MC9328MX21SVKR2 [NXP]

32-BIT, 266 MHz, MICROPROCESSOR, PBGA289, 14 X 14 MM, 1.41 MM HEIGHT, 0.65 MM PITCH, LEAD FREE, MAPBGA-289;
MC9328MX21SVKR2
型号: MC9328MX21SVKR2
厂家: NXP    NXP
描述:

32-BIT, 266 MHz, MICROPROCESSOR, PBGA289, 14 X 14 MM, 1.41 MM HEIGHT, 0.65 MM PITCH, LEAD FREE, MAPBGA-289

时钟 外围集成电路
文件: 总88页 (文件大小:905K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number: MC9328MX21S  
Rev. 1.3, 06/2008  
Freescale Semiconductor  
Data Sheet: Technical Data  
MC9328MX21S  
Package Information  
(MAPBGA–289)  
MC9328MX21S  
266 MHz  
Ordering Information: See Table 1 on page 3  
Contents  
1 Introduction  
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1  
2 Signal Descriptions . . . . . . . . . . . . . . . . . . . . . . .4  
3 Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
4 Pin Assignment and Package Information . . .84  
5 Document Revision History . . . . . . . . . . . . . . .87  
Freescale’s i.MX family of microprocessors has  
demonstrated leadership in the portable handheld  
market. Building on the success of the MX (Media  
Extensions) series, the i.MX21S (MC9328MX21S)  
provides a leap in performance with an ARM926EJ-S  
microprocessor core that provides accelerated Java  
supportinaddition tohighlyintegrated systemfunctions.  
The i.MX21S device addresses the needs of multiple  
markets with intelligent integrated peripherals, advanced  
®
ARM processor core, and power management  
capabilities.  
The i.MX21S features the advanced and power-efficient  
ARM926EJ-S core operating at speeds up to 266 MHz  
and is part of a growing family of Smart Speed products  
that offer high performance processing optimized for  
lowest power consumption. On-chip modules such as an  
®
LCD controller, USB On-The-Go, 1-Wire interface,  
and synchronous serial interfaces offer designers a rich  
suite of peripherals that can enhance many products.  
For cost sensitive applications, the NAND Flash  
controller allows the use of low-cost NAND Flash  
This document contains information on a new product. Specifications and information herein are subject to change  
without notice.  
© Freescale Semiconductor, Inc., 2005–2008. All rights reserved.  
Introduction  
devices to be used as primary or secondary non-volatile storage. The on-chip error correction code (ECC)  
and parity checking circuitry of the NAND Flash controller frees the CPU for other tasks. WLAN,  
Bluetooth and expansion options are provided through PCMCIA/CF, USB, and MMC/SD host controllers.  
The device is packaged in a 289-pin MAPBGA.  
System Control  
Connectivity  
®
CSPI x 2  
SSI x 2  
i.MX21S  
JTAG/Multi-ICE  
System Boot  
ARM9 Platform  
2
I C  
Clock Management  
MAX  
ARM926EJ-S  
Audio Mux  
UART 1, 3, & 4  
1-Wire  
MMU  
I Cache  
D Cache  
Standard System I/O  
Timers x 3  
Bus Control  
Memory Control  
FIRI  
Internal Control  
USB OTG/ 1 Host  
PWM  
WDOG  
RTC  
Memory Expansion  
Memory Interface  
Human Interface  
SDRAMC  
WEIM  
LCD Controller  
SLCD Controller  
Keypad  
GPIO  
DMAC  
MMC/SD x 2  
PCMCIA/CF  
NFC  
Figure 1. i.MX21S Functional Block Diagram  
1.1  
Conventions  
This document uses the following conventions:  
OVERBAR is used to indicate a signal that is active when pulled low: for example, RESET.  
Logic level one is a voltage that corresponds to Boolean true (1) state.  
Logic level zero is a voltage that corresponds to Boolean false (0) state.  
To set a bit or bits means to establish logic level one.  
To clear a bit or bits means to establish logic level zero.  
A signal is an electronic construct whose state conveys or changes in state convey information.  
A pin is an external physical connection. The same pin can be used to connect a number of signals.  
Asserted means that a discrete signal is in active logic state.  
Active low signals change from logic level one to logic level zero.  
Active high signals change from logic level zero to logic level one.  
Negated means that an asserted discrete signal changes logic state.  
Active low signals change from logic level zero to logic level one.  
Active high signals change from logic level one to logic level zero.  
MC9328MX21S Technical Data, Rev. 1.3  
2
Freescale Semiconductor  
Introduction  
LSB means least significant bit or bits, and MSB means most significant bit or bits. References to low and  
high bytes or words are spelled out.  
Numbers preceded by a percent sign (%) are binary. Numbers preceded by a dollar sign ($) or 0x are  
hexadecimal.  
1.2  
Reference Documentation  
The following documents are required for a complete description of the i.MX21S and are necessary to  
design properly with the device. Especially for those not familiar with the ARM926EJ-S processor the  
following documents are helpful when used in conjunction with this manual.  
ARM Architecture Reference Manual (ARM Ltd., order number ARM DDI 0100)  
ARM7TDMI Data Sheet (ARM Ltd., order number ARM DDI 0029)  
ARM920T Technical Reference Manual (ARM Ltd., order number ARM DDI 0151C)  
MC9328MX21S Product Brief (order number MC9328MX21SPB)  
The Freescale manuals are available on the Freescale Semiconductor Web site at http://  
www.freescale.com. These documents may be downloaded directly from the Freescale Web site, or printed  
versions may be ordered. The ARM Ltd. documentation is available from http://www.arm.com.  
1.3  
Ordering Information  
Table 1 provides ordering information for the device.  
Table 1. Ordering Information  
Part Order Number  
Package Size  
Package Type  
Operating Range  
MC9328MX21SVK  
289-lead MAPBGA  
0.65mm, 14mm x 14mm  
Lead-free  
0°C–70°C  
MC9328MX21SCVK  
MC9328MX21SVM  
MC9328MX21SCVM  
289-lead MAPBGA  
0.65mm, 14mm x 14mm  
Lead-free  
Lead-free  
Lead-free  
-40°C–85°C  
0°C–70°C  
289-lead MAPBGA  
0.8mm, 17mm x 17mm  
289-lead MAPBGA  
0.8mm, 17mm x 17mm  
-40°C–85°C  
1.4  
Features  
The i.MX21S boasts a robust array of features that can support a wide variety of applications. Below is a  
brief description of i.MX21S features.  
ARM926EJ-S Core Complex  
Display and Video Modules  
— LCD Controller (LCDC)  
— Smart LCD Controller (SLCDC)  
Wireless Connectivity  
— Fast Infra-Red Interface (FIRI)  
Wired Connectivity  
— USB On-The-Go (USBOTG) Controller  
MC9328MX21S Technical Data, Rev. 1.3  
Freescale Semiconductor  
3
 
