
V2  
Idle  
htrans  
hwrite  
Read  
V1  
haddr  
hready  
weim_hrdata  
Last Valid Data  
V1 Word  
V2 Word  
weim_hready  
BCLK  
Last Valid  
Addr  
Address V1  
A[24:0]  
CS[2]  
Read  
R/W  
LBA  
OE  
EB (EBC=0)  
EB (EBC=1)  
ECB  
DATA_IN  
V1 1/2  
V1 2/2  
V2 1/2  
V2 2/2  
Figure 75. WSC = 7, OEA = 8, SYNC = 1, DOL = 1, BCD = 1, BCS = 2, A.WORD/E.HALF  
MC9328MX21 Product Preview, Rev. 1.1  
Freescale Semiconductor  
91  
Specifications  
hclk  
hselm_weim_cs[2]  
htrans  
Non  
seq  
Seq  
Idle  
hwrite  
Read  
V1  
Read  
V2  
haddr  
hready  
weim_hrdata  
Last Valid Data  
V1 Word  
V2 Word  
weim_hready  
BCLK  
A[24:0]  
CS[2]  
Last Valid  
Addr  
Address V1  
R/W  
LBA  
Read  
OE  
EB (EBC=0)  
EB (EBC=1)  
ECB  
DATA_IN  
V1 1/2  
V1 2/2  
V2 1/2  
V2 2/2  
Figure 76. WSC = 7, OEA = 8, SYNC = 1, DOL = 1, BCD = 1, BCS = 1, A.WORD/E.HALF  
3.20 DTACK Mode Memory Access Timing Diagrams  
When enabled, the DTACK input signal is used to externally terminate a data transfer. For DTACK  
enabled operations, a bus time-out monitor generates a bus error when an external bus cycle is not  
terminated by the DTACK input signal after 1024 HCLK clock cycles have elapsed, where HCLK is the  
internal system clock driven from the PLL module. For a 133 MHz HCLK setting, this time equates to  
7.7 µs. Refer to the Section 3.5, “DPLL Timing Specifications,” on page 18 for more information on how  
to generate different HCLK frequencies.  
MC9328MX21 Product Preview, Rev. 1.1  
92  
Freescale Semiconductor  
Specifications  
There are two modes of operation for the DTACK input signal: rising edge detection or level sensitive  
detection with a programmable insensitivity time. DTACK is only used during external asynchronous data  
transfers, thus the SYNC bit in the chip select control registers must be cleared.  
During edge detection mode, the EIM will terminate an external data transfer following the detection of the  
DTACK signal’s rising edge, so long as it occurs within the 1024 HCLK cycle time. Edge detection mode  
is used for devices that follow the PCMCIA standard. Note that DTACK rising edge detection mode can  
only be used for CS[5] operations. To configure CS[5] for DTACK rising edge detection, the following  
bits must be programmed in the Chip Select 5 Control Register and EIM Configuration Register:  
WSC bit field set to 0x3F and CSA (or CSN) set to 1 or greater in the Chip Select 5 Control Register  
AGE bit set in the EIM Configuration Register  
Other bits such as DSZ, OEA, OEN, and so on, may be set according to system and timing requirements of  
the external device. The requirement of setting CSA or CSN is required to allow the EIM to wait for the  
rising edge of DTACK during back-to-back external transfers, such as during DMA transfers or an internal  
32-bit access through an external 16-bit data port.  
During level sensitive detection, the EIM will first hold off sampling the DTACK signal for at least 2  
HCLK cycles, and up to 5 HCLK cycles as programmed by the DCT bits in the Chip Select Control  
Register. After this insensitivity time, the EIM will sample DTACK and if it detects that DTACK is logic  