Signal Descriptions  
— Three Universal Asynchronous Receiver/Transmitters (UARTx)  
— Two Configurable Serial Peripheral Interfaces (CSPIx) for High Speed Data Transfer  
2
— Inter-IC (I C) Bus Module  
— Two Synchronous Serial Interfaces (SSI) with Inter-IC Sound (I S)  
2
— Digital Audio Mux  
— One-Wire Controller  
— Keypad Interface  
Memory Expansion and I/O Card Support  
— Two Multimedia Card and Secure Digital (MMC/SD) Host Controller Modules  
Memory Interface  
— External Interface Module (EIM)  
— SDRAM Controller (SDRAMC)  
— NAND Flash Controller (NFC)  
— PCMCIA/CF Interface  
Standard System Resources  
— Clock Generation Module (CGM) and Power Control Module  
— Three General-Purpose 32-Bit Counters/Timers  
— Watchdog Timer  
— Real-Time Clock/Sampling Timer (RTC)  
— Pulse-Width Modulator (PWM) Module  
— Direct Memory Access Controller (DMAC)  
— General-Purpose I/O (GPIO) Ports  
— Debug Capability  
2 Signal Descriptions  
Table 2 identifies and describes the i.MX21S signals. Pin assignment is provided in Section 4, “Pin  
Assignment and Package Information” and in the “Signal Multiplexing Scheme” table within the reference  
manual.  
The connections of the pins in Table 2 depends solely upon the user application, however there are a few  
factory test signals that are not used in a normal application. Following is a list of these signals and how  
they are to be terminated for proper operation of the i.MX21S processor:  
CLKMODE[1:0]: To ensure proper operation, leave these signals as no connects.  
OSC26M_TEST: To ensure proper operation, leave this signal as no connect.  
EXT_48M: To ensure proper operation, connect this signal to ground.  
EXT_266M: To ensure proper operation, connect this signal to ground.  
TEST_WB[2:0]: These signals are also multiplexed with GPIO PORT E as well as alternate  
keypad signals. If not utilizing these signals for GPIO functionality or for their other multiplexed  
function, then configure as GPIO input with pull up enabled, and leave as a no connect.  
TEST_WB[4:3]: To ensure proper operation, leave these signals as no connects.  
MC9328MX21S Technical Data, Rev. 1.3  
4
Freescale Semiconductor  
Signal Descriptions  
Table 2. i.MX21S Signal Descriptions  
Signal Name  
Function/Notes  
External Bus/Chip Select (EIM)  
A [25:0]  
D [31:0]  
EB0  
Address bus signals  
Data bus signals  
MSB Byte Strobe—Active low external enable byte signal that controls D [31:24], shared with SDRAM  
DQM0.  
EB1  
EB2  
Byte Strobe—Active low external enable byte signal that controls D [23:16], shared with SDRAM DQM1.  
Byte Strobe—Active low external enable byte signal that controls D [15:8], shared with SDRAM DQM2  
and PCMCIA PC_REG.  
EB3  
LSB Byte Strobe—Active low external enable byte signal that controls D [7:0], shared with SDRAM  
DQM3 and PCMCIA PC_IORD.  
OE  
Memory Output Enable—Active low output enables external data bus, shared with PCMCIA PC_IOWR.  
CS [5:0]  
Chip Select—The chip select signals CS [3:2] are multiplexed with CSD [1:0] and are selected by the  
Function Multiplexing Control Register (FMCR) in the System Control chapter. By default CSD [1:0] is  
selected. DTACK is multiplexed with CS4.  
ECB  
LBA  
Active low input signal sent by flash device to the EIM whenever the flash device must terminate an on-  
going burst sequence and initiate a new (long first access) burst sequence.  
Active low signal sent by flash device causing the external burst device to latch the starting burst  
address.  
BCLK  
RW  
Clock signal sent to external synchronous memories (such as burst flash) during burst mode.  
RW signal—Indicates whether external access is a read (high) or write (low) cycle. This signal is also  
shared with the PCMCIA PC_WE.  
DTACK  
DTACK signal—External input data acknowledge signal, multiplexed with CS4.  
Bootstrap  
BOOT [3:0]  
System Boot Mode Select—The operational system boot mode upon system reset is determined by the  
settings of these pins. To hardwire these inputs low, terminate with a 1 KΩ resister to ground. For a logic  
high, terminate with a 1 KΩ resistor to VDDA. Do not change the state of these inputs after power-up.  
Boot 3 should always be tied to logic low.  
SDRAM Controller  
SDBA [4:0]  
SDIBA [3:0]  
SDRAM non-interleave mode bank address signals. These signals are multiplexed with address signals  
A[20:16].  
SDRAM interleave addressing mode bank address signals. These signals are multiplexed with address  
signals A[24:21].  
MA [11:0]  
DQM [3:0]  
SDRAM address signals. MA[9:0] are multiplexed with address signals A[10:1].  
SDRAM data qualifier mask multiplexed with EB[3:0]. DQM3 corresponds to D[31:24], DQM2  
corresponds to D[23:16], DQM1 corresponds to D[15:8], and DQM0 corresponds to D[7:0].  
CSD0  
CSD1  
RAS  
SDRAM Chip Select signal. This signal is multiplexed with the CS2 signal. This signal is selectable by  
programming the Function Multiplexing Control Register in the System Control chapter.  
SDRAM Chip Select signal. This signal is multiplexed with the CS3 signal. This signal is selectable by  
programming the Function Multiplexing Control Register in the System Control chapter.  
SDRAM Row Address Select signal.  
MC9328MX21S Technical Data, Rev. 1.3  
Freescale Semiconductor  
5
Signal Descriptions  
Signal Name  
Table 2. i.MX21S Signal Descriptions (Continued)  
Function/Notes  
CAS  
SDRAM Column Address Select signal  
SDWE  
SDRAM Write Enable signal  
SDRAM Clock Enable 0  
SDRAM Clock Enable 1  
SDRAM Clock  
SDCKE0  
SDCKE1  
SDCLK  
Clocks and Resets  
EXTAL26M  
Crystal input (26MHz), or a 16 MHz to 32 MHz oscillator (or square-wave) input when the internal  
oscillator circuit is shut down. When using an external signal source, feed this input with a square wave  
signal switching from GND to VDDA.  
XTAL26M  
Oscillator output to external crystal. When using an external signal source, float this output.  
EXTAL32K  
32 kHz or 32.768 kHz crystal input. When using an external signal source, feed this input with a square  
wave signal switching from GND to QVDD5.  
XTAL32K  
CLKO  
Oscillator output to external crystal. When using an external signal source, float this output.  
Clock Out signal selected from internal clock signals. Please refer to clock controller for internal clock  
selection.  
EXT_48M  
EXT_266M  
RESET_IN  
This is a special factory test signal. To ensure proper operation, connect this signal to ground.  
This is a special factory test signal. To ensure proper operation, connect this signal to ground.  
Master Reset—External active low Schmitt trigger input signal. When this signal goes active, all modules  
(except the reset module, SDRAMC module, and the clock control module) are reset.  
RESET_OUT  
POR  
Reset Out—Internal active low output signal from the Watchdog Timer module and is asserted from the  
following sources: Power-on reset, External reset (RESET_IN), and Watchdog time-out.  
Power On Reset—Active low Schmitt trigger input signal. The POR signal is normally generated by an  
external RC circuit designed to detect a power-up event.  
CLKMODE[1:0]  
OSC26M_TEST  
TEST_WB[2:0]  
These are special factory test signals. To ensure proper operation, leave these signals as no connects.  
This is a special factory test signal. To ensure proper operation, leave this signal as a no connect.  
These are special factory test signals. However, these signals are also multiplexed with GPIO PORT E  
as well as alternate keypad signals. If not using these signals for GPIO functions or for other multiplexed  
functions, then configure as GPIO input with pull-up enabled, and leave as a no connect.  
TEST_WB[4:3]  
WKGD  
These are special factory test signals. To ensure proper operation, leave these signals as no connects.  
Battery indicator input used to qualify the walk-up process. Also multiplexed with TIN.  
JTAG  
®
®
For termination recommendations, see the Table “JTAG pinouts” in the Multi-ICE User Guide from ARM Limited.  
TRST  
TDO  
TDI  
Test Reset Pin—External active low signal used to asynchronously initialize the JTAG controller.  
Serial Output for test instructions and data. Changes on the falling edge of TCK.  
Serial Input for test instructions and data. Sampled on the rising edge of TCK.  
Test Clock to synchronize test logic and control register access through the JTAG port.  
TCK  
TMS  
Test Mode Select to sequence the JTAG test controller’s state machine. Sampled on the rising edge of  
TCK.  
JTAG_CTRL  
JTAG Controller select signal—JTAG_CTRL is sampled during the rising edge of TRST. Must be pulled  
to logic high for proper JTAG interface to debugger. Pulling JTAG_CRTL low is for internal test purposes  
only.  
MC9328MX21S Technical Data, Rev. 1.3  
6
Freescale Semiconductor  
Signal Descriptions  
Table 2. i.MX21S Signal Descriptions (Continued)  
Function/Notes  
Signal Name  
RTCK  
JTAG Return Clock used to enhance stability of JTAG debug interface devices. This signal is multiplexed  
with 1-Wire, therefore using 1-Wire renders RTCK unusable and vice versa.  
LCD Controller  
LD [17:0]  
LCD Data Bus—All LCD signals are driven low after reset and when LCD is off. LD[15:0] signals are  
multiplexed with SLCDC1_DAT[15:0] from SLCDC1. LD[16] is multiplexed with EXT_DMAGRANT.  
FLM_VSYNC  
(or simply referred  
to as VSYNC)  
Frame Sync or Vsync—This signal also serves as the clock signal output for gate  
driver (dedicated signal SPS for Sharp panel HR-TFT).  
LP_HSYNC (or simply Line Pulse or HSync  
referred to as HSYNC)  
LSCLK  
OE_ACD  
CONTRAST  
SPL_SPR  
PS  
Shift Clock.  
Alternate Crystal Direction/Output Enable.  
This signal is used to control the LCD bias voltage as contrast control.  
Sampling start signal for left and right scanning. This signal is multiplexed with the SLCDC1_CLK.  
Control signal output for source driver (Sharp panel dedicated signal). This signal is multiplexed with the  
SLCDC1_CS.  
CLS  
REV  
Start signal output for gate driver. This signal is invert version of PS (Sharp panel dedicated signal). This  
signal is multiplexed with the SLCDC1_RS.  
Signal for common electrode driving signal preparation (Sharp panel dedicated signal). This signal is  
multiplexed with SLCDC1_D0.  
Smart LCD Controller  
SLCDC1_CLK  
SLCDC1_CS  
SLCDC1_RS  
SLCDC1_D0  
SLCDC Clock output signal. This signal is multiplexed and available at 2 alternate locations. These are  
SPL_SPR and SD2_CLK signals of LCDC and SD2, respectively.  
SLCDC Chip Select output signal. This signal is multiplexed and available at 2 alternate signal locations.  
These are PS and SD2_CMD signals of LCDC and SD2, respectively.  
SLCDC Register Select output signal. This signal is multiplexed and available at 2 alternate signal  
locations. These are CLS and SD2_D3 signals of LCDC and SD2, respectively.  
SLCDC serial data output signal. This signal is multiplexed and available at 2 alternate signal locations.  
These are and REV and SD2_D2 signals of LCDC and SD2, respectively. This signal is inactive when a  
parallel data interface is used.  
SLCDC1_DAT[15:0] SLCDC Data output signals for connection to a parallel SLCD panel interface. These signals are  
multiplexed with LD[15:0] while an alternate 8-bit SLCD muxing is available on LD[15:8]. Further  
alternate muxing of these signals are available on some of the USB OTG and USBH1 signals.  
SLCDC2_CLK  
SLCDC2_CS  
SLCDC2_RS  
SLCDC2_D0  
SLCDC Clock input signal for pass through to SLCD device. This signal is multiplexed with SSI3_CLK  
signal from SSI3.  
SLCDC Chip Select input signal for pass through to SLCD device. This signal is multiplexed with  
SSI3_TXD signal from SSI3.  
SLCDC Register Select input signal for pass through to SLCD device. This signal is multiplexed with  
SSI3_RXD signal from SSI3.  
SLCD Data input signal for pass through to SLCD device. This signal is multiplexed with SSI3_FS signal  
from SSI3.  
MC9328MX21S Technical Data, Rev. 1.3  
Freescale Semiconductor  
7
Signal Descriptions  
Table 2. i.MX21S Signal Descriptions (Continued)  
Function/Notes  
Signal Name  
External DMA  
EXT_DMAREQ  
External DMA Request input signal. This signal is multiplexed with CSPI1_RDY.  
EXT_DMAGRANT External DMA Grant output signal. This signal is multiplexed with LD[16] of LCDC and CSPI1_SS1 of  
CSPI1.  
NAND Flash Controller  
NF_CLE  
NF_CE  
NAND Flash Command Latch Enable output signal. Multiplexed with PC_POE of PCMCIA.  
NAND Flash Chip Enable output signal. This signal is multiplexed with PC_CE1 of PCMCIA.  
NAND Flash Write Protect output signal. This signal is multiplexed with PC_CE2 of PCMCIA.  
NAND Flash Address Latch Enable output signal. This signal is multiplexed with PC_OE of PCMCIA.  
NAND Flash Read Enable output signal. This signal is multiplexed with PC_RW of PCMCIA.  
NAND Flash Write Enable output signal. This signal is multiplexed with and PC_BVD2 of PCMCIA.  
NAND Flash Ready Busy input signal. This signal is multiplexed with PC_RST of PCMCIA.  
NF_WP  
NF_ALE  
NF_RE  
NF_WE  
NF_RB  
NF_IO[15:0]  
NAND Flash Data input and output signals. NF_IO[15:7] signals are multiplexed with A[25:21] and  
A[15:13]. NF_IO[7:0] signals are multiplexed with several PCMCIA signals.  
PCMCIA Controller  
PC_A[25:0]  
PC_D[15:0]  
PC_CD1  
PCMCIA Address signals. These signals are multiplexed with A[25:0].  
PCMCIA Data input and output signals. These signals are multiplexed with D[15:0].  
PCMCIA Card Detect1 input signal. This signal is multiplexed with NFIO[7] signal of NF.  
PCMCIA Card Detect2 input signal. This signal is multiplexed with NFIO[6] signal of NF.  
PCMCIA Wait input signal to extend current access. This signal is multiplexed with NFIO[5] signal of NF.  
PCMCIA Ready input signal indicates card is ready for access. Multiplexed with NFIO[4] signal of NF.  
PCMCIA Reset output signal. This signal is multiplexed with NFRB signal of NF.  
PC_CD2  
PC_WAIT  
PC_READY  
PC_RST  
PC_OE  
PCMCIA Memory Read Enable output signal asserted during common or attribute memory read cycles.  
This signal is multiplexed with NFALE signal of NF.  
PC_WE  
PCMCIA Memory Write Enable output signal asserted during common or attribute memory cycles. This  
signal is shared with RW of the EIM.  
PC_VS1  
PC_VS2  
PCMCIA Voltage Sense1 input signal. This signal is multiplexed with NFIO[2] signal of NF.  
PCMCIA Voltage Sense2 input signal. This signal is multiplexed with NFIO[1] signal of NF.  
PCMCIA Battery Voltage Detect1 input signal. This signal is multiplexed with NFIO[0] signal of NF.  
PCMCIA Battery Voltage Detect2 input signal. This signal is multiplexed with NF_WE signal of NF.  
PCMCIA Speaker Out output signal. This signal is multiplexed with PWMO signal.  
PCMCIA Register Select output signal. This signal is shared with EB2 of EIM.  
PC_BVD1  
PC_BVD2  
PC_SPKOUT  
PC_REG  
PC_CE1  
PCMCIA Card Enable1 output signal. This signal is multiplexed with NFCE signal of NF.  
PCMCIA Card Enable2 output signal. This signal is multiplexed with NFWP signal of NF.  
PCMCIA IO Read output signal. This signal is shared with EB3 of EIM.  
PC_CE2  
PC_IORD  
PC_IOWR  
PC_WP  
PCMCIA IO Write output signal. This signal is shared with OE signal of EIM.  
PCMCIA Write Protect input signal. This signal is multiplexed with NFIO[3] signal of NF.  
MC9328MX21S Technical Data, Rev. 1.3  
8
Freescale Semiconductor  
Signal Descriptions  
Table 2. i.MX21S Signal Descriptions (Continued)  
Function/Notes  
Signal Name  
PC_POE  
PCMCIA Output Enable signal to enable voltage translation buffers and transceivers. This signal is  
multiplexed with NFCLE signal of NF.  
PC_RW  
PCMCIA Read Write output signal to control external transceiver direction. Asserted high for read  
access and negated low for write access. This signal is multiplexed with NFRE signal of NF.  
PC_PWRON  
PCMCIA input signal to indicate that the card power has been applied and stabilized.  
CSPI  
CSPI1_MOSI  
CSPI1_MISO  
CSPI1_SS[2:0]  
Master Out/Slave In signal  
Master In/Slave Out signal  
Slave Select (Selectable polarity) signal. CSPI1_SS2 is also multiplexed with USBG_RXDAT and  
CSPI1_SS1 is multiplexed with EXT_DMAGRANT.  
CSPI1_SCLK  
CSPI1_RDY  
Serial Clock signal  
Serial Data Ready signal. Also multiplexed with EXT_DMAREQ.  
Master Out/Slave In signal. This signal is multiplexed with USBH2_TXDP signal of USB OTG.  
Master In/Slave Out signal. This signal is multiplexed with USBH2_TXDM signal of USB OTG.  
CSPI2_MOSI  
CSPI2_MISO  
CSPI2_SS[2:0]  
Slave Select (Selectable polarity) signals. These signals are multiplexed with USBH2_FS,  
USBH2_RXDP and USBH2_RXDM signal of USB OTG  
CSPI2_SCLK  
TIN  
Serial Clock signal. This signal is multiplexed with USBH2_OE signal of USB OTG  
General Purpose Timers  
Timer Input Capture or Timer Input Clock—The signal on this input is applied to all 3 timers  
simultaneously. This signal is muxed with the Walk-up Guard Mode WKGD signal in the PLL, Clock, and  
Reset Controller module.  
TOUT1  
(or simply TOUT)  
Timer Output signal from General Purpose Timer1 (GPT1). This signal is multiplexed with SYS_CLK1  
and SYS_CLK2 signal of SSI1 and SSI2. The pin name of this signal is simply TOUT.  
TOUT2  
TOUT3  
Timer Output signal from General Purpose Timer1 (GPT2). This signal is multiplexed with PWMO.  
Timer Output signal from General Purpose Timer1 (GPT3). This signal is multiplexed with PWMO.  
USB On-The-Go  
USB_BYP  
USB_PWR  
USB Bypass input active low signal. This signal can only be used for USB function, not for GPIO.  
USB Power output signal  
USB_OC  
USB Over current input signal. This signal can only be used for USB function, not for GPIO.  
USB OTG Receive Data Plus input signal. This signal is muxed with SLCDC1_DAT15.  
USB OTG Receive Data Minus input signal. This signal is muxed with SLCDC1_DAT14.  
USB OTG Transmit Data Plus output signal. This signal is muxed with SLCDC1_DAT13.  
USB OTG Transmit Data Minus output signal. This signal is muxed with SLCDC1_DAT12.  
USB OTG Transceiver differential data receive signal. Multiplexed with CSPI1_SS2.  
USB OTG Output Enable signal. This signal is muxed with SLCDC1_DAT11.  
USB OTG Transceiver ON output signal. This signal is muxed with SLCDC1_DAT9.  
USBG_RXDP  
USBG_RXDM  
USBG_TXDP  
USBG_TXDM  
USBG_RXDAT  
USBG_OE  
USBG_ON  
USBG_FS  
USB OTG Full Speed output signal. This signal is multiplexed with external transceiver USBG_TXR_INT  
signal of USB OTG. This signal is muxed with SLCDC1_DAT10.  
MC9328MX21S Technical Data, Rev. 1.3  
Freescale Semiconductor  
9
Signal Descriptions  
Table 2. i.MX21S Signal Descriptions (Continued)  
Function/Notes  
Signal Name  
USBH1_RXDP  
USB Host1 Receive Data Plus input signal. This signal is multiplexed with UART4_RXD and  
SLCDC1_DAT6. It also provides an alternative multiplex for UART4_RTS, where this signal is selectable  
by programming the Function Multiplexing Control Register in the System Control chapter.  
USBH1_RXDM  
USBH1_TXDP  
USB Host1 Receive Data Minus input signal. This signal is muxed with SLCDC1_DAT5. It also provides  
an alternative multiplex for UART4_CTS.  
USB Host1 Transmit Data Plus output signal. This signal is multiplexed with UART4_CTS and  
SLCDC1_DAT4. It also provides an alternative multiplex for UART4_RXD, where this signal is selectable  
by programming the Function Multiplexing Control Register in the System Control chapter.  
USBH1_TXDM  
USBH1_RXDAT  
USBH1_OE  
USB Host1 Transmit Data Minus output signal. Multiplexed with UART4_TXD and SLCDC1_DAT3.  
USB Host1 Transceiver differential data receive signal. Multiplexed with USBH1_FS.  
USB Host1 Output Enable signal. This signal is muxed with SLCDC1_DAT2.  
USBH1_FS  
USB Host1 Full Speed output signal. Multiplexed with UART4_RTS and SLCDC1_DAT1 and  
USBH1_RXDAT.  
USBH_ON  
USBG_SCL  
USB Host transceiver ON output signal. This signal is muxed with SLCDC1_DAT0.  
2
USB OTG I C Clock input/output signal. This signal is multiplexed with SLCDC1_DAT8.  
2
USBG_SDA  
USB OTG I C Data input/output signal. This signal is multiplexed with SLCDC1_DAT7.  
USBG_TXR_INT  
USB OTG transceiver interrupt input. Multiplexed with USBG_FS.  
Secure Digital Interface  
SD1_CMD  
SD Command bidirectional signal—If the system designer does not want to make use of the internal pull-  
up, via the Pull-up enable register, a 4.7k–69k external pull-up resistor must be added.  
SD1_CLK  
SD Output Clock.  
SD1_D[3:0]  
SD Data bidirectional signals—If the system designer does not want to make use of the internal pull-up,  
via the Pull-up enable register, a 50k–69k external pull-up resistor must be added.  
SD2_CMD  
SD2_CLK  
SD2_D[3:0]  
SD Command bidirectional signal. This signal is multiplexed with SLCDC1_CS signal from SLCDC1.  
SD Output Clock signal. This signal is multiplexed with SLCDC1_CLK signal from SLCDC1.  
SD Data bidirectional signals. SD2_D[3:2] are multiplexed with SLCDC1_RS and SLCDC_D0 signals  
from SLCDC1.  
UARTs – IrDA/Auto-Bauding  
(Note: UART2 is not used in the MC9328MX21S)  
UART1_RXD  
UART1_TXD  
UART1_RTS  
UART1_CTS  
UART3_RXD  
UART3_TXD  
UART3_RTS  
UART3_CTS  
UART4_RXD  
UART4_TXD  
UART4_RTS  
Receive Data input signal  
Transmit Data output signal  
Request to Send input signal  
Clear to Send output signal  
Receive Data input signal. This signal is multiplexed with IR_RXD from FIRI.  
Transmit Data output signal. This signal is multiplexed with IR_TXD from FIRI.  
Request to Send input signal  
Clear to Send output signal  
Receive Data input signal which is multiplexed with USBH1_RXDP and USBH1_TXDP.  
Transmit Data output signal which is multiplexed with USBH1_TXDM.  
Request to Send input signal which is multiplexed with USBH1_FS and USBH1_RXDP.  
MC9328MX21S Technical Data, Rev. 1.3  
10  
Freescale Semiconductor  
Signal Descriptions  
Table 2. i.MX21S Signal Descriptions (Continued)  
Function/Notes  
Signal Name  
UART4_CTS  
Clear to Send output signal which is multiplexed with USBH1_TXDP and USBH1_RXDM.  
2
Serial Audio Port – SSI (configurable to I S protocol and AC97)  
SSI1_CLK  
SSI1_TXD  
SSI1_RXD  
SSI1_FS  
Serial clock signal which is output in master or input in slave  
Transmit serial data  
Receive serial data  
Frame Sync signal which is output in master and input in slave  
SSI1 master clock. Multiplexed with TOUT.  
SYS_CLK1  
SSI2_CLK  
SSI2_TXD  
SSI2_RXD  
SSI2_FS  
Serial clock signal which is output in master or input in slave.  
Transmit serial data signal  
Receive serial data  
Frame Sync signal which is output in master and input in slave.  
SSI2 master clock. Multiplexed with TOUT.  
SYS_CLK2  
SSI3_CLK  
SSI3_TXD  
SSI3_RXD  
SSI3_FS  
Serial clock signal which is output in master or input in slave. Multiplexed with SLCDC2_CLK  
Transmit serial data signal which is multiplexed with SLCDC2_CS  
Receive serial data which is multiplexed with SLCDC2_RS  
Frame Sync signal which is output in master and input in slave. Multiplexed with SLCDC2_D0.  
Serial clock signal which is output in master or input in slave.  
Transmit serial data  
SAP_CLK  
SAP_TXD  
SAP_RXD  
SAP_FS  
Receive serial data  
Frame Sync signal which is output in master and input in slave.  
2
I C  
2
I2C_CLK  
I C Clock  
2
I2C_DATA  
I C Data  
1-Wire  
OWIRE  
PWMO  
1-Wire input and output signal. This signal is multiplexed with JTAG RTCK.  
PWM  
PWM Output. This signal is multiplexed with PC_SPKOUT of PCMCIA, as well as TOUT2 and TOUT3  
of the General Purpose Timer module.  
General Purpose Input/Output  
PB[10:21], PF[16]  
KP_COL[7:0]  
Dedicated GPIO. When unused, program this signal as an input with the on-chip pull-up resistor enabled.  
Keypad  
Keypad Column selection signals. KP_COL[7:6] are multiplexed with UART2_CTS and UART2_TXD  
respectively. Alternatively, KP_COL6 is also available on the internal factory test signal TEST_WB2. The  
Function Multiplexing Control Register in the System Control chapter must be used in conjunction with  
programming the GPIO multiplexing (to select the alternate signal multiplexing) to choose which signal  
KP_COL6 is available.  
MC9328MX21S Technical Data, Rev. 1.3  
Freescale Semiconductor  
11  
Specifications  
Table 2. i.MX21S Signal Descriptions (Continued)  
Function/Notes  
Signal Name  
KP_ROW[7:0]  
Keypad Row selection signals. KP_ROW[7:6] are multiplexed with UART2_RTS and UART2_RXD  
signals respectively. Alternatively, KP_ROW7 and KP_ROW6 are available on the internal factory test  
signals TEST_WB0 and TEST_WB1 respectively. The Function Multiplexing Control Register in the  
System Control chapter must be used in conjunction with programming the GPIO multiplexing (to select  
the alternate signal multiplexing) to choose which signals KP_ROW6 and KP_ROW7 are available.  
Noisy Supply Pins  
NVDD  
NVSS  
Noisy Supply for the I/O pins. There are six (6) I/O voltages, NVDD1 through NVDD6.  
Noisy Ground for the I/O pins  
Supply Pins – Analog Modules  
VDDA  
Supply for analog blocks  
QVSS (internally  
Quiet GND for analog blocks (QVSS and AVSS are synonymous)  
connected to AVSS)  
Internal Power Supplies  
QVDD  
QVSS  
Power supply pins for silicon internal circuitry  
Quiet GND pins for silicon internal circuitry  
QVDDX  
Power supply pin for the ARM core. Externally connect directly to QVDD  
3 Specifications  
This section contains the electrical specifications and timing diagrams for the i.MX21S processor.  
3.1  
Maximum Ratings  
Table 3 provides the maximum ratings.  
CAUTION  
Stresses beyond those listed under “Maximum Ratings,” (Table 3) may cause  
permanent damage to the device. These are stress ratings only. Functional operation  
of the device at these or any other conditions beyond those indicated under  
266 MHz Recommended Operating Range” (Table 4) is not implied. Exposure to  
maximum-rated conditions for extended periods may affect device reliability.  
Table 3. Maximum Ratings  
Ref. Num  
Parameter  
Symbol  
QVDDX  
Min  
Max  
Units  
1
Supply Voltage  
QVDD  
-0.3  
-0.3  
-0.3  
-55  
2.1  
3.3  
V
V
V
max,  
max  
NVDD  
VDDA  
max  
max,  
1
2
3
Input Voltage Range  
V
VDD + 0.3  
150  
Imax  
o
Storage Temperature Range  
T
C
storage  
1. VDD is the supply voltage associated with the input. See Signal Multiplexing Scheme table in the reference manual.  
MC9328MX21S Technical Data, Rev. 1.3  
12  
Freescale Semiconductor  
 
Specifications  
3.2  
Recommended Operating Range  
Table 4 provides the recommended operating ranges. The device has multiple pairs of VDD and VSS  
power supply and return pins. QVDD, QVDDx, and QVSS pins are used for internal logic. All other VDD  
and VSS pins are for the I/O pads voltage supply, and each pair of VDD and VSS provides power to the  
enclosed I/O pads. This design allows different peripheral supply voltage levels in a system.  
Because VDDA pins are supply voltages to the analog pads, it is recommended to isolate and noise-filter  
the VDDA pins from other VDD pins.  
For more information about I/O pads grouping per VDD, please refer to Table 4.  
Table 4. 266 MHz Recommended Operating Range  
Rating  
Symbol  
Minimum  
Maximum  
Unit  
Operating temperature range  
Part No. Suffix  
VK/VM  
T
0
70  
85  
°C  
°C  
V
A
CVK/CVM  
T
- 40  
1.70  
1.45  
1.70  
A
I/O supply voltage NVDD 1–6  
NVDD  
3.30  
1.65  
3.30  
x
Internal supply voltage (Core = 266 MHz)  
Analog supply voltage  
QVDD, QVDDx  
VDDA  
V
V
3.3  
DC Electrical Characteristics  
Table 5 contains the DC characteristics of the i.MX21S.  
Table 5. DC Characteristics  
1
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Units  
High-level input voltage  
V
0.7NVDD  
NVDD  
IH  
Low-level Input voltage  
V
O
0.8NVDD  
0.3NVDD  
IL  
High-level output voltage  
Low-level output voltage  
High-level output current, slow I/O  
V
I
= spec’ed Drive  
= spec’ed Drive  
0.2NVDD  
V
V
OH  
OH  
V
I
OL  
OL  
I
V
=0.8NVDD  
mA  
OH_S  
out  
2
DSCR = 000  
DSCR = 001  
DSCR = 011  
DSCR = 111  
-2  
-4  
-8  
-12  
High-level output current, fast I/O  
Low-level output current, slow I/O  
I
V
=0.8NVDD1  
mA  
mA  
OH_F  
out  
2
DSCR = 000  
DSCR = 001  
DSCR = 011  
DSCR = 111  
-3.5  
-4.5  
-5.5  
-6.5  
I
V
=0.2NVDD  
OL_S  
out  
2
DSCR = 000  
DSCR = 001  
DSCR = 011  
DSCR = 111  
2
4
8
12  
MC9328MX21S Technical Data, Rev. 1.3  
Freescale Semiconductor  
13  
 
 
Specifications  
Table 5. DC Characteristics (Continued)  
1
Parameter  
Symbol  
Test Conditions  
=0.2NVDD1  
DSCR = 000  
DSCR = 001  
DSCR = 011  
DSCR = 111  
Min  
Typ  
Max  
Units  
Low-level output current, fast I/O  
I
V
mA  
OL_F  
out  
2
3.5  
4.5  
5.5  
6.5  
Schmitt trigger Positive–input threshold  
Schmitt trigger Negative–input threshold  
Hysteresis  
V +  
0.75  
2.15  
V
V
T
V -  
1
T
V
0.3  
V
HYS  
Input leakage current (no pull-up or pull-  
down)  
I
V
= 0 or NVDD  
= NVDD or 0  
μA  
in  
in  
I/O leakage current  
I
V
5
μA  
OZ  
I/O  
I/O = High impedance  
state  
1. Data labeled Typical is not guaranteed, but is intended as an indication of the IC's potential performance.  
2. For DSCR definition refer to the System Control chapter in the reference manual.  
Table 6 shows the input and output capacitance for the device.  
Table 6. Input/Output Capacitance  
Parameter  
Input capacitance  
Output capacitance  
Symbol  
Min  
Typ  
Max  
5
Units  
pF  
C
C
i
5
pF  
o
Table 7 shows the power consumption for the device.  
Table 7. Power Consumption  
ID Parameter  
Conditions  
Symbol  
Typ Max Units  
1
Run Current QVDD = QVDDX = 1.65 V, NVDD1 = 1.8 V.  
NVDD2 through NVDD6 = VDDA = 3.1V.  
Core = 266 MHz, System = 133 MHz.  
MPEG4 Playback (QVGA) from MMC/SD card, 30fps,  
44.1kHz audio.  
I
+ I  
120  
8
mA  
mA  
mA  
QVDD  
QVDDX  
I
NVDD1  
I
through I  
+ I  
6.6  
NVDD2  
NVDD6  
VDDA  
2
Sleep Current Standby current with Well Biasing System enabled.  
I
STBY  
1
Well Bias Control Register (WBCR) must be set as  
follows:  
WBCR:  
CRM_WBS bits = 01  
CRM_WBFA bit = 1  
CRM_WBM bits = 001  
CRM_SPA_SEL bit = 1  
FMCR bit = 1  
QVDD = QVDDX = 1.65V, TA  
3.0  
700  
mA  
μA  
μA  
QVDD = QVDDX = 1.65V, 25°  
QVDD = QVDDX = 1.55V, 25° 320  
For WBCR definition refer to System Control Chapter  
in the reference manual.  
1. TA = 70°C for suffixes VK, VM, DVK, DVM, and SVK. TA = 85°C for suffixes CVK, CVM, and SCVK.  
MC9328MX21S Technical Data, Rev. 1.3  
14  
Freescale Semiconductor  
 
 
 
Specifications  
3.4  
AC Electrical Characteristics  
The AC characteristics consist of output delays, input setup and hold times, and signal skew times. All  
signals are specified relative to an appropriate edge of other signals. All timing specifications are specified  
at a system operating frequency (HCLK) from 0 MHz to 133 MHz (core operating frequency 266 MHz)  
with an operating supply voltage from V  
All timing is measured at 30 pF loading with the exception of fast I/O signals as discussed below. Refer  
to the reference manual’s System Control Chapter for details on drive strength settings.  
to V  
under an operating temperature from T to T .  
L H  
DD max  
DD min  
Table 8 provides the maximum loading guidelines that can be tolerated on a memory I/O signal (also  
known as Fast I/O) to achieve 133 MHz operation. These critical signals include the SDRAM Clock  
(SDCLK), Data Bus signals (D[31:0]), lower order address signals such as A0-A10, MA10, MA11, and  
other signals required to meet 133 MHz timing.  
The values shown in Table 8 apply over the recommended operating temperature range. Care must be  
taken to minimize parasitic capacitance of associated printed circuit board traces.  
Table 8. Loading Guidelines for Fast IO Signals to Achieve 133 MHz Operation  
Drive Strength Setting (DSCR2–DSCR12)  
Maximum I/O Loading at 1.8 V  
Maximum I/O Loading at 3.0 V  
000: 3.5 mA  
001: 4.5 mA  
011: 5.5 mA  
111: 6.5 mA  
9 pF  
12 pF  
15 pF  
19 pF  
12 pF  
16 pF  
21 pF  
26 pF  
Table 9. 32k/26M Oscillator Signal Timing  
Parameter  
Minimum  
RMS  
Maximum  
Unit  
EXTAL32k input jitter (peak to peak) for both System PLL and MCUPLL  
EXTAL32k input jitter (peak to peak) for MCUPLL only  
EXTAL32k startup time  
5
5
20  
100  
ns  
ns  
800  
ms  
Table 10. CLKO Rise/Fall Time (at 30pF Loaded)  
Best Case Typical Worst Case Units  
Rise Time  
Fall Time  
0.80  
0.74  
1.00  
1.08  
1.40  
1.67  
ns  
ns  
MC9328MX21S Technical Data, Rev. 1.3  
Freescale Semiconductor  
15  
 
Specifications  
3.5  
DPLL Timing Specifications  
Parameters of the DPLL are given in Table 11. In this table, T is a reference clock period after the  
ref  
predivider and T is the output double clock period.  
dck  
Table 11. DPLL Specifications  
Parameter  
Test Conditions  
Minimum Typical Maximum  
Unit  
Reference clock frequency range  
Vcc = 1.5V  
16  
16  
320  
32  
MHz  
MHz  
Pre-divider output clock frequency Vcc = 1.5V  
range  
Double clock frequency range  
Pre-divider factor (PD)  
Total multiplication factor (MF)  
MF integer part  
Vcc = 1.5V  
220  
1
560  
16  
MHz  
Includes both integer and fractional parts  
5
15  
5
15  
MF numerator  
Should be less than the denominator  
0
1022  
1023  
450  
MF denominator  
1
Frequency lock-in time after  
full reset  
FOL mode for non-integer MF  
(does not include pre-multi lock-in time)  
350  
400  
T
ref  
Frequency lock-in time after  
partial reset  
FOL mode for non-integer MF  
(does not include pre-multi lock-in time)  
220  
480  
360  
280  
530  
410  
330  
580  
460  
T
ref  
Phase lock-in time after  
full reset  
FPL mode and integer MF  
(does not include pre-multi lock-in time)  
T
ref  
Phase lock-in time after  
partial reset  
FPL mode and integer MF  
(does not include pre-multi lock-in time)  
T
ref  
Frequency jitter (p-p)  
Phase jitter (p-p)  
0.02  
1.0  
0.03  
1.5  
2•T  
dck  
Integer MF, FPL mode, Vcc=1.7V  
FOL mode, integer MF,  
ns  
Power dissipation  
1.5  
mW  
f
= 560 MHz, Vcc = 1.5V  
(Avg)  
dck  
MC9328MX21S Technical Data, Rev. 1.3  
16  
Freescale Semiconductor  
 
 
Specifications  
3.6  
Reset Module  
The timing relationships of the Reset module with the POR and RESET_IN are shown in Figure 2 and  
Figure 3. Be aware that NVDD must ramp up to at least 1.7V for NVDD1 and 2.7V for NVDD2-6 before  
QVDD is powered up to prevent forward biasing.  
1
POR  
Can be adjusted depending on the crystal  
start-up time 32kHz or 32.768kHz  
2
RESET_POR  
Exact 300ms  
3
7 cycles @ CLK32  
RESET_DRAM  
4
14 cycles @ CLK32  
HRESET  
RESET_OUT  
CLK32  
HCLK  
Figure 2. Timing Relationship with POR  
5
RESET_IN  
14 cycles @ CLK32  
4
HRESET  
RESET_OUT  
6
CLK32  
HCLK  
Figure 3. Timing Relationship with RESET_IN  
MC9328MX21S Technical Data, Rev. 1.3  
Freescale Semiconductor  
17  
 
 
Specifications  
Table 12. Reset Module Timing Parameters  
1.8 V 0.10 V 3.0 V 0.30 V  
Ref  
No.  
Parameter  
Unit  
Min  
Max  
Min  
Max  
1
2
Width of input POWER_ON_RESET  
800  
300  
800  
300  
ms  
ms  
Width of internal POWER_ON_RESET  
(CLK32 at 32 kHz)  
300  
300  
3
4
7k to 32k-cycle stretcher for SDRAM reset  
7
7
7
7
Cycles of CLK32  
Cycles of CLK32  
14k to 32k-cycle stretcher for internal system reset HRESERT  
and output reset at pin RESET_OUT  
14  
14  
14  
14  
5
6
Width of external hard-reset RESET_IN  
4k to 32k-cycle qualifier  
4
4
4
4
4
4
Cycles of CLK32  
Cycles of CLK32  
3.7  
External DMA Request and Grant  
The External DMA request is an active low signal to be used by devices external to i.MX21 processor to  
request the DMAC for data transfer.  
After assertion of External DMA request the DMA burst will start when the channel on which the External  
request is the source (as per the RSSR settings) becomes the current highest priority channel. The external  
device using the External DMA request should keep its request asserted until it is serviced by the DMAC.  
One External DMA request will initiate one DMA burst.  
The output External Grant signal from the DMAC is an active-low signal.When the following conditions  
are true, the External DMA Grant signal is asserted with the initiation of the DMA burst.  
The DMA channel for which the DMA burst is ongoing has request source as external DMA Request  
(as per source select register setting).  
REN and CEN bit of this channel are set.  
External DMA Request is asserted.  
After the grant is asserted, the External DMA request will not be sampled until completion of the DMA  
burst. As the external request is synchronized, the request synchronization will not be done during this  
period. The priority of the external request becomes low for the next consecutive burst, if another DMA  
request signal is asserted.  
Worst case—that is, the smallest burst (1 byte read/write) timing diagrams are shown in Figure 4 and  
Figure 5. Minimum and maximum timings for the External request and External grant signals are present  
in Table 13.  
Figure 4 shows the minimum time for which the External Grant signal remains asserted when an External  
DMA request is de-asserted immediately after sensing grant signal active.  
MC9328MX21S Technical Data, Rev. 1.3  
18  
Freescale Semiconductor  
Specifications  
Ext_DMAReq  
Ext_DMAGrant  
tmin_assert  
Figure 4. Assertion of DMA External Grant Signal  
Figure 5 shows the safe maximum time for which External DMA request can be kept asserted, after  
sensing grant signal active such that a new burst is not initiated.  
Ext_DMAReq  
Ext_DMAGrant  
tmax_req_assert  
Data read from  
External device  
tmax_read  
Data written to  
External device  
tmax_write  
NOTE: Assuming in worst case the data is read/written from/to External device as per the above waveform.  
Figure 5. Safe Maximum Timings for External Request De-Assertion  
Table 13. DMA External Request and Grant Timing Parameters  
3.0 V  
1.8 V  
Parameter  
Description  
Unit  
WCS  
BCS  
WCS  
BCS  
t
Minimum assertion time of External Grant 8 hclk + 8.6 8 hclk + 2.74 8 hclk + 7.17 8 hclk + 3.25 ns  
signal  
min_assert  
t
Maximum External request assertion time 9 hclk - 20.66 9 hclk - 6.7 9 hclk - 17.96 9 hclk - 8.16  
after assertion of Grant signal  
ns  
ns  
ns  
max_req_assert  
t
Maximum External request assertion time 8 hclk - 6.21 8 hclk - 0.77 8 hclk - 5.84 8 hclk - 0.66  
after first read completion  
max_read  
t
Maximum External request assertion time 3 hclk - 15.87 3 hclk - 8.83 3 hclk - 15.9 3 hclk - 9.12  
after completion of first write  
max_write  
3.8  
CSPI Timing Diagrams  
To use the internal transmit (TX) and receive (RX) data FIFOs when the CSPI1 module is configured as a  
master, two control signals are used for data transfer rate control: the SS signal (output) and the SPI_RDY  
signal (input). The SPI 1 Sample Period Control Register (PERIODREG1) and the SPI 2 Sample Period  
Control Register (PERIODREG2) can also be programmed to a fixed data transfer rate for either CSPI1  
or CSPI2. When the CSPI1 module is configured as a slave, the user can configure the SPI 1 Control  
Register (CONTROLREG1) to match the external CSPI master’s timing. In this configuration, SS  
MC9328MX21S Technical Data, Rev. 1.3  
Freescale Semiconductor  
19  
 
Specifications  
becomes an input signal, and is used to latch data into or load data out to the internal data shift registers,  
as well as to increment the data FIFO.  
2
5
3
SS  
1
4
SPIRDY  
SCLK, MOSI, MISO  
Figure 6. Master CSPI Timing Diagram Using SPI_RDY Edge Trigger  
SS  
SPIRDY  
SCLK, MOSI, MISO  
Figure 7. Master CSPI Timing Diagram Using SPI_RDY Level Trigger  
SS (output)  
SCLK, MOSI, MISO  
Figure 8. Master CSPI Timing Diagram Ignore SPI_RDY Level Trigger  
SS (input)  
SCLK, MOSI, MISO  
Figure 9. Slave CSPI Timing Diagram FIFO Advanced by BIT COUNT  
SS (input)  
6
7
SCLK, MOSI, MISO  
Figure 10. Slave CSPI Timing Diagram FIFO Advanced by SS Rising Edge  
MC9328MX21S Technical Data, Rev. 1.3  
20  
Freescale Semiconductor  
 
 
Specifications  
Table 14. Timing Parameters for Figure 6 through Figure 10  
Ref No.  
Parameter  
Minimum  
Maximum  
Unit  
1
1
2
3
4
5
6
7
SPI_RDY to SS output low  
SS output low to first SCLK edge  
Last SCLK edge to SS output high  
SS output high to SPI_RDY low  
SS output pulse width  
2T  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
2
3·Tsclk  
2·Tsclk  
0
3
Tsclk + WAIT  
SS input low to first SCLK edge  
SS input pulse width  
T
T
1. T = CSPI system clock period (PERCLK2).  
2. Tsclk = Period of SCLK.  
3. WAIT = Number of bit clocks (SCLK) or 32.768 kHz clocks per Sample Period Control  
Register.  
3.9  
LCD Controller  
This section includes timing diagrams for the LCD controller. For detailed timing diagrams of the LCD  
controller with various display configurations, refer to the LCD controller chapter of the i.MX21S  
Reference Manual.  
T1  
LSCLK  
LD[17:0]  
T2  
T3  
Figure 11. SCLK to LD Timing Diagram  
Table 15. LCDC SCLK Timing Parameters  
3.0 0.3V  
Symbol  
Parameter  
Unit  
Minimum  
Maximum  
T1  
T2  
T3  
SCLK period  
23  
11  
11  
2000  
ns  
ns  
ns  
Pixel data setup time  
Pixel data up time  
The pixel clock is equal to LCDC_CLK / (PCD + 1).  
When it is in CSTN, TFT or monochrome mode with bus width = 1, SCLK is equal to the pixel clock.  
When it is in monochrome with other bus width settings, SCLK is equal to the pixel clock divided by bus width.  
The polarity of SCLK and LD can also be programmed.  
Maximum frequency of SCLK is HCLK / 3 for TFT and CSTN, otherwise LD output will be incorrect.  
MC9328MX21S Technical Data, Rev. 1.3  
Freescale Semiconductor  
21  
Specifications  
Display region  
Non-display region  
T3  
T1  
T4  
VSYN  
T2  
HSYN  
OE  
Line Y  
Line 1  
Line Y  
LD[17:0]  
T6  
T5  
XMAX  
T7  
HSYN  
SCLK  
OE  
(0,1)  
(0,2)  
LD[15:0]  
(0,X-1)  
Figure 12. 4/8/12/16/18 Bit/Pixel TFT Color Mode Panel Timing  
Table 16. 4/8/12/16/18 Bit/Pixel TFT Color Mode Panel Timing  
Symbol  
Description  
Minimum  
Value  
Unit  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
End of OE to beginning of VSYN  
HSYN period  
T5+T6+T7-1  
(VWAIT1·T2)+T5+T6+T7-1  
XMAX+T5+T6+T7  
VWIDTH·T2  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
T2  
1
VSYN pulse width  
End of VSYN to beginning of OE  
HSYN pulse width  
(VWAIT2·T2)+1  
HWIDTH+1  
1
End of HSYN to beginning to OE  
End of OE to beginning of HSYN  
3
HWAIT2+3  
1
HWAIT1+1  
Note:  
• Ts is the SCLK period.  
• VSYN, HSYN and OE can be programmed as active high or active low. In Figure 12, all 3 signals are active low.  
• SCLK can be programmed to be deactivated during the VSYN pulse or the OE deasserted period. In Figure 12, SCLK is  
always active.  
• XMAX is defined in number of pixels in one line.  
MC9328MX21S Technical Data, Rev. 1.3  
22  
Freescale Semiconductor  
 