high, it will continue the data transfer at the programmed number of wait states. However, if the EIM  
detects that DTACK is logic low, it will wait until DTACK goes to logic high to continue the access, so  
long as this occurs within the 1024 HCLK cycle time. If at anytime during an external data transfer  
DTACK goes to logic low, the EIM will wait until DTACK returns to logic high to resume the data  
transfer. Level detection is often used for asynchronous devices such graphic controller chips. Level  
detection may be used with any chip select except CS[4] as it is multiplexed with the DTACK signal. To  
configure a chip select for DTACK level sensitive detection, the following bits must be programmed in the  
Chip Select Control Register and EIM Configuration Register:  
EW bit set, WSC set to > 1, and CSN set to < 3 in the Chip Select Control Register  
BCD/DCT set to desired “insensitivity time” in the Chip Select Control Register. The “insensitivity  
time” is dictated by the external device’s timing requirements.  
AGE bit cleared in the EIM Configuration Register  
Other bits such as DSZ, OEA, OEN, and so on, may be set according to system and timing requirements of  
the external device.  
The waveforms in the following section provide examples of the DTACK signal operation.  
MC9328MX21 Product Preview, Rev. 1.1  
Freescale Semiconductor  
93  
Specifications  
3.20.1 DTACK Example Waveforms: Internal ARM AHB Word  
Accesses to Word-Width (32-bit) Memory  
HCLK  
BCLK  
Last Valid  
Addr  
V1  
ADDR  
CS[5]  
RW  
Read  
LBA  
OE  
EB (EBC=0)  
EB (EBC=1)  
DTACK  
DATA_IN  
V1 Data  
Figure 77. DTACK Edge Triggered Read Access, WSC=3F, OEA=8, OEN=5, AGE=1.  
MC9328MX21 Product Preview, Rev. 1.1  
94  
Freescale Semiconductor  
Specifications  
HCLK  
BCLK  
ADDR  
Last Valid Addr  
Address V1  
V1+8  
V1+4  
CS[0]  
RW  
Read  
LBA  
OE  
EB (EBC=0)  
EB (EBC=1)  
DCT  
DTACK  
DATA_IN  
V1 Word  
V1+4 Word  
V1+8 Word  
Figure 78. DTACK Level Sensitive Sequential Read Accesses, WSC=2, EW=1, DCT=1, AGE=0  
(Example of DTACK staying high)  
MC9328MX21 Product Preview, Rev. 1.1  
Freescale Semiconductor  
95  
Specifications  
HCLK  
BCLK  
ADDR  
CS[0]  
Address V1  
V1+4  
V1+8  
Last Valid Addr  
RWA  
RWN  
Write  
RW  
LBA  
OE  
EB  
DCT  
DTACK  
V1 Word  
V1+4 Word  
V1+8  
DATA_OUT  
Figure 79. DTACK Level Sensitive Sequential Write Accesses, WSC=2, EW=1, RWA=1, RWN=1,  
DCT=1, AGE=0 (Example of DTACK Asserting)  
MC9328MX21 Product Preview, Rev. 1.1  
96  
Freescale Semiconductor  
Specifications  
2
3.21 I C Module  
2
The I C communication protocol consists of seven elements: START, Data Source/Recipient, Data  
Direction, Slave Acknowledge, Data, Data Acknowledge, and STOP.  
SDA  
5
3
4
SCL  
2
6
1
2
Figure 80. Definition of Bus Timing for I C  
2
Table 42. I C Bus Timing Parameter Table  
1.8V +/- 0.10V  
3.0V +/- 0.30V  
Ref  
No.  
Parameter  
Unit  
Minimum  
Maximum  
Minimum  
Maximum  
SCL Clock Frequency  
0
100  
0
100  
kHz  
ns  
ns  
ns  
ns  
ns  
ns  
1
2
3
4
5
6
Hold time (repeated) START condition  
Data hold time  
114.8  
0
111.1  
0
69.7  
72.3  
Data setup time  
3.1  
1.76  