Specifications  
XMAX  
SCLK  
D1  
LD  
D2  
D320  
D320  
SPL_SPR  
HSYN  
T1  
T3  
T2  
T2  
T4  
T4  
CLS  
PS  
T5  
T6  
T7  
T7  
REV  
Figure 13. Sharp TFT Panel Timing  
Table 17. Sharp TFT Panel Timing  
Symbol  
Description  
Minimum  
Value  
Unit  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
SPL/SPR pulse width  
1
4
3
1
0
1
1
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
End of LD of line to beginning of HSYN  
End of HSYN to beginning of LD of line  
CLS rise delay from end of LD of line  
CLS pulse width  
HWAIT1+1  
HWAIT2 + 4  
CLS_RISE_DELAY+1  
CLS_HI_WIDTH+1  
PS rise delay from CLS negation  
REV toggle delay from last LD of line  
PS_RISE_DELAY  
REV_TOGGLE_DELAY+1  
Note:  
Falling of SPL/SPR aligns with first LD of line.  
Falling of PS aligns with rising edge of CLS.  
REV toggles in every HSYN period.  
MC9328MX21S Technical Data, Rev. 1.3  
Freescale Semiconductor  
23  
Specifications  
T1  
T1  
VSYN  
T3  
T4  
T2  
T2  
XMAX  
HSYN  
SCLK  
Ts  
LD[15:0]  
Figure 14. Non-TFT Mode Panel Timing  
Table 18. Non-TFT Mode Panel Timing  
Symbol  
Description  
Minimum  
Value  
Unit  
T1  
T2  
T3  
T4  
HSYN to VSYN delay  
HSYN pulse width  
VSYN to SCLK  
2
1
1
HWAIT2+2  
HWIDTH+1  
0 T3 Ts  
HWAIT1+1  
Tpix  
Tpix  
SCLK to HSYN  
Tpix  
Note:  
• Ts is the SCLK period while Tpix is the pixel clock period.  
• VSYN, HSYN and SCLK can be programmed as active high or active low. In Figure 59, all these 3 signals are  
active high.  
• When it is in CSTN mode or monochrome mode with bus width = 1, T3 = Tpix = Ts.  
• When it is in monochrome mode with bus width = 2, 4, and 8, T3 = 1, 2 and 4 Tpix respectively.  
MC9328MX21S Technical Data, Rev. 1.3  
24  
Freescale Semiconductor  
Specifications  
3.10 Smart LCD Controller  
T2  
T3  
T1  
LCD_CS  
LCD_CLK (LCD_DATA[6])  
T4  
T5  
T7  
LSB  
SDATA (LCD_DATA[7])  
RS  
MSB  
T6  
RS=0 command data, RS=1display data  
SCKPOL = 1, CSPOL = 0  
T2  
T3  
T1  
LCD_CS  
LCD_CLK (LCD_DATA[6])  
T4  
T5  
T7  
LSB  
SDATA (LCD_DATA[7])  
RS  
MSB  
T6  
RS=0 command data, RS=1display data  
SCKPOL = 0, CSPOL = 0  
T2  
T3  
LCD_CS  
T1  
LCD_CLK (LCD_DATA[6])  
T4  
T5  
T7  
LSB  
SDATA (LCD_DATA[7])  
RS  
MSB  
T6  
RS=0 command data, RS=1display data  
SCKPOL = 1, CSPOL = 1  
T2  
T3  
LCD_CS  
T1  
LCD_CLK (LCD_DATA[6])  
T4  
T5  
T7  
LSB  
SDATA (LCD_DATA[7])  
RS  
MSB  
T6  
RS=0 command data, RS=1display data  
SCKPOL = 0, CSPOL = 1  
Figure 15. SLCDC Serial Transfer Timing  
MC9328MX21S Technical Data, Rev. 1.3  
Freescale Semiconductor  
25  
Specifications  
Table 19. SLCDC Serial Transfer Timing  
Symbol  
Description  
Pixel clock period  
Minimum  
Maximum  
Unit  
T1  
T2  
T3  
T4  
T4  
T6  
T7  
42  
5
962  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Chip select setup time  
Chip select hold time  
Data setup time  
5
5
Data hold time  
5
Register select setup time  
Register select hold time  
5
5
LCD_CLK  
LCD_RS  
LCD_CS  
T4  
T2  
T5  
T1  
T3  
command data  
display data  
LCD_DATA[15:0]  
CSPOL = 0  
LCD_CLK  
T5  
T4  
LCD_RS  
LCD_CS  
T1  
T2  
T3  
command data  
display data  
LCD_DATA[15:0]  
CSPOL = 1  
Figure 16. SLCDC Parallel Transfers Timing  
Table 20. SLCDC Parallel Transfers Timing  
Symbol  
Description  
Pixel clock period  
Minimum  
Maximum  
Unit  
T1  
T2  
T3  
T4  
T5  
23  
5
962  
ns  
ns  
ns  
ns  
ns  
Data setup time  
Data hold time  
5
Register select setup time  
Register select hold time  
5
5
MC9328MX21S Technical Data, Rev. 1.3  
26  
Freescale Semiconductor  
Specifications  
3.11 Multimedia Card/Secure Digital Host Controller  
The DMA interface block controls all data routing between the external data bus (DMA access), internal  
MMC/SD module data bus, and internal system FIFO access through a dedicated state machine that  
monitors the status of FIFO content (empty or full), FIFO address, and byte/block counters for the MMC/  
SD module (inner system) and the application (user programming).  
3a  
1
2
4b  
3b  
Bus Clock  
4a  
5b  
5a  
Valid Data  
CMD_DAT Input  
Valid Data  
7
CMD_DAT Output  
Valid Data  
Valid Data  
6b  
6a  
Figure 17. Chip-Select Read Cycle Timing Diagram  
Table 21. SDHC Bus Timing Parameters  
1.8 V 0.1 V  
3.0 V 0.3 V  
Ref  
No.  
Parameter  
Unit  
Min  
Max  
Min  
Max  
1
1
CLK frequency at Data transfer Mode (PP) 10/30 cards  
0
0
25/5  
0
0
25/5  
MHz  
kHz  
ns  
2
2
CLK frequency at Identification Mode  
400  
400  
1
3a  
3b  
4a  
4b  
5a  
5b  
6a  
6b  
7
Clock high time 10/30 cards  
6/33  
15/75  
10/50  
10/50  
1
Clock low time 10/30 cards  
ns  
1
3
3
Clock fall time 10/30 cards  
10/50 (5.00)  
10/50  
ns  
1
Clock rise time 10/30 cards  
14/67 (6.67)  
10/50  
ns  
3
Input hold time 10/30 cards  
5.7/5.7  
5.7/5.7  
5.7/5.7  
5.7/5.7  
0
5/5  
5/5  
5/5  
5/5  
0
ns  
3
Input setup time 10/30 cards  
ns  
3
Output hold time 10/30 cards  
ns  
3
Output setup time 10/30 cards  
ns  
3
Output delay time  
16  
14  
ns  
1. C 100 pF / 250 pF (10/30 cards)  
L
2. C 250 pF (21 cards)  
L
3. C 25 pF (1 card)  
L
MC9328MX21S Technical Data, Rev. 1.3  
Freescale Semiconductor  
27  
Specifications  
3.11.1 Command Response Timing on MMC/SD Bus  
The card identification and card operation conditions timing are processed in open-drain mode. The card  
response to the host command starts after exactly N clock cycles. For the card address assignment,  
ID  
SET_RCA is also processed in the open-drain mode. The minimum delay between the host command and  
card response is NCR clock cycles as illustrated in Figure 18. The symbols for Figure 18 through  
Figure 22 are defined in Table 22.  
Table 22. State Signal Parameters for Figure 18 through Figure 22  
Card Active  
Definition  
Host Active  
Definition  
Symbol  
Symbol  
Z
High impedance state  
Data bits  
S
T
Start bit (0)  
D
Transmitter bit  
(Host = 1, Card = 0)  
*
Repetition  
P
E
One-cycle pull-up (1)  
End bit (1)  
CRC  
Cyclic redundancy check bits (7 bits)  
NID cycles  
Host Command  
CID/OCR  
Content  
CMD  
CMD  
Content  
******  
CRC  
S T  
E Z  
Z S T  
Z Z Z  
Identification Timing  
N
CR cycles  
Host Command  
Content CRC  
CID/OCR  
******  
Content  
SET_RCA Timing  
S T  
E Z  
Z S T  
Z Z Z  
Figure 18. Timing Diagrams at Identification Mode  
After a card receives its RCA, it switches to data transfer mode. As shown on the first diagram in  
Figure 19, SD_CMD lines in this mode are driven with push-pull drivers. The command is followed by a  
period of two Z bits (allowing time for direction switching on the bus) and then by P bits pushed up by the  
responding card. The other two diagrams show the separating periods N and N .  
RC  
CC  
MC9328MX21S Technical Data, Rev. 1.3  
28  
Freescale Semiconductor  
 
 
Specifications  
N
CR cycles  
******  
Host Command  
Response  
Content CRC  
E Z Z Z  
CMD  
Content  
CRC  
ST  
E Z Z P  
P S T  
Command response timing (data transfer mode)  
NRC cycles  
Response  
Content  
Host Command  
CMD  
******  
Content  
CRC  
CRC  
E Z Z Z  
ST  
E Z  
Z S T  
Timing response end to next CMD start (data transfer mode)  
NCC cycles  
Host Command  
Content  
Host Command  
CMD  
******  
Content  
CRC  
CRC  
E Z Z Z  
ST  
E Z  
Z S T  
Timing of command sequences (all modes)  
Figure 19. Timing Diagrams at Data Transfer Mode  
Figure 20 shows basic read operation timing. In a read operation, the sequence starts with a single block  
read command (which specifies the start address in the argument field). The response is sent on the  
SD_CMD lines as usual. Data transmission from the card starts after the access time delay N , beginning  
AC  
from the last bit of the read command. If the system is in multiple block read mode, the card sends a  
continuous flow of data blocks with distance N until the card sees a stop transmission command. The  
AC  
data stops two clock cycles after the end bit of the stop command.  
MC9328MX21S Technical Data, Rev. 1.3  
Freescale Semiconductor  
29  
Specifications  
N
CR cycles  
Host Command  
Response  
Content CRC  
E Z  
CMD  
DAT  
Content  
CRC  
******  
******  
ST  
E Z Z P  
P S T  
Z****Z  
*****  
Z Z P  
P S DDDD  
Read Data  
Timing of single block read  
NAC cycles  
NCR cycles  
******  
Host Command  
Response  
Content  
CMD  
DAT  
Content  
CRC  
CRC  
E Z  
ST  
E Z Z P  
P S T  
Z****Z  
******  
*****  
Read Data  
*****  
*****  
Read Data  
Z Z P  
P S DDDD  
P
P S DDDD  
NAC cycles  
N
AC cycles  
Timing of multiple block read  
N
CR cycles  
Host Command  
Content CRC  
Response  
Content  
CMD  
******  
CRC  
E Z  
ST  
E Z Z P  
P S T  
NST  
DAT  
*****  
*****  
DDDD  
DDDDE Z Z Z  
Timing of stop command  
(CMD12, data transfer mode)  
Valid Read Data  
Figure 20. Timing Diagrams at Data Read  
Figure 21 shows the basic write operation timing. As with the read operation, after the card response, the  
data transfer starts after N cycles. The data is suffixed with CRC check bits to allow the card to check  
WR  
for transmission errors. The card sends back the CRC check result as a CC status token on the data line. If  
there was a transmission error, the card sends a negative CRC status (101); otherwise, a positive CRC  
status (010) is returned. The card expects a continuous flow of data blocks if it is configured to multiple  
block mode, with the flow terminated by a stop transmission command.  
MC9328MX21S Technical Data, Rev. 1.3  
30  
Freescale Semiconductor  
Specifications  
Figure 21. Timing Diagrams at Data Write  
The stop transmission command may occur when the card is in different states. Figure 22 shows the  
different scenarios on the bus.  
MC9328MX21S Technical Data, Rev. 1.3  
Freescale Semiconductor  
31  
Specifications  
Figure 22. Stop Transmission During Different Scenarios  
Table 23. Timing Values for Figure 18 through Figure 22  
Parameter  
Symbol  
Minimum  
Maximum  
Unit  
MMC/SD bus clock, CLK (All values are referred to minimum (VIH) and maximum (VIL)  
Command response cycle  
Identification response cycle  
Access time delay cycle  
NCR  
NID  
2
5
2
64  
Clock cycles  
Clock cycles  
Clock cycles  
5
NAC  
TAAC + NSAC  
MC9328MX21S Technical Data, Rev. 1.3  
32  
Freescale Semiconductor  
 
Specifications  
Unit  
Table 23. Timing Values for Figure 18 through Figure 22 (Continued)  
Parameter  
Command read cycle  
Symbol  
Minimum  
Maximum  
NRC  
NCC  
NWR  
NST  
8
8
2
2
2
Clock cycles  
Clock cycles  
Clock cycles  
Clock cycles  
Command-command cycle  
Command write cycle  
Stop transmission cycle  
TAAC: Data read access time -1 defined in CSD register bit[119:112]  
NSAC: Data read access time -2 in CLK cycles (NSAC·100) defined in CSD register bit[111:104]  
3.11.2 SDIO-IRQ and ReadWait Service Handling  
In SDIO, there is a 1-bit or 4-bit interrupt response from the SDIO peripheral card. In 1-bit mode, the  
interrupt response is simply that the SD_DAT[1] line is held low. The SD_DAT[1] line is not used as data  
in this mode. The memory controller generates an interrupt according to this low and the system interrupt  
continues until the source is removed (SD_DAT[1] returns to its high level).  
In 4-bit mode, the interrupt is less simple. The interrupt triggers at a particular period called the Interrupt  
Period during the data access, and the controller must sample SD_DAT[1] during this short period to  
determine the IRQ status of the attached card. The interrupt period only happens at the boundary of each  
block (512 bytes).  
CMD  
Content  
CRC  
Response  
******  
S
ST  
E Z Z P S  
E Z Z Z  
Z Z Z  
DAT[1]  
For 4-bit  
Interrupt Period  
IRQ  
IRQ  
Block Data  
Block Data  
S
E
E
L H  
Interrupt Period  
DAT[1]  
For 1-bit  
Figure 23. SDIO IRQ Timing Diagram  
ReadWait is another feature in SDIO that allows the user to submit commands during the data transfer. In  
this mode, the block temporarily pauses the data transfer operation counter and related status, yet keeps  
the clock running, and allows the user to submit commands as normal. After all commands are submitted,  
the user can switch back to the data transfer operation and all counter and status values are resumed as  
access continues.  
CMD  
******  
CMD52 CRC  
******  
P S T  
E Z Z Z  
DAT[1]  
For 4-bit  
Block Data  
Block Data  
S
S
E Z Z L H  
S
E
E
DAT[2]  
For 4-bit  
Block Data  
Block Data  
E Z Z L L L L L L L L L L L L L L L L L L L L L H Z S  
Figure 24. SDIO ReadWait Timing Diagram  
MC9328MX21S Technical Data, Rev. 1.3  
Freescale Semiconductor  
33  
Specifications  
3.12 External Memory Interface (EMI) Electricals  
3.12.1 NAND-Flash Controller (NFC) Interface  
Figure 25, Figure 26, Figure 27, and Figure 28 depict the relative timing requirements among different  
signals of the NFC at module level, and Table 24 lists the timing parameters. The NAND Flash Controller  
(NFC) timing parameters are based on the internal NFC clock generated by the Clock Controller module,  
where time T is the period of the NFC clock in ns. Per the i.MX21S Reference Manual, specifically the  
Phase-Locked (PLL), Clock, and Reset Controller chapter, the NFC clock is derived from the same clock  
which drives the CPU clock (FCLK) that is fed through the NFCDIV block to generate the NFC clock.  
The relationship between the NFC clock and the external timing parameters of the NFC is provided in  
Table 24.  
Table 24 also provides two examples of external timing parameters with NFC clock frequencies of  
22.17 MHz and 33.25 MHz. For example, assuming a 266 MHz FCLK (CPU clock), NFCDIV should be  
set to divide-by-12 to generate a 22.17 MHz NFC clock and divide-by-8 to generate a 33.25 MHz NFC  
clock. The user should compare the parameters of the selected NAND Flash memory with the NFC  
external timing parameters to determine the proper NFC clock. The maximum NFC clock allowed is  
66 MHz. It should also be noted that the default NFC clock on power up is 16.63 MHz.  
NFCLE  
NF1  
NF3  
NF2  
NF4  
NFCE  
NF5  
NFWE  
NF6  
NF7  
NF9  
NFALE  
NF8  
command  
NFIO[7:0]  
Figure 25. Command Latch Cycle Timing DIagram  
MC9328MX21S Technical Data, Rev. 1.3  
34  
Freescale Semiconductor  
 