68.3  
335.1  
111.1  
HIGH period of the SCL clock  
LOW period of the SCL clock  
Setup time for STOP condition  
69.7  
336.4  
110.5  
3.22 CMOS Sensor Interface  
The CSI module consists of a control register to configure the interface timing, a control register  
for statistic data generation, a status register, interface logic, a 32 × 32 image data receive FIFO,  
and a 16 × 32 statistic data FIFO.  
3.22.1 Gated Clock Mode  
Figure 81 shows the timing diagram when the CMOS sensor output data is configured for negative  
edge and the CSI is programmed to received data on the positive edge. Figure 82 on page 98 shows  
the timing diagram when the CMOS sensor output data is configured for positive edge and the CSI  
is programmed to received data in negative edge. The parameters for the timing diagrams are listed  
in Table 43 on page 98. The formula for calculating the pixel clock rise and fall time is located in  
Section 3.22.3, “Calculation of Pixel Clock Rise/Fall Time,” on page 101.  
MC9328MX21 Product Preview, Rev. 1.1  
Freescale Semiconductor  
97  
Specifications  
1
VSYNC  
7
HSYNC  
PIXCLK  
5
6
2
Valid Data  
Valid Data  
Valid Data  
DATA[7:0]  
4
3
Figure 81. Sensor Output Data on Pixel Clock Falling Edge  
CSI Latches Data on Pixel Clock Rising Edge  
1
VSYNC  
7
HSYNC  
PIXCLK  
5
6
2
Valid Data  
Valid Data  
Valid Data  
DATA[7:0]  
4
3
Figure 82. Sensor Output Data on Pixel Clock Rising Edge  
CSI Latches Data on Pixel Clock Falling Edge  
Table 43. Gated Clock Mode Timing Parameters  
Number  
Parameter  
Minimum  
Maximum  
Unit  
1
2
3
4
csi_vsync to csi_hsync  
csi_hsync to csi_pixclk  
csi_d setup time  
9 * THCLK  
ns  
ns  
ns  
ns  
3
1
1
(TP/2) - 3  
csi_d hold time  
MC9328MX21 Product Preview, Rev. 1.1  
98  
Freescale Semiconductor  
Specifications  
Table 43. Gated Clock Mode Timing Parameters  
Number  
Parameter  
Minimum  
Maximum  
Unit  
5
6
7
csi_pixclk high time  
csi_pixclk low time  
csi_pixclk frequency  
THCLK  
THCLK  
0
ns  
ns  
HCLK / 2  
MHz  
HCLK = AHB System Clock  
THCLK = Period for HCLK  
TP = Period of CSI_PIXCLK  
The limitation on pixel clock rise time/fall time is not specified. It should be calculated from the  
hold time and setup time based on the following assumptions:  
Rising-edge latch data  
max rise time allowed = (positive duty cycle - hold time)  
max fall time allowed = (negative duty cycle - setup time)  
In most of case, duty cycle is 50 / 50, therefore  
max rise time = (period / 2 - hold time)  
max fall time = (period / 2 - setup time)  
For example: Given pixel clock period = 10ns, duty cycle = 50 / 50, hold time = 1ns, setup time =  
1ns.  
positive duty cycle = 10 / 2 = 5ns  
max rise time allowed = 5 - 1 = 4ns  
negative duty cycle = 10 / 2 = 5ns  
max fall time allowed = 5 - 1 = 4ns  
Falling-edge latch data  
max fall time allowed = (negative duty cycle - hold time)  
max rise time allowed = (positive duty cycle - setup time)  
3.22.2 Non-Gated Clock Mode  
Figure 83 shows the timing diagram when the CMOS sensor output data is configured for negative  
edge and the CSI is programmed to received data on the positive edge. Figure 84 on page 100  
shows the timing diagram when the CMOS sensor output data is configured for positive edge and  
the CSI is programmed to received data in negative edge. The parameters for the timing diagrams  
are listed in Table 44 on page 100. The formula for calculating the pixel clock rise and fall time is  
located in Section 3.22.3, “Calculation of Pixel Clock Rise/Fall Time,” on page 101.  
MC9328MX21 Product Preview, Rev. 1.1  
Freescale Semiconductor  
99  
Specifications  
1
VSYNC  
6
5
4
PIXCLK  
Valid Data  
Valid Data  
Valid Data  
DATA[7:0]  
2
3
Figure 83. Sensor Output Data on Pixel Clock Falling Edge  
CSI Latches Data on Pixel Clock Rising Edge  
1
VSYNC  
6
4
5
PIXCLK  
Valid Data  
Valid Data  
Valid Data  
DATA[7:0]  
2
3
Figure 84. Sensor Output Data on Pixel Clock Rising Edge  
CSI Latches Data on Pixel Clock Falling Edge  
Table 44. Non-Gated Clock Mode Parameters  
Number  
Parameter  
Minimum  
Maximum  
Unit  
1
2
3
4
csi_vsync to csi_pixclk  
csi_d setup time  
9 * THCLK  
ns  
ns  
ns  
ns  
1
1
csi_d hold time  
csi_pixclk high time  
THCLK  
MC9328MX21 Product Preview, Rev. 1.1  
100  
Freescale Semiconductor  
Specifications  
Table 44. Non-Gated Clock Mode Parameters (Continued)  
Number  
Parameter  
Minimum  
Maximum  
Unit  
5
6
csi_pixclk low time  
csi_pixclk frequency  
THCLK  
0
ns  
HCLK / 2  
MHz  
HCLK = AHB System Clock  
THCLK = Period of HCLK  
3.22.3 Calculation of Pixel Clock Rise/Fall Time  
The limitation on pixel clock rise time/fall time is not specified. It should be calculated from the hold time and  
setup time based on the following assumptions:  
Rising-edge latch data  
max rise time allowed = (positive duty cycle - hold time)  
max fall time allowed = (negative duty cycle - setup time)  
In most of case, duty cycle is 50 / 50, therefore:  
max rise time = (period / 2 - hold time)  
max fall time = (period / 2 - setup time)  
For example: Given pixel clock period = 10ns, duty cycle = 50 / 50, hold time = 1ns, setup time = 1ns.  
positive duty cycle = 10 / 2 = 5ns  
max rise time allowed = 5 - 1 = 4ns  
negative duty cycle = 10 / 2 = 5ns  
max fall time allowed = 5 - 1 = 4ns  
Falling-edge latch data  
max fall time allowed = (negative duty cycle - hold time)  
max rise time allowed = (positive duty cycle - setup time)  
MC9328MX21 Product Preview, Rev. 1.1  
Freescale Semiconductor  
101  
4 Pin-Out and Package Information  
Table 45. i.MX21 Pin Assignments  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
LD9  
LD12  
LD14  
REV HSYNC OE_ SD2_D2 CSI_  
ACD D0  
CSI_  
PIXCLK VSYNC  
CSI_  
USBH1_ USBH1_ USBG_  
TOUT  
SAP_  
TXDAT  
SSI1_  
CLK  
SSI2_  
RXDAT  
SSI2_TXDAT SSI3_  
FS  
A
B
C
D
E
F
FS  
OE  
FS  
LD7  
LD1  
LD2  
LD8  
LD5  
LD3  
LD0  
LD4  
D31  
D29  
D27  
A18  
A17  
A15_  
LD11  
LD6  
LD16  
LD10  
CLS  
PS  
CON SD2_D0 SD2_  
TRAST CMD  
CSI_  
D4  
CSI_D6  
CSI_  
USB_  
PWR  
USBG_  
SCL  
USBG_  
TXDM  
SAP_  
FS  
SSI1_  
FS  
SSI2_  
FS  
SSI3_  
TXDAT  
I2C_DATA  
CSPI2_  
SS2  
LD17 VSYNC SD2_D3 CSI_  
D1  
CSI_  
MCLK HSYNC  
USB_  
OC  
USBH1_ USBG_  
RXDM RXDM  
TIN  
SSI1_  
TXDAT RXDAT  
SSI3_  
SSI3_  
CLK  
I2C_CLK  
CSPI2_  
SS1  
LD13  
LD15  