Specifications  
NFCLE  
NFCE  
NF1  
NF3  
NF4  
NF5  
NFWE  
NF6  
NF7  
NF9  
NFALE  
NF8  
NFIO[7:0]  
Address  
Address  
Time it takes for SW to issue the next address command  
Figure 26. Address Latch Cycle Timing DIagram  
NFCLE  
NFCE  
NF1  
NF3  
NF4  
NF10  
NF11  
NF5  
NF8  
NFWE  
NFALE  
NF6  
NF9  
NFIO[15:0]  
Data to Flash  
Figure 27. Write Data Latch Timing DIagram  
NFCLE  
NFCE  
NF14  
NF3  
NF13  
NF15  
NFRE  
NF16  
NF17  
NFRB  
Data from Flash  
NFIO[15:0]  
NF12  
Figure 28. Read Data Latch Timing Diagram  
MC9328MX21S Technical Data, Rev. 1.3  
Freescale Semiconductor  
35  
Specifications  
1 2  
Table 24. NFC Target Timing Parameters ,  
Relationshipto NFC  
Clock Period  
(T)  
NFC Clock  
22.17 MHz  
T = 45 ns  
NFC Clock  
33.25 MHz  
T = 30 ns  
ID  
Parameter  
Symbol  
Unit  
Min  
Max  
Min  
Max  
Min  
Max  
NF1 NFCLE Setup Time  
NF2 NFCLE Hold Time  
NF3 NFCE Setup Time  
NF4 NFCE Hold Time  
NF5 NF_WP Pulse Width  
NF6 NFALE Setup Time  
NF7 NFALE Hold Time  
NF8 Data Setup Time  
NF9 Data Hold Time  
tCLS  
tCLH  
tCS  
T
T
45  
45  
30  
30  
30  
30  
30  
30  
30  
30  
30  
60  
30  
120  
45  
60  
15  
15  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
T
45  
tCH  
T
45  
tWP  
tALS  
tALH  
tDS  
T
45  
T
45  
T
45  
T
45  
tDH  
T
45  
NF10 Write Cycle Time  
NF11 NFWE Hold Time  
NF12 Ready to NFRE Low  
NF13 NFRE Pulse Width  
NF14 READ Cycle Time  
NF15 NFRE High Hold Time  
NF16 Data Setup on READ  
NF17 Data Hold on READ  
tWC  
tWH  
tRR  
2T  
T
90  
45  
4T  
1.5T  
2T  
0.5T  
15  
0
180  
67.5  
90  
tRP  
tRC  
tREH  
tDSR  
tDHR  
22.5  
15  
0
1. High is defined as 80% of signal value and low is defined as 20% of signal value. All timings are listed according to this NFC  
clock frequency (multiples of NFC clock period) except NF16, which is not NFC clock related.  
2. The read data is generated by the NAND Flash device and sampled with the internal NFC clock.  
MC9328MX21S Technical Data, Rev. 1.3  
36  
Freescale Semiconductor  
Specifications  
3.13 Pulse-Width Modulator  
The PWM can be programmed to select one of two clock signals as its source frequency. The selected  
clock signal is passed through a divider and a prescaler before being input to the counter. The output is  
available at the pulse-width modulator output (PWMO) external pin.  
1
2a  
3b  
System Clock  
2b  
4b  
3a  
4a  
PWM Output  
Figure 29. PWM Output Timing Diagram  
Table 25. PWM Output Timing Parameters  
1.8 V 0.1 V  
3.0 V 0.3 V  
Ref No.  
Parameter  
Unit  
Minimum  
Maximum  
Minimum  
Maximum  
1
1
System CLK frequency  
0
12.29  
9.91  
45  
0
12.29  
9.91  
45  
MHz  
ns  
1
2a  
2b  
3a  
3b  
4a  
4b  
Clock high time  
1
Clock low time  
ns  
1
Clock fall time  
0.5  
0.5  
0.5  
0.5  
ns  
1
Clock rise time  
ns  
1
Output delay time  
9.37  
8.71  
3.61  
3.03  
ns  
1
Output setup time  
ns  
1. CL of PWMO = TBD  
MC9328MX21S Technical Data, Rev. 1.3  
Freescale Semiconductor  
37  
Specifications  
3.14 SDRAM Memory Controller  
The following figures (Figure 30 through Figure 33) and their associated tables specify the timings related  
to the SDRAMC module in the i.MX21S.  
1
SDCLK  
2
3S  
3
CS  
RAS  
CAS  
3H  
3S  
3S  
3H  
3S  
3H  
3H  
4H  
WE  
ADDR  
DQ  
4S  
ROW/BA  
COL/BA  
5
8
6
Data  
7
3S  
DQM  
3H  
Note: CKE is high during the read/write cycle.  
Figure 30. SDRAM Read Cycle Timing Diagram  
Table 26. SDRAM Read Cycle Timing Parameter  
1.8 V 0.1 V  
3.0 V 0.3 V  
Ref  
No.  
Parameter  
Unit  
Minimum  
Maximum  
Minimum  
Maximum  
1
2
3
SDRAM clock high-level width  
SDRAM clock low-level width  
SDRAM clock cycle time  
3.00  
3.00  
7.5  
3
3
ns  
ns  
ns  
ns  
ns  
7.5  
3
3S CS, RAS, CAS, WE, DQM setup time  
3H CS, RAS, CAS, WE, DQM hold time  
4.78  
3.03  
2
MC9328MX21S Technical Data, Rev. 1.3  
38  
Freescale Semiconductor  
 
Specifications  
Table 26. SDRAM Read Cycle Timing Parameter (Continued)  
1.8 V 0.1 V  
3.0 V 0.3 V  
Minimum Maximum  
Ref  
No.  
Parameter  
Unit  
Minimum  
Maximum  
4S Address setup time  
4H Address hold time  
3.67  
2.95  
2
2
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
5
5
5
6
7
7
7
8
SDRAM access time (CL = 3)  
5.4  
5.4  
SDRAM access time (CL = 2)  
6.0  
6.0  
SDRAM access time (CL = 1)  
Data out hold time  
2
2
1
1
Data out high-impedance time (CL = 3)  
Data out high-impedance time (CL = 2)  
Data out high-impedance time (CL = 1)  
Active to read/write command period (RC = 1)  
t
t
t
t
HZ  
HZ  
1
1
HZ  
HZ  
2
2
t
t
RCD  
RCD  
1. t = SDRAM data out high-impedance time, external SDRAM memory device dependent parameter.  
HZ  
2. t  
= SDRAM clock cycle time. The t  
SDCLK  
setting can be found in the i.MX21S reference manual.  
RCD  
RCD  
1
3
2
CS  
RAS  
6
CAS  
WE  
4
5
7
ADDR  
/ BA  
ROW/BA  
COL/BA  
DATA  
8
9
DQ  
DQM  
Figure 31. SDRAM Write Cycle Timing Diagram  
MC9328MX21S Technical Data, Rev. 1.3  
Freescale Semiconductor  
39  
Specifications  
Table 27. SDRAM Write Cycle Timing Parameter  
1.8 V 0.1 V  
3.0 V 0.3 V  
Ref  
No.  
Parameter  
Unit  
Minimum  
Maximum  
Minimum  
Maximum  
1
2
3
4
5
6
7
8
9
SDRAM clock high-level width  
SDRAM clock low-level width  
SDRAM clock cycle time  
Address setup time  
3.00  
3.00  
7.5  
3
3
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
7.5  
2
3.67  
Address hold time  
2.95  
2
1
2
2
Precharge cycle period  
t
t
RP  
RP  
2
2
Active to read/write command delay  
Data setup time  
t
t
RCD  
RCD  
3.41  
2
Data hold time  
2.45  
2
1. Precharge cycle timing is included in the write timing diagram.  
2. t and t  
= SDRAM clock cycle time. These settings can be found in the i.MX21 reference manual.  
RCD  
RP  
SDCLK  
CS  
1
3
2
RAS  
CAS  
6
7
7
WE  
ADDR  
DQ  
4
5
BA  
ROW/BA  
DQM  
Figure 32. SDRAM Refresh Timing Diagram  
MC9328MX21S Technical Data, Rev. 1.3  
40  
Freescale Semiconductor  
Specifications  
Table 28. SDRAM Refresh Timing Parameters  
1.8 V 0.1 V  
3.0 V 0.3 V  
Ref  
No.  
Parameter  
Unit  
Minimum  
Maximum  
Minimum  
Maximum  
1
2
3
4
5
6
7
SDRAM clock high-level width  
SDRAM clock low-level width  
SDRAM clock cycle time  
Address setup time  
3.00  
3.00  
7.5  
3
3
ns  
ns  
ns  
ns  
ns  
ns  
ns  
7.5  
2
3.67  
Address hold time  
2.95  
2
1
1
Precharge cycle period  
Auto precharge command period  
t
t
RP  
RP  
1
1
t
t
RC  
RC  
1. t and t = SDRAM clock cycle time. These settings can be found in the i.MX21 reference manual.  
RP  
RC  
SDCLK  
CS  
RAS  
CAS  
WE  
ADDR  
DQ  
BA  
DQM  
CKE  
Figure 33. SDRAM Self-Refresh Cycle Timing Diagram  
MC9328MX21S Technical Data, Rev. 1.3  
Freescale Semiconductor  
41  
Specifications  
3.15 Synchronous Serial Interface  
The transmit and receive sections of the SSI can be synchronous or asynchronous. In synchronous mode,  
the transmitter and the receiver use a common clock and frame synchronization signal. In asynchronous  
mode, the transmitter and receiver each have their own clock and frame synchronization signals.  
Continuous or gated clock mode can be selected. In continuous mode, the clock runs continuously. In gated  
clock mode, the clock functions only during transmission. The internal and external clock timing diagrams  
are shown in Figure 34 through Figure 37.  
Normal or network mode can also be selected. In normal mode, the SSI functions with one data word of  
I/O per frame. In network mode, a frame can contain between 2 and 32 data words. Network mode is  
typically used in star or ring-time division multiplex networks with other processors or codecs, allowing  
interface to time division multiplexed networks without additional logic. Use of the gated clock is not  
allowed in network mode. These distinctions result in the basic operating modes that allow the SSI to  
communicate with a wide variety of devices.  
The SSI can be connected to 4 set of ports, SAP, SSI1, SSI2 and SSI3.  
1
CK Output  
4
2
FS (bl) Output  
FS (wl) Output  
6
8
12  
10  
11  
32  
STXD Output  
SRXD Input  
31  
Note: SRXD input in synchronous mode only.  
Figure 34. SSI Transmitter Internal Clock Timing Diagram  
MC9328MX21S Technical Data, Rev. 1.3  
42  
Freescale Semiconductor  
 
Specifications  
1
CK Output  
3
5
FS (bl) Output  
FS (wl) Output  
7
9
13  
14  
SRXD Input  
Figure 35. SSI Receiver Internal Clock Timing Diagram  
15  
16  
17  
CK Input  
18  
20  
FS (bl) Input  
FS (wl) Input  
24  
22  
28  
27  
34  
26  
STXD Output  
SRXD Input  
33  
Note: SRXD Input in Synchronous mode only  
Figure 36. SSI Transmitter External Clock Timing Diagram  
15  
16  
17  
CK Input  
19  
21  
FS (bl) Input  
FS (wl) Input  
25  
23  
30  
29  
SRXD Input  
Figure 37. SSI Receiver External Clock Timing Diagram  
MC9328MX21S Technical Data, Rev. 1.3  
Freescale Semiconductor  
43  
Specifications  
Table 29. SSI to SAP Ports Timing Parameters  
1.8 V 0.1 V  
3.0 V 0.3 V  
Ref  
No.  
Parameter  
Unit  
Minimum  
Maximum  
Minimum  
Maximum  
1
Internal Clock Operation (SAP Ports)  
1
1
2
(Tx/Rx) CK clock period  
90.91  
-3.30  
-3.93  
-3.30  
-3.93  
-3.30  
-3.93  
-3.30  
-3.93  
-2.44  
-2.44  
-2.44  
-2.67  
23.68  
0
90.91  
-2.98  
-4.18  
-2.98  
-4.18  
-2.98  
-4.18  
-2.98  
-4.18  
-2.65  
-2.65  
-2.65  
-2.65  
22.09  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
(Tx) CK high to FS (bl) high  
-1.16  
-1.34  
-1.16  
-1.34  
-1.16  
-1.34  
-1.16  
-1.34  
-0.60  
-0.60  
-0.60  
-0.99  
-1.10  
-1.43  
-1.10  
-1.43  
-1.10  
-1.43  
-1.10  
-1.43  
-0.98  
-0.98  
-0.98  
-0.98  
3
(Rx) CK high to FS (bl) high  
(Tx) CK high to FS (bl) low  
4
5
(Rx) CK high to FS (bl) low  
6
(Tx) CK high to FS (wl) high  
(Rx) CK high to FS (wl) high  
(Tx) CK high to FS (wl) low  
7
8
9
(Rx) CK high to FS (wl) low  
10  
(Tx) CK high to STXD valid from high impedance  
11a (Tx) CK high to STXD high  
11b (Tx) CK high to STXD low  
12  
13  
14  
(Tx) CK high to STXD high impedance  
SRXD setup time before (Rx) CK low  
SRXD hold time after (Rx) CK low  
External Clock Operation (SAP Ports)  
1
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
(Tx/Rx) CK clock period  
90.91  
36.36  
36.36  
10.24  
10.89  
10.24  
10.89  
10.24  
10.89  
10.24  
10.89  
12.08  
10.80  
10.80  
12.08  
0.37  
90.91  
36.36  
36.36  
7.16  
7.63  
7.16  
7.63  
7.16  
7.63  
7.16  
7.63  
7.71  
7.71  
7.71  
7.71  
0.42  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
(Tx/Rx) CK clock high period  
(Tx/Rx) CK clock low period  
(Tx) CK high to FS (bl) high  
(Rx) CK high to FS (bl) high  
(Tx) CK high to FS (bl) low  
19.50  
21.27  
19.50  
21.27  
19.50  
21.27  
19.50  
21.27  
19.36  
19.36  
19.36  
19.36  
8.65  
9.12  
8.65  
9.12  
8.65  
9.12  
8.65  
9.12  
9.20  
9.20  
9.20  
9.20  
(Rx) CK high to FS (bl) low  
(Tx) CK high to FS (wl) high  
(Rx) CK high to FS (wl) high  
(Tx) CK high to FS (wl) low  
(Rx) CK high to FS (wl) low  
(Tx) CK high to STXD valid from high impedance  
27a (Tx) CK high to STXD high  
27b (Tx) CK high to STXD low  
28  
29  
30  
(Tx) CK high to STXD high impedance  
SRXD setup time before (Rx) CK low  
SRXD hole time after (Rx) CK low  
0
MC9328MX21S Technical Data, Rev. 1.3  
44  
Freescale Semiconductor  
Specifications  
Unit  
Table 29. SSI to SAP Ports Timing Parameters (Continued)  
1.8 V 0.1 V  
Minimum Maximum  
Synchronous Internal Clock Operation (SAP Ports)  
3.0 V 0.3 V  
Minimum  
Ref  
No.  
Parameter  
Maximum  
31  
32  
SRXD setup before (Tx) CK falling  
SRXD hold after (Tx) CK falling  
23.00  
0
21.41  
0
ns  
ns  
Synchronous External Clock Operation (SAP Ports)  
33  
34  
SRXD setup before (Tx) CK falling  
SRXD hold after (Tx) CK falling  
1.20  
0
0.88  
0
ns  
ns  
1. All the timings for the SSI are given for a non-inverted serial clock polarity (TSCKP/RSCKP = 0) and a non-inverted frame sync  
(TFSI/RFSI = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timing remains valid by inverting  
the clock signal STCK/SRCK and/or the frame sync STFS/SRFS shown in the tables and in the figures.  
Table 30. SSI to SSI1 Ports Timing Parameters  
1.8 V 0.1 V  
Minimum Maximum  
Internal Clock Operation (SSI1 Ports)  
3.0 V 0.3 V  
Ref  
No.  
Parameter  
Unit  
Minimum  
Maximum  
1
1
1
2
(Tx/Rx) CK clock period  
90.91  
-0.68  
-0.96  
-0.68  
-0.96  
-0.68  
-0.96  
-0.68  
-0.96  
-1.68  
-1.68  
-1.68  
-1.58  
20.41  
0
90.91  
-0.68  
-0.96  
-0.68  
-0.96  
-0.68  
-0.96  
-0.68  
-0.96  
-1.68  
-1.68  
-1.68  
-1.58  
20.41  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
(Tx) CK high to FS (bl) high  
(Rx) CK high to FS (bl) high  
(Tx) CK high to FS (bl) low  
-0.15  
-0.27  
-0.15  
-0.27  
-0.15  
-0.27  
-0.15  
-0.27  
-0.36  
-0.36  
-0.36  
-0.31  
-0.15  
-0.27  
-0.15  
-0.27  
-0.15  
-0.27  
-0.15  
-0.27  
-0.36  
-0.36  
-0.36  
-0.31  
3
4
5
(Rx) CK high to FS (bl) low  
6
(Tx) CK high to FS (wl) high  
(Rx) CK high to FS (wl) high  
(Tx) CK high to FS (wl) low  
7
8
9
(Rx) CK high to FS (wl) low  
(Tx) CK high to STXD valid from high impedance  
10  
11a (Tx) CK high to STXD high  
11b (Tx) CK high to STXD low  
12  
13  
14  
(Tx) CK high to STXD high impedance  
SRXD setup time before (Rx) CK low  
SRXD hold time after (Rx) CK low  
External Clock Operation (SSI1 Ports)  
1
15  
16  
17  
18  
19  
(Tx/Rx) CK clock period  
90.91  
36.36  
36.36  
10.22  
10.79  
90.91  
36.36  
36.36  
8.82  
ns  
ns  
ns  
ns  
ns  
(Tx/Rx) CK clock high period  
(Tx/Rx) CK clock low period  
(Tx) CK high to FS (bl) high  
(Rx) CK high to FS (bl) high  
17.63  
19.67  
16.24  
18.28  
9.39  
MC9328MX21S Technical Data, Rev. 1.3  
Freescale Semiconductor  
45  
Specifications  
Table 30. SSI to SSI1 Ports Timing Parameters (Continued)  
1.8 V 0.1 V  
3.0 V 0.3 V  
Ref  
No.  
Parameter  
(Tx) CK high to FS (bl) low  
Unit  
Minimum  
Maximum  
Minimum  
Maximum  
20  
21  
22  
23  
24  
25  
26  
10.22  
10.79  
10.22  
10.79  
10.22  
10.79  
10.05  
10.00  
10.00  
10.05  
0.78  
17.63  
19.67  
17.63  
19.67  
17.63  
19.67  
15.75  
15.63  
15.63  
15.75  
8.82  
9.39  
8.82  
9.39  
8.82  
9.39  
8.66  
8.61  
8.61  
8.66  
0.47  
0
16.24  
18.28  
16.24  
18.28  
16.24  
18.28  
14.36  
14.24  
14.24  
14.36  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
(Rx) CK high to FS (bl) low  
(Tx) CK high to FS (wl) high  
(Rx) CK high to FS (wl) high  
(Tx) CK high to FS (wl) low  
(Rx) CK high to FS (wl) low  
(Tx) CK high to STXD valid from high impedance  
27a (Tx) CK high to STXD high  
27b (Tx) CK high to STXD low  
28  
29  
30  
(Tx) CK high to STXD high impedance  
SRXD setup time before (Rx) CK low  
SRXD hole time after (Rx) CK low  
0
Synchronous Internal Clock Operation (SSI1 Ports)  
31  
32  
SRXD setup before (Tx) CK falling  
SRXD hold after (Tx) CK falling  
19.90  
0
19.90  
0
ns  
ns  
Synchronous External Clock Operation (SSI1 Ports)  
33  
34  
SRXD setup before (Tx) CK falling  
SRXD hold after (Tx) CK falling  
2.59  
0
2.28  
0
ns  
ns  
1. All the timings for the SSI are given for a non-inverted serial clock polarity (TSCKP/RSCKP = 0) and a non-inverted frame sync  
(TFSI/RFSI = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timing remains valid by inverting  
the clock signal STCK/SRCK and/or the frame sync STFS/SRFS shown in the tables and in the figures.  
Table 31. SSI to SSI2 Ports Timing Parameters  
1.8 V 0.1 V  
Minimum Maximum  
Internal Clock Operation (SSI2 Ports)  
3.0 V 0.3 V  
Ref  
No.  
Parameter  
Unit  
Minimum  
Maximum  
1
1
1
2
(Tx/Rx) CK clock period  
90.91  
0.01  
-0.21  
0.01  
-0.21  
0.01  
-0.21  
0.01  
-0.21  
0.34  
90.91  
0.01  
-0.21  
0.01  
-0.21  
0.01  
-0.21  
0.01  
-0.21  
0.34  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
(Tx) CK high to FS (bl) high  
(Rx) CK high to FS (bl) high  
(Tx) CK high to FS (bl) low  
0.15  
0.05  
0.15  
0.05  
0.15  
0.05  
0.15  
0.05  
0.72  
0.15  
0.05  
0.15  
0.05  
0.15  
0.05  
0.15  
0.05  
0.72  
3
4
5
(Rx) CK high to FS (bl) low  
6
(Tx) CK high to FS (wl) high  
(Rx) CK high to FS (wl) high  
(Tx) CK high to FS (wl) low  
7
8
9
(Rx) CK high to FS (wl) low  
(Tx) CK high to STXD valid from high impedance  
10  
MC9328MX21S Technical Data, Rev. 1.3  
46  
Freescale Semiconductor  
Specifications  
Unit  
Table 31. SSI to SSI2 Ports Timing Parameters (Continued)  
1.8 V 0.1 V  
3.0 V 0.3 V  
Minimum  
Ref  
No.  
Parameter  
Minimum  
Maximum  
Maximum  
11a (Tx) CK high to STXD high  
11b (Tx) CK high to STXD low  
0.34  
0.34  
0.34  
21.50  
0
0.72  
0.72  
0.48  
0.34  
0.34  
0.34  
21.50  
0
0.72  
0.72  
0.48  
ns  
ns  
ns  
ns  
ns  
12  
13  
14  
(Tx) CK high to STXD high impedance  
SRXD setup time before (Rx) CK low  
SRXD hold time after (Rx) CK low  
External Clock Operation (SSI2 Ports)  
1
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
(Tx/Rx) CK clock period  
90.91  
36.36  
36.36  
10.40  
11.00  
10.40  
11.00  
10.40  
11.00  
10.40  
11.00  
9.59  
90.91  
36.36  
36.36  
8.67  
9.28  
8.67  
9.28  
8.67  
9.28  
8.67  
9.28  
7.86  
7.86  
7.86  
7.86  
2.52  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
(Tx/Rx) CK clock high period  
(Tx/Rx) CK clock low period  
(Tx) CK high to FS (bl) high  
(Rx) CK high to FS (bl) high  
(Tx) CK high to FS (bl) low  
17.37  
19.70  
17.37  
19.70  
17.37  
19.70  
17.37  
19.70  
17.08  
17.08  
17.08  
16.84  
15.88  
18.21  
15.88  
18.21  
15.88  
18.21  
15.88  
18.21  
15.59  
15.59  
15.59  
15.35  
(Rx) CK high to FS (bl) low  
(Tx) CK high to FS (wl) high  
(Rx) CK high to FS (wl) high  
(Tx) CK high to FS (wl) low  
(Rx) CK high to FS (wl) low  
(Tx) CK high to STXD valid from high impedance  
27a (Tx) CK high to STXD high  
27b (Tx) CK high to STXD low  
9.59  
9.59  
28  
29  
30  
(Tx) CK high to STXD high impedance  
SRXD setup time before (Rx) CK low  
SRXD hole time after (Rx) CK low  
9.59  
2.52  
0
Synchronous Internal Clock Operation (SSI2 Ports)  
31  
32  
SRXD setup before (Tx) CK falling  
SRXD hold after (Tx) CK falling  
20.78  
0
20.78  
0
ns  
ns  
Synchronous External Clock Operation (SSI2 Ports)  
33  
34  
SRXD setup before (Tx) CK falling  
SRXD hold after (Tx) CK falling  
4.42  
0
4.42  
0
ns  
ns  
1. All the timings for the SSI are given for a non-inverted serial clock polarity (TSCKP/RSCKP = 0) and a non-inverted frame sync  
(TFSI/RFSI = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timing remains valid by inverting  
the clock signal STCK/SRCK and/or the frame sync STFS/SRFS shown in the tables and in the figures.  
MC9328MX21S Technical Data, Rev. 1.3  
Freescale Semiconductor  
47  
Specifications  
Table 32. SSI to SSI3 Ports Timing Parameters  
1.8 V 0.1 V  
3.0 V 0.3 V  
Ref  
No.  
Parameter  
Unit  
Minimum  
Maximum  
Minimum  
Maximum  
1
Internal Clock Operation (SSI3 Ports)  
1
1
2
(Tx/Rx) CK clock period  
90.91  
-2.09  
-2.74  
-2.09  
-2.74  
-2.09  
-2.74  
-2.09  
-2.74  
-1.73  
-2.87  
-2.87  
-1.73  
22.77  
0
90.91  
-2.09  
-2.74  
-2.09  
-2.74  
-2.09  
-2.74  
-2.09  
-2.74  
-1.73  
-2.87  
-2.87  
-1.73  
22.77  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
(Tx) CK high to FS (bl) high  
-0.66  
-0.84  
-0.66  
-0.84  
-0.66  
-0.84  
-0.66  
-0.84  
-0.26  
-0.80  
-0.80  
-0.26  
-0.66  
-0.84  
-0.66  
-0.84  
-0.66  
-0.84  
-0.66  
-0.84  
-0.26  
-0.80  
-0.80  
-0.26  
3
(Rx) CK high to FS (bl) high  
(Tx) CK high to FS (bl) low  
4
5
(Rx) CK high to FS (bl) low  
6
(Tx) CK high to FS (wl) high  
(Rx) CK high to FS (wl) high  
(Tx) CK high to FS (wl) low  
7
8
9
(Rx) CK high to FS (wl) low  
10  
(Tx) CK high to STXD valid from high impedance  
11a (Tx) CK high to STXD high  
11b (Tx) CK high to STXD low  
12  
13  
14  
(Tx) CK high to STXD high impedance  
SRXD setup time before (Rx) CK low  
SRXD hold time after (Rx) CK low  
External Clock Operation (SSI3 Ports)  
1
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
(Tx/Rx) CK clock period  
90.91  
36.36  
36.36  
9.62  
90.91  
36.36  
36.36  
7.90  
8.58  
7.90  
8.58  
7.90  
8.58  
7.90  
8.58  
7.29  
6.75  
6.75  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
(Tx/Rx) CK clock high period  
(Tx/Rx) CK clock low period  
(Tx) CK high to FS (bl) high  
(Rx) CK high to FS (bl) high  
(Tx) CK high to FS (bl) low  
17.10  
19.54  
17.10  
19.54  
17.10  
19.54  
17.10  
19.54  
16.46  
15.32  
15.32  
15.61  
18.05  
15.61  
18.05  
15.61  
18.05  
15.61  
18.05  
14.97  
13.83  
13.83  
10.30  
9.62  
(Rx) CK high to FS (bl) low  
10.30  
9.62  
(Tx) CK high to FS (wl) high  
(Rx) CK high to FS (wl) high  
(Tx) CK high to FS (wl) low  
(Rx) CK high to FS (wl) low  
(Tx) CK high to STXD valid from high impedance  
10.30  
9.62  
10.30  
9.02  
27a (Tx) CK high to STXD high  
27b (Tx) CK high to STXD low  
8.48  
8.48  
MC9328MX21S Technical Data, Rev. 1.3  
48  
Freescale Semiconductor  
Specifications  
Table 32. SSI to SSI3 Ports Timing Parameters (Continued)  
1.8 V 0.1 V  
3.0 V 0.3 V  
Minimum Maximum  
Ref  
No.  
Parameter  
Unit  
Minimum  
Maximum  
28  
29  
30  
(Tx) CK high to STXD high impedance  
SRXD setup time before (Rx) CK low  
SRXD hole time after (Rx) CK low  
9.02  
1.49  
0
16.46  
7.29  
1.49  
0
14.97  
ns  
ns  
ns  
Synchronous Internal Clock Operation (SSI3 Ports)  
31  
32  
SRXD setup before (Tx) CK falling  
SRXD hold after (Tx) CK falling  
21.99  
0
21.99  
0
ns  
ns  
Synchronous External Clock Operation (SSI3 Ports)  
33  
34  
SRXD setup before (Tx) CK falling  
SRXD hold after (Tx) CK falling  
3.80  
0
3.80  
0
ns  
ns  
1. All the timings for the SSI are given for a non-inverted serial clock polarity (TSCKP/RSCKP = 0) and a non-inverted frame sync  
(TFSI/RFSI = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timing remains valid by inverting  
the clock signal STCK/SRCK and/or the frame sync STFS/SRFS shown in the tables and in the figures.  
3.16 1-Wire Interface Timing  
3.16.1 Reset Sequence with Reset Pulse Presence Pulse  
To begin any communications with the DS2502, it is required that an initialization procedure be issued. A  
reset pulse must be generated and then a presence pulse must be detected. The minimum reset pulse length  
is 480 us. The bus master (one-wire) will generate this pulse, then after the DS2502 detects a rising edge  
on the one-wire bus, it will wait 15-60 us before it will transmit back a presence pulse. The presence pulse  
will exist for 60-240 us.  
The timing diagram for this sequence is shown in Figure 38.  
Reset and Presence Pulses  
AutoClear RPP  
Control Bit  
DS2502  
Set RPP  
waits  
DS2502 Tx  
“presence pulse”  
60-240us  
511 us  
15-60us  
one-wire  
BUS  
512us  
One-Wire samples (set PST)  
68us  
Figure 38. 1-Wire Initialization  
The reset pulse begins the initialization sequence and it is initiated when the RPP control register bit is set.  
When the presence pulse is detected, this bit will be cleared. The presence pulse is used by the bus master  
to determine if at least one DS2502 is connected. Software will determine if more than one DS2502 exists.  
The one-wire will sample for the DS2502 presence pulse. The presence pulse is latched in the one-wire  
MC9328MX21S Technical Data, Rev. 1.3  
Freescale Semiconductor  
49  
 