QVDD QVSS SD2_D1 SD2_  
CLK  
CSI_  
D2  
CSI_D7 USBH1_ USBH1_ USBG_ USBG_  
SAP_ SSI1_  
RXDAT RXDAT  
SSI2_  
CLK  
CSPI2_SS0 CSPI2_  
SCLK  
TXDM  
RXDP  
ON  
RXDP  
SPL_  
SPR  
SAP_  
CLK  
CSPI2_  
MISO  
CSPI1_SS2 CSPI2_  
MOSI  
A24_  
NFIO14  
A25_ LSCLK  
NFIO15  
CSPI1_ CSPI1_  
SS1  
KP_ROW0  
CSPI1_  
SS0  
MISO  
A22_  
NFIO12  
A23_  
NFIO13  
D30  
D28  
D26  
D24  
D22  
D18  
D16  
D14  
D12  
D10  
OE  
NVDD6 NVSS6 CSI_D3 USB_  
BYP  
USBH_  
ON  
USBG_  
SDA  
USBG_  
TXDP  
KP_  
ROW1  
KP_  
ROW3  
UART2_CTS  
KP_  
ROW4  
G
H
J
A20  
A21_  
NFIO11  
NVDD1 NVSS5 CSI_D5 CSPI1_ CSPI1_ USBH1_ USBG_  
TEST_  
WB4  
TEST_  
WB2  
TEST_WB3 PWMO  
SCLK  
RDY  
TXDP  
OE  
A19  
D25  
D23  
D21  
D20  
D17  
D15  
D13  
EB3  
EB2  
D9  
NVDD1 NVDD5 NVDD4  
KP_  
ROW5  
KP_  
ROW2  
CSPI1_  
MOSI  
TEST_  
WB0  
UART2_ KP_COL1 KP_COL0  
RTS  
TEST_  
WB1  
A16  
NVSS1 NVSS4 QVDDX UART1_  
RXD  
TDO  
QVDD  
NFWP  
NFRB  
QVSS  
KP_  
COL3  
KP_COL5 KP_COL4  
KP_  
COL2  
K
L
A14_  
NFIO9 NFIO10  
NVSS1 NVDD3 QVDD  
QVSS  
NFIO2  
NFIO7  
UART1_  
TXD  
UART2_ UART3_ UART3_CTS UART3_  
TXD RTS TXD  
D19  
A11  
A9  
A13_  
NFIO8  
NVDD2 NVDD3 NVSS3  
QVSS  
EXT_  
48M  
UART2_ UART3_ UART1_RTS UART1_  
RXD  
M
N
P
R
T
RXD  
CTS  
A12  
A10  
A8  
LBA  
NVSS3 SDCKE0 NVSS1 NVSS1  
NVDD1  
NVDD1  
SD1_  
D0  
TCK  
SD1_D1  
TDI  
RTCK  
SD1_  
D2  
SD1_  
CMD  
TMS  
A7  
SD1_  
CLK  
EXT_  
266M  
NVSS2  
TRST  
A5  
A6  
CS3  
CS4  
CS5  
CS2  
CS1  
D6  
BCLK  
ECB  
CS0  
D4  
MA11  
D3  
RAS  
MA10  
D1  
CAS  
NFIO5  
SDWE  
NFIO3  
NFIO4  
CLKO  
NFWE RESET_ NFCE  
IN  
BOOT1 SD1_D3 CLKMODE1  
CLK  
MODE0  
D11  
A4  
EB1  
EB0  
A2  
PC_  
PWRON  
NFIO1  
NFIO6  
NFRE  
NFALE NFCLE  
POR  
BOOT2  
BOOT3  
VDDA  
QVDD  
XTAL32K  
U
V
W
D8  
D5  
RW  
D2  
JTAG_  
CTRL  
QVSS RESET_ BOOT0 OSC26M_  
EXTAL  
32K  
OUT  
TEST  
A3  
D7  
A1  
A0  
D0  
SDCLK SDCKE1 NFIO0  
QVDD  
QVSS  
EXTAL XTAL26M  
26M  
QVSS  
Pin-Out and Package Information  
4.1  
MAPBGA Package Dimensions  
Figure 85 illustrates the MAPBGA 14 mm × 14 mm × 1.41 mm package, which has 0.65 mm spacing  
between the pads.  
Figure 85. i.MX21 MAPBGA Mechanical Drawing  
MC9328MX21 Product Preview, Rev. 1.1  
Freescale Semiconductor  
103  
Pin-Out and Package Information  
4.2  
MAPBGA Package Dimensions  
Figure 86 illustrates the MAPBGA 17 mm × 17 mm × 1.45 mm package, which has 0.8 mm spacing  
between the pads.  
Figure 86. i.MX21 MAPBGA Mechanical Drawing  
MC9328MX21 Product Preview, Rev. 1.1  
104  
Freescale Semiconductor  
Document Revision History  
5 Document Revision History  
This revision, Rev. 1.1, updates the functional block diagram, Figure 1 on page 2.  
MC9328MX21 Product Preview, Rev. 1.1  
Freescale Semiconductor  
105  
Information in this document is provided solely to enable system and software implementers to use  
Freescale Semiconductor products. There are no express or implied copyright licenses granted  
hereunder to design or fabricate any integrated circuits or integrated circuits based on the information  
in this document.  
How to Reach Us:  
USA/Europe/Locations Not Listed:  
Freescale Semiconductor Literature Distribution Center  