Specifications  
control register PST. When the PST bit is set to a one, it means that a DS2502 is present; if the bit is set to  
a zero, then no device was found.  
3.16.2 Write 0  
The Write 0 function simply writes a zero bit to the DS2502. The sequence takes 117 us. The one-wire bus  
is held low for 100us.  
AutoClear WR0  
Set WR0  
Write 0 Slot 128us  
17us  
100us  
one-wire  
BUS  
Figure 39. Write 0 Timing  
The Write 0 pulse sequence is initiated when the WR0 control bit register is set. When the write is  
complete, the WR0 register will be auto cleared.  
3.16.3 Write 1/Read Data  
The Write 1 and Read timing is identical. The time slot is first driven low. According to the DS2502  
documentation, the DS2502 has a delay circuit which is used to synchronize the DS2502 with the bus  
master (one-wire). This delay circuit is triggered by the falling edge of the data line and is used to decide  
when the DS2502 should sample the line. In the case of a write 1 or read 1, after a delay, a 1 will be  
transmitted / received. When a read 0 slot is issued, the delay circuit will hold the data line low to override  
the 1 generated by the bus master (one-wire).  
For the Write 1 or Read, the control register WR1/RD is set and auto-cleared when the sequence has been  
completed. After a Read, the control register RDST bit is set to the value of the read.  
Auto Clear WR1/R  
Set WR1/RD  
Write “1” Slot 117us  
5us  
Figure 40. Write 1 Timing  
MC9328MX21S Technical Data, Rev. 1.3  
50  
Freescale Semiconductor  
Specifications  
Set WR1/RD  
Auto Clear WR1/RD Set WR1/RD  
Auto Clear WR1/R  
Read Timing  
Read “0” Slot 117us  
60us  
Read “1” Slot 117us  
one-wire  
BUS  
5us  
13us  
5us  
13us  
One-Wire samples  
(set RDST)  
One-Wire samples  
(set RDST)  
Figure 41. Read Timing  
The precision of the generated clock is very important to get a proper behavior of the one-wire module.  
This module is based on a state machine which undertakes actions at defined times.  
Table 33. System Timing Requirements  
Values  
(Microsec)  
Minimum  
(Microsec)  
Maximum  
(microsec)  
Absolute  
Precision  
Relative  
Precision  
Times  
RSTL  
PST  
511  
68  
480  
60  
480  
60  
1
75  
31  
7
0.0645  
0.1  
RSTH  
512  
100  
5
32  
20  
4
0.0645  
0.2  
LOW0  
120  
15  
15  
LOWR  
0.8  
READ_sample  
13  
2
0.15  
The most stringent constraint is 0.0645 as a relative time imprecision.  
The time relative precision is directly derived from the frequency of the derivative clock (f):  
Time relative precision = 1/f -1 = divider/clock (MHz) - 1  
The Figure 34 gathers relative time precision for different main clock frequencies.  
Table 34. System Clock Requirements  
Main Clock Frequency (MHz)  
13  
16.8  
19.44  
Clock divide ratio  
13  
1
17  
19  
Generated frequency (MHz)  
Relative time imprecision  
0.9882  
0.0117  
1.023  
0.023  
0
This shows that the user should take care of the main clock frequency when using the one-wire module. If  
the main clock is an exact integer multiple of 1 MHz, then the generated frequency will be exactly 1 MHz.  
NOTE:  
A main clock frequency below 10 MHz might cause a misbehavior of the module.  
MC9328MX21S Technical Data, Rev. 1.3  
Freescale Semiconductor  
51  
 
Specifications  
3.17 USB On-The-Go  
Four types of data transfer modes exist for the USB module: control transfers, bulk transfers, isochronous  
transfers and interrupt transfers. From the perspective of the USB module, the interrupt transfer type is  
identical to the bulk data transfer mode, and no additional hardware is supplied to support it. This section  
covers the transfer modes and how they work from the ground up.  
Data moves across the USB in packets. Groups of packets are combined to form data transfers. The same  
packet transfer mechanism applies to bulk, interrupt, and control transfers. Isochronous data is also moved  
in the form of packets, but because isochronous pipes are given a fixed portion of the USB bandwidth at  
all times, there is no end-of-transfer.  
USB_ON  
(Output)  
t
TXDM_OEB  
4
t
1
OEB_TXDP  
USB_OE  
(Output)  
6
3
t
t
PERIOD  
TXDP_OEB  
USB_TXDP  
(Output)  
USB_TXDM  
(Output)  
t
OEB_TXDM  
t
FEOPT  
2
5
USB_VP  
(Input)  
USB_VM  
(Input)  
Figure 42. USB Timing Diagram for Data Transfer to USB Transceiver (TX)  
Table 35. USB Timing Parameters for Data Transfer to USB Transceiver (TX)  
3.0 V 0.3 V  
Ref  
No.  
Parameter  
Unit  
Minimum  
Maximum  
1
2
3
4
5
6
tOEB  
; USBD_OE active to USBD_TXDP low  
; USBD_OE active to USBD_TXDM high  
83.14  
81.55  
83.54  
248.9  
160  
83.47  
81.98  
83.8  
ns  
ns  
_TXDP  
tOEB  
_TXDM  
t
t
t
t
OEB; USBD_TXDP high to USBD_OE deactivated  
ns  
TXDP_  
TXDM_  
FEOPT  
PERIOD  
OEB; USBD_TXDM low to USBD_OE deactivated (includes SE0)  
; SE0 interval of EOP  
249.13  
175  
ns  
ns  
; Data transfer rate  
11.97  
12.03  
Mb/s  
MC9328MX21S Technical Data, Rev. 1.3  
52  
Freescale Semiconductor  
Specifications  
USB_ON  
(Output)  
USB_OE  
(Output)  
USB_TXDP  
(Output)  
USB_TXDM  
(Output)  
1
t
FEOPR  
USB_RXDP  
(Input)  
USB_RXDM  
(Input)  
Figure 43. USB Timing Diagram for Data Transfer from USB Transceiver (RX)  
Table 36. USB Timing Parameters for Data Transfer from USB Transceiver (RX)  
3.0 V 0.3 V  
Ref No.  
Parameter  
Unit  
Minimum  
Maximum  
1
t
; Receiver SE0 interval of EOP  
82  
ns  
FEOPR  
2
The USBOTG I C communication protocol consists of six components: START, Data Source/Recipient,  
Data Direction, Slave Acknowledge, Data, Data Acknowledge, and STOP.  
USBG_SDA  
5
3
4
USBG_SCL  
1
2
6
2
Figure 44. USB Timing Diagram for Data Transfer from USB Transceiver (I C)  
2
Table 37. USB Timing Parameters for Data Transfer from USB Transceiver (I C)  
1.8 V 0.1 V  
Ref No.  
Parameter  
Unit  
Minimum  
Maximum  
1
2
3
4
5
6
Hold time (repeated) START condition  
Data hold time  
188  
0
188  
ns  
ns  
ns  
ns  
ns  
ns  
Data setup time  
88  
HIGH period of the SCL clock  
LOW period of the SCL clock  
Setup time for STOP condition  
500  
500  
185  
MC9328MX21S Technical Data, Rev. 1.3  
Freescale Semiconductor  
53  
Specifications  
3.18 External Interface Module (EIM)  
The External Interface Module (EIM) handles the interface to devices external to the i.MX21S, including  
generation of chip-selects for external peripherals and memory. The timing diagram for the EIM is shown  
in Figure 45, and Table 38 defines the parameters of signals.  
(HCLK) Bus Clock  
1a  
2a  
3a  
1b  
2b  
3b  
Address  
Chip-select  
Read (Write)  
4a  
5a  
4b  
5b  
OE (rising edge)  
4c  
5c  
4d  
OE (falling edge)  
EB (rising edge)  
EB (falling edge)  
5d  
6b  
6a  
6a  
LBA (negated falling edge)  
LBA (negated rising edge)  
6c  
7a  
7b  
11  
Burst Clock (rising edge)  
7c  
7d  
Burst Clock (falling edge)  
Read Data  
8b  
9a  
9a  
8a  
9b  
Write Data (negated falling)  
9c  
Write Data (negated rising)  
DTACK  
10a  
10a  
Figure 45. EIM Bus Timing Diagram  
MC9328MX21S Technical Data, Rev. 1.3  
54  
Freescale Semiconductor  
 
Specifications  
Table 38. EIM Bus Timing Parameters  
1.8 V 0.1 V 3.0 V 0.3 V  
1.8 V  
0.1 V  
Ref No.  
Parameter  
Unit  
Min  
Typical  
Max  
Min  
Typical  
Max  
1a  
1b  
2a  
2b  
3a  
3b  
4a  
4b  
4c  
4d  
5a  
5b  
5c  
5d  
6a  
6b  
6c  
7a  
7b  
7c  
7d  
8a  
8b  
9a  
9b  
9c  
10a  
11  
Clock fall to address valid  
3.97  
3.93  
3.47  
3.39  
3.51  
3.59  
3.62  
3.70  
3.60  
3.69  
3.69  
4.64  
3.52  
3.50  
3.65  
3.65  
3.66  
3.50  
3.49  
3.50  
3.49  
4.54  
0.5  
6.02  
6.00  
5.59  
5.09  
5.56  
5.37  
5.49  
5.61  
5.48  
5.62  
5.46  
5.47  
5.06  
5.05  
5.28  
5.67  
5.69  
5.22  
5.19  
5.22  
5.19  
9.89  
9.86  
8.62  
8.27  
8.79  
9.14  
8.98  
9.26  
8.77  
9.12  
8.71  
8.70  
8.39  
8.27  
8.69  
9.36  
9.48  
8.42  
8.30  
8.39  
8.29  
3.83  
3.81  
3.30  
3.15  
3.39  
3.36  
3.46  
3.46  
3.44  
3.42  
3.46  
3.46  
3.41  
3.41  
3.30  
3.41  
3.33  
3.26  
3.31  
3.26  
3.31  
4.54  
0.5  
5.89  
5.86  
5.09  
4.85  
5.39  
5.20  
5.33  
5.37  
5.30  
5.36  
5.25  
5.25  
5.18  
5.18  
5.23  
5.43  
5.47  
4.99  
5.03  
4.98  
5.02  
9.79  
9.76  
8.45  
8.03  
8.51  
8.50  
9.02  
8.81  
8.88  
8.60  
8.54  
8.54  
8.36  
8.36  
8.81  
9.13  
9.25  
8.19  
8.17  
8.15  
8.12  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Clock fall to address invalid  
Clock fall to chip-select valid  
Clock fall to chip-select invalid  
Clock fall to Read (Write) Valid  
Clock fall to Read (Write) Invalid  
1
Clock rise to Output Enable Valid  
1
Clock rise to Output Enable Invalid  
1
Clock fall to Output Enable Valid  
1
Clock fall to Output Enable Invalid  
1
Clock rise to Enable Bytes Valid  
1
Clock rise to Enable Bytes Invalid  
1
Clock fall to Enable Bytes Valid  
1
Clock fall to Enable Bytes Invalid  
1
Clock fall to Load Burst Address Valid  
1
Clock fall to Load Burst Address Invalid  
1
Clock rise to Load Burst Address Invalid  
1
Clock rise to Burst Clock rise  
1
Clock rise to Burst Clock fall  
1
Clock fall to Burst Clock rise  
1
Clock fall to Burst Clock fall  
Read Data setup time  
Read Data hold time  
1
Clock rise to Write Data Valid  
4.13  
4.10  
4.02  
2.65  
15  
5.86  
5.79  
5.81  
4.63  
9.16  
9.15  
9.37  
8.40  
3.95  
4.04  
4.22  
2.64  
15  
6.36  
6.27  
5.29  
4.61  
10.31  
9.16  
9.24  
8.41  
1
Clock fall to Write Data Invalid  
1
Clock rise to Write Data Invalid  
DTACK setup time  
Burst Clock (BCLK) cycle time  
1. Clock refers to the system clock signal, HCLK, generated from the System DPLL  
MC9328MX21S Technical Data, Rev. 1.3  
Freescale Semiconductor  
55  
Specifications  
3.18.1 EIM External Bus Timing Diagrams  
The following timing diagrams show the timing of accesses to memory or a peripheral.  
Note: Signals listed with lower case letters are internal to the device.  
hclk  
hselm_weim_cs[0]  
htrans  
hwrite  
Seq/Nonseq  
Read  
haddr  
hready  
V1  
weim_hrdata  
weim_hready  
Last Valid Data  
V1  
BCLK  
A[24:0]  
Last Valid Address  
V1  
CS[0]  
R/W  
Read  
LBA  
OE  
EB (EBC=0)  
EB (EBC=1)  
DATA_IN  
V1  
Figure 46. WSC = 1, A.HALF/E.HALF  
MC9328MX21S Technical Data, Rev. 1.3  
56  
Freescale Semiconductor  
Specifications  
Note: Signals listed with lower case letters are internal to the device.  
hclk  
hselm_weim_cs[0]  
htrans  
hwrite  
haddr  
Nonseq  
Write  
V1  
hready  
hwdata  
Last Valid Data  
Write Data (V1)  
Unknown  
weim_hrdata  
Last Valid Data  
weim_hready  
BCLK  
A[24:0]  
Last Valid Address  
V1  
CS[0]  
R/W  
LBA  
Write  
OE  
EB  
D[31:0]  
Last Valid Data  
Write Data (V1)  
Figure 47. WSC = 1, WEA = 1, WEN = 1, A.HALF/E.HALF  
MC9328MX21S Technical Data, Rev. 1.3  
Freescale Semiconductor  
57  
Specifications  
Note: Signals listed with lower case letters are internal to the device.  
hclk  
hselm_weim_cs[0]  
htrans  
hwrite  
haddr  
Nonseq  
Read  
V1  
hready  
weim_hrdata  
Last Valid Data  
V1 Word  
weim_hready  
BCLK  
A[24:0]  
Last Valid Addr  
Address V1  
Address V1 + 2  
CS[0]  
R/W  
LBA  
OE  
Read  
EB (EBC=0)  
EB (EBC=1)  
DATA_IN  
1/2 Half Word  
2/2 Half Word  
Figure 48. WSC = 1, OEA = 1, A.WORD/E.HALF  
MC9328MX21S Technical Data, Rev. 1.3  
58  
Freescale Semiconductor  
Specifications  
Note: Signals listed with lower case letters are internal to the device.  
hclk  
hselm_weim_cs[0]  
Nonseq  
Write  
V1  
htrans  
hwrite  
haddr  
hready  
hwdata  
Last Valid Data  
Write Data (V1 Word)  
Last Valid Data  
weim_hrdata  
weim_hready  
BCLK  
A[24:0]  
Last Valid Addr  
Address V1  
Address V1 + 2  
CS[0]  
R/W  
LBA  
Write  
OE  
EB  
D[31:0]  
1/2 Half Word  
2/2 Half Word  
Figure 49. WSC = 1, WEA = 1, WEN = 1, A.WORD/E.HALF  
MC9328MX21S Technical Data, Rev. 1.3  
Freescale Semiconductor  
59  
Specifications  
Note: Signals listed with lower case letters are internal to the device.  
hclk  
hselm_weim_cs[3]  
htrans  
Nonseq  
hwrite  
Read  
V1  
haddr  
hready  
weim_hrdata  
Last Valid Data  
V1 Word  
weim_hready  
BCLK  
A[24:0]  
Last Valid Addr  
Address V1  
Read  
Address V1 + 2  
CS[3]  
R/W  
LBA  
OE  
EB (EBC=0)  
EB (EBC=1)  
DATA_IN  
1/2 Half Word  
2/2 Half Word  
Figure 50. WSC = 3, OEA = 2, A.WORD/E.HALF  
MC9328MX21S Technical Data, Rev. 1.3  
60  
Freescale Semiconductor  
Specifications  
Note: Signals listed with lower case letters are internal to the device.  
hclk  
hselm_weim_cs[3]  
Nonseq  
htrans  
hwrite  
Write  
V1  
haddr  
hready  
hwdata  
Last Valid  
Data  
Write Data (V1 Word)  
Last Valid Data  
weim_hrdata  
weim_hready  
BCLK  
A[24:0]  
Last Valid Addr  
Address V1  
Address V1 + 2  
CS[3]  
R/W  
Write  
LBA  
OE  
EB  
D[31:0]  
Last Valid Data  
1/2 Half Word  
2/2 Half Word  
Figure 51. WSC = 3, WEA = 1, WEN = 3, A.WORD/E.HALF  
MC9328MX21S Technical Data, Rev. 1.3  
Freescale Semiconductor  
61  
Specifications  
Note: Signals listed with lower case letters are internal to the device.  
hclk  
hselm_weim_cs[2]  
htrans  
Nonseq  
Read  
V1  
hwrite  
haddr  
hready  
weim_hrdata  
Last Valid Data  
V1 Word  
weim_hready  
BCLK  
A[24:0]  
Last Valid Addr  
Address V1  
Read  
Address V1 + 2  
CS[2]  
R/W  
LBA  
OE  
EB (EBC=0)  
EB (EBC=1)  
DATA_IN  
1/2 Half Word  
2/2 Half Word  
Figure 52. WSC = 3, OEA = 4, A.WORD/E.HALF  
MC9328MX21S Technical Data, Rev. 1.3  
62  
Freescale Semiconductor  
Specifications  
Note: Signals listed with lower case letters are internal to the device.  
hclk  
hselm_weim_cs[2]  
htrans  
Nonseq  
hwrite  
haddr  
Write  
V1  
hready  
hwdata  
Last Valid  
Data  
Write Data (V1 Word)  
Last Valid Data  
weim_hrdata  
weim_hready  
BCLK  
A[24:0] Last Valid Addr  
Address V1  
Address V1 + 2  
CS[2]  
R/W  
Write  
LBA  
OE  
EB  
D[31:0]  
Last Valid Data  
1/2 Half Word  
2/2 Half Word  
Figure 53. WSC = 3, WEA = 2, WEN = 3, A.WORD/E.HALF  
MC9328MX21S Technical Data, Rev. 1.3  
Freescale Semiconductor  
63  
Specifications  
Note: Signals listed with lower case letters are internal to the device.  
hclk  
hselm_weim_cs[2]  
htrans  
Nonseq  
Read  
V1  
hwrite  
haddr  
hready  
weim_hrdata  
Last Valid Data  
V1 Word  
weim_hready  
BCLK  
A[24:0]  
Last Valid Addr  
Address V1  
Read  
Address V1 + 2  
CS[2]  
R/W  
LBA  
OE  
EB (EBC=0)  
EB (EBC=1)  
DATA_IN  
1/2 Half Word  
2/2 Half Word  
Figure 54. WSC = 3, OEN = 2, A.WORD/E.HALF  
MC9328MX21S Technical Data, Rev. 1.3  
64  
Freescale Semiconductor  
Specifications  
Note: Signals listed with lower case letters are internal to the device.  
hclk  
hselm_weim_cs[2]  
htrans  
Nonseq  
Read  
V1  
hwrite  
haddr  
hready  
weim_hrdata  
Last Valid Data  
V1 Word  
weim_hready  
BCLK  
Last Valid Addr  
Address V1  
Read  
Address V1 + 2  
A[24:0]  
CS[2]  
R/W  
LBA  
OE  
EB (EBC=0)  
EB (EBC=1)  
DATA_IN  
1/2 Half Word  
2/2 Half Word  
Figure 55. WSC = 3, OEA = 2, OEN = 2, A.WORD/E.HALF  
MC9328MX21S Technical Data, Rev. 1.3  
Freescale Semiconductor  
65  
Specifications  
Note: Signals listed with lower case letters are internal to the device.  
hclk  
hselm_weim_cs[2]  
htrans  
Nonseq  
Write  
V1  
hwrite  
haddr  
hready  
hwdata  
Last Valid  
Data  
Write Data (V1 Word)  
Last Valid Data  
Unknown  
weim_hrdata  
weim_hready  
BCLK  
A[24:0] Last Valid Addr  
CS[2]  
Address V1  
Address V1 + 2  
R/W  
Write  
LBA  
OE  
EB  
D[31:0]  
1/2 Half Word  
2/2 Half Word  
Last Valid Data  
Figure 56. WSC = 2, WWS = 1, WEA = 1, WEN = 2, A.WORD/E.HALF  
MC9328MX21S Technical Data, Rev. 1.3  
66  
Freescale Semiconductor  
Specifications  
Note: Signals listed with lower case letters are internal to the device.  
hclk  
hselm_weim_cs[2]  
Nonseq  
Write  
V1  
htrans  
hwrite  
haddr  
hready  
hwdata  
Last Valid  
Data  
Write Data (V1 Word)  
Last Valid Data  
Unknown  
weim_hrdata  
weim_hready  
BCLK  
A[24:0]  
Last Valid Addr  
Address V1  
Address V1 + 2  
CS[2]  
R/W  
LBA  
Write  
OE  
EB  
D[31:0]  
1/2 Half Word  
2/2 Half Word  
Last Valid Data  
Figure 57. WSC = 1, WWS = 2, WEA = 1, WEN = 2, A.WORD/E.HALF  
MC9328MX21S Technical Data, Rev. 1.3  
Freescale Semiconductor  
67  
Specifications  
Note: Signals listed with lower case letters are internal to the device.  
hclk  
hselm_weim_cs[2]  
htrans  
Nonseq  
Read  
V1  
Nonseq  
Write  
V8  
hwrite  
haddr  
hready  
hwdata  
Last Valid Data  
Write Data  
Read Data  
weim_hrdata  
Last Valid Data  
weim_hready  
BCLK  
A[24:0]  
Last Valid Addr  
Address V1  
Address V8  
CS[2]  
R/W  
LBA  
Read  
Write  
OE  
EB (EBC=0)  
EB (EBC=1)  
DATA_IN  
D[31:0]  
Read Data  
Last Valid Data  
Write Data  
Figure 58. WSC = 2, WWS = 2, WEA = 1, WEN = 2, A.HALF/E.HALF  
MC9328MX21S Technical Data, Rev. 1.3  
68  
Freescale Semiconductor  
Specifications  
Note: Signals listed with lower case letters are internal to the device.  
Read Idle  
Write  
hclk  
hselm_weim_cs[2]  
htrans  
Nonseq  
Read  
V1  
Nonseq  
Write  
V8  
hwrite  
haddr  
hready  
hwdata  
Last Valid Data  
Write Data  
weim_hrdata  
weim_hready  
Last Valid Data  
Read Data  
BCLK  
A[24:0]  
Last Valid Addr  
Address V1  
Address V8  
Write  
CS[2]  
R/W  
LBA  
Read  
OE  
EB (EBC=0)  
EB (EBC=1)  
DATA_IN  
D[31:0]  
Read Data  
Last Valid Data  
Write Data  
Figure 59. WSC = 2, WWS = 1, WEA = 1, WEN = 2, EDC = 1, A.HALF/E.HALF  
MC9328MX21S Technical Data, Rev. 1.3  
Freescale Semiconductor  
69  
Specifications  
Note: Signals listed with lower case letters are internal to the device.  
hclk  
hselm_weim_cs[4]  
htrans  
Nonseq  
Write  
V1  
hwrite  
haddr  
hready  
hwdata  
Last Valid  
Data  
Write Data (Word)  
Last Valid Data  
weim_hrdata  
weim_hready  
BCLK  
A[24:0]  
Last Valid Addr  
Address V1  
Address V1 + 2  
CS[3:0]  
R/W  
Write  
LBA  
OE  
EB  
D[31:0]  
Write Data (1/2 Half Word)  
Write Data (2/2 Half Word)  
Last Valid Data  
Figure 60. WSC = 2, CSA = 1, WWS = 1, A.WORD/E.HALF  
MC9328MX21S Technical Data, Rev. 1.3  
70  
Freescale Semiconductor  
Specifications  
Note: Signals listed with lower case letters are internal to the device.  
hclk  
hselm_weim_cs[4]  
Nonseq  
Read  
V1  
Nonseq  
Write  
V8  
htrans  
hwrite  
haddr  
hready  
hwdata  
weim_hrdata  
weim_hready  
Last Valid Data  
Write Data  
Read Data  
Last Valid Data  
BCLK  
A[24:0] Last Valid Addr  
Address V1  
Address V8  
CS[4]  
R/W  
LBA  
OE  
Read  
Write  
EB (EBC=0)  
EB (EBC=1)  
Read Data  
DATA_IN  
D[31:0]  
Last Valid Data  
Write Data  
Figure 61. WSC = 3, CSA = 1, A.HALF/E.HALF  
MC9328MX21S Technical Data, Rev. 1.3  
Freescale Semiconductor  
71  
Specifications  
Note: Signals listed with lower case letters are internal to the device.  
hclk  
hselm_weim_cs[4]  
htrans  
Nonseq  
Read  
V1  
Idle  
Seq  
Read  
V2  
hwrite  
haddr  
hready  
weim_hrdata  
weim_hready  
Last Valid Data  
Read Data (V1)  
Read Data (V2)  
BCLK  
A[24:0]  
Last Valid Addr  
Address V1  
Address V2  
CNC  
CS[4]  
R/W  
LBA  
Read  
OE  
EB (EBC=0)  
EB (EBC=1)  
DATA_IN  
Read Data  
(V1)  
Read Data  
(V2)  
Figure 62. WSC = 2, OEA = 2, CNC = 3, BCM = 1, A.HALF/E.HALF  
MC9328MX21S Technical Data, Rev. 1.3  
72  
Freescale Semiconductor  
Specifications  
Note: Signals listed with lower case letters are internal to the device.  
hclk  
hselm_weim_cs[4]  
htrans  
Nonseq  
Read  
V1  
Idle  
Nonseq  
Write  
V8  
hwrite  
haddr  
hready  
hwdata  
Last Valid Data  
Write Data  
weim_hrdata  
Last Valid Data  
Read Data  
weim_hready  
BCLK  
A[24:0]  
Last Valid Addr  
Address V1  
Address V8  
CNC  
CS[4]  
R/W  
Read  
Write  
LBA  
OE  
EB (EBC=0)  
EB (EBC=1)  
DATA_IN  
D[31:0]  
Read Data  
Last Valid Data  
Write Data  
Figure 63. WSC = 2, OEA = 2, WEA = 1, WEN = 2, CNC = 3, A.HALF/E.HALF  
MC9328MX21S Technical Data, Rev. 1.3  
Freescale Semiconductor  
73  
Specifications  
Note: Signals listed with lower case letters are internal to the device.  
hclk  
hselm_weim_cs[2]  
htrans  
Idle  
Nonseq  
Read  
V1  
Nonseq  
Read  
V5  
hwrite  
haddr  
hready  
weim_hrdata  
weim_hready  
BCLK  
A[24:0]  
Last Valid Addr  
Address V1  
Address V5  
CS[2]  
Read  
R/W  
LBA  
OE  
EB (EBC=0)  
EB (EBC=1)  
ECB  
V5 Word  
DATA_IN  
V6 Word  
V1 Word V2 Word  
Figure 64. WSC = 3, SYNC = 1, A.HALF/E.HALF  
MC9328MX21S Technical Data, Rev. 1.3  
74  
Freescale Semiconductor  
Specifications  
Note: Signals listed with lower case letters are internal to the device.  
hclk  
hselm_weim_cs[2]  
htrans  
hwrite  
haddr  
Nonseq  
Idle  
Seq  
Read  
V2  
Seq  
Read  
V3  
Seq  
Read  
V4  
Read  
V1  
hready  
weim_hrdata  
weim_hready  
BCLK  
Last Valid Data  
V1 Word  
V2 Word  
V3 Word  
V4 Word  
A[24:0]  
Last Valid Addr  
Address V1  
CS[2]  
R/W  
Read  
LBA  
OE  
EB (EBC=0)  
EB (EBC=1)  
ECB  
DATA_IN  
V1 Word  
V2 Word  
V3 Word  
V4 Word  
Figure 65. WSC = 2, SYNC = 1, DOL = [1/0], A.WORD/E.WORD  
MC9328MX21S Technical Data, Rev. 1.3  
Freescale Semiconductor  
75  
Specifications  
Note: Signals listed with lower case letters are internal to the device.  
hclk  
hselm_weim_cs[2]  
htrans  
Nonseq  
Seq  
Idle  
hwrite  
haddr  
Read  
V1  
Read  
V2  
hready  
weim_hrdata  
Last Valid Data  
V1 Word  
V2 Word  
weim_hready  
BCLK  
A[24:0]  
CS[2]  
R/W  
Last Valid Addr  
Address V1  
Address V2  
Read  
LBA  
OE  
EB (EBC=0)  
EB (EBC=1)  
ECB  
DATA_IN  
V1 1/2  
V1 2/2  
V2 1/2  
V2 2/2  
Figure 66. WSC = 2, SYNC = 1, DOL = [1/0], A.WORD/E.HALF  
MC9328MX21S Technical Data, Rev. 1.3  
76  
Freescale Semiconductor  
Specifications  
Note: Signals listed with lower case letters are internal to the device.  
hclk  
hselm_weim_cs[2]  
Non  
htrans  
Seq  
Read  
V2  
Idle  
seq  
Read  
V1  
hwrite  
haddr  
hready  
weim_hrdata  
Last Valid Data  
V1 Word  
V2 Word  
weim_hready  
BCLK  
Last Valid  
Addr  
Address V1  
A[24:0]  
CS[2]  
Read  
R/W  
LBA  
OE  
EB (EBC=0)  
EB (EBC=1)  
ECB  
DATA_IN  
V1 1/2  
V1 2/2  
V2 1/2  
V2 2/2  
Figure 67. WSC = 7, OEA = 8, SYNC = 1, DOL = 1, BCD = 1, BCS = 2, A.WORD/E.HALF  
MC9328MX21S Technical Data, Rev. 1.3  
Freescale Semiconductor  
77  
Specifications  
Note: Signals listed with lower case letters are internal to the device.  
hclk  
hselm_weim_cs[2]  
htrans  
Non  
seq  
Seq  
Idle  
hwrite  
haddr  
Read  
V1  
Read  
V2  
hready  
weim_hrdata  
Last Valid Data  
V1 Word  
V2 Word  
weim_hready  
BCLK  
A[24:0]  
CS[2]  
Last Valid  
Addr  
Address V1  
R/W  
LBA  
Read  
OE  
EB (EBC=0)  
EB (EBC=1)  
ECB  
DATA_IN  
V1 1/2  
V1 2/2  
V2 1/2  
V2 2/2  
Figure 68. WSC = 7, OEA = 8, SYNC = 1, DOL = 1, BCD = 1, BCS = 1, A.WORD/E.HALF  
MC9328MX21S Technical Data, Rev. 1.3  
78  
Freescale Semiconductor  
Specifications  
3.19 DTACK Mode Memory Access Timing Diagrams  
When enabled, the DTACK input signal is used to externally terminate a data transfer. For DTACK  
enabled operations, a bus time-out monitor generates a bus error when an external bus cycle is not  
terminated by the DTACK input signal after 1024 HCLK clock cycles have elapsed, where HCLK is the  
internal system clock driven from the PLL module. For a 133 MHz HCLK setting, this time equates to  
7.7 μs. Refer to the Section 3.5, “DPLL Timing Specifications” for more information on how to generate  
different HCLK frequencies.  
There are two modes of operation for the DTACK input signal: rising edge detection or level sensitive  
detection with a programmable insensitivity time. DTACK is only used during external asynchronous data  
transfers, thus the SYNC bit in the chip select control registers must be cleared.  
During edge detection mode, the EIM will terminate an external data transfer following the detection of  
the DTACK signal’s rising edge, so long as it occurs within the 1024 HCLK cycle time. Edge detection  
mode is used for devices that follow the PCMCIA standard. Note that DTACK rising edge detection mode  
can only be used for CS[5] operations. To configure CS[5] for DTACK rising edge detection, the following  
bits must be programmed in the Chip Select 5 Control Register and EIM Configuration Register:  
WSC bit field set to 0x3F and CSA (or CSN) set to 1 or greater in the Chip Select 5 Control Register  
AGE bit set in the EIM Configuration Register  
Other bits such as DSZ, OEA, OEN, and so on, may be set according to system and timing requirements  
of the external device. The requirement of setting CSA or CSN is required to allow the EIM to wait for the  
rising edge of DTACK during back-to-back external transfers, such as during DMA transfers or an internal  
32-bit access through an external 16-bit data port.  
During level sensitive detection, the EIM will first hold off sampling the DTACK signal for at least 2  
HCLK cycles, and up to 5 HCLK cycles as programmed by the DCT bits in the Chip Select Control  
Register. After this insensitivity time, the EIM will sample DTACK and if it detects that DTACK is logic  
high, it will continue the data transfer at the programmed number of wait states. However, if the EIM  
detects that DTACK is logic low, it will wait until DTACK goes to logic high to continue the access, so  
long as this occurs within the 1024 HCLK cycle time. If at anytime during an external data transfer  
DTACK goes to logic low, the EIM will wait until DTACK returns to logic high to resume the data transfer.  
Level detection is often used for asynchronous devices such graphic controller chips. Level detection may  
be used with any chip select except CS[4] as it is multiplexed with the DTACK signal. To configure a chip  
select for DTACK level sensitive detection, the following bits must be programmed in the Chip Select  
Control Register and EIM Configuration Register:  
EW bit set, WSC set to > 1, and CSN set to < 3 in the Chip Select Control Register  
BCD/DCT set to desired “insensitivity time” in the Chip Select Control Register. The “insensitivity time”  
is dictated by the external device’s timing requirements.  
AGE bit cleared in the EIM Configuration Register  
Other bits such as DSZ, OEA, OEN, and so on, may be set according to system and timing requirements  
of the external device.  
The waveforms in the following section provide examples of the DTACK signal operation.  
MC9328MX21S Technical Data, Rev. 1.3  
Freescale Semiconductor  
79  
Specifications  
3.19.1 DTACK Example Waveforms: Internal ARM AHB Word Accesses to  
Word-Width (32-bit) Memory  
HCLK  
BCLK  
Last Valid  
Addr  
V1  
ADDR  
CS[5]  
Read  
RW  
LBA  
OE  
EB (EBC=0)  
EB (EBC=1)  
DTACK  
DATA_IN  
V1 Data  
Figure 69. DTACK Edge Triggered Read Access, WSC=3F, OEA=8, OEN=5, AGE=1.  
MC9328MX21S Technical Data, Rev. 1.3  
80  
Freescale Semiconductor  
Specifications  
HCLK  
BCLK  
Last Valid Addr  
Address V1  
V1+8  
V1+4  
ADDR  
CS[0]  
Read  
RW  
LBA  
OE  
EB (EBC=0)  
EB (EBC=1)  
DCT  
DTACK  
DATA_IN  
V1 Word  
V1+4 Word  
V1+8 Word  
Figure 70. DTACK Level Sensitive Sequential Read Accesses, WSC=2, EW=1, DCT=1, AGE=0 (Example of  
DTACK Remaining High)  
MC9328MX21S Technical Data, Rev. 1.3  
Freescale Semiconductor  
81  
Specifications  
HCLK  
BCLK  
ADDR  
CS[0]  
Address V1  
V1+4  
V1+8  
Last Valid Addr  
RWA  
RWN  
Write  
RW  
LBA  
OE  
EB  
DCT  
DTACK  
V1 Word  
V1+4 Word  
V1+8  
DATA_OUT  
Figure 71. DTACK Level Sensitive Sequential Write Accesses, WSC=2, EW=1, RWA=1, RWN=1, DCT=1,  
AGE=0 (Example of DTACK Asserting)  
MC9328MX21S Technical Data, Rev. 1.3  
82  
Freescale Semiconductor  
Specifications  
2
3.20 I C Module  
2
The I C communication protocol consists of seven elements: START, Data Source/Recipient, Data  
Direction, Slave Acknowledge, Data, Data Acknowledge, and STOP.  
SDA  
3
4
5
SCL  
1
6
2
2
Figure 72. Definition of Bus Timing for I C  
2
Table 39. I C Bus Timing Parameters  
1.8 V 0.1 V  
3.0 V 0.3 V  
Ref  
No.  
Parameter  
Unit  
Minimum  
Maximum  
Minimum  
Maximum  
SCL Clock Frequency  
0
100  
0
100  
kHz  
ns  
ns  
ns  
ns  
ns  
ns  
1
2
3
4
5
6
Hold time (repeated) START condition  
Data hold time  
114.8  
0
111.1  
0
69.7  
72.3  
Data setup time  
3.1  
1.76  
68.3  
335.1  
111.1  
HIGH period of the SCL clock  
LOW period of the SCL clock  
Setup time for STOP condition  
69.7  
336.4  
110.5  
MC9328MX21S Technical Data, Rev. 1.3  
Freescale Semiconductor  
83  
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from  
Freescale for import or sale in the United States prior to September 2010: i.MX21 Product Family  
4 Pin Assignment and Package Information  
Table 40. i.MX21S Pin Assignment  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
OE_  
ACD  
USBH1_ USBH1_ USBG_  
SAP_  
TXDAT  
SSI1_  
CLK  
SSI2_  
RXDAT  
SSI3_  
FS  
A
B
C
D
E
F
LD9  
LD12  
LD14  
REV HSYNC  
SD2_D2 PB10  
PB16  
PB20  
TOUT  
SSI2_TXDAT  
FS  
OE  
USBG_ USBG_  
SCL TXDM  
USBH1_ USBG_  
RXDM RXDM  
FS  
CON  
TRAST  
SD2_  
SD2_D0  
USB_  
PWR  
SAP_  
FS  
SSI1_  
FS  
SSI2_  
FS  
SSI3_  
TXDAT  
CSPI2_  
SS2  
LD7  
LD1  
LD2  
LD8  
LD5  
LD3  
LD0  
LD4  
D31  
D29  
D27  
A18  
LD11  
LD6  
LD16  
LD10  
CLS  
PS  
PB14  
PB15  
PB12  
PB18  
PB21  
PB19  
I2C_DATA  
I2C_CLK  
CSPI2_SS0  
CSPI1_SS2  
KP_ROW0  
PE3  
CMD  
USB_  
OC  
SSI1_  
TXDAT  
SSI3_  
RXDAT  
SSI3_  
CLK  
CSPI2_  
SS1  
LD17 VSYNC SD2_D3 PB11  
TIN  
SD2_  
CLK  
USBH1_ USBH1_ USBG_ USBG_  
SAP_  
RXDAT RXDAT  
SSI1_  
SSI2_  
CLK  
CSPI2_  
SCLK  
LD13  
LD15  
QVDD  
QVSS SD2_D1  
TXDM  
RXDP  
ON  
RXDP  
SPL_  
SPR  
SAP_  
CLK  
CSPI2_  
MISO  
CSPI2_  
MOSI  
A24_  
NFIO14  
A25_  
NFIO15  
CSPI1_  
SS1  
CSPI1_  
MISO  
CSPI1_  
SS0  
LSCLK  
D30  
D28  
D26  
D24  
D22  
D18  
D16  
D14  
D12  
D10  
OE  
A22_  
NFIO12  
A23_  
NFIO13  
USB_  
BYP  
USBH_ USBG_ USBG_  
ON SDA TXDP  
KP_  
ROW1  
KP_  
ROW3  
KP_  
ROW4  
G
H
J
NVDD6 NVSS6  
NVDD1 NVSS5  
PB13  
PB17  
A21_  
NFIO11  
CSPI1_ CSPI1_ USBH1_ USBG_  
TEST_  
WB4  
TEST_  
WB2  
A20  
A19  
TEST_WB3  
KP_COL0  
KP_COL4  
UART3_CTS  
UART1_RTS  
SD1_D1  
PWMO  
SCLK  
RDY  
TXDP  
OE  
KP_  
ROW5  
KP_  
ROW2  
CSPI1_ TEST_  
TEST_  
WB1  
D25  
D23  
D21  
D20  
D17  
D15  
D13  
EB3  
EB2  
D9  
NVDD1 NVDD5 NVDD4  
NVSS1 NVSS4 QVDDX  
NVSS1 NVDD3 QVDD  
NVDD2 NVDD3 NVSS3  
PE4  
KP_COL1  
KP_COL5  
MOSI  
WB0  
UART1_  
RXD  
KP_  
COL3  
KP_  
COL2  
K
L
A16  
A17  
TDO  
QVDD  
QVSS  
A14_  
NFIO9 NFIO10  
A15_  
UART1_  
TXD  
UART3_  
RTS  
UART3_  
TXD  
QVSS  
QVSS  
NFIO2  
NFIO7  
NFWP  
NFRB  
PE6  
PE7  
A13_  
D19  
EXT_  
48M  
UART3_  
RXD  
UART1_  
CTS  
M
N
P
R
T
NFIO8  
SD1_  
D0  
A11  
A9  
A12  
A10  
A8  
LBA  
NVSS3 SDCKE0 NVSS1 NVSS1 NVDD1 NVDD1  
TCK  
RTCK  
TMS  
SD1_  
D2  
SD1_  
CMD  
TDI  
SD1_  
CLK  
EXT_  
266M  
A7  
NVSS2  
TRST  
RESET_  
IN  
CLK  
MODE0  
A5  
A6  
CS3  
CS4  
CS5  
CS2  
CS1  
D6  
BCLK  
ECB  
CS0  
D4  
MA11  
D3  
RAS  
MA10  
D1  
CAS  
NFIO5  
PF16  
NFIO3  
NFIO4  
CLKO  
NFWE  
NFIO1  
NFIO6  
NFRE  
NFCE  
BOOT1  
POR  
SD1_D3 CLKMODE1  
PC_  
PWRON  
U
V
W
D11  
A4  
EB1  
EB0  
A2  
NFALE  
QVSS  
QVDD  
NFCLE  
BOOT2  
BOOT3  
VDDA  
QVDD  
XTAL32K  
JTAG_  
CTRL  
RESET_  
OUT  
OSC26M_  
TEST  
EXTAL  
32K  
D8  
D5  
RW  
D2  
SDWE  
BOOT0  
EXTAL  
26M  
A3  
D7  
A1  
A0  
D0  
SDCLK SDCKE1 NFIO0  
QVSS  
XTAL26M  
QVSS  
 