P.O. Box 5405  
Denver, Colorado 80217  
1-800-521-6274 or 480-768-2130  
Freescale Semiconductor reserves the right to make changes without further notice to any products  
herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the  
suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any  
liability arising out of the application or use of any product or circuit, and specifically disclaims any  
and all liability, including without limitation consequential or incidental damages. “Typical” parameters  
that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary  
in different applications and actual performance may vary over time. All operating parameters,  
including “Typicals”, must be validated for each customer application by customer’s technical experts.  
Freescale Semiconductor does not convey any license under its patent rights nor the rights of others.  
Freescale Semiconductor products are not designed, intended, or authorized for use as components  
in systems intended for surgical implant into the body, or other applications intended to support or  
sustain life, or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer purchase or use  
Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall  
indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and  
distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney  
fees arising out of, directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was  
negligent regarding the design or manufacture of the part.  
Japan:  
Freescale Semiconductor Japan Ltd.  
Technical Information Center  
3-20-1, Minami-Azabu, Minato-ku  
Tokyo 106-8573, Japan  
81-3-3440-3569  
Asia/Pacific:  
Freescale Semiconductor Hong Kong Ltd.  
2 Dai King Street  
Tai Po Industrial Estate  
Tai Po, N.T., Hong Kong  
852-26668334  
Home Page:  
www.freescale.com  
Learn More: For more information about Freescale products, please visit www.freescale.com.  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other  
product or service names are the property of their respective owners. The ARM Powered logo, and  
ARM926EJ-S are trademarks of ARM Limited. ARM is a registered trademark of ARM Ltd. All other  
product or service names are the property of their respective owners.  
© Freescale Semiconductor, Inc. 2004. All rights reserved.  
MC9328MX21/D  
Rev. 1.1  
09/29/2004  

相关型号:

MC9328MX21DVK

i.MX family of microprocessors
MOTOROLA

MC9328MX21DVK

i.MX family of microprocessors
FREESCALE

MC9328MX21DVKR2

32-BIT, 266MHz, MICROPROCESSOR, PBGA289, 14 X 14 MM, 1.41 MM HEIGHT, 0.65 MM PITCH, LEAD FREE, PLASTIC, MAPBGA-289
NXP

MC9328MX21DVM

i.MX family of microprocessors
MOTOROLA

MC9328MX21DVM

i.MX family of microprocessors
FREESCALE

MC9328MX21S

MX family of microprocessors
FREESCALE

MC9328MX21SCVK

MX family of microprocessors
FREESCALE

MC9328MX21SCVM

MX family of microprocessors
FREESCALE

MC9328MX21SCVM

DB I.MX21 17X17 PB-FR
NXP

MC9328MX21SVK

MX family of microprocessors
FREESCALE

MC9328MX21SVKR2

32-BIT, 266 MHz, MICROPROCESSOR, PBGA289, 14 X 14 MM, 1.41 MM HEIGHT, 0.65 MM PITCH, LEAD FREE, MAPBGA-289
NXP

MC9328MX21SVM

MX family of microprocessors
FREESCALE