Pin Assignment and Package Information  
4.1  
MAPBGA Package Dimensions  
Figure 73 illustrates the MAPBGA 14 mm × 14 mm × 1.41 mm package, which has 0.65 mm ball pitch.  
Figure 73. i.MX21 MAPBGA Mechanical Drawing  
MC9328MX21S Technical Data, Rev. 1.3  
Freescale Semiconductor  
85  
 
Pin Assignment and Package Information  
4.2  
MAPBGA Package Dimensions  
Figure 74 illustrates the MAPBGA 17 mm × 17 mm × 1.45 mm package, which has 0.8 mm spacing  
between the pads.  
Figure 74. i.MX21 MAPBGA Mechanical Drawing  
MC9328MX21S Technical Data, Rev. 1.3  
86  
Freescale Semiconductor  
 
Document Revision History  
5 Document Revision History  
Table 41 provides the document changes for the MC9328MX21S Rev. 1.3.  
Table 41. Document Revision History  
Location  
Description of Change  
Table 1 on page 3  
Table 7 on page 14  
Table 40 on page 84  
Added VM and CVM devices.  
Updated Sleep Current values..  
Added Package Drawing for the 17mm x 17mm package.  
MC9328MX21S Technical Data, Rev. 1.3  
Freescale Semiconductor  
87  
 
How to Reach Us:  
Information in this document is provided solely to enable system and software implementers to use  
Freescale Semiconductor products. There are no express or implied copyright licenses granted  
hereunder to design or fabricate any integrated circuits or integrated circuits based on the information  
in this document.  
Home Page:  
www.freescale.com  
E-mail:  
Freescale Semiconductor reserves the right to make changes without further notice to any products  
herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the  
suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any  
liability arising out of the application or use of any product or circuit, and specifically disclaims any  
and all liability, including without limitation consequential or incidental damages. “Typical” parameters  
that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary  
in different applications and actual performance may vary over time. All operating parameters,  
including “Typicals”, must be validated for each customer application by customer’s technical experts.  
Freescale Semiconductor does not convey any license under its patent rights nor the rights of others.  
Freescale Semiconductor products are not designed, intended, or authorized for use as components  
in systems intended for surgical implant into the body, or other applications intended to support or  
sustain life, or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer purchase or use  
Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall  
indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and  
distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney  
fees arising out of, directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was  
negligent regarding the design or manufacture of the part.  
support@freescale.com  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor  
Technical Information Center, CH370  
1300 N. Alma School Road  
Chandler, Arizona 85224  
+1-800-521-6274 or +1-480-768-2130  
support@freescale.com  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
support@freescale.com  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064, Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. ARM, Multi-  
ICE, and the ARM Powered logo are registered trademarks of ARM Limited. ARM926EJ-S is a  
trademark of ARM Limited. All other product or service names are the property of their respective  
owners.  
Asia/Pacific:  
© Freescale Semiconductor, Inc. 2005–2008. All rights reserved.  
Freescale Semiconductor Hong Kong Ltd.  
Technical Information Center  
2 Dai King Street  
Tai Po Industrial Estate  
Tai Po, N.T., Hong Kong  
+800 2666 8080  
support.asia@freescale.com  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution Center  
P.O. Box 5405  
Denver, Colorado 80217  
1-800-521-6274 or 303-675-2140  
Fax: 303-675-2150  
LDCForFreescaleSemiconductor@hibbertgroup.com  
Document Number: MC9328MX21S  
Rev. 1.3  
06/2008  

相关型号:

MC9328MX21SVM

MX family of microprocessors
FREESCALE

MC9328MX21SVMR2

32-BIT, 266MHz, MICROPROCESSOR, PBGA289, 17 X17 MM, 1.45 MM HEIGHT, 0.80 MM PITCH, LEAD FREE, MAPBGA-289
NXP

MC9328MX21S_08

i.MX family of microprocessors 266 MHz
FREESCALE

MC9328MX21VG

i.MX family of microprocessors
MOTOROLA

MC9328MX21VH

i.MX family of microprocessors
MOTOROLA

MC9328MX21VK

i.MX family of microprocessors
MOTOROLA

MC9328MX21VK

i.MX family of microprocessors
FREESCALE

MC9328MX21VM

i.MX family of microprocessors
MOTOROLA

MC9328MX21VM

i.MX family of microprocessors
FREESCALE

MC9328MX21VMR2

DB I.MX21 17X17 PB-FR
NXP

MC9328MX21_06

i.MX family of microprocessors
FREESCALE

MC9328MX21_09

i.MX family of microprocessors
FREESCALE